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Abstract001

Multimodal large language models (MLLMs)002
have shown remarkable performance for cross-003
modal understanding and generation, yet still004
suffer from severe inference costs. Recently,005
abundant works have been proposed to solve006
this problem with token pruning, which identi-007
fies the redundant tokens in MLLMs and then008
prunes them to reduce the computation and KV009
storage costs, leading to significant accelera-010
tion without training. While these methods011
claim efficiency gains, critical questions about012
their fundamental design and evaluation remain013
unanswered: Why do many existing approaches014
underperform even compared to naive random015
token selection? Are attention-based scoring016
sufficient for reliably identifying redundant to-017
kens? Is language information really helpful018
during token pruning? What makes a good019
trade-off between token importance and dupli-020
cation? Are current evaluation protocols com-021
prehensive and unbiased? The ignorance of022
previous research on these problems hinders023
the long-term development of token pruning.024
In this paper, we answer these questions one by025
one, providing insights into the design of future026
token pruning methods. Codes are available in027
the supplementary materials.028

1 Introduction029

Multi-modal language models (MLLMs) (Huang030

et al., 2023; Driess et al., 2023; Liu et al., 2024c;031

Bai et al., 2023), especially the vision-language032

models have demonstrated powerful effectiveness033

in various tasks. However, the extremely high com-034

putational and storage costs have limited the appli-035

cation of MLLMs in real-time applications, which036

is caused by not only the enormous parameters037

inherited from LLMs but also a large number of038

tokens from the large visual information such as039

high-resolution images and multi-frame videos.040

To solve this problem, abundant efforts have041

been made in token pruning (Chen et al., 2024;042
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Figure 1: Comparison between FastV, SparseVLM,
and naive baselines. On several common datasets, the
performance of FastV and SparseVLM is even worse
than random token dropping and pooling.

Zhang et al., 2024b; Liu et al., 2024d), which aims 043

to reduce the number of input tokens in MLLMs. 044

Usually, token pruning methods first introduce a 045

carefully-designed criterion to measure the impor- 046

tance of a vision token, and then prune the redun- 047

dant tokens, or merge the redundant tokens into 048

fewer tokens. As a result, the following compu- 049

tation of the pruned tokens or the merged tokens 050

can be removed or reduced, bringing efficiency 051

in both computation and storage. For instance, 052

some recent works show that more than 70% to- 053

kens can be pruned with tolerant loss in accuracy 054

(Chen et al., 2024). Most attractively, thanks to 055

the natural ability of MLLMs to process tokens in 056

different lengths, token pruning can be applied to 057

most existing MLLMs with no need for additional 058

training, and thus attracts great attention from both 059

academic researchers and industrial developers. 060

However, despite the popularity of token prun- 061

ing, numerous foundational questions have long 062

been overlooked and remain largely unexplored, 063

giving rise to several surprising phenomena. For 064

instance, Figure 1 demonstrates the comparison 065

between two classical token pruning methods in- 066

cluding FastV (Chen et al., 2024) and SparseVLM 067

(Zhang et al., 2024b), and two naive baselines, in- 068
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cluding random token selection and direct average069

pooling on tokens. Surprisingly, the two base-070

lines outperform the two well-designed token071

pruning methods in most benchmarks by a clear072

margin. This counterintuitive phenomenon may073

demonstrate that the current understanding of so-074

called important tokens is far away from the truth.075

Unfortunately, most recent works just focus on pur-076

chasing higher performance, while ignoring these077

questions, which may hinder the long-term devel-078

opment of token pruning.079

In this paper, we have conducted massive exper-080

iments and analyses to dive into the fundamental081

problems of token pruning, with the main take-082

aways as follows.083

• Attention-based token selection methods suffer084

from position bias, where vision tokens in the085

later positions are more likely to be retained. Re-086

ducing position bias in these methods can benefit087

their performance.088

• Language information is helpful in token pruning089

only when a given task strongly correlates with090

the language information.091

• Both the importance and uniqueness (low similar-092

ity) of tokens have a significant influence on the093

performance of token pruning and their influence094

varies from different tasks.095

• FLOPs and the number of retained tokens are096

unreliable metrics for token pruning methods.097

Compatibility with hardware has a significant098

influence on real acceleration performance.099

• Training-aware token pruning which directly100

merges tokens in spatially adjacent positions101

may bring more benefits than carefully-designed102

training-aware pruning.103

We hope that this paper can provide insights into104

the future design of token pruning, and correct the105

long-neglected evaluation issues in this field.106

2 Related Work107

2.1 Multimodal Large Language Models108

The remarkable success of large language models109

(LLMs) (Radford et al., 2019; Brown et al., 2020)110

has spurred a growing trend of extending their ad-111

vanced reasoning capabilities to multi-modal tasks,112

leading to the development of vision-language mod-113

els (VLMs) (Huang et al., 2023; Driess et al., 2023;114

Liu et al., 2024c; Bai et al., 2023). These VLMs115

typically consist of a visual encoder (Radford et al.,116

2021) that serializes input image representations117

and an LLM responsible for text generation. To en- 118

able the LLM to process visual inputs, an alignment 119

module is employed to bridge the gap between vi- 120

sual and textual modalities. This module can take 121

various forms, such as a simple linear layer, an 122

MLP projector, or a more complex query-based 123

network. While this integration allows the LLM 124

to gain visual perception, it also introduces sig- 125

nificant computational challenges due to the long 126

sequences of visual tokens. 127

Moreover, existing VLMs often exhibit limita- 128

tions, such as visual shortcomings or hallucinations, 129

which hinder their performance. Efforts to enhance 130

VLM capabilities by increasing input image reso- 131

lution have further exacerbated computational de- 132

mands. For instance, encoding higher-resolution 133

images results in a substantial increase in the num- 134

ber of visual tokens. A model like LLaVA-1.5 (Liu 135

et al., 2024a) generates 576 visual tokens for a 136

single image, while its successor, LLaVA-NeXT 137

(Liu et al., 2024b), produces up to 2880 tokens at 138

double the resolution, far exceeding the length of 139

typical textual prompts. Optimizing the inference 140

efficiency of VLMs is thus a critical task to facili- 141

tate their deployment in real-world scenarios with 142

limited computational resources. 143

2.2 Visual Token Compression 144

Visual tokens are often significantly more numer- 145

ous than text tokens, with higher spatial redundancy 146

and lower information density. To address this is- 147

sue, various methods have been proposed for reduc- 148

ing visual token counts in vision language models. 149

For instance, some approaches modify model com- 150

ponents, such as using context tokens in Q-Former 151

(Li et al., 2024) or applying adaptive pooling at the 152

patch level, but these typically require additional 153

training and increase computational costs. Other 154

techniques, like Token Merging (ToMe) (Bolya 155

et al., 2023) and FastV (Chen et al., 2024), focus on 156

reducing tokens without retraining by merging to- 157

kens or selecting important ones based on attention 158

scores. SparseVLM (Zhang et al., 2024b) incorpo- 159

rates text guidance through cross-modal attention 160

to refine token selection. However, these methods 161

often overlook hardware acceleration compatibility 162

and fail to account for token duplication alongside 163

token importance. Furthermore, while token prun- 164

ing has been extensively explored in natural lan- 165

guage processing and computer vision to improve 166

inference efficiency, its application to VLMs re- 167

mains under-explored. Existing pruning strategies, 168
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such as those in FastV and SparseVLM, rely on169

text-visual attention within large language models170

(LLMs) to evaluate token importance, which may171

not align well with actual visual token relevance.172

3 Benchmarking173

We begin by presenting the datasets, models, and174

pruning methods included in our study, along with175

the rationale behind selection. Next, we outline the176

experimental setup and provide guidance on inter-177

preting the results reported in our study. Finally,178

we analyze the findings, emphasizing notable pat-179

terns and offering insights that may inform future180

research in this area.181

3.1 Models182

We selected several representative open-source183

MLLMs, including LLaVA-1.5-7B (Liu et al.,184

2024a), LLaVA-Next-7B (Liu et al., 2024b), and185

Qwen2-VL (Wang et al., 2024) series (7B-Instruct186

and 72B-Instruct). LLaVA-1.5-7B integrates CLIP187

and LLaMA for vision-language alignment via188

end-to-end training, employing MLP connectors to189

fuse visual-text features for multimodal reasoning.190

LLaVA-Next-7B enhances data efficiency and infer-191

ence robustness with dynamic resolution and hier-192

archical feature integration, improving fine-grained193

visual understanding. Qwen2-VL series excel in194

high-resolution input processing and instruction-195

following, supporting complex tasks like docu-196

ment analysis and cross-modal in-context learning197

through unified vision-language representations.198

3.2 Datasets199

To evaluate the impact of pruning on different tasks,200

we selected a diverse set of datasets, including vi-201

sual understanding tasks including GQA (Hudson202

and Manning, 2019), MMBench (MMB) (Liu et al.,203

2025b), MME (Fu et al., 2023), POPE (Li et al.,204

2023), ScienceQA (Lu et al., 2022), VQAV2 (VQA205

V2) (Goyal et al., 2017) and VQAText (TextVQA)206

(Singh et al., 2019), grounding task RefCOCO (Yu207

et al., 2016; Mao et al., 2016) and object retrieval208

task Visual Haystack (Wu et al., 2025), . We briefly209

introduce these datasets in Table 7.210

3.3 Token Pruning Method211

To rigorously evaluate the properties of visual token212

pruning, we select three representative and high-213

performing methods: FastV (Chen et al., 2024),214

SparseVLM (Zhang et al., 2024b), and MustDrop215

(Liu et al., 2024d). FastV (Chen et al., 2024) opti- 216

mizes computational efficiency by learning adap- 217

tive attention patterns in early layers and prun- 218

ing low-attention visual tokens post-layer 2 of 219

LLMs, effectively reducing redundancy. Spar- 220

seVLM (Zhang et al., 2024b) introduces a text- 221

guided, training-free pruning mechanism that lever- 222

ages self-attention matrices between text and visual 223

tokens to assess importance. It maximizes spar- 224

sity while preserving semantically relevant tokens 225

without additional parameters or fine-tuning. Must- 226

Drop (Liu et al., 2024d) addresses token redun- 227

dancy across the entire model lifecycle. It merges 228

spatially similar tokens during vision encoding, 229

employs text-guided dual-attention filtering in pre- 230

filling, and implements output-aware KV cache 231

compression during decoding. This multi-stage ap- 232

proach ensures balanced retention of critical tokens 233

while enhancing inference efficiency. These meth- 234

ods exemplify diverse strategies for token pruning, 235

spanning adaptive attention, text-guided sparsity, 236

and lifecycle-aware optimization. 237
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Figure 2: Analysis of the distribution of tokens and
attention scores over the position of tokens. Tokens
with larger indexes are located at the bottom of images.

4 Token Pruning Revisited: Are Simple 238

Methods Better? 239

When considering token pruning in multimodal 240

large language models, two very basic methods 241

naturally come to mind: random token pruning 242

(hereafter referred to as Random) and token pool- 243

ing (hereafter referred to as Pooling). Comparison 244

with these two simple baselines is reliable evidence 245

to demonstrate the significance of a well-designed 246

token pruning method, yet has been ignored by 247

most previous works. To address this gap, we in- 248

vestigated these two simple approaches in detail. 249

Specifically, we conducted experiments on multi- 250

ple widely-used benchmarks under pruning ratios 251

of 75% and 87.5%, comparing Random and Pool- 252

ing1 with several recent token pruning methods 253

1In the experiments, Pooling specifically refers to applying
a pooling operation to the visual tokens at the second layer of
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Method GQA MMB MMB-CN MME POPE SQA VQAText VizWiz Avg.
Upper Bound, 576 Tokens (100%)

Vanilla 61.9 64.7 58.1 1862 85.9 69.5 58.2 50.0 100%
Retain 144 Tokens (↓ 75.0%)

Random 59.0 62.2 54.1 1736 79.4 67.8 51.7 51.9 95.0% (-5.0%)

Pooling 59.1 62.5 55.2 1763 81.4 69.1 53.4 51.9 96.4% (-3.6%)

Window FastV 59.2 59.3 51.0 1737 80.3 66.4 50.8 50.3 93.2% (-6.8%)

Vanilla FastV 56.5 59.3 42.1 1689 71.8 65.3 53.6 51.3 89.8% (-10.2%)

Reverse FastV 49.9 36.9 26.4 1239 59.8 60.9 36.9 48.4 70.8% (-29.2%)

SparseVLM 55.1 59.5 51.0 1711 77.6 69.3 54.9 51.4 93.5% (-6.5%)

Retain 64 Tokens (↓ 88.9%)
Random 55.9 58.1 48.1 1599 70.4 66.8 48.2 51.6 89.1% (-10.9%)

Pooling 54.2 56.0 46.0 1545 71.2 67.2 49.4 49.9 87.6% (-12.4%)

Window FastV 55.8 56.2 41.2 1630 72.6 66.3 47.8 50.0 87.2% (-12.8%)

Vanilla FastV 46.1 47.2 38.1 1255 58.6 64.9 47.8 50.8 78.2% (-21.8%)

Reverse FastV 44.6 24.0 15.7 1114 45.2 60.8 35.9 48.4 61.8% (-38.2%)

SparseVLM 52.7 56.2 46.1 1505 75.1 62.2 51.8 50.1 87.3% (-12.7%)

Table 1: Performance Comparison of LLaVA-1.5-7B with Different Token Retention Strategies. Reverse FastV
is a variant of the FastV that retains tokens with the smallest attention scores.

(e.g., FastV and SparseVLM). As shown in Table 1,254

surprisingly, Random and Pooling outperformed255

carefully designed methods on nearly 2/3 bench-256

marks. These surprising results shocked us since257

its inferior performance compared with random se-258

lection may demonstrate that we are on the wrong259

road toward the ideal token pruning methods.260

4.1 Token Distribution: Spatial Uniformity261

Outperforms Position Bias262

(a) Vanilla FastV (b) Window FastVOriginal Image

Figure 3: Sparse Visualization of Vanilla FastV and
Window FastV with 75% Retained Visual Tokens.

We further explored the underlying reasons behind263

this phenomenon. Taking FastV (Chen et al., 2024)264

as an example, this method leverages the attention265

scores assigned to visual tokens by the last token266

to evaluate the importance of each visual token,267

which may introduce the basis for token pruning.268

Using 8,910 samples from the POPE dataset, we269

conducted a statistical analysis of the visual tokens270

retained by FastV. As illustrated in Figure 2, to-271

kens located toward the end of the visual token272

sequence were assigned significantly higher atten-273

tion scores and were retained far more frequently274

than tokens in other positions. This indicates that275

methods relying on attention scores to select visual276

the language model. Please refer to the specific implementa-
tion in Algorithm 4.

tokens inherently suffer from a severe position bias 277

during token reduction. In contrast, tokens retained 278

by Random or Pooling exhibit a naturally uniform 279

spatial distribution. We argue that this spatial uni- 280

formity may be the key reason why some existing 281

methods underperform Random and Pooling. 282

4.2 Validating the Hypothesis: From Position 283

Bias to Spatial Uniformity 284

To validate our hypothesis, we proposed a modifica- 285

tion to FastV, introducing a variant called Window 286

FastV. Specifically, we incorporated a sliding win- 287

dow mechanism into the original FastV framework. 288

Within each window, a predetermined reduction 289

ratio and window size were used to select a fixed 290

number of visual tokens. For the specific imple- 291

mentation of Window FastV, please refer to Algo- 292

rithm 3 in Appendix B. Compared to Vanilla FastV, 293

Window FastV ensures the spatial uniformity of the 294

retained tokens, as shown in Figure 3. 295

We evaluated both Vanilla FastV and Window 296

FastV across eight benchmarks. As shown in Ta- 297

ble 1, under the setting where 75% of visual tokens 298

are reduced, Window FastV exhibits an average 299

performance drop that is 3.4% less than that of 300

Vanilla FastV. When adopting a more aggressive 301

reduction ratio (↓ 88.9%), this gap widens to 9%. 302

These results not only validate our hypothesis but 303

also inspire us to consider strategies that encour- 304

age the spatial uniformity of retained tokens when 305

designing token pruning methods. 306

To further investigate the impact of token prun- 307

ing on spatial position understanding, we selected 308

the RefCOCO (Yu et al., 2016) dataset, which re- 309

quires the MLLM to generate a bounding box for a 310
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Method RefCOCO RefCOCO+ RefCOCOg Avg.
TestA TestB Val TestA TestB Val Test Val

Vanilla 72.3 51.5 73.3 66.3 29.7 68.3 49.5 51.5 100%
SparseVLMs 4.0 6.9 4.0 2.9 5.9 0.9 7.9 5.9 4.8% (↓ 95.2%)

Vanilla FastV 20.8 13.9 27.7 17.8 8.9 26.7 19.8 14.9 18.8% (↓ 81.2%)

Window FastV 22.8 22.8 25.7 18.8 7.9 18.8 20.8 23.8 20.2% (↓ 79.8%)

Random 22.8 27.7 32.7 17.8 13.9 32.7 20.8 16.8 23.2% (↓ 76.8%)

Pooling 34.7 17.8 26.7 23.8 17.8 24.8 14.9 20.8 22.7% (↓ 77.3%)

Table 2: Performance Comparison on RefCOCO Se-
ries Grounding Tasks. Evaluation is based on Preci-
sion@1, with a reduction ratio of 77.8%.

specified object phrase within an image. We con-311

sider this dataset to be an effective atomic bench-312

mark for evaluating the spatial understanding ca-313

pabilities of MLLMs. Our evaluation criterion is314

that a prediction is considered correct if the Inter-315

section over Union (IoU) between the predicted316

bounding box and the ground truth area exceeds317

0.5. As shown in Table 2, compared to conven-318

tional tasks, various token pruning methods ex-319

hibit a significant degradation in performance when320

applied to precise object localization. Notably,321

there is a marked difference between globally uni-322

form attention-based pruning methods (e.g., Win-323

dow FastV, or even naive approaches like Random324

and Pooling) and spatially non-uniform strategies325

(FastV, SparseVLM). This indicates that current to-326

ken pruning techniques, particularly those that are327

spatially non-uniform, still possess substantial lim-328

itations in comprehending the spatial positioning329

of objects within images.330

Summary 1. The position bias in the distri-
bution of retained visual tokens is a key factor
affecting the performance of some existing to-
ken pruning methods. This insight suggests
that ensuring the spatial uniformity of retained
tokens should be an important consideration
when designing token pruning strategies.

331

5 Language in Visual Token Pruning:332

When and Why Does Language333

Matter?334

Token pruning methods for multimodal models can335

be broadly categorized into two types: those guided336

by textual information (e.g., FastV (Chen et al.,337

2024), SparseVLM (Zhang et al., 2024b), Must-338

Drop (Liu et al., 2024d)) and those that rely solely339

on visual information (e.g., FasterVLM (Zhang340

et al., 2024a)). While both approaches achieve341

comparable performance on common benchmarks,342

however, we hypothesize: Could it be that the im-343

portance of language information is not evident344

simply because there has been a lack of testing on345

tasks where language information is especially crit-346

ical? To validate our hypothesis, we select a typical 347

scenario: Visual Haystack. 348

5.1 Visual Token Pruning in Strongly 349

Text-Guided Tasks 350

Tasks such as Visual Haystack (Wu et al., 2025) 351

(needle-in-a-haystack task on visual scenario) are 352

inherently text-driven. In Visual Haystack task, 353

the MLLM needs to select an image from a set 354

of confusing images with an anchor phrase, and 355

determine whether an object matching a target tex- 356

tual description exists within the selected image. 357

These tasks demand precise alignment between tex- 358

tual and visual modalities. To evaluate the impact 359

of text-guided pruning, we conducted experiments 360

using the LLaVA-1.5-7B model on the VH dataset. 361

Method # Input Images (More images means harder to retrieve)
Oracle 2 3 5 10

LLaVA-1.5-7B 86.46±1.25 70.04±1.49 66.18±1.58 58.29±1.49 53.47±1.48

Reduction ratio 77.8%
SparseVLM 81.26±1.11 66.14±1.54 66.54±1.33 58.22±1.51 53.99±1.65

FastV 76.30±1.36 61.17±1.56 58.34±1.61 53.39±1.51 52.06±1.63

FastVVIS 71.90±1.58 61.55±1.46 55.82±1.49 52.72±1.63 52.83±1.54

Random 75.15±1.30 62.14±1.61 55.59±1.49 51.26±1.36 50.76±1.75

Table 3: Performance comparison of different meth-
ods on Visual Haystack (VH). VH requires MLLMs
to select an image from multiple images based on an
anchor word and determine the existence of a target
word object in the image. FastVVIS means FastV with-
out language information guided.

To validate the importance of text guidance, we 362

modified FastV to operate without textual infor- 363

mation and denote it FastVVIS. Originally, FastV 364

calculates the importance of visual tokens based 365

on the attention score with the last text token. 366

FastVVIS computes with the last visual token in- 367

stead, thereby eliminating the influence of text 368

information while preserving the essence of the 369

method. Our results in Table 3 show that this modi- 370

ficaiton FastVVIS reveals a significant drop in per- 371

formance, confirming the importance of leverag- 372

ing textual cues in strongly text-guided tasks. The 373

comparison of different pruning methods also re- 374

veals that approaches utilizing visual information 375

exhibit significantly better overall performance. It 376

is noteworthy that SparseVLM, guided by text in- 377

formation, achieves a compression rate of 77.8% 378

while maintaining nearly identical accuracy to the 379

uncompressed model, particularly in scenarios with 380

a higher number of confusing images. 381

However, there are also recent works methods 382

(Zhang et al., 2024a; Liu et al., 2025a) that per- 383

form pruning solely in ViT without textual infor- 384
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mation and reports better performance than FastV385

and SparseVLM in common VQA benchmarks.386

Therefore, for tasks with high reliance on lan-387

guage information, pruning strategies should be388

tailored to incorporate textual guidance effectively,389

and how to balance the use of linguistic information390

still requires further research.391

Summary 2. Text-guided pruning improves
performance in text-heavy tasks. Pruning meth-
ods should adapt to task needs.

392

6 The α Dilemma: Importance vs.393

Redundancy in Token Pruning394

In this section, we systematically analyze the fun-395

damental tension in token pruning for multimodal396

large language models: should we prioritize remov-397

ing redundant tokens to preserve structural pat-398

terns, or eliminate less important tokens to main-399

tain predictive capacity?400

6.1 Redundancy Criteria401

This criterion adopts a task-agnostic perspective,402

focusing exclusively on input patterns. The core403

objective is to eliminate redundant tokens while404

preserving the input’s structural integrity and mini-405

mizing information loss - analogous to finding the406

minimal sufficient statistics in information theory.407

Through the lens of mutual information (Latham408

and Roudi, 2009), we formulate this as maximizing409

information preservation between original tokens410

X and retained tokens X ′:411

max
P

I(X;X ′) = H(X)−H(X|X ′), (1)412

where P denotes the pruning operator. This ensures413

the X ′ retains maximal dependence on X under414

length constraint ∥X ′∥ = ∥X∥−∆L. The formula-415

tion directly connects to the compression phase of416

the information bottleneck principle (Tishby et al.,417

2000), where P∗ solves:418

P∗ = argmin
P

∥X ′∥ s.t. I(X;X ′) ≥ γ, (2)419

with γ as the minimal acceptable mutual informa-420

tion. This preserves structural patterns without421

task-specific considerations.422

6.2 Importance Criteria423

In contrast, this task-oriented criterion explicitly424

considers the target output Y . The goal shifts to425

preserving tokens critical for prediction accuracy, 426

formalized through predictive sufficiency: 427

I(X ′;Y ) ≥ I(X;Y )− ϵ, (3) 428

where ϵ is the tolerable information loss. Expand- 429

ing via the chain rule: 430

I(X;Y )︸ ︷︷ ︸
Original

= I(X ′;Y )︸ ︷︷ ︸
Pruned

+ I(X \X ′;Y |X ′)︸ ︷︷ ︸
Discarded

. (4) 431

The bound I(X \X ′;Y |X ′) ≤ ϵ implies that dis- 432

carded tokens provide negligible additional infor- 433

mation about Y when conditioned on retained to- 434

kens. This captures the essence of importance - 435

truly critical tokens contain non-decomposable pre- 436

dictive information. 437

The task dependence manifests in the informa- 438

tion plane: 439

R(β) = max
X′

[
I(X ′;Y )− β−1I(X;X ′)

]
, (5) 440

where β controls redundancy-importance tradeoff. 441

6.3 Empirical Validation of Adaptive Criteria 442

Balancing 443

Building on Eq. 5, we implement an adaptive scor- 444

ing mechanism with tunable parameter α: 445

Score(xi) = 446

α ·I(xi;Y |x\i)︸ ︷︷ ︸
Predictive Criticality

+(1− α) · [1− I(xi;X\i)]︸ ︷︷ ︸
Pattern Uniqueness

.

(6)

447

Here I(xi;Y |x\i) measures a token’s unique pre- 448

dictive value, while 1 − I(xi;X\i) quantifies its 449

pattern distinctiveness. 450

Specifically, FastV is a typical token pruning 451

method that follows the importance criterion by 452

selecting important visual tokens based on the at- 453

tention scores of the last token in the sequence. We 454

modify this approach by introducing a redundancy 455

criterion, which calculates the cosine similarity be- 456

tween each visual token and the last token to derive 457

a similarity score2. Ultimately, the final score in 458

Eq. 6 is obtained by balancing these two metrics 459

with a parameter α. Our experiments results in 460

Table 4 reveal two key insights: 461

2Notably, since the similarity score and attention score are
on different scales, we apply min-max normalization to both
before computing the final score.
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Benchmark Vanilla Balance between Importance and Redundancy α
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MME 1862 1707 1714 1711 1706 1707 1711 1702 1699 1680 1688 1689
POPE 85.9 82.8 82.6 82.4 82.4 81.9 81.6 80.9 79.7 77.9 75.6 71.8
SQA 69.5 64.8 65.2 65.2 65.1 65.1 65.3 65.3 65.2 65.5 65.7 65.3

VQAText 58.2 53.6 53.8 54.8 54.0 54.1 54.3 54.3 54.5 54.4 54.2 53.6

Table 4: Performance comparison under different α balancing importance and redundancy criteria.

• Perception-Dominant Tasks (MME, POPE)462

achieve peak performance at α = 0.1 and 0.0,463

respectively, favoring redundancy-first pruning464

to maintain structural integrity (↑ I(X;X ′)).465

• Knowledge-Intensive Tasks (SQA, VQAText)466

achieve optimal performance with α = 0.8 ∼467

0.9, favoring importance-first pruning to enhance468

semantic coherence (↑ I(X ′;Y )).469

Summary 3. Prune by task: Redundancy-
first preserves structural fidelity for perception
tasks, while importance-first prioritizes predic-
tive power for knowledge reasoning.

470

7 Limitations and Challenges in Token471

Pruning Evaluation472

Token pruning has emerged as a promising tech-473

nique to improve the efficiency of MLLMs. How-474

ever, despite its potential, the evaluation of token475

pruning methods remains fraught with challenges.476

In this section, we critically examine two key issues477

that hinder the accurate and meaningful assessment478

of token pruning techniques: (i) the over-reliance479

on FLOPs as a proxy for speed gains, and (ii) the480

failure to account for training-aware compression481

in some advanced MLLMs. We argue that address-482

ing these challenges is crucial for developing more483

robust and reliable token pruning approaches.484

7.1 Beyond FLOPs: Shifting the Focus to485

Actual Latency Gains486

Methods Tokens ↓ Latency ↓ FLOPs ↓ KV Cache ↓ POPE ↑
(Min:Sec) (MB) (F1-Score)

Vanilla LLaVA-Next-7B 2880 36:16 100% 1512.1 86.5
+ FastV 320 18:17 12.8% 168.0 78.3
+ SparseVLM 320 23:11 15.6% 168.0 82.3
+ MustDrop 320 23:40 11.5% 168.0 82.1

Table 5: Inference costs of the number of tokens, Total-
Time, FLOPs, and KV Cache Memory.

Phenomenon. Many existing token pruning ap-487

proaches tend to measure the speedup of their meth-488

ods by calculating or estimating the reduction in489

FLOPs resulting from token reduction, or even di-490

rectly using the token reduction ratio as a metric.491

However, can FLOPs or token reduction ratios truly492

reflect the actual acceleration achieved?493

To investigate this question, we examined the 494

speedup effects reported by several works. Our 495

findings reveal that even when different methods 496

exhibit identical or similar reduction ratios and 497

FLOPs, their measured speeds can vary signifi- 498

cantly. Table 5 presents the efficiency-related exper- 499

imental results of these methods on LLaVA-Next- 500

7B3. Specifically, under the same setting, Sparse- 501

VLM’s FLOPs are only 2.8% higher than those 502

of FastV, yet its latency is 26.8% greater. This 503

strongly suggests that relying on FLOPs to evaluate 504

acceleration effects of proposed methods is inade- 505

quate. When assessing speed gains, it is imperative 506

to shift our focus to actual latency measurements. 507

Reason. We also conducted a detailed analysis of 508

the design intricacies of the three methods to un- 509

cover the underlying reasons for their performance 510

differences. Specifically, FastV, SparseVLM, and 511

MustDrop all fail to support the efficient Flash 512

Attention operator (Dao et al., 2022; Dao, 2024), 513

as they rely on the complete attention map to se- 514

lect visual tokens. However, FastV performs token 515

pruning in only one layer of the language model, 516

whereas the other two methods conduct pruning 517

across four layers. This implies that, compared 518

to FastV, these methods have more layers that are 519

forced to use the traditional attention operator with 520

O(N2) memory costs. This could be one of the key 521

factors contributing to their slower speeds. Addi- 522

tionally, performing pruning layer by layer requires 523

more complex operations to handle token selection. 524

If the runtime overhead introduced during this stage 525

becomes significant, it may offset the speed gains 526

achieved by shortening the token sequence. More- 527

over, some of the transformer layers where these 528

methods perform pruning are located deeper within 529

the model. Pruning tokens in such deep layers 530

may yield limited benefits, as the impact of token 531

reduction diminishes at later stages of the network. 532

Appeal. This insight motivates us to consider 533

the compatibility with efficient attention operators 534

when designing token pruning methods. Addition- 535

3https://huggingface.co/liuhaotian/llava-v1.
6-vicuna-7b
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ally, it encourages us to implement the token prun-536

ing process as early as possible in the shallow lay-537

ers using simpler approaches, avoiding the risk of538

excessive runtime overhead that could otherwise539

overshadow the intended acceleration benefits.540

Summary 4. (i) FLOPs are not a reliable
metric for evaluating speed gains; greater em-
phasis should be placed on actual latency. (ii)
We advocate for the implementation of token
pruning in the shallow layers of MLLMs using
simple or efficient operations, while ensuring
compatibility with Flash Attention.

541

7.2 The Overlooked Role of Training-Aware542

Compression in MLLMs543

Method GQA MMB MMB-CN MME POPE SQA VQAText Avg.
Qwen2-VL-7B Upper Bound, All Tokens (100%)
Vanilla 62.2 80.5 81.2 2317 86.1 84.7 82.1 100%
Qwen2-VL-7B Token Reduction (↓ 66.7%)

+ FastV 58.0 76.1 75.5 2130 82.1 80.0 77.3 94.0% (-6.0%)

+ FastV† 61.9 80.9 81.3 2296 86.2 84.6 81.7 99.8% (-0.2%)

Qwen2-VL-7B Token Reduction (↓ 77.8%)

+ FastV 56.7 74.1 73.9 2031 79.2 78.3 72.0 91.0% (-8.0%)

+ FastV† 61.9 80.8 81.2 2300 86.1 86.4 81.4 100.0% (0.0%)

Qwen2-VL-7B Token Reduction (↓ 88.9%)

+ FastV 51.9 70.1 65.2 1962 76.1 75.8 60.3 84.0% (-16.0%)

+ FastV† 61.9 81.1 81.0 2289 86.2 84.4 81.3 99.6% (-0.4%)

Table 6: Comparative Experiments on Qwen2-VL-7B.
In recent years, some of the latest MLLMs have544

adopted various advanced techniques during the545

training phase to enhance their efficiency. For in-546

stance, Qwen2-VL employs token merging strategy547

during training, consolidating four adjacent patches548

into a single visual token. Similarly, MiniCPM-V-549

2.6 incorporates a learnable query within its re-550

setting module, mapping variable-length segment551

features into more compact representations.552

This raises an intriguing question: If MLLMs al-553

ready implement training-aware compression tech-554

niques, should we take this into account when de-555

signing and evaluating token pruning methods for556

the inference stage? Given that the visual tokens557

encoded by these models possess higher informa-558

tion density, removing the same number of visual559

tokens could result in greater information loss com-560

pared to traditional approaches.561

To this end, we selected a representative MLLM562

that employs training-aware compression, Qwen2-563

VL-7B-Instruct4 and conducted a series of exper-564

imental analyses. Specifically, we applied FastV565

in two sets of experiments: one disregarding the566

token compression performed during Qwen2-VL’s567

training phase, and the other taking it into account:568

Let P denote the original number of image patches,569

4https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

and after processing with PatchMerger, the number 570

of visual tokens V is: 571

V =
P

TACR
, (7) 572

where TACR means training-aware compression 573

ratio and the value is 4. 574

Finally, the Token Reduction Rate (TRR) can be 575

formally defined as: 576

TRR(FastV†) ≜ TACR︸ ︷︷ ︸
Training-aware

× TFRR︸ ︷︷ ︸
Training-free

. (8) 577

Surprisingly, as shown in Table 6, we find that 578

when taking training-aware compression into ac- 579

count, the same token pruning method achieves 580

performance on par with the vanilla model across 581

multiple benchmarks, even under varying reduc- 582

tion ratios. This observation prompts us to reflect: 583

perhaps more research effort should be directed to- 584

ward training-aware token compression techniques. 585

Even in cross-model comparisons, such as between 586

LLaVA-1.5-7B (Vanilla FastV) in Table 1, which 587

does not employ training-aware compression, and 588

Qwen2-VL-7B-Instruct (FastV†), the latter clearly 589

demonstrates less performance degradation. 590

Summary 5. Training-aware token compres-
sion techniques deserve more research attention
due to their potential for delivering superior
performance guarantees.

591

8 Conclusion 592

Our systematic investigation into token pruning 593

for MLLMs reveals several critical yet overlooked 594

issues. While existing methods prioritize attention- 595

based scoring and language-guided strategies, we 596

demonstrate that naive spatial uniformity, achieved 597

through random selection or pooling, often outper- 598

forms complex designs due to inherent positional 599

biases in visual tokens. Notably, the effectiveness 600

of linguistic guidance depends on task alignment: 601

it enhances performance in text-driven scenarios 602

through cross-modal attention but risks degrada- 603

tion in vision-centric tasks. From an information- 604

theoretic perspective, we shed light on the core 605

principles of token pruning, i.e., the pursuit of struc- 606

tural integrity versus prediction accuracy. Further- 607

more, we challenge the conventional reliance on 608

FLOPs for efficiency evaluation, showing that la- 609

tency serves as a more practical and meaningful 610

metric. These findings provide a refined framework 611

to guide the development of future token pruning 612

methods, balancing simplicity, effectiveness, and 613

task-specific adaptability. 614
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9 Limitations615

Our experiments and analyses have been primarily616

conducted on LLaVA, LLaVA-Next, and Qwen2-617

VL. While these multimodal large language models618

are highly representative, our exploration should be619

extended to a broader range of model architectures.620

Such an expansion would enable us to uncover621

more intriguing findings and gain more robust and622

comprehensive insights. Additionally, we should623

apply our analytical framework and experimental624

evaluations to models of varying sizes, ensuring625

that our conclusions are not only diverse but also626

applicable across different scales of architecture.627
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A Future Works783

In this work, we have conducted an in-depth explo-784

ration of a series of issues related to token pruning.785

These include the position bias problem inherent in786

methods based on attention scores, the guiding role787

of linguistic information during token pruning, the788

importance and redundancy of tokens, as well as789

certain limitations in the evaluation of token prun-790

ing methods. Looking ahead, we plan to further791

expand the scope of our research by considering792

whether token pruning or token merging should793

be prioritized in the context of token reduction.794

Additionally, we aim to evaluate and analyze vari-795

ous token reduction methods on more challenging796

OCR benchmarks, particularly datasets featuring797

rich-text OCR images. This future work will not798

only deepen our understanding of token reduction799

strategies but also provide valuable insights into800

their practical applications in complex scenarios.801

B Algorithms802

In this section, we present some core algorithms803

for the methods mentioned in the main text. Vanilla804

FastV (Algorithm 1) selects tokens with the highest805

attention scores for retention. Reverse FastV (Algo-806

rithm 2) modifies this strategy by selecting tokens807

with the lowest attention scores instead. Window808

FastV (Algorithm 3) introduces a spatially-aware809

token selection mechanism by dividing the image810

tokens into local windows and performing token811

selection within each window. Finally, Pooling812

(Algorithm 4) applies a pooling operation over to-813

ken grids to retain a structured subset of tokens,814

ensuring spatial consistency.815

C Dataset816

In this section, we introduce the content of the817

datasets used, as well as the input and output for-818

mats in Table 7.819

Algorithm 1 Vanilla FastV

Require: Input token sequence X ∈ RL×d, image
token range [s, e], retention ratio r

Ensure: Compressed sequence representation X ′

1: Initialize layer parameters {Wi}Ni=1

2: for layer l = 1 to N do
3: if l = K − 1 then
4: Compute attention matrix A
5: Record global attention scores α =

mean(A)[s : e]
6: else if l = K then
7: Select top-k indices I = topk(α, ⌊(e−

s)r⌋)
8: Construct retention indices I = [0 :

s) ∪ I ∪ [e : L]
9: Compress sequence X ′ = X[I, :]

10: Update attention mask M ′ = M [I, I]
11: else
12: Regular Transformer computation
13: end if
14: end for

Algorithm 2 Reverse FastV

Require: Input token sequence X ∈ RL×d, image
token range [s, e], retention ratio r

Ensure: Compressed sequence representation X ′

1: Initialize layer parameters {Wi}Ni=1

2: for layer l = 1 to N do
3: if l = K − 1 then
4: Compute attention matrix A
5: Record global attention scores α =

mean(A)[s : e]
6: α = −α ▷ Difference from Vanilla

FastV
7: else if l = K then
8: Select top-k indices I =

topk(−α, ⌊(e− s)r⌋)
9: Construct retention indices I = [0 :

s) ∪ I ∪ [e : L]
10: Compress sequence X ′ = X[I, :]
11: Update attention mask M ′ = M [I, I]
12: else
13: Regular Transformer computation
14: end if
15: end for
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Type Dataset Brief Description Input Output

Visual
Understanding

VQAText Rich textual viusal QA Single image and question Question Answer

VQA V2 Open-ended viusal perception Single image and question Question Answer

ScienceQA Natural and social science QA Single image and question Question Answer

POPE Object hallucination evaluation Single image and question Question Answer

GQA Visual scene understanding Single image and question Question Answer

MMBench Perception and reasoning tasks Single image and question Question Answer

MME Perceptual ability evaluation Single image and question Question Answer

Object
Recognition

Visual
Haystack Visual need-in-a-haystack Multiple images, an image

phrase and an object phrase
Existence of

specified objects

Grounding RefCOCO Phrase object localizing 1 image and referring
phrase of an object

Bounding box of
the specified object

Table 7: The datasets we use for benchmarking.

Algorithm 3 Window FastV

Require: Input sequence X ∈ RL×d, image re-
gion Ω = [s, e], window size (h,w)

Ensure: Compressed sequence representation X ′

1: Initialize layer parameters {Wi}Ni=1

2: for layer l = 1 to N do
3: if l = K − 1 then
4: Compute attention matrix A
5: Record global attention scores α =

mean(A)[s : e]
6: else if l = K then
7: Reshape the image region into a 2D

grid Γ ∈ Rh×w

8: Divide the grid into window patches
{Wij}m,n

i=1,j=1, where Wij ⊂ Γ
9: for each window Wij do

10: Compute local attention scores
Aij = mean(α[Wij ])

11: Select local top-k indices Iij =
topk(Aij ,mn)

12: Convert local indices to global co-
ordinates Gij = loc2glob(Iij)

13: end for
14: Aggregate all window indices I =⋃

i,j Gij

15: Construct the retained sequence: X ′ =
X [[0 : s) ∪ I ∪ [e : L], :]

16: else
17: Regular Transformer computation
18: end if
19: end for

Algorithm 4 Pooling

Require: Input sequence X ∈ RL×d, image re-
gion Ω = [s, e], window size a× a

Ensure: Compressed sequence representation X ′

1: for layer l = 1 to N do
2: if l = K then
3: Extract image tokens: Ximg = X[s :

e, :]
4: Reshape into a 2D grid: F ∈ Rh×w×d

5: ▷ Where h× w = e− s
6: Perform window pooling:

F̂ = Pool(F, a, ρ) ∈ R(h/a)×(w/a)×d

7: Construct index mapping:

M = {(i, j) 7→ argmax
(p,q)∈Wij

∥F [p, q, :]∥1}

8: Build the retained index set:

I = {s+M(k)|∀k ∈ [1, (h/a)(w/a)]}

9: Generate the compressed sequence:

X ′ = X [[0 : s) ∪ I ∪ [e : L], :]

10: else
11: Regular Transformer computation
12: end if
13: end for
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