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Abstract

As advanced Al systems such as generative foundation models exhibit an increas-
ingly rich range of behaviors, a challenge for Al alignment and safety research is
systematically characterizing these behaviors in a way that helps us understand and
develop safer models. One key question on the path towards this goal is whether
Al systems conceptually understand the world in the same way that humans do.
A classic family of tasks used to probe concept understanding in humans and
non-human animals is same/different tasks, which test for an understanding of the
abstract concepts of “sameness” and “difference” across different stimuli. Taking
inspiration from these studies of concept learning in humans and non-human ani-
mals, we present experimental results that investigate text-to-image (T2I) model
understanding of same/different concepts. We show that while T2I models demon-
strate some understanding of same/different concepts, this understanding varies
significantly across different attributes of sameness and difference (such as texture,
color, rotation, and size). We discuss how revealing such behavioral differences can
help us design more robust model training and evaluation protocols. Finally, we
explain how analogies between behavioral analyses of concept learning in humans,
non-human animals, and models can help us better understand the increasingly
varied and often unpredictable behaviors that models exhibit.

1 Introductionn

An important question in Al alignment research is whether Al systems understand the world in the
same conceptual way that humans understand it [7]. As generative multimodal models exhibit a wider
range of behavioral capabilities, we might wonder how we measure such concept-level alignment or
misalignment between these models and our expectations for human behavior. While surface-level
numerical performance metrics may give us a high-level picture of the model’s performance, with
aricher range of behaviors, such metrics no longer guarantee that a model deeply understands the
underlying principle behind an abstract concept. Fortunately, cognitive science has developed tools
and experimental paradigms developed to behaviorally probe for such concept understanding in
humans and other intelligent organisms.

Concept learning has long been recognized as a mechanism for higher-order cognitive abilities, and
concepts as a building block for thought [5]. Cognitive scientists have extensively studied how human
children and adults acquire various concepts, and we can use the same principles and experimental
paradigms to investigate concept understanding in foundation models [2]. Same/different concept
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understanding has a particularly rich history of study across various human and non-human animal
species [10]. Understanding sameness and difference as abstract concepts was long seen as a uniquely
human ability [4], but by further investigating properties of certain concept families, cognitive
scientists began to decode some form of same/different concept understanding in other animal species
as well. Today, a wide variety of animal species including pigeons, honeybees, and several species
of monkey have been shown to demonstrate some understanding of same/different concepts [9, 3]].
Human infants have also shown sensitivity to same/different concepts at 8 months of age [1]]. While
some work has been done to investigate same/different relation understanding in discriminative
vision-language models (VLMs) [[8]], testing these models requires visual input depicting sameness
and difference, often in simplified or synthetic settings. By contrast, generative multimodal models
allow us to analyze their naturalistic visual output for advanced concept-understanding. In this work,
we adapt the extensive study of the understanding of same/different concepts in cognitive science to
probe analogous concept understanding in generative multimodal foundation models.

2  Methods

In these experiments, we tested the text-to-image (T21) model DALL-E 3 on a variety of prompts
centered on sameness and difference. The DALL-E family of models [|6] are large foundation models
with transformer-based architectures, which take a text prompt as input and generate an image as
output.

In designing our prompts for the same/different task we presented to DALL-E 3, we varied one or
more of the following attributes: height, width, texture, color, rotation.

One or more of these attributes is specified in the prompt, with a prefix modifier of “the same” or
“different.” Prompts would take the form “Render an image in photorealistic style containing four
teacups that are of the same color, different texture, the same width, different rotation, arranged
against a uniform background, each distinctly separated. Include only these objects in the image
and nothing else.” We used five common objects that generally come in different colors, to avoid a
potential color bias: balloons, teacups, pens, candles, and hats. We also varied the number of these
objects requested in the prompt, from two to six.

2.1 Human evaluations

To evaluate the generated output images, we recruited human evaluators on the Prolific platform, and
provided them with the images and a corresponding check-box for each potential feature.

For each attribute of the image, check the corresponding box.

O five teacups O different heights O the same texture O the same width

List any additional attributes of sameness or difference which were not in the list of check
boxes and which you deem relevant, separated by a comma.

Figure 1: Human evaluation UI. Checkbox labels are created using the ground truth prompt.

2.2 Measuring errors

Studies of same/different concept understanding in humans and non-human animals have traditionally
gone beyond a simple binary answer, and instead provided an in-depth look at how various factors



affect levels of concept understanding. In this spirit, this paper aims to provide a similarly in-depth
look at the type of errors these models make. We focus on two main types of errors measurement:
edit distance and single-clause correctness. Single-clause correctness focuses on a binary correctness
measurement of a single clause such as “different heights,” and does not measure the number or
correctness of the remaining clauses in the same prompt. Edit distance equals the total number of
clauses in the prompt that were incorrectly generated by the model. Both of these error types are also
investigated as they relate to feature entropy, that is, the number of total clauses in the prompt.
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Figure 2: Numerical results for each of our error measurement types, across clause type, object type,
object count, and feature entropy.



3 Results

See Figure [2|for an in-depth look at the relationships between each of our error types (single-clause
correctness and edit distance/total errors) across clause type, object type, object count, and feature
entropy. The total number of errors per prompt (edit distance) was positively correlated with feature
entropy (r(5888) = 0.250, p < .0001) indicating that correctly rendering multiple same/different
concepts simultaneously is a difficult task for our T2I model. Total errors also increased as object
count increased, indicating that it is difficult to render same/different concepts correctly as the number
of objects in the prompt increases (r(5888) = 0.285, p < .0001). Our results also show a statistically
significant effect of clause type (color, texture, rotation, width, height) on the single-clause error
(x%(4) = 251.035, p < .0001), and an even more significant variation when the granularity is
increased to individual clauses such as “same texture” and “different rotations” (x?(9) = 1348.093,
p < .0001) (second row, first subplot of Figure[Z). However, which type of concept (same or different)
is easier for the model to learn varies across the clause types. For example, “the same color” is
more difficult to learn than “different color,” but “the same texture” is easier to learn than “different
textures” (Figure [2).

4 Discussion

Our results show a high variability in the T2I model’s demonstrated understanding of same/different
concepts, and highlight the lack of a universally robust understanding of these concepts. For example,
there is significant variation in single-clause correctness between and among model types. Of the
same/different clause types, texture seems to be the easiest for the model to understand, while color,
width, rotation, and height are more difficult. However, a more granular look at the subplots in
Figure [2] show us that the performance also varies within subcategories of the clause types — for
example, “different colors” is the easiest for the model to understand, while “the same color” is one
of the most difficult. Conversely, “the same texture” shows excellent performance, while “different
textures” does not. While further investigation is required to fully understand the reasons for this
remarkable variation in ability across types of same/different concepts, it helps us begin to design
better experiments to probe these questions. For example, if training data includes more examples of
different colors than the same colors, or of the same textures than different textures, this is perhaps
one easy way to begin to remedy the variation in performance. More broadly, however, it is important
that models should demonstrate an understanding of the abstract concepts of sameness and difference
in a way that can be disentangled from the particulars of the rype of clause and the statistics of the
dataset — our results make it clear that this has not yet happened.

While studies in animal cognition literature have found certain animal species demonstrate a fairly
robust concept understanding of a single same/different relation at a time, it is less clear how
robust that understanding would be when tested on multiple same/different attributes at the same
time [[10]]. Furthermore, studies have found that some species such as pigeons are easily confused
by the introduction of multiple different objects within a 16-object same/different task instead of
just one type of object [[10]. Although our results don’t demonstrate precisely the same effect,
it is worth considering if the mechanism might be similar, and if we can learn something from
this failure mode to improve model performance and concept understanding. After all, models
theoretically have fewer computational limits than pigeons, and yet they exhibit their own related
failure models related to having many different same/different clauses in the same prompt. Conversely,
perhaps the lack of pressures from such computational constraints contribute to the lack of learning
an abstraction of a concept, because it allows models to focus on many statistical clues instead
of distilling something more fundamental about sameness and difference. Looking back at the
foundations for the experimental paradigms that led to same/different becoming a classic task in
concept understanding can thus help us better design and implement experimental paradigms of our
own for model behavior. This work takes a first step in that direction, by empirically demonstrating
this principle through an analysis of same/different concept understanding in multimodal foundation
model behavior.
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