
Under review as submission to TMLR

Debiasing Through Circuits: A Reproducibility Study in
Mechanistic Interpretability

Anonymous authors
Paper under double-blind review

Abstract

Warning: This paper includes discussion of stereotypes, biases, and toxic content for the
purpose of improving AI safety; reader discretion is advised. Large language models (LLMs)
achieve remarkable performance yet remain vulnerable to adversarial attacks. Mechanistic
interpretability offers a promising avenue for diagnosing these weaknesses by identifying
the circuits that drive model behavior. We reproduce and critically assess the pipeline in-
troduced by García-Carrasco et al. (2024), which uses activation patching, gradient-based
adversarial attacks, and logit attribution to locate vulnerabilities in a synthetic acronym
prediction task for GPT-2 small. While their approach provides an interesting toy ex-
ample, we find incomplete circuit identification and limited adversarial effectiveness. To
address these shortcomings, we apply edge attribution patching for more faithful circuit
discovery, generalize their adversarial approach to multi-token inputs, and scale the analy-
sis to a larger model, Llama-3.2-1B-Instruct, on a more complex and socially relevant
task: toxicity detection with a focus on name-related biases. We further introduce Differ-
ential Circuit Editing (DICE) to demonstrate how targeted interventions in the identified
circuits can mitigate harmful behavior without compromising task accuracy, resulting in a
bias reduction of 12.6% while improving accuracy of toxicity detection by 3.4%. 1

1 Introduction

Although large language models (LLMs) have demonstrated state-of-the-art performance in a variety of
natural language processing tasks, they remain susceptible to adversarial attacks (Zou et al., 2023; Abad-
Rocamora et al., 2024). Understanding and mitigating these vulnerabilities is crucial for deploying LLMs in
reliable real-world systems. One promising direction for vulnerability analysis is provided by the burgeoning
field of Mechanistic Interpretability, which seeks to identify the internal circuits used by LLMs to perform
tasks (Conmy et al., 2023; Lieberum et al., 2023b; Marks et al., 2024). But one area which has remained
largely understudied is how adversarial attacks manifest as vulnerable components in the tasks’ circuits.

With this in mind, García-Carrasco et al. (2024) proposed a methodology for identifying vulnerabilities
related to a task and understanding the underlying mechanisms. Their pipeline involves generating a dataset,
identifying relevant circuits through activation patching, performing gradient-based adversarial attacks on
select parts of the input, and then using logit attribution to locate the circuit components affected by the
vulnerabilities. They demonstrate their approach on an acronym prediction task for GPT-2 small(Radford
et al., 2019), illustrating how adversarially optimized samples reveal which letters are most likely to be
misclassified, and how that misclassification can be traced back to specific components in the task’s circuit.

While these findings are demonstrative, important limitations remain. The task tested by the authors is very
simple, synthetic, and investigated on a small model, potentially restricting the generality of the approach.
Despite promising progress, much of earlier circuit analysis research have been conducted on small models for
relatively simple behaviors, such as induction heads (Elhage et al., 2021; Olsson et al., 2022), indirect object
identification (Wang et al., 2022a), addition (Nanda et al., 2023; Quirke & Barez, 2023) and greater-than

1Source code and instructions for replicating our results are online at: https://anonymous.4open.science/r/
re-vulnerabilities-4107/

1

https://anonymous.4open.science/r/re-vulnerabilities-4107/
https://anonymous.4open.science/r/re-vulnerabilities-4107/

Under review as submission to TMLR

(Hanna et al., 2023). More recent studies have shown progress in scaling circuit analysis to larger circuits
and models, such as multiple choice question answering (Lieberum et al., 2023a). Although these works have
undeniably improved our understanding of transformer circuits in tightly controlled scenarios, for the critical
application of mechanistic interpretibility in AI safety (Bereska, 2024), model scale and task complexity are
central to advancing the field. It is thus crucial to evaluate the authors’ methodology on larger models for
tasks of greater complexity and societal impact.

To bridge this gap, our work reproduces the methodology of García-Carrasco et al. (2024) while extending it
to a more challenging setting: toxicity detection on Llama-3.2-1B-Instruct, with a special emphasis on
uncovering name-related biases in toxicity detection. Toxicity detection is inherently a challenging task with
significant practical importance (van Aken et al., 2018; Pavlopoulos et al., 2020; Sheth et al., 2021; Cao et al.,
2023). It is well known that certain user demographics and minority groups are disproportionately affected
by biases in this task, and LLM systems deployed to moderate online content and mitigate harmful language
must be robust and free of unintended biases (Vidgen et al., 2020; Dinan et al., 2020; Welbl et al., 2021;
Cheng et al., 2023). Moreover, we specifically explore name-related bias in toxicity detection, recognizing
that even subtle biases against certain demographic groups can cause substantial harm if left unchecked
(Borgesius, 2020; Bender et al., 2021). By scaling up the model size and focusing on a task that is both
more difficult and highly impactful in real-world applications, we provide a more comprehensive testbed for
evaluating the generality and robustness of the authors’ methods. In addition, this broader setting allows
us to investigate how model biases might arise from or be amplified by specific circuit components, thereby
offering insights into how targeted interventions could mitigate these harmful behaviors.

Our main contributions towards the reproduction and extension of the work can be summarized as follows.

Reproducibility evaluation. We replicate the authors’ circuit identification method, adversarial sample gen-
eration algorithm, and vulnerability-locating strategy. This confirms the reliability of their approach on the
original acronym prediction task.

Faithful circuit identification. We employ edge attribution patching (EAP) methods to determine faithful
circuits that cannot be obtained solely through activation patching of attention heads. This provides deeper
insights into the model’s internal mechanisms.

Generalization of the adversarial sample generation algorithm. We extend the adversarial sample algo-
rithm to work with multitoken samples, moving beyond single-token cases and thus making it more broadly
applicable to other tasks.

Scaling to a complex task and larger model. We apply investigated methodologies to the more complex toxi-
city detection task on the Llama-3.2-1B-Instruct model (Meta, 2024). This investigates the applicability
of these methods in a realistic, impactful setting.

Introducing a method for debiasing via circuits. We introduce Differential Circuit Editing (DICE), a sys-
tematic method for correcting task targeted vulnerabilities in faithful circuits. The method highlights that
scaling values of specific edges is an effective technique for mitigating the vulnerabilities associated with a
specific circuit while preserving performance on the relevant task.

The importance of this reproduction can be framed in the discussion of AI safety. Safe AI must be robust
to adversarial attacks because the ability to defend against small, crafted perturbations is foundational for
solving more complex safety issues. There is a symbiotic relationship between interpretability and adversarial
robustness. Through analyzing adversarial vulnerabilities, we can make models both more interpretable and
robust (Bereska, 2024). Adversarial examples are shown to be interpretability tools (Casper et al., 2022; Dong
et al., 2017). Indeed, Tomsett et al. (2018) highlight that the existence of adversarial examples demonstrate
that class boundaries do not align with the intentions of model builders, leading to bias. Hence, we can
better understand a model’s flaws using such examples.

Although some approaches have addressed model vulnerabilities (García-Carrasco et al., 2024; Sadria et al.,
2023), in general there is a paucity of work in this area. The original study, while successfully introducing
an approach for understanding adversarial vulnerabilities, has some shortcomings. The setting used to
demonstrate the methodology is impractical; the authors employ a small model for an overly simplistic task.

2

Under review as submission to TMLR

The original work only performs activation patching on heads rather than identifying the full circuit. Our
contention is that the introduced framework calls for a study that is more in line with what is used in
practice. Furthermore, the authors do not provide a method for mitigating the vulnerabilities that they
identify, as required to improve adversarial robustness. So, by reproducing the original study, and extending
it to a more complex and societally relevant task, we make a contribution towards improving adversarial
robustness and AI safety in general. We highlight both the broader applicability of vulnerability detection
in circuit analysis, and the utility these methodologies provide for bias mitigation.

2 Scope of reproducibility

García-Carrasco et al. propose as a main contribution their methodology for locating vulnerable circuits.
The claims made by the authors can be summarized as follows.

Claim 1: The circuit associated with a task can be identified by the authors’ chosen MI techniques. By
conducting activation patching, the authors first identify the most important components for the acronym
prediction task.

Claim 2: Adversarial samples can be generated for a task using the authors’ proposed algorithm. The
authors propose a gradient-based adversarial attack, Algorithm 1 can be found in Appendix D.

Claim 3: Using the adversarial samples, the vulnerable components of a circuit can be located using MI
techniques. Samples generated from the adversarial attack are used to isolate vulnerable heads from within
the identified circuit for the given task.

Our contention is that the original methodology should be robust and extensible to other models and tasks to
truly benefit the field. Modern machine learning tasks require models with hundreds of billions of parameters
Chowdhery et al. (2022). We question how the methodology will scale, in particular, how the vulnerable
components of a circuit will manifest themselves with a larger number of parameters. So, a secondary claim
is that the three primary claims must be able to be applied for any LLM and for any task. For this reason,
we scale to LLaMA-3.2-1B-Instruct from GPT-2 Small. In fact, it was necessary to utilize a larger
model for the toxicity prediction task as GPT-2 Small could not achieve sufficient performance.

3 Methodology

3.1 Reproduction

Using the authors’ released code 2, we reimplement their approach of circuit identification via activation
patching to identify circuits. Activation patching involves replacing the activations of a given component
with the activations obtained by running the model on a corrupted prompt. We note here that activation
patching with corrupted examples (resampling ablation) is not the only practice, with recent study indicating
that the preferred type of ablation should be task dependent (Miller et al., 2024). For our reproduction,
we follow the original authors in implementing resampling ablation. For the acronym prediction task, the
corrupted prompt is equivalent to the original prompt, with the exception that the third word is replaced by
another word beginning with a different letter. With the corrupted activations, we patch all layers and heads.
A large reduction in logit difference, as shown in Equation 1, indicates that the component is necessary for
the task and therefore present in the circuit.

García-Carrasco et al. introduced Algorithm 1 for adversarial sample generation in the discrete data domain
based on Wen et al. (2023)’s PEZ algorithm for prompt tuning. Starting with a correctly classified sample,
the algorithm computes the difference between the logits of the labels as an objective. Its gradient is
backpropagated through the model up to the embeddings of all tokens in the input prompt. In the original
approach, the authors calculated the difference between the logit of the correct letter for the acronym and
the logit of the incorrect letter with the highest score. Importantly, the model parameters are not updated
during this process. Instead, the input embeddings are treated as changeable, allowing for the computation

2https://github.com/jgcarrasco/detecting-vulnerabilities-mech-interp

3

https://github.com/jgcarrasco/detecting-vulnerabilities-mech-interp

Under review as submission to TMLR

of gradient-based adjustments. These gradient-based adjustments are calculated via backpropagation from
the adversarial loss, designed to maximize the difference between the logit for the correct class and the
highest logit for any incorrect class. The assertion is that, through these small gradient-based changes,
a misclassified sample can eventually be generated. This misclassified sample is then be mapped back to
meaningful tokens in the vocabulary.

These samples are then used in a series of logit attribution experiments. Logit attribution is described in
Equation 2. In these experiments, for each head in the model, we cache the output and project the vectors
into the direction of the logit difference. So, if a head outputs a negative value for a sample, it indicates
that the highest logit for any incorrect class outweighs the logit of the correct class. This implies the head
misclassifies that sample, allowing us to determine that it is vulnerable.

logit diffi = logitsai
− max

aj∈L\{ai}
logitsaj

(1)

where L is the set of possible answers, in this case the letters of the alphabet, ai is the correct answer and
logitsaj

is the logit associated to the token aj .

logit attrk(hij) = WU [k] · hij (2)

where WU [k] is the kth column of the unembedding matrix, with k being the token number. hij is the output
of the ith attention head of the jth layer.

3.2 Datasets

For replicating the original task, we reuse the dataset of three letter acronyms made available by the authors.
Each prompt formed using the dataset has three words, followed by two capital letters (e.g. “The Chief
Executive Officer (CE”). The third letter in the dataset is used as the answer to the prompt. Each of the
words in the dataset were selected as single tokens by GPT-2 Small to facilitate the subsequent adversarial
attack.

Additionally, we create a custom dataset for the toxicity prediction task. The dataset combines a popular
names by country dataset scraped from Wikipedia3 with the PolygloToxicityPrompts dataset from which
we obtain sentences with varying levels of toxicity (Jain et al., 2024).

For toxicity scores in the range of 0 to 1, we split the entries of the data into 4 buckets of 0.25, and randomly
sample 48 entries to balance toxicity scores when generating our dataset. For each toxic sentence, we
substitute 36 different names from the names dataset, originating from 12 different subregions, 3 names per
subregion, with subregions being Western Europe, Eastern Europe, North Africa, etc. The final dataset is
composed of 5 data splits, each of 1728 entries, generated with 5 different random seeds. Although the dataset
is split into five subsets to enable robust evaluation across random seeds, some experiments employ only a
subset of these splits due to computational constraints. The general structure of each of our data is: “[NAME]
wrote: ‘toxicity_sentence’ ”, where toxicity_sentence is an entry obtained from PolygloToxicityPrompts.
Each prompt features a two-shot preamble before the data point. The binary target label of each datapoint
is derived from the toxicity score of the sentence, where sentences with toxicity scores lower than 0.5 are
labeled as non-toxic, and those with scores over 0.5 are labeled as toxic. The way we have designed the
toxicity prediction task naturally introduces our name-related bias task, since the same toxicity_sentence is
evaluated across multiple names. This setup introduces the potential for bias, where different names paired
with identical sentences may be predicted as more or less toxic.

3.3 Faithful Circuit Identification

To motivate the introduction of faithful circuit identification methods, we follow Hanna et al. (2024) to
formalize related concepts. We provide a more detailed introduction to the used methods in the Appendix
Section A. An identified circuit, composed of a computational subgraph of the model, is said to be faithful

3https://github.com/sigpwned/popular-names-by-country-dataset?tab=readme-ov-file

4

https://github.com/sigpwned/popular-names-by-country-dataset?tab=readme-ov-file

Under review as submission to TMLR

when all edges outside the circuit can be corrupted while retaining the original task performance of the full
model. Formally, corruptions are performed with ablations that patches the activations of a clean run of
the model using clean inputs, with a corrupted run of the model using corrupted inputs. This technique of
activation patching introduced by Meng et al. (2022) was applied to identify neuron activations responsible
for factual predictions. In sum, if the change in activation on all component (head, neuron, layer, etc) outside
the identified circuit does not impact the performance of the model, the circuit is said to be faithful for the
task. To measure this performance, typically the metric of logit difference between the logits of two possible
next tokens is used (logits of True/False for our task of toxicity detection, this is our metric m).

In an identified circuit, the model components outside of the subgraph are ablated, but to identify which
components to ablate for a faithful circuit, typically a circuit identification method is used, instead of
ablating the components individually since individual intervention scales poorly with model size. For circuit
discovery, we employ edge attribution patching (EAP) introduced by Nanda (2024a); Syed et al. (2023),
and edge attribution patching with integrated gradients (EAP-IG, along with its KL divergence alternative
EAP-IG-KL) introduced by Hanna et al. (2024). The score of an edge in the computational subgraph
is calculated to be proportional to their influence on the gradient. Further details on these methods are
presented in Appendix A. Our faithfulness metric is then normalized against the same metrics evaluated on
the full model with clean and corrupted inputs using equation Equation 3.

normalized_faithfulness = (m− b′)/(b− b′) (3)

where m is the circuit’s performance, b′ is the whole model’s performance on corrupted input, and b is the
whole model’s performance on clean input. We apply these methods for circuits discovery of the toxicity
prediction task and a name-related bias task based on the dataset introduced in Section 3.2. In the toxicity
task, the difference between clean and corrupted inputs are the toxicity sentences, while the names remains
unchanged. For the name-related bias task, the toxicity sentences are unchanged, but names are changed
between clean and corrupted inputs. There is not an existing standard on the amount of performance that
should be recovered by a circuit for it to be considered faithful. Hanna et al. (2024) aimed to find minimal
circuits (1-2% of edges) and recover at least 85% of the model performance, Yao et al. (2024) found knowledge
circuits in GPT2-Medium that recovers 70% of the original performance with a subgraph of less than 10%.
For our task we aimed to recover as much performance as possible with at most 10% of the edges.

3.4 Adversarial Sample Generation

We extend Algorithm 1 for multitoken adversarial sample generation (shown in Appendix D), reusing the
same loss function. This was necessary because the original algorithm is only capable of finding single-token
adversarial samples, and there are very few single-token names in our application. For a sample of size n,
we map an adversarial sample of size n, restricting our search space such that these samples must match
exactly in token length. For example, an adversarial sample of size 2 cannot be comprised of two independent
samples of size 1. When projecting the sample to real embeddings p, we match the virtual embeddings p′

with each possible set of real embeddings using average dot product similarity as in Equation 4. The selected
real embeddings are the ones that maximize this metric.

p = arg max
p

(
1
l

l∑
i=1

pi · p′
i

)
(4)

3.5 Locating and Understanding Vulnerabilities

The authors’ approach to identifying vulnerable attention heads involved analyzing their independent con-
tributions using adversarial samples. Each attention head’s activation was separately projected into the
residual stream, treating it as if it were the model’s output. This modified residual stream was then passed
through the final layer normalization and projected into the logit space. This allowed the authors to compute
the difference between logits for the target tokens of interest. Their rationale was that this method would
reveal the individual contribution of specific attention heads to the model’s predictions, thereby identifying
those most responsible for adversarial vulnerability.

5

Under review as submission to TMLR

3.6 Bias Correction

To mitigate name related bias as described in Section 3.2, we propose Differential Circuit Editing (DICE),
a method for correcting task-specific vulnerabilities in faithful circuits. It operates by analyzing two circuits
responsible for distinct model behaviors and identifying edges that are present in one circuit but absent in
the other. Once these edges are identified, various interventions can be applied to mitigate the unwanted
behavior of the model.

In our task, we use DICE as a bias mitigation approach by leveraging two identified circuits: the toxicity
circuit and the name-bias circuit described in Section 3.3. Specifically, we identify the edges that are present
in the bias circuit but absent from the toxicity circuit and selectively scale down their magnitude. We
hypothesize that this approach will reduce the influence of attention heads responsible for name-related bias
while preserving the model’s performance on the toxicity prediction task. Figure 1 illustrates an example of
this bias correction mechanism.

Figure 1: Example of the bias correction mechanism with the scaling down the magnitude of the edges
present in the bias circuit but not in the toxicity circuit (red, dashed edges on the third subgraph).

To assess bias reduction, we introduce a metric based on the z-normalized logit difference between “true”
and “false” tokens. Z-normalization transforms values into a standard normal distribution by subtracting
the mean and dividing by the standard deviation, ensuring comparability across different scales. We group
the this logit differences by ‘toxicity_sentence’ (i.e., across different prompt templates) and compute the
standard deviation within each group (Equation 5). The final bias score is then obtained by averaging
these standard deviations across all prompt templates. This metric provides an interpretable measure of
how consistent the model’s predictions are across different names in prompts. A higher bias score indicates
greater sensitivity to name changes, suggesting potential bias in the model’s decision-making. A score of
zero would imply that altering names in the prompt does not affect the predicted logits, meaning the model
treats all names neutrally.

bias_score = 1
N

N∑
i=1

σi (5)

where N is the number of ‘toxicity_sentence’ groups and σi is the standard deviation of the z-normalized
logit differences within the ith toxicity sentence.

To further analyze bias reduction, we introduce a second approach that examines the variation in normalized
logit differences across different regions. We first compute per prompt the variation score by subtracting the
mean normalized logit difference within each prompt template (Equation 6). By grouping these variation
scores per region (Equation 7), we obtain the mean deviation of logits for each region. Instead of only
measuring prediction inconsistency, this method helps us determine if the model systematically favors certain
groups over others. If all regional scores are close to zero, it indicates that differences in predictions across
names are purely random noise, meaning the model is inconsistent but not favoring any specific group. On
the other hand if the regional scores exhibit a clear trend (e.g., some regions have consistently higher or lower

6

Under review as submission to TMLR

scores), this suggests that certain names are systematically influencing the model’s predictions, revealing a
potential bias.

variation_scorei = logit_diffi −
∑
j∈J

logit_diffj

|J |
(6)

where logit_diffi is the z-normalized logit difference for sample i and J contains all indices j of samples
with the same toxicity_sentence as prompt i.

region_variation_scorer =
∑
i∈R

variation_scorei

|R|
(7)

where region_variation_scorer is a score for region r and R contains all indices i of samples with the name
from region r.

4 Experiments

Our work involves five experiments. The first is a reproducibility experiment, in which we attempt to repro-
duce the original author’s methodology to the best of our ability. The second experiment compares activation
patching to faithful circuit identification. The third determines the generalizability of the adversarial sam-
ple generation algorithm. In the fourth experiment, we contrast vulnerability detection with the authors’
projection-based method with the faithful circuit method on the bias detection task. Finally, in the fifth
experiment we attempt to correct the bias while maintaining performance in the toxicity prediction task.

Experiment 1 reproduce the original work of the authors using their codebase. In accordance with the original
paper, we use GPT-2 Small for the task of predicting the third letter of the acronym corresponding to the
third word in the prompt. We replicate the circuit identification procedure to locate the relevant attention
heads, determine the logit difference at each head, and conduct their proposed adversarial attack on all
attention heads in the model to locate the vulnerable components.

Experiment 2 test the faithfulness uncovering the true circuit by employing the LLaMA-3.2-1B-Instruct
model in the task of toxicity prediction in the samples from the dataset described in Section 3.2. We use
their chosen method of activation patching, and compare the logit difference of the clean and corrupted
samples on the tokens of the labels (“true” and “false”). Then we employ EAP methods described in Section
3.3 as an alternative method to identify the relevant faithful circuit and subsequently test the faithfulness
of this circuit by performing resampling ablations on all components which are not present in our circuit to
determine whether the performance on the toxicity prediction task changes. Finally, we contrast our circuit
with the components found using the original method.

Experiment 3 aim to evaluate the generalizability of the authors’ proposed method for finding adversarial
samples. The approach described in Section 3.1 relies on leveraging gradients. This experiment seeks to
determine whether it is effective for longer prompts and more complex tasks. Intuitively, as the length of the
sentence increases, the gradient is distributed across a larger number of tokens in the prompt. Although the
issue of gradient magnitude can be addressed by increasing the learning rate, challenges arise in scenarios
where we aim to generate meaningful samples by allowing changes to only a subset of tokens using masking.
In such cases, much of the gradient could be allocated to masked tokens, leaving insufficient gradient flow for
unmasked tokens to induce a label change. To test this hypothesis, we analyze the gradients generated during
the authors’ adversarial sample generation process on the acronym task using the GPT-2 small model and
compare them with the gradients obtained from name-related bias task using the LLaMA-3.2-1B-Instruct
model.

Experiment 4 evaluate the proposed method for identifying vulnerable attention heads. The approach
assumes that a head’s activation, when projected into the residual stream, represents its entire contribution
to the model’s output. However, this simplification neglects interactions between heads across layers, raising
questions about the completeness of the method. A key concern is whether this technique captures all

7

Under review as submission to TMLR

vulnerable heads or if some remain undetected due to redundancy in the model. Prior research suggests
that ablating certain components can lead to structural changes in the model’s behavior, meaning that a
supposedly vulnerable head may be compensated by another Wang et al. (2022b). To assess the validity of
authors’ method of activation patching, we compare it to the edge attribution patching methods described
in Section 3.3, using adversarial samples from Experiment 3 for the name-related bias task. If both methods
identify the same heads as influential, it would strengthen the confidence in the projection-based technique.

Experiment 5 extend the methodology from vulnerability detection to debiasing. We utilize the toxicity
circuit from Experiment 3 and the bias-vulnerable circuit from Experiment 4, and apply DICE as outlined
in Section 3.6. We evaluate this approach on five sampled datasets by measuring the accuracy of toxic
sentence classification, introduced bias score (Equation 5) and comparison across variation scores per region
(Equation 7).

5 Results

5.1 Results reproducing original paper

Claim 1 The authors claim that activation patching is sufficient to identify and understand the underlying
circuit responsible for a given task. We reproduced the activation patching plot in Figure 8a. The results
closely align with those reported by the authors, with the exception that, in our case, head 9.9 exhibits
a lower logit difference value compared to the original paper. Even though this analysis provides us with
the important heads, to fully validate the author’s claim, we perform activation patching (Section 5.2) and
circuit identification method (Section 5.2) on our task and bigger model.

Claim 2 One of the main contributions by the authors is their application of the adversarial algorithm for
determining the vulnerable components of a circuit. We highlight Figure 2 as it differs from the original
paper’s findings. The chart is dependent on the randomly generated adversarial samples, so divergence is
expected. Rather than using a subset of the original distribution as the original authors’ may have done,
we elect to use the entire original distribution when calculating each pi

org to maximize consistency. For
reference, ∆p = (pi

adv − pi
org)/pi

org where pi
adv is the probability of samples with the third word beginning

with letter i in the adversarial distribution, while pi
org is the same, but for the original distribution from the

dataset.

Through the reproduction of their work, we determine that their algorithm works well on the original task,
with head 10.10 consistently misclassifying the letter A as the letter Q. The letter A is the most often
misclassified. Indeed, we find that samples with a third word beginning with A are around 13 times more
frequent in the adversarial sample set. Overall, we find this claim to be partially verified. We elaborate on
this conclusion in Section 5.2.

Claim 3 We generated Figure 8b to examine logit attribution for each attention head on adversarial samples
containing the letter A. Three key heads were identified: 10.10, 9.9, and 8.11. These are the same heads
found in Figure 8a, indicating that these components are indeed vulnerable. In this respect, our results are
consistent with the claim made by the authors, but we subsequently determine that this claim is problematic.

5.2 Results beyond original paper

Activation Patching Figure 3 (left subplot) shows the activation patching plot for the toxicity prediction
task using LLaMA-3.2-1B-Instruct on one split of our dataset. This identified several particularly im-
portant attention heads: 4.2, 8.2, 6.6, 9.20, 7.21, and 8.24. To consider a head important, we look at
the absolute value of logit difference for the head, regardless of the sign of the value. Notably, the toxicity
prediction task appears to involve a greater number of significant heads compared to the acronym prediction
task. This may be attributed to two factors. First, unlike acronym prediction, which relies on a single token,
toxicity prediction requires a more complex and abstract understanding of the entire sentence. Second, the
increased model size and complexity may lead to a more distributed representation, where individual atten-

8

Under review as submission to TMLR

Figure 2: A comparison between the figure obtained in the original paper (left) and the distribution we
obtained (right). The plots specify the distribution of the words of the dataset that begin with each letter
vs. the distribution of generated adversarial acronym in terms of the initial letter of the third word.

tion heads contribute less to overall model performance, as perturbations in one head can be compensated
by others.

0 5 10 15 20 25 30

14

12

10

8

6

4

2

0

0 5 10 15 20 25 30

14

12

10

8

6

4

2

0

−0.1

−0.05

0

0.05

0.1

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Head Head

La
ye
r

La
ye
r

Figure 3: Left: Activation patching plot for toxicity task for all heads and layers in LLaMA-3.2-1B-Instruct.
Right: Sum of normalized edge scores for all heads and layers in a 91% faithful circuit identified with EAP-IG
for the toxicity task.

Circuit Identification using EAP The right subplot in Figure 3 displays the summed normalized edge
scores for all attention heads on a circuit for the toxicity task identified with EAP-IG. The experiment
was performed on one split of the dataset. The specific circuit has 18922 edges (9.6% of edges) and is 91%
faithful 4. This visualization can be interpreted as a representation of head importance. Similar to activation
patching, we consider a head important when the absolute value of the score for the head is high. When
comparing the two methods, we see that while activation patching identifies identical heads as the faithful
circuit method (4.2, 8.2, 6.6, 9.20, and 8.24), a significant number of important heads are not identified
via activation patching (5.5, 5.19, 7.14, 7.22, and 6.30 to name a few). While the activation patching
method provides an overview of the most important model components related to the task, it fails to capture
the full mechanism and does not offer insight into the interactions between model components.

Gradient Flow From measuring within the iterations of Algorithm 1, we obtained gradient values at the
embedding level, normalized for each task. To better understand the distribution of gradient flow, Figure 4

4The graphs for evaluating normalized circuit faithfulness of discovered circuits can be found in Appendix E

9

Under review as submission to TMLR

illustrates which tokens received the most gradient flow in an example sentence. The gradient score, which
represents the flow, is calculated as the absolute mean of the gradient on the embedding of a specific token. By
averaging these gradient scores across iterations, we can observe where the majority of the flow accumulates
for the given sentence. In the example using the authors’ code, we observe a high gradient for the third word
(“Jeep”), which aligns with expectations. However, in our case, the gradient flow is concentrated on tokens
in the two-shot preamble, with only a small portion directed toward the name token (“Morales”). Additional
plots of example sentences are provided in Appendix C, offering more detailed visualizations. This trend is
consistent across all samples. Figure 5 shows the mean gradient scores, evaluated on the 3 data splits, for
the masked tokens against the unmasked tokens, i.e., the tokens we aim to modify, across iterations. In the
authors’ task, the unmasked tokens, such as the third word in the acronym prediction, consistently receive
higher gradient scores.

In contrast, in our task, the masked tokens generally receive higher gradients than the name tokens. This
indicates that swapping names is not an effective choice for adversarial sample generation. The algorithm
would rather modify some of the masked tokens, i.e. the other tokens in the prompt, than the names to
change the classification. However, altering these tokens can unintentionally change the sentence’s actual
toxicity. For example, if a profane word is replaced, the sentence might no longer be classified as toxic, but
its ground truth label should also be updated to not toxic, making it an invalid adversarial sample. In the
original task, it is made simple which token the adversarial sample generation algorithm should modify. This
aligns with our experimental results: from only 384 data samples in the original task, we generated 1,364
adversarial samples — a rate of 355%. In contrast, in our task, we produced just 311 adversarial samples
from 1,371 inputs, indicating a markedly lower generation rate of 22%, almost the reverse trend observed in
the original task. However, in general this is an open problem. So while the adversarial sample generation
works well for the original task, our findings indicate that the method lacks robustness to generalize.

Figure 4: Example of normalized absolute mean gradient for tokens in a sentence. Left: for acronym
prediction task. Right: for bias detection task, instruction tokens, sentence tokens and padding tokens,
representing their average gradient scores. Sentence tokens are the tokens of the toxic sentence.

Figure 5: Presented absolute mean gradient value over iterations for masked and unmasked tokens generated
using adversarial generation method. For acronym prediction and toxicity prediction tasks, gradients have
been normalized individually for each task to ensure fair comparison.

10

Under review as submission to TMLR

Finding Vulnerable Components Our result for the bias detection task shown in Figure 6 exhibit significant
differences between the authors’ method and the bias circuit. This circuit is significantly smaller (6908
edges, 3.5% of edges) compared to the toxicity circuit as only the name tokens are changed between clean
and corrupted inputs, and is only 70% faithful. The vulnerability map, presented on the right subplot, is
computed by summing the contributions of all edges for each node of the bias circuit. The authors’ approach
highlights a few heads with high-magnitude scores, whereas the circuit identification method reveals sparse
clusters of vulnerable heads, all with significant absolute values, distributed across layers.

0 5 10 15 20 25 30

14

12

10

8

6

4

2

0

0 5 10 15 20 25 30

14

12

10

8

6

4

2

0

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−3n

−2n

−1n

0

1n

2n

3n

Head Head

La
ye
r

La
ye
r

Figure 6: Left: Vulnerable components identified by the authors’ method for the bias detection task, with
scores based on the final logit difference between the correct and incorrect tokens. Right: Sum of normalized
edge scores for all heads and layers in circuit identified with EAP-IG-KL for the name bias task.

Bias Correction The impact of scaling on model performance shown on Figure 7 demonstrates that for
scaling factors between 0.9 and 0.7, we successfully reduced the bias metric (equation 5) without compro-
mising overall model accuracy. In fact, we were able to slightly improve accuracy through this approach.
By analyzing the region variation score (equation 7) in Table 1, we observe a clear trend of bias favoring
specific regions. Names from Southern Europe tend to shift predictions toward the toxic label (token “true”),
whereas names from South Asia decrease toxicity predictions, pushing the model toward the non-toxic label
(token “false”). Applying a scaling factor of 0.7 effectively reduced these biases, moving regional influence
closer to neutrality. Notably, reductions observed for Southern Europe (-18.8%) and South Asia (-30.6%),
i.e. the regions with the biggest bias, indicate a significant correction in the model’s regional sensitivity.

Figure 7: Results of debiasing for different scaling factors applied to the selected edges as a percentage
change of metrics from baseline (default model run). Accuracy metric is overall accuracy on the dataset,
score metric is our metric of standard deviation grouped by prompt template. The results were calculated
across 5 generated datasets.

11

Under review as submission to TMLR

Region Std. Dev. Score Baseline Std. Dev. Score Scaling Percentage Change
Southern Europe 0.114 (±0.022) 0.092 (±0.016) -18.8 % (±2.2 %)
South Asia -0.232 (±0.02) -0.161 (±0.016) -30.6 % (±3.2 %)

Table 1: Mean performance with and without scaling to 0.7 selected edges of the model with standard
deviation in the brackets. Percentage change was calculated between scaled and baseline scores on 5 sampled
datasets and averaged. The full table is made available in Appendix F.

6 Discussion

The authors’ method for identifying circuits can be used to determine the attention heads responsible for
toxicity prediction but does not provide a complete identification of the entire circuit. Heads are isolated
components of the model, so while they provide a local view of model behavior, they do not capture the
holistic interaction between components within the model. They may highlight areas of fragility, but they
fail to reveal how those heads function together to process information. Using different circuit identification
methods produces different results, even on the same dataset. This highlights the importance of ensuring
the accuracy and reliability of the identified circuit. This leads us to the conclusion that Claim 1 is invalid.

Finding adversarial samples for our task of bias identification is particularly challenging. Identifying a
toxic prompt that is classified correctly for one name but misclassified for another heavily relies on the
inherent biases within the model. Consequently, the total number of generated samples across tasks is not
directly comparable. However, the tendency of gradients to flow to masked tokens appears to be an inherent
limitation of this method, especially for more complex tasks. This directly impacts the method’s efficiency
and effectiveness.

As well, the projection step introduces further challenges. Even if embeddings are successfully altered to
cause misclassification, projecting them back into the vocabulary can lead to embeddings that are still
classified correctly. So, the choice of vocabulary and its size influence the method’s success. For example,
given a name-related bias task with a vocabulary containing only one name, any embedding changes would
still be projected to the same name, preventing the generation of valid adversarial samples. While the
iterative process ensures that adversarial samples remain close to the original inputs, the method’s drawbacks,
inefficiency and difficulty in producing samples, were particularly evident in our task. We state that authors’
Claim 2, is partially valid. The method has limitations and works only under specific conditions.

Our results suggest that the authors’ method for identifying vulnerable heads in transformer models may
be incomplete. Their approach, which projects each head’s output into the residual stream and treats it
as its sole contribution, highlights only a few isolated heads with high-magnitude scores. In contrast, our
circuit-based method, which sums edge scores from the EAP methods by Hanna et al. (2024) to capture
interactions between components, reveals a broader pattern of vulnerability. Rather than a few distinct
heads, we observed clusters of susceptible heads spanning multiple layers. Our findings for LLaMA 3.2 in
Figure 6 suggest that vulnerability is distributed rather than localized, with some heads compensating for
others when ablated. This raises concerns about whether the method captures all vulnerable components or
if redundancy obscures some. Therefore, we conclude that the authors’ Claim 3 is invalid.

Our DICE method successfully demonstrates that modifying specific circuit edges, in this case through
scaling, can selectively suppress undesired biases while maintaining task-relevant behavior. We identified
regional name biases (Table 1) and effectively mitigated their influence. The small gains in accuracy are
expected as decreasing the bias reduces the undesirable contributions to the logits of tokens “true” and “false”.
If these are significant enough, they can negatively affect the classification. This highlights the potential of
targeted circuit interventions as a technique for improving fairness and accuracy. Future research should
explore the generalizability of this method across different tasks and model architectures.

12

Under review as submission to TMLR

6.1 Reproducibility

Reproducing the authors results were made easy by the availability of their code. Claims 1, 2 and 3 were the
easiest to validate. Their code could be executed with minimal modifications. We were unable to reproduce
the original task on a different model (LLaMA-3.2-1B-Instruct) due to the acronym tokenization being
irregular with the model. In the case of GPT-2 Small, the words involved in the acronyms were chosen
to represent three distinct tokens, whereas for LLaMA-3.2-1B-Instruct, each of these words may have a
larger number of tokens, making it challenging to create such a dataset. Additionally, the LLaMA model
tokenizes the acronyms differently, with the first two letters of the acronym often being represented by one
token rather than two. These requirements compelled us to reproduce the methodology on a new task for
testing its generalizability when scale to larger models. Adapting the code to fit the VRAM constraints of
the A100 GPU for the new model and task was challenging due to the increased number of model parameters
and longer input prompt lengths. To address this, we implemented a mechanism for consistently saving and
reading files from memory rather than storing them in RAM. In addition, we reduced the batch size from
50 to 16. The original authors’ code does not appear to be scalable for models and tasks with higher GPU
memory requirements.

13

Under review as submission to TMLR

References
Elías Abad-Rocamora, Yongtao Wu, Fanghui Liu, Grigorios G. Chrysos, and Volkan Cevher. Revisiting

character-level adversarial attacks. ArXiv, abs/2405.04346, 2024. URL https://api.semanticscholar.
org/CorpusID:269613847.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, 2021. URL https://api.semanticscholar.org/CorpusID:
262580630.

Leonard Bereska. Mechanistic interpretability for adversarial robustness - a proposal. Self-published, Aug
2024. URL https://leonardbereska.github.io/blog/2024/mechrobustproposal.

Frederik J. Zuiderveen Borgesius. Strengthening legal protection against discrimination by algorithms and
artificial intelligence. The International Journal of Human Rights, 24(10):1572–1593, 2020. doi: 10.1080/
13642987.2020.1743976. URL https://doi.org/10.1080/13642987.2020.1743976.

Yang Trista Cao, Lovely-Frances Domingo, Sarah Ann Gilbert, Michelle Mazurek, Katie Shilton, and Hal
Daum’e. Toxicity detection is not all you need: Measuring the gaps to supporting volunteer content moder-
ators through a user-centric method. ArXiv, abs/2311.07879, 2023. URL https://api.semanticscholar.
org/CorpusID:265158161.

Stephen Casper, Max Nadeau, Dylan Hadfield-Menell, and Gabriel Kreiman. Robust feature-level adversaries
are interpretability tools. Advances in Neural Information Processing Systems, 35:33093–33106, 2022.

Myra Cheng, Esin Durmus, and Dan Jurafsky. Marked personas: Using natural language prompts to measure
stereotypes in language models. ArXiv, abs/2305.18189, 2023. URL https://api.semanticscholar.org/
CorpusID:258960243.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24:1–113, 2022.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-Alonso.
Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information
Processing Systems, 36:16318–16352, 2023.

Emily Dinan, Angela Fan, Ledell Yu Wu, Jason Weston, Douwe Kiela, and Adina Williams. Multi-
dimensional gender bias classification. In Conference on Empirical Methods in Natural Language Pro-
cessing, 2020. URL https://api.semanticscholar.org/CorpusID:218487627.

Yinpeng Dong, Hang Su, Jun Zhu, and Fan Bao. Towards interpretable deep neural networks by leveraging
adversarial examples. arxiv 2017. arXiv preprint arXiv:1708.05493, 2017.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell,
Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom
Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 2021. https://transformer-circuits.pub/2021/frame-
work/index.html.

Jorge García-Carrasco, Alejandro Maté, and Juan Trujillo. Detecting and understanding vulnerabilities in
language models via mechanistic interpretability. arXiv preprint arXiv:2407.19842, 2024.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Interpreting
mathematical abilities in a pre-trained language model. ArXiv, abs/2305.00586, 2023. URL https:
//api.semanticscholar.org/CorpusID:258426987.

14

https://api.semanticscholar.org/CorpusID:269613847
https://api.semanticscholar.org/CorpusID:269613847
https://api.semanticscholar.org/CorpusID:262580630
https://api.semanticscholar.org/CorpusID:262580630
https://leonardbereska.github.io/blog/2024/mechrobustproposal
https://doi.org/10.1080/13642987.2020.1743976
https://api.semanticscholar.org/CorpusID:265158161
https://api.semanticscholar.org/CorpusID:265158161
https://api.semanticscholar.org/CorpusID:258960243
https://api.semanticscholar.org/CorpusID:258960243
https://api.semanticscholar.org/CorpusID:218487627
https://api.semanticscholar.org/CorpusID:258426987
https://api.semanticscholar.org/CorpusID:258426987

Under review as submission to TMLR

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond circuit
overlap when finding model mechanisms. arXiv preprint arXiv:2403.17806, 2024.

Devansh Jain, Priyanshu Kumar, Samuel Gehman, Xuhui Zhou, Thomas Hartvigsen, and Maarten Sap.
Polyglotoxicityprompts: Multilingual evaluation of neural toxic degeneration in large language models.
ArXiv, abs/2405.09373, 2024. URL https://api.semanticscholar.org/CorpusID:269772971.

Tom Lieberum, Matthew Rahtz, J’anos Kram’ar, Geoffrey Irving, Rohin Shah, and Vladimir Mikulik. Does
circuit analysis interpretability scale? evidence from multiple choice capabilities in chinchilla. ArXiv,
abs/2307.09458, 2023a. URL https://api.semanticscholar.org/CorpusID:259950939.

Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and Vladimir
Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice capabilities in chin-
chilla. arXiv preprint arXiv:2307.09458, 2023b.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv preprint
arXiv:2403.19647, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations
in gpt. In Neural Information Processing Systems, 2022. URL https://arxiv.org/abs/2202.05262.

Llama Team AI @ Meta. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL https://api.
semanticscholar.org/CorpusID:271571434.

Joseph Miller, Bilal Chughtai, and William Saunders. Transformer circuit faithfulness metrics are not robust.
ArXiv, abs/2407.08734, 2024. URL https://api.semanticscholar.org/CorpusID:271097882.

Neel Nanda. Attribution patching: Activation patching at industrial scale. 2024a. URL https://www.
neelnanda.io/mechanistic-interpretability/attribution-patching.

Neel Nanda. A comprehensive mechanistic interpretability explainer & glossary. 2024b. URL https:
//www.neelnanda.io/mechanistic-interpretability/glossary.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. ArXiv, abs/2301.05217, 2023. URL https://api.
semanticscholar.org/CorpusID:255749430.

Nowtricity. Netherlands - real-time co2 emissions of electricity consumption, 2025. URL https://www.
nowtricity.com/country/netherlands/. Accessed on January 30, 2025.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and
induction heads. Transformer Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

John Pavlopoulos, Jeffrey Scott Sorensen, Lucas Dixon, Nithum Thain, and Ion Androutsopoulos. Tox-
icity detection: Does context really matter? ArXiv, abs/2006.00998, 2020. URL https://api.
semanticscholar.org/CorpusID:219176615.

Philip Quirke and Fazl Barez. Understanding addition in transformers. ArXiv, abs/2310.13121, 2023. URL
https://api.semanticscholar.org/CorpusID:264406180.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019. URL https://api.semanticscholar.org/CorpusID:160025533.

Mehrshad Sadria, Anita Layton, and Gary D Bader. Adversarial training improves model interpretability in
single-cell rna-seq analysis. Bioinformatics Advances, 3(1):vbad166, 2023.

15

https://api.semanticscholar.org/CorpusID:269772971
https://api.semanticscholar.org/CorpusID:259950939
https://arxiv.org/abs/2202.05262
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271097882
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/glossary
https://www.neelnanda.io/mechanistic-interpretability/glossary
https://api.semanticscholar.org/CorpusID:255749430
https://api.semanticscholar.org/CorpusID:255749430
https://www.nowtricity.com/country/netherlands/
https://www.nowtricity.com/country/netherlands/
https://api.semanticscholar.org/CorpusID:219176615
https://api.semanticscholar.org/CorpusID:219176615
https://api.semanticscholar.org/CorpusID:264406180
https://api.semanticscholar.org/CorpusID:160025533

Under review as submission to TMLR

A. Sheth, Valerie L. Shalin, and Ugur Kursuncu. Defining and detecting toxicity on social media: Context and
knowledge are key. ArXiv, abs/2104.10788, 2021. URL https://api.semanticscholar.org/CorpusID:
233346894.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit discovery.
ArXiv, abs/2310.10348, 2023. URL https://api.semanticscholar.org/CorpusID:264147090.

Richard Tomsett, Amy Widdicombe, Tianwei Xing, Supriyo Chakraborty, Simon Julier, Prudhvi Gurram,
Raghuveer Rao, and Mani Srivastava. Why the failure? how adversarial examples can provide insights for
interpretable machine learning. In 2018 21st international conference on information fusion (FUSION),
pp. 838–845. IEEE, 2018.

Betty van Aken, Julian Risch, Ralf Krestel, and Alexander Löser. Challenges for toxic comment classification:
An in-depth error analysis. ArXiv, abs/1809.07572, 2018. URL https://api.semanticscholar.org/
CorpusID:52310274.

Bertie Vidgen, Austin Botelho, David A. Broniatowski, Ella Guest, Matthew Hall, Helen Z. Margetts,
Rebekah Tromble, Zeerak Talat, and Scott A. Hale. Detecting east asian prejudice on social media.
In Workshop on Abusive Language Online, 2020. URL https://api.semanticscholar.org/CorpusID:
218570960.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability
in the wild: a circuit for indirect object identification in gpt-2 small. ArXiv, abs/2211.00593, 2022a. URL
https://api.semanticscholar.org/CorpusID:253244237.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability
in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593,
2022b.

Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John F. J. Mellor, Lisa Anne Hen-
dricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. Challenges in detoxifying
language models. ArXiv, abs/2109.07445, 2021. URL https://api.semanticscholar.org/CorpusID:
237513578.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard
prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery. ArXiv,
abs/2302.03668, 2023. URL https://api.semanticscholar.org/CorpusID:256627601.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Meng Wang, Ziwen Xu, Shumin Deng, and Huajun Chen. Knowledge
circuits in pretrained transformers. ArXiv, abs/2405.17969, 2024. URL https://api.semanticscholar.
org/CorpusID:270068372.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial attacks
on aligned language models. ArXiv, abs/2307.15043, 2023. URL https://api.semanticscholar.org/
CorpusID:260202961.

16

https://api.semanticscholar.org/CorpusID:233346894
https://api.semanticscholar.org/CorpusID:233346894
https://api.semanticscholar.org/CorpusID:264147090
https://api.semanticscholar.org/CorpusID:52310274
https://api.semanticscholar.org/CorpusID:52310274
https://api.semanticscholar.org/CorpusID:218570960
https://api.semanticscholar.org/CorpusID:218570960
https://api.semanticscholar.org/CorpusID:253244237
https://api.semanticscholar.org/CorpusID:237513578
https://api.semanticscholar.org/CorpusID:237513578
https://api.semanticscholar.org/CorpusID:256627601
https://api.semanticscholar.org/CorpusID:270068372
https://api.semanticscholar.org/CorpusID:270068372
https://api.semanticscholar.org/CorpusID:260202961
https://api.semanticscholar.org/CorpusID:260202961

Under review as submission to TMLR

A Mechanistic Interpretibility

In this section we define the terminologies discussed in this work precisely and provide a more detailed
introduction to the mechanistic interpretibility techniques used. We generally follow the definitions described
by Nanda (2024a) and Hanna et al. (2024). In our study, we refer to circuits for a given task as being the
minimal computation subgraph of the model whose behavior is faithful to the whole model’s behavior on the
task. It is a digraph linking individual nodes or components, such as specific attention heads, with edges,
i.e. where a node’s output flows. A faithful circuit then is a circuit for which we can corrupt all model edges
outside the circuit while retaining the model’s original task performance.

Techniques for ablating model components include methods like zero ablation that patches the activation
with zero (similar to dropout at training time), mean ablation that patches the activation with the aver-
age activation over some data distribution (typically training data), and resampling ablation that replaces
activation with a randomly chosen input.

Both edge attribution patching (EAP) and edge attribution patching with integrated gradients score edges
in the computation graph by approximating the change in loss caused by corrupting an edge. Given an
edge (u, v), EAP approximates this change in loss by calculating the dot product between the difference of
corrupted and clean activations (z′

u − zu) (where z′
u and zu are the corrupted and clean activations at node

u respectively), and the gradient of the loss with respect to the input of v. The scored edges are then pruned
based on a greedy algorithm to obtain the final circuit.

EAP-IG measures edge importance by combining EAP with Integrated Gradients, which addresses the zero
gradient problem of EAP. When a model’s internal activation has zero gradient at the input point, that
activation will not contribute to the attribution in EAP, even if the activation has a non-zero gradient at the
corrupted input point and the difference in activations is significant. EAP-IG resolves this by accumulating
gradients along the straight-line path from the corrupted input to the clean input. Mathematically, the
EAP-IG score is defined as:

(z′
u − zu)1

j

j∑
k=1

∂L(z′ + k
j (z − z′))

∂zv

where j is the number of integration steps, and L is the loss function. The integral is approximated as
a sum over j steps along the interpolation path between corrupted and clean points. The method uses
blended inputs during the integration process, ensuring non-zero gradients unlike standard EAP which may
encounter zero gradients when evaluating only at the clean input point. This approach provides more robust
edge importance scores, especially in cases where models exhibit significantly different behaviors between
corrupted and clean inputs. EAP-IG also allows for the use of various loss functions, including Kullback-
Leibler (KL) divergence (EAP-IG-KL).

For a detailed introduction to mechanistic interpretibility concepts, Nanda (2024b) provides a comprehensive
glossary.

B Reproduced Figures

17

Under review as submission to TMLR

0 5 10

10

8

6

4

2

0

−1

−0.5

0

0.5

1

Head

La
ye
r

(a) Variation in logit difference when patching different
heads on GPT-2 Small.

0 5 10

10

8

6

4

2

0

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Head
La
ye
r

(b) Logit attribution for every attention head on ad-
versarial samples with the letter A. This attribution is
obtained by projecting into the logit difference direction.

(c) Logit attribution of head 10.10 on adversarial sam-
ples with the letter A. This attribution is obtained by
projecting into the directions of the different capital let-
ters.

18

Under review as submission to TMLR

C Adversarial Sample Generation

Figure 9: Gradient scores for example sentences on bias detection task with LLaMA-3.2-1B-Instruct.

19

Under review as submission to TMLR

Figure 10: Gradient scores for example sentences on acronym task with GPT-2 Smal.

20

Under review as submission to TMLR

D Adversarial Attack

Algorithm 1 Original Adversarial Sample Generation
Data: Model fθ, adversarial loss L, vocabulary embedding E, dataset D, number of steps num_steps, learning

rate α, binary mask m.
Result: Generated adversarial sample A

// Sample A from the dataset
Initialize A ∼ D
// Obtain the embeddings of A
Initialize P′ ← Embed(A)
for i← 1 to num_steps do

// Project into real embeddings
P← ProjE(P′)
// Compute the gradient w.r.t. projected sample
G← ∇PL(P, y, fθ)
// Update the continuous embeddings
P′ ← P− αmG

end for
// Project into real embeddings
P← ProjE(P′)
// Unembed
A← Unembed(P)
return A

Algorithm 2 Extended Adversarial Sample Generation
Data: Model fθ, adversarial loss L, vocabulary embedding E, dataset D, number of steps num_steps, learning

rate α, binary mask m, the variable sample length in tokens n
Result: Generated adversarial sample An

// Sample An from the dataset
Initialize An ∼ D
// Obtain the embeddings of An
Initialize Pn

′ ← Embed(An)
for i← 1 to num_steps do

// Project into real embeddings
Pn ← ProjE(Pn

′)
// Compute the gradient w.r.t. projected sample
G← ∇PnL(Pn, y, fθ)
// Update the continuous embeddings
Pn

′ ← Pn − αmG
end for
// Project into real embeddings
Pn ← ProjE(Pn

′)
// Unembed
An ← Unembed(Pn)
return An

21

Under review as submission to TMLR

E Circuit Faithfulness

5k 10k 15k

0

0.2

0.4

0.6

0.8

1

2000 4000 6000 8000

0

0.2

0.4

0.6

0.8

1

EAP EAP-IG EAP-IG-KL

Edges included (/195865) Edges included (/195865)

N
or

m
al

iz
ed

 fa
ith

fu
ln

es
s

Toxicity Name Bias

Figure 11: Normalized faithfulness of circuits found via scores from EAP, EAP-IG, EAP-IG-KL for the
toxicity and name bias tasks.

F Bias Correction by Region

Region std. dev. score baseline std. dev. score scaling percentage change
Southern Europe 0.114 (±0.022) 0.092 (±0.016) -18.8 % (±2.2 %)
Central America 0.071 (±0.015) 0.058 (±0.009) -18.2 % (±5.5 %)
Oceania 0.064 (±0.007) 0.034 (±0.015) -47.9 % (±18.9 %)
Northern Europe 0.055 (±0.008) 0.041 (±0.01) -25.7 % (±8.9 %)
Western Europe 0.054 (±0.009) 0.008 (±0.005) -86.7 % (±6.6 %)
North America 0.053 (±0.005) 0.033 (±0.006) -37.3 % (±13.4 %)
South America 0.035 (±0.012) 0.021 (±0.014) -43.8 % (±25.1 %)
Eastern Europe -0.002 (±0.026) 0.026 (±0.019) -257.9 % (±216.8 %)
East Asia -0.056 (±0.009) -0.047 (±0.015) -16.2 % (±18.8 %)
Middle East -0.061 (±0.018) -0.045 (±0.026) -29.8 % (±33.0 %)
Southeast Asia -0.094 (±0.021) -0.059 (±0.024) -38.8 % (±10.9 %)
South Asia -0.232 (±0.02) -0.161 (±0.016) -30.6 % (±3.2 %)

Table 2: Mean performance with and without scaling to 0.7 selected edges of the model with standard
deviation in the brackets. Percentage change was calculated between scaled and baseline scores on 5 sampled
datasets and averaged.

G Computational requirements

All of our experiments were conducted using one A100 GPU with 40GB RAM which consumes 250W.
These computational resources ensured that all experiments were completed in a reasonable timeframe. Our
experiments ran for 257 GPU hours. The carbon intensity in the Netherlands was reported to be 370g
CO2eq/kWh in 2024 Nowtricity (2025). For the Snellius supercomputer, the PUE is estimated to be 1.2.
According to the equation CO2e = CI · PUE · P · t, we estimate the carbon emitted by the project to be
approximately 28.527 kg of CO2.

22

	Introduction
	Scope of reproducibility
	Methodology
	Reproduction
	Datasets
	Faithful Circuit Identification
	Adversarial Sample Generation
	Locating and Understanding Vulnerabilities
	Bias Correction

	Experiments
	Results
	Results reproducing original paper
	Results beyond original paper

	Discussion
	Reproducibility

	Mechanistic Interpretibility
	Reproduced Figures
	Adversarial Sample Generation
	Adversarial Attack
	Circuit Faithfulness
	Bias Correction by Region
	Computational requirements

