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(a) Rich ego actions. (b) Multi-agent interplay.

  

(c) Rich open-world knowledge.

  

(d) Diverse and rare cases.

Figure 1: Examples on DrivingDojo. (a) showcases various driving actions, such as lane changes,
abrupt braking at traffic control, and turning at intersections. (b) illustrates the ego-car’s interactions
with other dynamic agents, including cutting-in and cutting-off maneuvers. (c) displays encounters
with rolling or falling objects, moving or floating unknown objects, and interactions with traffic lights
and boom barriers. (d) presents diverse cases encountered in real-world driving scenarios.

Abstract

Driving world models have gained increasing attention due to their ability to model
complex physical dynamics. However, their superb modeling capability is yet to
be fully unleashed due to the limited video diversity in current driving datasets.
We introduce DrivingDojo, the first dataset tailor-made for training interactive
world models with complex driving dynamics. Our dataset features video clips
with a complete set of driving maneuvers, diverse multi-agent interplay, and rich
open-world driving knowledge, laying a stepping stone for future world model
development. We further define an action instruction following (AIF) benchmark
for world models and demonstrate the superiority of the proposed dataset for
generating action-controlled future predictions.
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Figure 2: Enhancing interactive and knowledge-enriched learning of world models. Data plays a
crucial role in modeling the world. DrivingDojo is a large-scale video dataset curated from millions
of daily collected videos, designed to investigate real-world visual interactions. DrivingDojo features
comprehensive actions, multi-agent interplay, and rich open-world driving knowledge, serving as a
superb platform for studying driving world models.

1 Introduction

World models [17, 20, 33, 21] have gained increasing attention due to their ability to model complex
real-world physical dynamics. They also hold potential as general-purpose simulators, capable of
predicting future states in response to diverse action instructions. Facilitated by advancements in
video generation techniques [53, 24, 3, 2], models like Sora have achieved remarkable success in
producing high-quality videos, thereby opening up a new avenue that treats video generation as
real-world dynamics modeling problem [47, 19, 56]. Generative world models, in particular, hold
significant promise as real-world simulators and have garnered extensive research in the field of
autonomous driving [28, 48, 30, 49, 54, 60, 13].

However, existing driving world models fall short of meeting the requirements of model-based
planning in autonomous driving, which aims to improve driving safety in scenarios with diverse ego
maneuvers and intricate interaction between the ego vehicle and other road users. These models
perform well for non-interactive in-lane maneuvers but have shown limited capability in following
more challenging action instructions like lane change. One significant roadblock to building next-
generation driving world models lies in the datasets. Autonomous driving datasets commonly used
in current world model literature like nuScenes [6], Waymo [45], and ONCE [37], are primarily
designed and curated in a perception-oriented manner. As a result, it contains limited driving patterns
and multi-agent interactions, which may not fully capture the complexities of real-world driving
scenarios. The scarcity of interaction data limits the ability of models to accurately simulate and
predict the complex dynamics of real-world driving environments.

In this paper, we propose DrivingDojo, a large-scale driving video dataset designed to simulate
real-world visual interaction. As illustrated in Figure 1, DrivingDojo features action completeness,
multi-agent interplay, and open-world driving knowledge. Our dataset aims to unleash the full
potential of world models in action instruction following by including rich longitudinal maneuvers
like acceleration, emergency braking and stop-and-go as well as lateral ones like U-turn, overtaking,
and lane change. Besides, we explicitly curate the dataset to include a large volume of trajectories
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Table 1: A comparison of driving datasets for world model. This comparison emphasizes the
diversity of the video content, placing less focus on annotations or sensor data. ⇤ denotes that the
videos are curated from our data pool of around 7500 hours.

Dataset Videos Duration
(hours)

Ego
Trajectory

Complete
Actions

Multi-agent
Interplay

Open-world
Knowledge

nuScenes [6] 1k 5.5 X
Waymo [45] 1k 11 X

OpenDV-2k [54] 2k 2059 X
nuPlan [7] - 1500 X X X

DrivingDojo (Ours) 18k 150⇤ X X X X

containing multi-agent interplays like cut-in, cut-off, and head-to-head merging. Finally, DrivingDojo
taps into the open-world driving knowledge by including videos containing rare events sampled from
tens of millions of driving video clips, including crossing animals, falling bottles and debris. As
shown in Figure 2, we hope that DrivingDojo could serve as a solid stepping stone for developing
next-generation driving world models.

To measure the progress of driving scene modeling, we propose a new action instruction following
(AIF) benchmark to assess the ability of world models to perform plausible future rollouts. The AIF
benchmark measures the visual and structural fidelity of videos generated by world models in an
action-conditioned manner. We propose the AIF errors calculated on the withheld validation data to
evaluate the long-term motion controllability for generated videos. The error is defined as the mean
error between the actions estimated from the generated video and the given action instructions. Then
the baseline world model is evaluated on our DrivingDojo AIF benchmark, for in-domain data and
out-of-domain images or action conditions.

Our major contributions are as follows. (1) We design a large-scale driving video dataset to facilitate
research in world model for autonomous driving. Compared to previous datasets in Table 1, our
dataset features complete driving actions, diverse multi-agent interplay, and rich open-world driving
knowledge. (2) We design an action instruction following task for driving world model and provide
corresponding video world model baseline methods. (3) Benchmark results on both driving video
generation and action instruction following show that there are plenty of new opportunities for future
driving world model development on our new dataset.

2 Related Works

2.1 Autonomous Driving Datasets
Datasets for perception. The driving dataset has played a crucial role in advancing computer vision
in recent years, aiming to achieve comprehensive perception and understanding surrounding the ego
vehicle. Initially, perception in autonomous driving relied on 2D image-based perception. Datasets
like Cityscapes [10], Mapillary Vistas [39], and BDD100k [58] provided instance-level masks for
learning tasks. With the integration of LiDAR sensors and advancements in 3D perception, datasets
like KITTI [14], nuScenes [6], and Waymo [45] have emerged as standard benchmarks for various
3D perception tasks. Additionally, datasets like ONCE [37], Argoverse [8, 50], and others [29, 15, 1]
are also utilized for studying various perception tasks.
Datasets for prediction and planning. In recent years, there’s been increasing attention on
prediction and planning in autonomous driving. Prediction involves anticipating the behavior of other
agents, while planning relates to the behavior of the ego vehicle. Prediction methods typically rely on
semantic maps and dynamic traffic light statuses to anticipate future vehicle motions. Notable datasets
in this area include Argoverse Motion Forecasting [8], Waymo Open Motion Dataset [12], Lyft Level
5 Prediction Dataset [26], and nuScenes Prediction [6] challenge. Additionally, the Interaction
dataset [59] provides interactive driving scenarios with semantic maps derived from drones and traffic
cameras, enriching the understanding of complex driving interactions. Transitioning to planning,
CARLA [11] stands out as an open-source simulator designed to simulate real-world traffic scenarios,
providing a platform for testing and validating planning algorithms. Complementing this, nuPlan [7]
introduces the first closed-loop planning benchmark for autonomous vehicles, closely mirroring
real-world scenarios.
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2.2 World Model
Learning world models. World models [17, 33] enable next-frame prediction based on action
inputs, aiming to build general simulators of the physical world. However, learning dynamic modeling
in pixel space is challenging, leading previous image-based world models to focus on simplistic
gaming environments or simulations [18, 20, 9, 52, 44, 43, 21]. With advances in video generation,
models like Sora can now produce high-definition videos up to one minute long with natural, coherent
dynamics. This progress has encouraged researchers to explore world models in real-world scenarios.
DayDreamer [51] applies the Dreamer algorithm to four robots, allowing them to learn online and
directly in the real world without simulators, demonstrating that world models can facilitate faster
learning on physical robots. Genie [5] demonstrates interactive generation capabilities using vast
internet gaming videos and shows potential for robotics applications. UniSim [55] aims to create a
universal simulator for real-world interactions using generative modeling, with applications extending
to real-robot executions.

World model for autonomous driving. World models serving as real-world simulators have
garnered widespread attention [16, 61] and can be categorized into two main branches. The first
branch explores agent policies in virtual simulators. MILE [27] employed imitation learning to
jointly learn the dynamics model and driving behavior in CARLA [11]. Think2Drive [34] proposed
a model-based RL method in CARLA v2, using a world model to learn environment transitions
and acting as a neural simulator to train the planner. The second branch focuses on simulating
and generating real-world driving scenarios. GAIA-1 [28] introduced a generative world model for
autonomous driving, capable of simulating realistic driving videos from inputs like images, texts,
and actions. DriveDreamer [48] emphasized scenario generation, leveraging HD maps and 3D boxes
to enhance video quality. Drive-WM [49] was the first to propose a multiview world model for
generating high-quality, controllable multiview videos, exploring applications in end-to-end planning.
ADriver-I [30] constructed a general world model based on MLLM and diffusion models, using
vision-action pairs to auto-regressively predict current frame control signals. DriveDreamer2 [60]
leveraged LLMs and text prompts to generate diverse driving videos in a user-friendly manner.
Unlike previous methods that focused on model design, OpenDV-2K [54] addressed the issue of
training data by collecting over 2000 hours of driving videos from the internet. Previous research has
predominantly addressed static scene generation, with limited emphasis on multi-agent interplays.
Our dataset enables the exploration of world model predictions within dynamic, interactive driving
scenarios.

(a) Action distribution (b) Video clip description

Figure 3: The strengths of the DrivingDojo dataset. (a) illustrates a comparison of action distribu-
tions among nuScenes, ONCE, and our DrivingDojo. We compare the average hourly event counts of
driving actions. (b) presents the distribution of text descriptions for the video clips in DrivingDojo.

3 The DrivingDojo Dataset

Our goal is to provide a large and diverse action-instructed driving video dataset DrivingDojo to
support the development of driving world models. To accomplish this, we extract highly informative
clips from a video pool collected through fleet data, spanning several years and comprising more than
500 operating vehicles across multiple major Chinese cities. As a result, our DrivingDojo features
diverse ego actions, rich interactions with road users, and rare driving knowledge which are crucial
for high-quality future forecasting as shown in Table 2.
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We begin with the design principles of DrivingDojo and its uniqueness compared with existing
datasets in Section 3.1- 3.3. We then describe the data curation procedure and statistics in Section 3.4.
Here, we only describe the design principles. More detailed information refer to the Appendix.

Table 2: DrivingDojo dataset constitution. The dataset is organized into three subsets: DrivingDojo-
Action, DrivingDojo-Interplay, and DrivingDojo-Open, to support research on specific tasks.

Dataset Videos Type Camera Ego Trajectory Text Description
DrivingDojo 17.8k total X X X

DrivingDojo-Action 7.9k rich ego-actions X X
DrivingDojo-Interplay 6.2k multi-agent interplay X X

DrivingDojo-Open 3.7k open-world knowledge X X X

3.1 Action Completeness

Using the driving world model as a real-world simulator requires it to follow action prompts accurately.
Existing autonomous driving datasets, such as ONCE [37] and nuScenes [6], are generally curated
for developing perception algorithms and thus lack diverse driving maneuvering.

To enable the world model to generate an infinite number of high-fidelity, action-controllable vir-
tual driving environments, we create a subset called DrivingDojo-Action that features a balanced
distribution of driving maneuvers. This subset includes a diverse range of both longitudinal ma-
neuvers, such as acceleration, deceleration, emergency braking, and stop-and-go driving, as well as
lateral maneuvers, including lane-changing and lane-keeping. As demonstrated in Figure 3a, our
DrivingDojo-Action subset offers a significantly more balanced and complete set of ego actions
compared to existing autonomous driving datasets.

3.2 Multi-agent Interplay

Besides navigating in a static road network environment, modeling the dynamics of multi-agent
interplay like merge and yield is also a crucial task for world models. However, current datasets
are either built without considering multi-agent interplays, such as nuScenes [6] and Waymo [45],
or are constructed from large-scale internet videos that lack proper curation and balancing, like
OpenDV-2K [54].

To address this issue, we design the DrivingDojo-Interplay subset focusing on interactions with
dynamic agents as a core component of the dataset. As shown in Figure 1b, we curate this subset to
include at least one of the following driving scenarios: cutting in/off, meeting, blocked, overtaking,
and being overtaken. These scenarios encompass a variety of realistic situations, such as vehicles
cutting into lanes, encounters with oncoming traffic, and the necessity for emergency braking. By
incorporating these diverse scenarios, our dataset enables world models to better understand and
anticipate complex interactions with dynamic agents, thereby improving their performance in real-
world driving conditions.

3.3 Rich Open-world Knowledge

In contrast to perception and prediction models, which compress high-dimensional sensor input
into low-dimensional vector representations, world models exhibit a superior modeling capacity by
operating in the pixel space. This increased capacity enables world models to effectively capture the
intricate dynamics of open-world driving scenarios, such as animals unexpectedly crossing the road
or parcels falling off the trunks of vehicles.

However, existing datasets, either perception-oriented ONCE [37] or planning-oriented ones like
nuPlan [7], do not have adequate data for developing and assessing the long-tail knowledge modeling
ability of world models. Therefore, we place a unique emphasis on including rich open-world
knowledge video clips and construct the DrivingDojo-Open subset. As shown in Figure 1c, describing
open-world driving knowledge like this is challenging due to its complexity and variability, but these
scenarios are crucial for ensuring safe driving.
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The DrivingDojo-Open subset consists of 3.7k video clips about the open-world knowledge in driving
scenarios. This subset is curated from fleet data that includes unusual weather, foreign objects on
the road surface, floating obstacles, falling objects, taking over cases, and interactions with traffic
lights and boom barriers. A word cloud of video descriptions for DrivingDojo-Open are shown in
Figure 3b. DrivingDojo-Open serves as an invaluable supplementary for driving world modeling
by including driving knowledge beyond simply interacting with structured road networks and other
regular road users.

Figure 4: Descriptive statistics of the DrivingDojo dataset. The dataset was collected from various
regions across China, including nighttime and rainy/snowy conditions.

3.4 Data Curation and Statistics

Dataset statistics. The DrivingDojo dataset contains around 18k videos with resolution of
1920⇥1080 and frame rate at 5 fps. Our video clips are collected from major Chinese cities including
Beijing, Shenzhen, Xuzhou, etc., as shown in Figure 4. Furthermore, these videos are recorded in
diverse weather conditions at different daylight conditions. All videos are paired with synced camera
poses derived from the HD-Map powered high precision localization stack onboard. Videos in the
DrivingDojo-Open subset are paired with text descriptions about the rare event happening in each
video. More details are in the Appendix.

Data collection. We collected multi-modal fleet data using the platform of Meituan’s autonomous
delivery vehicles. Our dataset consists of video clips recorded by the front-view camera with a
horizontal field of view of 120� to capture comprehensive visual information. The raw data is
collected from multiple Chinese cities between May 2022 and May 2024, amassing a total of 900,000
videos and approximately 7,500 hours of driving footage pre-filtered before recording.

Data curation. In order to ensure both the data diversity as well as balanced ego action and
multi-agent interplay distribution, we include fleet data with different criteria. The data sources
of DrivingDojo include 1) intervention data from safety inspectors during vehicle operation, 2)
emergency brake data from automatic emergency braking, 3) randomly sampled 30-second general
videos from collected videos, 4) selected distinct scenarios such as traffic light changes, barrier
opening, left and right turns, straight crossings, vehicle encounters, lane changes, and pedestrian
interactions, 5) manually sorted rare data containing moving and static foreign objects on the road,
floating obstacles, falling and rolling objects. The curation details are in the Appendix.

Personal Identification Information (PII) removal. To avoid privacy infringement and obey the
regulation laws, we employ a high precision license plate and face detectors [31] to detect and blur
these PII for each frame of all videos. An in-house annotation team and the authors have manually
double-checked that the PII removal procedure is correctly carried out for all the videos.

4 DrivingDojo for World Model

To facilitate the study of world models in autonomous driving, we define a novel action instruction
following (AIF) task. We provide baseline methods (Section 4.2) and evaluation metrics (Section 4.3),
enabling further investigations. More details are described in the Appendix.
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4.1 Action Instruction Following

Action-controllable video forecasting is the core ability of world models [5]. Instead of solely focusing
on predicting high-quality video frames, action instruction following requires world models to take
both the initial video frame and ego action prompts into consideration for predicting corresponding
world responses. Given the initial image It and a sequence of actions {At, ..., At+k}, the model f✓
predicts future states {It+1, ..., It+k} as:

{It, ..., It+k} = f✓(It, {At, ..., At+k}). (1)
Here, {At, ..., At+k} refers to the action prompts for each frame, with trajectories At = (�xt,�yt)
in our experiment. f✓ represents the world model, and {It+1, ..., It+k} signifies the visual prediction
for subsequent k frames.

4.2 Model Architecture

We propose DrivingDojo baseline, a video generation model based on Stable Video Diffusion
(SVD) [2]. While SVD is a latent diffusion model for image-to-video generation, we extend its
capability to generate videos conditioned on action. For the AIF task, we encode the value of each
action sequence into a 1024-dimensional vector using a Multilayer Perceptron (MLP). Subsequently,
the action feature is concatenated with the first-frame image feature and passed into the U-Net [40].

4.3 Evaluation Metrics

Visual quality. To evaluate the quality of the generated video, we utilize FID (Frechet Inception
Distance) [23] and FVD (Frechet Video Distance) [46] as the main metrics.

Action instruction following. We propose the action instruction following (AIF) errors EAIF
x

and EAIF
y to measure the consistency between the generated video and the input action conditions.

Given the generated video sequences {It, ..., It+k}, we estimate vehicle trajectories in the generated
videos with the offline visual structure-from-motion (SfM) implementation like COLMAP [41, 42]:
{ eAt, ..., eAt+k} = SfM({It, ..., It+k}), where { eAt, ..., eAt+k} are estimated trajectories of unknown
scale. We estimated the scale factor Ŝ for the predicted trajectory by minimizing the error between
estimated and input ego-motion in the first N frames. We compare the estimated actions with the
ground-truth action instructions {At, ..., At+k} and report the mean absolute error for both lateral
(EAIF

y ) and longitudinal (EAIF
x ) actions:

(EAIF
x , EAIF

y ) =

kP
i=0

|At+i � eAt+i ⇤ Ŝ|

k + 1
, (2)

where the scale factor Ŝ = argmin
S

NP
i=0

|At+i � eAt+i ⇤ S|.

Table 3: Comparison of visual prediction fine-tuning across different datasets., † indicates using
camera sweeps data. The performance is zero-shot evaluated on the OpenDV-2K dataset.

Method Fine-tuning Evaluation FID FVD
SVD OpenDV-2K OpenDV-2K 18.27 321.05

SVD - OpenDV-2K 24.17 580.94
SVD nuScenes† OpenDV-2K 21.05 395.04
SVD DrivingDojo OpenDV-2K 19.20 343.91

5 Experiments

5.1 Results of Visual Prediction

To illustrate the richness of behaviors and dynamics within our dataset, we compare video fine-tuning
quality across various datasets. In Table 3, we random selected 256 video segments from the OpenDV-
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2K dataset [54] as our test set and evaluated fine-tuning performance of SVD [2] model across various
datasets. The results indicate that models trained on our dataset exhibit better visual quality.

5.2 Results of Action Instruction Following

Diverse driving behaviors. Based on different sequences of actions, our model is able to generate
multiple possible futures. As shown in Figure 5, we showcase the model’s capability to execute
forward, left turn, and right turn maneuvers at intersections, as well as lane-changing to the left or
right, and maintaining on straight roads.

Figure 5: Predicting multiple futures based on different actions. Left: going straight, turning
left, and turning right at a crossing; Right: changing to the left lane, staying in the current lane, and
changing to the right lane.

Action instruction following. Although qualitative evaluations demonstrate the powerful generative
ability of our model, we also endeavor to measure the accuracy of action instruction following
quantitatively. We seek to evaluate whether the video trajectories generated by the model closely
adhere to our expected route paths. This serves as a fundamental assurance for the future application
of world model. As shown in Table 4, with the in-domain actions (original action sequences of the
test video) as conditions, videos generated by the baseline world model trained on DrivingDojo
exhibit strong loyalty towards the action instructions. The mean action error in each video frame
is limited to only 10 cm in the lateral or longitudinal directions. In row 3, feeding the model with
the same initial images and randomly sampled action instructions slightly increases the mean action
errors. When the model is applied zero-shot to initial images from OpenDV-2K [54] and fed with
randomly sampled action instructions, its generated videos still demonstrate considerable consistency
to the action instructions. Note that the proposed action instruction following errors can sensitively
reflect the impact of out-of-domain inputs on the performance of the model.

Table 4: Action instruction following on the DrivingDojo dataset. GT refers to using real images
to test the accuracy of the reconstructed trajectory. ⇤ denotes the model is applied zero-shot to this
dataset without fine-tuning.

Action Type Test Dataset FID FVD EAIF
x (#) EAIF

y (#)

In-Domain DrivingDojo(GT) - - 0.036m 0.019m

In-Domain DrivingDojo 37.07 658.72 0.100m 0.062m
Out-of-Domain DrivingDojo 38.30 716.44 0.173m 0.110m

Out-of-Domain OpenDV-2K⇤ 24.27 442.67 0.238m 0.136m

Table 5: Action instruction following under zero-shot evaluation. ⇤ denotes the model is applied
zero-shot to this dataset without fine-tuning.

Training set Test set FID FVD EAIF
x (#) EAIF

y (#)

DrivingDojo OpenDV-2K⇤ 24.27 442.67 0.238m 0.136m
ONCE OpenDV-2K⇤ 28.37 473.59 0.255m 0.23d9m

nuScenes OpenDV-2K⇤ 37.90 794.36 0.387m 0.254m
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Zero-shot evaluation. As shown in Table 5, we compared the performance of models trained on
different datasets and their zero-shot generalization performance on new datasets. The results indicate
that models trained on our dataset exhibit higher generation quality and significantly improved action-
following ability. Especially, we noticed that richer driving actions in the autonomous driving datasets
lead to significantly better AIF performance of models trained on them. According to Figure 3a,
videos in DrivingDojo averagely contain far richer driving actions compared to ONCE or nuScenes.
This leads to the far better AIF performance of model trained on DrivingDojo compared to those
trained on ONCE or nuScenes. we observed that the model trained on the ONCE dataset will always
generate videos in which the vehicle moves in a straight line, even with action instructions to turn
left/right or change lanes. This leads to its especially poor AIF performance in the lateral direction
(EAIF

y ). We speculate that this is because the driving action of making turns or changing lanes is very
rare in the ONCE dataset, as shown in Figure 3a, which results in the lack of ability of the model
trained on the ONCE dataset to follow the lateral motion instructions. Moreover, the even more
lacking driving actions in the nuScenes dataset lead to a worse AIF performance of the world model.

AIF visualization. We showcase examples of estimated trajectories from generated videos in
Figure 6. In each frame, the red dot represents the current estimated camera pose and the black dots
represent the camera poses in past frames.

Figure 6: Examples of ego trajectories estimated based on the generated videos.

5.3 Real-world Simulation

Action generalization. Our model demonstrates robust generalization capabilities in two key aspects.
As illustrated in Figure 7a, firstly, it effectively generalizes to out-of-domain (OOD) actions, such
as forcefully driving on pedestrian walkways, showcasing its adaptability to some unreasonable
actions. Secondly, it successfully extends its capabilities to other datasets, executing tasks such as
lane changes on the OpenDV-2K [54] dataset and backing-the-car maneuvers on the nuScenes [6]
dataset without requiring further fine-tuning. This underscores the model’s potential as a real-world
simulator, capable of adapting to diverse driving scenarios.

  

(a) Action generalization (b) Interaction simulation

Figure 7: Qualitative examples of our model’s capability.
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Dynamic agents. We showcase our model’s ability to simulate interactions with dynamic agents in
Figure 7b. The results indicate that the model can provide reasonable responses based on our actions.
The first scenario depicts a pedestrian opting to yield as our vehicle continues forward, resulting in a
change in trajectory. In the second scenario, a delivery person opts to stop and wait at a narrow road.

Open-world dynamics. In Figure 7b, our model showcases the simulations of rare scenarios
encountered on the road, including interactions with moving birds and parking lot barriers.

5.4 Limitations and Future Work

This dataset currently comprises only single-camera videos. Our primary focus is to maximize video
diversity, which has led us to reduce the number of sensors used, enabling us to capture a wider range
of scenes. Additionally, this paper primarily explores the value of the dataset, treating the model
aspect as a baseline without any specialized design. Although the DrivingDojo dataset significantly
improves model capabilities, there are still several limitations that require further investigation in
future studies.

Hallucination. As shown in Figure 8, we observed that the model exhibits some hallucinations, such
as the sudden disappearance of objects, and when an action is unrealistic given the scene, such as
forcefully turning right, the model sometimes imagines a new road.

Figure 8: Examples of hallucination. Top: object suddenly disappears. bottom: a non-existed road.

Long-horizon visual prediction. Our baseline model is only capable of generating short videos,
which can be used to simulate short-term interaction events. Longer predictions [4, 57, 22] and faster
generation [38, 36] are left for future research.

Driving policy. The long-tail cases in our dataset are valuable for driving policy research. While
this work focuses on visual prediction in world models, future studies can investigate how this data
improves driving policy.

6 Conclusion

In this work, we present DrivingDojo, a large-scale video dataset aimed at advancing the study of
driving world models. DrivingDojo offers a testbed for studying diverse real-world interactions. Our
findings indicate that simulating interactions and rare dynamics observed in open-world environments
remains an unsolved challenge, highlighting significant opportunities for future research.

Societal impacts. By providing a comprehensive dataset covering diverse driving scenarios and
behaviors, researchers can develop and refine algorithms that increase the safety, reliability, and
efficiency of autonomous vehicles. However, the development of driving world model requires large
and diverse driving videos, introducing privacy issues.
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