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ABSTRACT

Verification is crucial for effective mathematical reasoning. We present a new tem-
poral consistency method where verifiers iteratively refine their judgments based
on the previous assessment. Unlike one-round verification or multi-model debate
approaches, our method leverages consistency in a sequence of self-reflection
actions to improve verification accuracy. Empirical evaluations across diverse
mathematical process error identification benchmarks (Mathcheck, ProcessBench,
and PRM800K) show consistent performance improvements over baseline methods.
When applied to the recent DeepSeek R1 distilled models, our method demonstrates
strong performance, enabling 7B/8B distilled models to outperform all 70B/72B
models and GPT-4o on ProcessBench. Notably, the distilled 14B model with our
method achieves performance comparable to Deepseek-R1. Our codes are available
at https://github.com/jcguo123/Temporal-Consistency
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Figure 1: Performance improvements for various models on process error identification benchmarks.

1 INTRODUCTION

Large language models (LLMs) have shown impressive capabilities in reasoning tasks (Grattafiori
et al., 2024; Yang et al., 2024b; Jaech et al., 2024; Guo et al., 2025; Yang et al., 2025), but still often
make mistakes when generating complex multi-step solutions. To address this issue, Process Reward
Models (PRMs) (Lightman et al., 2023; Luo et al., 2024b) have been introduced to guide generations.
Instead of providing feedback solely on the final answer, PRMs evaluate every intermediate step in
the reasoning chain, thereby aligning the model’s chain of thought with correct logical sequences.

However, existing PRMs face several key limitations that hinder their broader applicability. First,
training a PRM requires large-scale, high-quality annotated datasets, making the process highly
data-intensive and costly to scale (Guo et al., 2025). Second, PRMs exhibit poor out-of-domain
generalization; models trained on specific problem distributions often struggle to accurately evaluate
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Figure 2: Overview of our Temporal Consistency approach, where each LLM iteratively examines its
own verification results until reaching a stable result (stopping criteria defined in Section 2). The
self-checking mechanism allows LLMs to refine their judgments based on previous verifications,
potentially correcting initial misidentifications.

reasoning steps when confronted with diverse problem types (Zeng et al., 2025; Lin et al., 2024).
Finally, the effectiveness of PRMs is intrinsically limited by the capability of the base model (Luo
et al., 2024a). These challenges highlight the need for further research to develop more scalable
process supervision techniques in LLMs.

An alternative way is to adopt some training-free approaches like majority voting (Wang et al., 2022)
or debate-based approaches (Du et al., 2023), which have shown effectiveness in aggregating opinions
and resolving conflicts between multiple reasoning trajectories.

Nevertheless, we found that both methods show limitations when applied to mathematical process
error identification tasks. Majority voting often fails when errors are identified by only a minority
of LLMs (Huang et al., 2024). Debate-based approaches sometimes struggle due to an asymmetry
in mathematical reasoning: erroneous reasoning paths tend to generate lengthy, seemingly logical
justifications, while correct reasoning paths provide only simple justifications. This asymmetry can
cause debate methods to favor incorrect justifications, as more elaborate (though flawed) arguments
may overshadow simple (but correct) justifications.

To address these limitations, we develop a simple but effective training-free approach to enhance
process error identification capabilities. The intuition is to leverage the consistency between a
sequence of self-reflection actions because the LLMs should be more likely to remain consistent and
confident when asked to review correct validations. As shown in Figure 2, we propose the Temporal
Consistency method, where each LLM iteratively checks its identifications, and the final output
is only produced when multiple LLMs demonstrate consistent self-checking over time, effectively
reducing unstable incorrect identifications.

We further evaluate our approach across three annotated mathematical step datasets, PRM800K
(Lightman et al., 2023), ProcessBench (Zheng et al., 2024a), and MathCheck∗1 (Zhou et al., 2024).
Our experiments demonstrated consistent performance gains across different models, benchmarks,
and difficulty levels. We then conducted experiments on R1 distilled models (Guo et al., 2025),
where our method achieved remarkable improvements: as shown in Figure 1 for Deepseek-R1-
Distill-Llama-8B, improvements of 46.6% on MathCheck∗, 37.9% on ProcessBench, and 29.0%
on PRM800K; for Deepseek-R1-Distill-Qwen-7B, improvements of 3.5% on MathCheck∗, 16.5%
on ProcessBench, and 11.5% on PRM800K; for Deepseek-R1-Distill-Qwen-14B, improvements
of 3.7% on MathCheck∗, 10.6% on ProcessBench, and 8.6% on PRM800K. Notably, our method
enables distilled 7B/8B models to achieve 71.3%/67.2% on ProcessBench, surpassing all existing
70B/72B models and GPT-4o reported in Zheng et al. (2024a). With our method applied, the distilled
14B model demonstrates performance comparable to Deepseek-R1’s. As shown in Figure 3, our
Temporal Consistency method establishes a new type of test-time scaling law. Unlike conventional
approaches that scale by increasing the number of parallel samples, our method scales through
iterative refinement over time (temporal dimension).

2 METHODOLOGY

In this section, we introduce our method that utilizes multiple rounds of validation to improve
identification accuracy. We begin by defining the process error identification task.

1We use MathCheck∗ to denote a balanced dataset that combines MathCheck’s process judging problems
(containing only incorrect solutions) with problems with correct solutions from ProcessBench.
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Figure 3: Cost v.s. Performance across different methods and models on ProcessBench. The x-axis
(logarithmic scale) shows the cost per problem in dollars (based on OpenRouter pricing 2), while the
y-axis shows the F1 Score percentage.

Julia was preparing for a dinner party at 
her house, where she intended to serve 
stew. She noticed that she was out of 
plastic spoons, so she bought a new 
package of spoons. Later, her husband 
also bought a package of 5 new spoons 
and gave them to Julia…

First, initially, Julia had no spoons. She 
then bought a new package of spoons. 
Her husband also bought a package of 5 
new spoons and gave them to her.

Second, in total, she received 5 + 5= 10 
new spoons from both her purchase 
and her husband's purchase. (s1 is 
incorrect)…

Paragraph<0> correctly states…
Paragraph<1>incorrectly states 
that Julia receives 10 new 
spoons. The first error occurs in 
paragraph (1).

Paragraph<0> incorrectly states 
the total number of spoons as 
10... We can determine that the 
first error occurs in paragraph 
(0).
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occurs in paragraph (0).
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Figure 4: Example of the self-checking process: The first error occurred in step 1. Initially, two
LLMs incorrectly identified the first incorrect step, while one correctly located the first incorrect step.
After self-checking, all LLMs achieve the correct identification.

Task Definition Given a problem P and its step-by-step solution S = {s0, s1, . . . , sn−1}, where
each si represents the i-th solution step, our objective is to identify the first incorrect step, if any, and
output a location index loc ∈ {−1, 0, . . . , n − 1}. Here, loc = −1 indicating that all steps are
correct, while for loc ≥ 0, sloc represents the first incorrect step.

We now introduce the Temporal Consistency algorithm. This method adds a temporal dimension
to the verification process by having each LLM consider its own previous assessment, leverag-
ing consistency in a sequence of self-reflection. We employ K LLMs as verifiers, denoted by
LLM1, . . . ,LLMK . The algorithm has three phases:

2https://openrouter.ai
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Initial Verification Phase For each i ∈ {1, . . . ,K}, given a problem P , a solution S, and a
designated process error identification prompt XVerify, LLMi examines the solution step by step. It
identifies the location of the first incorrect step loci

1, and provides the corresponding reasoning
response resi

1:
(loci

1,res
i
1) = LLMi(P, S,XVerify)

These initial verifications establish a set of independent assessments.

Iterative Self-checking Phase For time steps t ≥ 2, let (loci
t−1,res

i
t−1) represent the verifica-

tion results from the previous iteration for each i ∈ {1, . . . ,K}. With a designated self-verification
prompt XSelf-check, LLMi performs a subsequent self-assessment:

(loci
t,res

i
t) = LLMi(P, S,XSelf-check,loc

i
t−1,res

i
t−1).

The distinction between the initial verification phase and the self-checking phase is incorporating pre-
vious verification results to provide additional context. This temporal dependency enables the LLMs
to potentially correct initial misidentifications. Figure 4 illustrates the self-checking mechanism.

Convergence Check After each iteration t, the algorithm determines the majority identification
loct by applying a majority voting function:

MajorityVote(loc1
t , . . . ,loc

K
t ) = argmax

loc∈{−1,··· ,n−1}

∣∣{i : loci
t = loc}

∣∣ . (1)

This function aggregates the verification outcomes from K different LLMs and returns the error step
that is most frequently identified. Specifically,

∣∣{i : loci = loc}
∣∣ counts the number of LLMs that

have identified step loc as incorrect. The algorithm then evaluates the stability of these identifications
across all LLMs. Let pt be the proportion of agents supporting loct, formally defined as

pt =

∣∣{i : loci
t = loct}

∣∣
K

. (2)

When sufficient stability and consensus are reached, the algorithm terminates and outputs the final
identification. Detailed stopping conditions defined with loct and pt are provided in Section 2.1.

This approach leverages the strengths of multiple independent verifications and consistency across
the temporal dimension. By allowing each LLM to build on its previous assessments while remaining
isolated from others, the algorithm minimizes the risk of reinforcing arguments that appear plausible
but are incorrect. The complete algorithm is detailed in Algorithm 1.

2.1 STOPPING CRITERIA

In practice, most agents converge to an identification within just a few rounds, making further self-
checks computationally redundant. To enhance efficiency, we propose a heuristic stopping criterion
that permits early termination for ”high confidence” problems while allowing continued self-checking
for ”low confidence” problems.

For any round t ∈ {1, . . . , T}, let loct denote the majority identification defined in equation 1, and
pt be the proportion of agents supporting loct defined in equation 2. Based on these definitions, we
design two stopping conditions over q consecutive rounds, where q is a given consistency requirement:

1. Majority Stability:

loct−q+1 = loct−q+2 = · · · = loct,

2. Growing Consensus:
pt−q+1 ≤ pt−q+2 ≤ · · · ≤ pt.

The majority stability condition requires that the majority identification remains unchanged over
the past q rounds, ensuring a consistent outcome in majority voting. Concurrently, the growing
consensus condition needs the proportion of agents supporting the majority identification to not
decrease across these q rounds. The underlying intuition is that the correct answer should be identified
with ”increasing confidence” over the past q rounds.

The algorithm terminates when both conditions are satisfied or when the maximum number of
rounds T is reached. The consistency requirement q is a parameter that can be adjusted according to
task-specific requirements.
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Algorithm 1 Temporal Consistency

Input: Problem P , solution S, number of LLMs K, initial verification prompt XVerify, self-
checking prompt XSelf-check, consistency requirement q, max rounds T .
/* Initial Verification Phase */
for i = 1 to K in parallel do
(loci

1,res
i
1)← LLMi(P, S,XVerify)

end for
/* Iterative Self-checking Phase */
for round t = 2 to T do

for LLM i = 1 to K in parallel do
(loci

t,res
i
t)← LLMi(P, S,XSelf-check,loc

i
t−1,res

i
t−1)

end for
loct ← MajorityVote(loc1

t , ...,loc
K
t )

pt ← |{i : loci
t = loct}|/K

if t ≥ q then
stable←

∧q−2
j=0(loct−j = loct−q+1)

growing←
∧q−2

j=0(pt−j ≥ pt−j−1)
if stable and growing then

return loct

end if
end if

end for
return locT {Return final majority if max rounds reached}
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Figure 5: Performance comparison across three datasets (Mathcheck∗, ProcessBench, and PRM800K).
Our Temporal Consistency approach (green) consistently outperforms baseline methods, including
greedy decoding (yellow), majority voting (orange), and multi-model debate (red).

2.2 COMPARISON WITH EXISTING METHODS

Existing majority voting approaches (Cobbe et al., 2021; Li et al., 2022; Wang et al., 2022) perform
multiple generations simultaneously, essentially scaling horizontally to enhance stability. In contrast,
our method allows each LLM to build upon its previous assessments, achieving vertical scaling over
time. This sequential self-reflection enables each verification to benefit from prior insights.

Moreover, our approach differs from multi-model debate methods (Du et al., 2023) in treating LLM
independence. Although debate methods allow models to exchange information, thus enabling them
to see other agents’ answers and gain additional perspectives, this openness risks influence from
persuasive yet incorrect arguments. For further illustration, an example can be found in Appendix C.
In contrast, our method maintains strict isolation between LLMs. Each LLM focuses solely on its
own reasoning process, thereby reducing the risk of propagating elaborate but erroneous arguments.
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Model Method Mathcheck∗ ProcessBench PRM800K

GPT-4o mini

Greedy Decoding 78.8 52.9 34.0
Majority Voting 80.4 54.2 37.9
Multi-Model Debate 79.9 54.6 38.0
Temporal Consistency (Ours) 84.8 58.2 39.0

GPT-4o

Greedy Decoding 87.3 62.5 41.6
Majority Voting 89.0 65.9 42.6
Multi-Model Debate 90.8 66.8 50.7
Temporal Consistency (Ours) 91.8 69.1 51.6

Llama 3.1 8B Instruct

Greedy Decoding 13.3 6.4 2.4
Majority Voting 5.9 5.1 6.8
Multi-Model Debate 6.8 5.6 2.6
Temporal Consistency (Ours) 60.2 35.5 22.1

Mistral 7B Instruct v0.3

Greedy Decoding 26.4 20.3 13.0
Majority Voting 26.3 17.6 12.1
Multi-Model Debate 26.2 17.7 12.1
Temporal Consistency (Ours) 37.4 22.5 13.3

Table 1: Performance comparison across different models. Numbers represent F1 score (%). The best
performance for each model is highlighted in bold. Our method consistently outperforms baselines
across all models and benchmarks.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Dataset We evaluate our method on ProcessBench (Zheng et al., 2024a), a comprehensive dataset
combining multiple mathematical problem-solving benchmarks. The dataset consists of 3,400
problems from four sources: 400 from GSM8K (Cobbe et al., 2021), 1,000 from MATH dataset
(Hendrycks et al., 2021), 1,000 from OlympiadBench (He et al., 2024), and 1,000 from Omni-MATH
(Gao et al., 2024). Each problem includes both generated solutions and human-annotated processes.
Additionally, we incorporate 516 process judging problems based on GSM8K from MathCheck
(Zhou et al., 2024) and 300 randomly selected problems based on MATH dataset from PRM800K
(Lightman et al., 2023). Since the process judging problem in MathCheck only contains incorrect
solutions, we combine it with the GSM8K problems with correct steps from ProcessBench to create
a balanced dataset, which we denote as MathCheck∗. For PRM800K, we consider both 0 and 1
annotations as correct steps and -1 as incorrect steps. We evaluate the F1 score for all benchmarks,
which is the harmonic mean of the accuracies on incorrect and correct samples.

Model Method Mathcheck∗ ProcessBench PRM800K

Deepseek-R1-Qwen-7B

Greedy Decoding 86.0 54.8 46.2
Majority Voting 89.3 64.8 55.1
Multi-Model Debate 84.8 61.7 51.2
Temporal Consistency (Ours) 89.5 71.3 57.7

Deepseek-R1-Llama-8B

Greedy Decoding 35.9 29.3 21.2
Majority Voting 35.5 48.9 41.7
Multi-Model Debate 56.7 57.6 46.7
Temporal Consistency (Ours) 82.5 67.2 50.2

Table 2: Performance comparison of Deepseek R1 distilled models on three benchmarks. Numbers
represent F1 score (%). The best performance for each model is highlighted in bold.

Baseline Methods We compare our approach against three baseline methods: (1) Verification with
greedy decoding (Zhang et al., 2022), where a single agent generates a verification deterministically,
(2) Majority voting among multiple agents (Wang et al., 2022), where multiple agents independently
generate verifications, and the final decision is made based on majority voting and (3) Verification with
debate-based reasoning (Du et al., 2023), where multiple agents generate verifications independently,
and they will receive the answer from the other agents and then generate a new identification.

Parameter Setting To ensure a fair comparison, we employ 5 parallel agents in each of the
three methods: majority voting, debate-based verification, and our Temporal Consistency approach.
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Following Du et al. (2023), the debate method proceeds in two rounds: an initial verification round
followed by a debate round. Our method implements convergence criteria requiring stability across
3 consecutive rounds, with a maximum of 10 rounds. We use Deepseek-R1-Llama-8B (Guo et al.,
2025) in all our experiments except those in Table 1, Table 2 and Figure 1. Appendix B shows
complete experimental configurations and implementation details.

3.2 MAIN RESULTS

Improvement over Diverse Dataset Figure 5 presents the performance comparison across three
datasets for Deepseek-R1-Llama-8B. Our Temporal Consistency approach consistently outperforms
baseline methods across all evaluation settings.

On Mathcheck∗, our method achieves an F1 score of 82.5%, showing an improvement of 46.6%
over greedy decoding and 25.8% over multi-model debate. For ProcessBench, we observe consistent
improvements with our method achieving 67.2% F1 score, compared to 29.3% for greedy decoding
and 57.6% for multi-model debate. On PRM800K, our method maintains its advantage with 50.2%
F1 score, showing a 29.0% improvement over greedy decoding.

Improvement over Different Base Models To demonstrate the generalizability of our approach,
we conducted experiments across different language models, including GPT-4o mini, GPT-4o (Hurst
et al., 2024), Llama 3.1 8B Instruct (Grattafiori et al., 2024) and Mistral 7B Instruct (Jiang et al.,
2023). We evaluated these models on Mathcheck∗, ProcessBench, and PRM800K. As shown in
Table 1, our Temporal Consistency method consistently outperforms baseline methods across all
benchmarks. This consistent performance across different models demonstrates the effectiveness of
our approach.

Improvement for Distilled Models We further evaluate our method and the baseline methods on
the recently released Deepseek R1 distilled models (Guo et al., 2025), including DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Llama-8B. As shown in Table 2, our Temporal Consistency
method demonstrates remarkable effectiveness on 7B/8B-scale models, achieving 71.3% and 67.2%
accuracy on ProcessBench with DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B
respectively, surpassing GPT-4o (69.1%) and all 70B/72B models reported in Zheng et al. (2024a),
including Llama-3.3-70B-Instruct (58.0%), Qwen2.5-Math-72B-Instruct (45.5%) and Qwen2.5-72B-
Instruct (61.2%) (Yang et al., 2024a).

3.3 ADDITIONAL ANALYSIS

Different Choice of Consistency Requirement We investigated the impact of different consistency
requirements on model performance using ProcessBench. As shown in Figure 6, we experimented
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with consistency requirements ranging from 0 to 3, where higher values indicate stricter require-
ments for output stability. The F1 score demonstrates a consistent upward trend as the consistency
requirement increases, starting from 48.9% without the self-checking requirement (parameter = 0)
and reaching 67.2% with the strictest stability requirement (parameter = 3). This correlation suggests
that requiring more stable outputs through multiple verification rounds leads to more accurate results.

Performance Across Problem Difficulty To analyze our method’s effectiveness across varying
complexity levels, we categorized ProcessBench problems into two groups following the difficulty
definition in Zheng et al. (2024a): Easy (derived from GSM8K and MATH) and Hard (derived
from OlympiadBench and Omni-MATH). Figure 8 illustrates the performance comparison across
these categories. All methods demonstrate strong performance on easy problems, with our approach
achieving 70.2% F1 score. The performance gap becomes more evident for hard problems, where our
method maintains robust performance at 64.2%.
Cost-Performance Analysis To understand the trade-offs between computational resources and
verification performance, we conducted experiments with various parameter configurations of our
method. Figure 7 illustrates how performance scales with increased computational budget across
different parameter settings. We observe a general trend where higher computational investment
yields better verification results.
Ablation Study To understand the contribution of each component in our approach, we conducted
an ablation study on ProcessBench, with results shown in Figure 9. We evaluated four configurations:
the greedy decoding method, Temporal Consistency without multi-agent, self-checking without
iterative generation, and our method. The results demonstrate that both components contribute to
the overall performance. Starting from the base F1 score of 29.3%, each component independently
improves performance, with the multi-agent self-checking and iterative mechanisms contributing
improvements of 24.2% and 25.8%, respectively. The combination achieves the best performance
with an F1 score of 67.2%.

4 CONCLUSION

We presented an Temporal Consistency approach for improving mathematical process error iden-
tification in language models. Our method leverages temporal consistency patterns in verification
behavior, allowing LLMs to recheck their judgments through multiple rounds. We demonstrated how
this approach effectively improves verification accuracy across different models and problem types
through empirical evaluation.

Our key insight is that the temporal stability of verifications can serve as a reliable indicator of
correctness. This finding opens new directions for developing methods focusing on consistency over
time rather than agreement across agents. Our results suggest that incorporating temporal dynamics
can enhance the reliability of mathematical reasoning methods.
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A RELATED WORK

Datasets and Benchmarks for Process Error Detection Process error detection in mathematical
reasoning requires annotations at the step level, currently available in three major datasets. PRM800K
(Lightman et al., 2023) pioneered this direction by providing human-annotated reasoning steps based
on the MATH dataset (Hendrycks et al., 2021), focusing on high school and college-level mathematics.
MathCheck (Zhou et al., 2024) extends this approach to elementary mathematics by synthesizing
solutions with incorrect steps from GSM8K problems (Cobbe et al., 2021), offering a systematic
evaluation of step-by-step verification. Most recently, ProcessBench (Zheng et al., 2024a) expands the
coverage of mathematical difficulty by providing expert-annotated solution steps across four distinct
datasets: GSM8K, MATH, and notably, OlympiadBench (He et al., 2024) and Omni-MATH (Gao
et al., 2024) for competition and olympiad-level challenges. Our experimental evaluation across these
benchmarks provides comprehensive insights into our method’s effectiveness from basic arithmetic
to advanced mathematical reasoning.

Process Error Identification Methods Approaches to error detection in language models can be
categorized into two main streams. The first focuses on training specialized verification models, such
as process reward models (Lightman et al., 2023; Luo et al., 2024b; Setlur et al., 2024; Wang et al.,
2024; Zhang et al., 2024) and finetuned language models (Cobbe et al., 2021; Kang et al., 2024;
Zheng et al., 2024b; Yang et al., 2024d; Tang et al., 2025; Luo et al., 2025; Guan et al., 2025). While
these training-based methods have shown promising results, they require additional training data
and significant computational resources, especially for larger models. The second stream explores
inference-time verification through prompting techniques like self-reflection (Miao et al., 2023;
Madaan et al., 2024). Recent work has demonstrated that language models often struggle to correct
errors without external feedback (Huang et al., 2023; Kamoi et al., 2024). Similar to self-reflection
work (Madaan et al., 2024; Yang et al., 2024d), which iteratively generates improvement suggestions,
our method employs an iterative process.

Rather than training new models, we focus on utilizing existing models more effectively. However,
our Self-check method can also be applied to trained verification models to improve their accuracy
potentially.

More General Reasoning Methods The broader field of reasoning in language models has explored
various frameworks to enhance problem-solving capabilities and solution reliability. Chain-of-
Thought prompting (Wang et al., 2022) and its variants like Tree-of-Thought (Yao et al., 2024) and
Buffer-of-Thought (Yang et al., 2024c) have demonstrated that explicitly articulating intermediate
reasoning steps improves model performance on complex reasoning tasks, and Zhang et al. (2024)
further validates the effectiveness of reasoning in verification tasks. Predesigned reasoning structures
(Zhang et al., 2022; Besta et al., 2024; Yang et al., 2024d) have also shown promise in improving
mathematical capabilities by guiding LLMs to think along predefined trajectories. Multi-agent
approaches such as debate mechanisms (Du et al., 2023; Subramaniam et al., 2025) enable models to
critically examine solutions through structured discussions, while majority voting methods (Wang
et al., 2022) generate multiple independent solutions and aggregate them through majority voting to
enhance reliability. While each approach offers unique advantages, they demonstrate the importance
of structured reasoning processes in improving model performance.

Test Time Scaling Recent studies have demonstrated that leveraging multiple samples during
inference can significantly enhance model performance (Hurst et al., 2024; Guo et al., 2025; Yang
et al., 2025). Through iterative refinement, models incorporate feedback from previous generations
to guide subsequent outputs (Snell et al., 2024; Hou et al., 2025; Lee et al., 2025). While early
approaches focused on simple majority voting strategies (Wang et al., 2022), subsequent research
has advanced towards more sophisticated techniques, particularly in search-based methods (Khanov
et al., 2024; Wan et al., 2024; Yang et al., 2025). The field has evolved with hybrid frameworks that
seamlessly integrate tree-based search with sequential approaches (Wu et al., 2024; Snell et al., 2024;
Qiu et al., 2024; Gandhi et al., 2024). Liu et al. (2025) conducted a study on optimizing test-time
computation scaling across various policy models and problem complexities. Most closely related
to our approach, Muennighoff et al. (2025) achieved substantial improvements in competition math
questions by implementing parallel self-reflection on historical interactions.
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B IMPLEMENTATION DETAILS

We use the gpt-4o-2024-08-06 API for GPT-4o and gpt-4o-mini API for GPT-4o-mini. We use
Together API for the Deepseek-R1 model. All experiments can be performed on a single NVIDIA
H100 GPU.

In the first round of all methods, the generation process was conducted using a temperature setting
0.7. The subsequent rounds vary slightly between closed-source and open-source models, with the
following specifics:

• Closed-source models: For the debate method and our approach in later rounds, the
temperature was set to 1.

• Open-source models: We used a fixed random seed of 42 throughout the experiments. For
the debate method and subsequent rounds of our approach, the temperature was set to 0.7,
and top-p=0.8, top-k=40.

B.1 PROMPTING STRATEGY FOR INITIAL VERIFICATION

In the first round of all methods, we utilized the verification prompts provided in Zheng et al. (2024a).
The prompt format for the initial generation was:

The following is a math problem and a solution (split
into paragraphs, enclosed with tags, and indexed from
0):

[Math Problem]

{problem}
[Solution]

{tagged response}
Your task is to review and critique the solution
paragraph by paragraph. Once you identify an error in
a paragraph, return the index where the earliest error
occurs. Otherwise, return the index of -1 (which
typically denotes "not found").

Please put your final answer (i.e., the index) in
\boxed{}.

B.2 DEBATE METHOD PROMPT ADAPTATION

The debate method is not designed for the verification task. To adapt it to our context, we combined
the prompts for initial verification with those described in the appendix of Du et al. (2023). The
adapted prompt is as follows:

These are the solutions to the problem from other
agents:
One agent solution: {res[’reason’]}
Using the solutions from other agents as additional
information, please analyze this solution and end with
the earliest error index in \boxed{}, or -1 in \boxed{}
if no errors.

B.3 PROMPT FOR SECONDARY VERIFICATION

For the subsequent verification rounds in our approach, we designed a custom prompt to ensure
thorough checking of the initial LLM’s results. The prompt used is:
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You are a secondary LLM for math problem solutions. The first
verifier's task was to review math solutions paragraph by
paragraph and identify the earliest error (if any), returning
-1 if no errors were found.

↪→

↪→

↪→

The first verifier may have made mistakes. Your job is to
carefully check their work. You will receive:↪→

1. The original math problem

2. The solution steps

3. The first verifier's generated label (paragraph index where
they found the first error, or -1)↪→

4. The first verifier's reasoning

IMPORTANT:

1. You must check each paragraph carefully, as if you are
re-solving the problem from scratch.↪→

2. If you find any error|no matter how minor|locate the earliest
paragraph containing that error.↪→

3. If the solution is correct throughout, only then do you output
-1.↪→

4. The first verifier may be wrong. You cannot just accept their
result. Always verify carefully and do not hesitate to
disagree.

↪→

↪→

Your output format:

1. Begin with an overview: "Let's check the solution paragraph by
paragraph based on the first agent's verification:"↪→

2. For each paragraph (starting from paragraph 0), specify whether
it is correct or not based on the first verifier's reason. If
an error is found, explain the reason for the error. If
correct, explain why it is correct.

↪→

↪→

↪→

3. End with the earliest error index in \boxed, or -1 in \boxed if
no errors.↪→
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C EXAMPLES FOR VARIOUS METHODS

Example for Majority Voting (3 agents)

Problem: Julia was preparing for a dinner party at her house, where she intended to serve
stew. She noticed that she was out of plastic spoons, so she bought a new package of spoons.
Later, her husband also bought a package of 5 new spoons and gave them to Julia. While
Julia was making the stew, she used three of the spoons to sample her stew. Later, when she
went to set the table, she had a total of 12 spoons. How many spoons were in the package
that Julia bought?
Solution Steps:
Step 0: Let’s break down the problem step by step: First, initially, Julia had no spoons. She
then bought a new package of spoons. Her husband also bought a package of 5 new spoons
and gave them to her.
Step 1: Second, in total, she received 5 + 5 = 10 new spoons from both her purchase and her
husband’s purchase. First Error Step
Step 2: Third, while making the stew, she used 3 of the spoons to sample it, leaving her with
10 - 3 = 7 spoons.
Step 3: Fourth, when she went to set the table, she had a total of 12 spoons. We need to find
out how many spoons were in the package that Julia bought initially.
Step 4: We know she received 10 more spoons after her husband gave her the additional 5
spoons. Since she had 7 spoons left after sampling and ended up with 12 spoons in total, the
number of spoons she started with must have been 12 - 7 = 5.
Step 5: Therefore, the number of spoons in the package that Julia bought is 5.
Agent Analysis:
Agent 1:

• Paragraph ¡0¿ assumes Julia started with no spoons which isn’t stated in problem
• This is an incorrect assumption as we don’t know initial spoon count
• First error occurs in paragraph ¡0¿
• Therefore labels error as paragraph 0

Agent 2:
• Paragraph ¡0¿ contains unstated assumption about initial spoon count
• Making assumptions not given in original problem is an error
• First error identified in step ¡0¿
• Labels error as paragraph 0

Agent 3:
• Paragraph ¡0¿ correctly states initial conditions
• Paragraph ¡1¿ makes incorrect assumption about total spoons being 10
• First error found in calculating total spoons without knowing Julia’s package
• Labels error as paragraph 1
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Example for Change of Opinion After Debate (3 agents)

Problem: Amy is taking a history test. She correctly answers 80% of the multiple-choice
questions, 90% of the true/false questions, and 60% of the long-answer questions. The
multiple-choice and true/false questions are worth 1 point each, and the long answer questions
are worth 5 points each. How many points does Amy score if there are 10 multiple-choice
questions, 20 true/false questions, and 5 long answer questions?
Solution Steps:
Step 0: To calculate the total points that Amy scores on her history test, we need to determine
how many points she earns from each type of question and then sum those points.
Step 1: First, for the multiple-choice questions: - There are 10 multiple-choice questions,
each worth 1 point. - Amy answers 80% of them correctly. - Points from multiple-choice
questions = 10 × 0.80 = 8 points.
Step 2: Second, for the true/false questions: - There are 20 true/false questions, each worth 1
point. - Amy answers 90% of them correctly. - Points from true/false questions = 20 × 0.90 =
18 points.
Step 3: Third, for the long-answer questions: - There are 5 long-answer questions, each
worth 5 points. - Amy answers 60% of them correctly. - Points from long-answer questions =
5 × 0.60 × 5 = 15 points.
Step 4: Finally, to find the total points: - Total points = Points from multiple-choice + Points
from true/false + Points from long-answer - Total points = 8 + 18 + 15 - Total points = 41
Step 5: Therefore, Amy scores a total of 41 points on her history test.
No Error (loc = −1)
Agent Analysis:
First Round:

• Agent 1: ”After reviewing each paragraph step-by-step, no computational errors or
mistakes in the logic of the solution are found. Therefore, index -1.”

• Agent 2: ”Upon reviewing each paragraph, no errors are found. While the calculation
method in paragraph 3 is unconventional, it yields the correct result. Therefore,
index -1.”

• Agent 3: ”Here, there is an error. The calculation should be 5 × 5 × 0.60 = 15 points,
which is correct. However, the error is in the explanation that wrongly states the
operation order as 5 × 0.60 × 5. While the final result is correct, the explanation
could be misleading. The first minor error in explanation is found in Paragraph ¡3¿.
Therefore, index 3.”

Second Round (After Discussion):
• Agent 1: ”Upon reviewing the solution and considering the feedback from other

agents, I maintain that there are no computational errors affecting the final result.
Index -1.”

• Agent 2: ”After reviewing the solutions from other agents, I now see that while the
calculation gives the correct result, the explanation in paragraph 3 can be misleading.
As Agent 3 pointed out, the operation order should be more clearly stated. Therefore,
I revise my assessment to index 3.”

• Agent 3: ”Upon reviewing the solutions provided by other agents, I maintain my
position. The calculation in paragraph 3, while giving the correct result, has a
misleading explanation that could cause confusion. Index 3.”

D BREAK DOWN OF EVALUATION RESULTS

In this section, we provide the break down evaluation results in Table 1 and Table 2. Table 3 is the
results for Mathcheck∗, Table 4 are the results for PRM800K, Table 5 are the results for ProcessBench.
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Table 3: Results for MathCheck∗

Model
Method Err Cor F1

GPT-4o mini
Greedy Decoding 75.0 82.9 78.8

Majority Voting 76.2 85.0 80.4
Multi-Model Debate 79.5 80.3 79.9
Temporal Consistency (Ours) 84.7 85.0 84.8
GPT-4o
Greedy Decoding 84.5 90.2 87.3

Majority Voting 85.1 93.3 89.0
Multi-Model Debate 88.4 93.3 90.8
Temporal Consistency (Ours) 89.0 94.8 91.8
Llama 3.1 8B Instruct
Greedy Decoding 44.6 7.8 13.3

Majority Voting 64.7 3.1 5.9
Multi-Model Debate 62.2 3.6 6.8
Temporal Consistency (Ours) 55.8 65.3 60.2
Mistral 7B Instruct v0.3
Greedy Decoding 24.6 28.5 26.4

Majority Voting 15.9 76.2 26.3
Multi-Model Debate 15.7 79.3 26.2
Temporal Consistency (Ours) 34.1 41.5 37.4
Deepseek-R1-Llama-8B
Greedy Decoding 67.6 24.4 35.9

Majority Voting 79.8 22.8 35.5
Multi-Model Debate 75.0 45.6 56.7
Temporal Consistency (Ours) 81.2 83.9 82.5
Deepseek-R1-Qwen-7B
Greedy Decoding 77.9 95.9 86.0

Majority Voting 81.6 99.0 89.3
Multi-Model Debate 77.3 93.8 84.8
Temporal Consistency (Ours) 82.0 98.4 89.5
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Table 4: Results for PRM800K

Model
Method Err Cor F1

GPT-4o mini
Greedy Decoding 27.8 43.8 34.0

Majority Voting 31.3 47.9 37.9
Multi-Model Debate 34.4 42.5 38.0
Temporal Consistency (Ours) 34.4 45.2 39.0
GPT-4o
Greedy Decoding 30.4 65.8 41.6

Majority Voting 30.4 71.2 42.6
Multi-Model Debate 41.9 64.4 50.7
Temporal Consistency (Ours) 39.2 75.3 51.6
Llama 3.1 8B Instruct
Greedy Decoding 10.1 1.4 2.4

Majority Voting 18.9 4.1 6.8
Multi-Model Debate 23.3 1.4 2.6
Temporal Consistency (Ours) 15.0 42.5 22.1
Mistral 7B Instruct v0.3
Greedy Decoding 11.5 15.1 13.0

Majority Voting 6.6 71.2 12.1
Multi-Model Debate 6.6 71.2 12.1
Temporal Consistency (Ours) 10.6 17.8 13.3
Deepseek-R1-Llama-8B
Greedy Decoding 30.0 16.4 21.2

Majority Voting 41.0 42.5 41.7
Multi-Model Debate 42.3 52.1 46.7
Temporal Consistency (Ours) 39.2 69.9 50.2
Deepseek-R1-Qwen-7B
Greedy Decoding 33.9 72.6 46.2

Majority Voting 41.9 80.8 55.1
Multi-Model Debate 38.8 75.3 51.2
Temporal Consistency (Ours) 44.5 82.2 57.7
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Table 5: Results for ProcessBench

ProcessBench
Model
Method GSM8K MATH OlympiadBench Omni-MATH

Err Cor F1 Err Cor F1 Err Cor F1 Err Cor F1
GPT-4o mini
Greedy Decoding54.1 82.9 65.5 47.0 69.2 56.0 39.0 55.2 45.7 35.7 58.1 44.2

Majority Voting 56.0 85.0 67.5 47.8 71.6 57.3 38.9 60.5 47.3 36.1 58.1 44.5

Multi-Model Debate63.8 80.3 71.1 52.9 64.4 58.1 42.1 49.9 45.6 40.3 47.7 43.7

Temporal Consistency (Ours)63.3 85.0 72.5 51.3 74.1 60.7 43.1 60.8 50.4 41.2 61.0 49.2

GPT-4o
Greedy Decoding70.0 90.2 78.8 53.4 77.1 63.1 44.8 67.0 53.7 46.4 65.1 54.2

Majority Voting 73.4 93.3 82.2 53.9 82.5 65.2 48.3 72.8 58.0 49.2 71.4 58.3

Multi-Model Debate77.8 93.3 84.8 61.4 77.0 68.4 53.7 59.5 56.4 56.1 58.9 57.5

Temporal Consistency (Ours)74.9 94.8 83.7 58.1 90.1 70.6 45.8 86.7 60.0 48.7 86.3 62.2

Llama 3.1 8B Instruct
Greedy Decoding23.7 7.8 11.7 16.5 2.5 4.3 8.3 3.2 4.7 7.8 3.7 5.0

Majority Voting 41.1 3.1 5.8 30.6 1.7 3.3 19.8 4.1 6.8 25.4 2.5 4.5

Multi-Model Debate45.9 3.6 6.7 37.9 3.7 6.7 30.6 2.9 5.4 32.0 2.5 4.6

Temporal Consistency (Ours)34.8 65.3 45.4 28.8 51.5 36.9 23.8 37.5 29.1 24.6 40.7 30.7

Mistral 7B Instruct v0.3
Greedy Decoding27.1 28.5 27.8 23.7 20.9 22.2 14.8 14.7 14.8 16.3 16.2 16.3

Majority Voting 12.6 76.2 21.6 11.8 69.7 20.2 7.6 65.8 13.6 8.4 67.2 15.0

Multi-Model Debate12.6 79.3 21.7 12.0 70.2 20.4 7.3 67.0 13.1 8.7 66.0 15.4

Temporal Consistency (Ours)20.8 41.5 27.7 19.4 25.9 22.1 18.0 19.8 18.8 16.2 31.5 21.4

Deepseek-R1-Llama-8B
Greedy Decoding44.9 24.4 31.6 45.5 24.1 31.5 35.1 24.8 29.0 31.2 20.7 24.9

Majority Voting 49.3 22.8 31.2 67.5 50.0 57.4 57.3 58.7 58.0 51.8 46.5 49.0

Multi-Model Debate51.7 45.6 48.5 64.5 63.8 64.1 56.1 71.1 62.7 49.9 61.0 54.9

Temporal Consistency (Ours)56.5 83.9 67.6 67.0 79.6 72.7 57.0 78.5 66.1 53.1 75.1 62.2

Deepseek-R1-Qwen-7B
Greedy Decoding52.2 95.9 67.6 50.5 80.0 61.9 39.0 64.6 48.7 29.6 66.0 40.9

Majority Voting 57.5 99.0 72.7 64.3 88.4 74.5 48.1 81.7 60.6 39.0 75.5 51.4

Multi-Model Debate58.0 93.8 71.7 59.8 84.7 70.1 45.8 71.1 55.7 37.7 71.4 49.3

Temporal Consistency (Ours)62.8 98.4 76.7 69.5 94.3 80.1 54.5 90.6 68.0 46.1 86.7 60.2
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