Under review as a conference paper at ICLR 2026

TAME THE BALROG:
TASK-ADAPTIVE MODULAR EMERGENCE FRAME-
WORK FOR GAME AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interactive games have proven to be key benchmarks for advancing Artificial Intel-
ligence (Al), requiring capabilities like long-term planning, exploration, and adap-
tation to stochastic environments. While Large Language Models (LLMs) have
achieved notable results across many domains, they struggle in complex gaming
environments like those in the BALROG benchmark. The absence of adaptive
frameworks that can dynamically configure themselves based on environmental
characteristics, limits the progress of Al in games. To this end, we introduce the
Task-Adaptive Modular Emergence (TAME) framework, which employs genetic
algorithms to evolve environment-specific structures from modular components,
enabling significant performance improvements of LLMs across diverse domains.
TAME discovers high-performing configurations by selecting between baseline
and hierarchical structures, selectively incorporating specialised modules, and
fine-tuning each component through systematic mutations. Evaluating TAME
across the BALROG benchmark, we find that the emergent modular structures
discovered by TAME significantly enhance LLM performance, raising average
progression scores of Gemini 2.0-Flash from 27.15% to 34.77%. Moreover, these
structures demonstrate transferability across models. Directly employing TAME
discovered structures for Gemini-2.0-Flash to a population of Gemini-2.5-Pro, we
achieve new state-of-art performance on BALROG. This transferability suggests
that TAME identifies fundamental structural principles for game-playing agents
that adapt their cognitive architecture to match task demands.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable growth across a wide range of tasks,
from general language understanding (Hendrycks et al., [2020) and code generation (Wang et al.,
2024a}; [Pan et al.| 2025 |Hong et al., [2024), to recent breakthroughs including mastering the ARC
reasoning benchmark (Chollet, [2024} (Chollet et al., [2024)) and performing at gold-medal level on
International Mathematical Olympiad (Chervonyi et al.| 2025). However, these models struggle
significantly in interactive decision-making environments that require sequential actions, state
awareness, and long-term planning (Liu et al., 2024} Klissarov et al., [2025).

Interactive games have historically served as major testbeds for artificial intelligence, with examples
including Atari (Mnih et al. 2013)), Starcraft (Team, 2019), or GrantTurismo (Team & Digital,
2022). Those successes predominantly emerged from reinforcement learning (RL) approaches
specifically engineered for each domain, often requiring millions of training episodes and domain-
specific reward shaping. While LLMs hold considerable promise on the possibility of zero-shot
generalisation across games through their vast pretraining experience, e.g., game wikis, strategy
guides, and gameplay discussions, they fail to translate this latent knowledge effectively. This
performance gap is clearly illustrated in the BALROG benchmark (Paglieri et al.)), a suite of diverse
games traditionally employed in RL research, where even state-of-the-art LLMs achieve only partial
success in the simpler games and barely progress with more challenging ones.

Notably, structured agentic frameworks have emerged as a dominant approach to enhancing LLM
capabilities in other complex domains. In software development, frameworks like SWE-Agent

Under review as a conference paper at ICLR 2026

TAME
GENETIC ALGORITHM

SELECTION & CROSS
«p BREEDING

Pi & “; | . gg E
M —_— i — T T _— - = .
Q GAME)‘ SCORES g -
.\ GAME LOOP ﬁ? Rl FINAL +re e i
4 GENOME TAME READY!
‘ m /g Xxn_gen
= ‘%z g

[START) P
o LOOP DETECTOR HIERARCHICAL
AMYGDALA ARCHITECTURE
EXPLORER cRriTic LONG-TERM MEMORY

POOL OF MODULES

Figure 1: TAME framework overview. TAME runs a genetic algorithm to generate a population
of genomes representing different module combinations, fine-tunes them, and selects the genome
achieving the highest score. Icons were generated with Google Gemini Pro 2.5, 2025.

(Yang et al., [2024)), MetaGPT (Hong et al., 2024), and CodeCor (Pan et al., 2025) enable LLMs to
decompose complex programming tasks through specialised modules that maintain project context
or check for domain-specific challenges such as correct compilation or indentation. Similarly, in
scientific research, systems like ChemCrow (Bran et al.| 2023), MathCoder (Wang et al., |2024a)
and the AI Scientist (Lu et al.| 2024) augment LLMs with relevant skills for their respective
applications, including hierarchical planning to tackle multi-step experimental design, or automatic
peer-reviewing. There are also recurrent efforts to improve long-term memory management in
agentic frameworks, with solutions that prioritise either speed and cost efficiency, such as Jarvis-1
(Wang et al.l [2024b), or performance, such as A-mem (Xu et al) [2025).Yet, despite presenting
similar challenges, no agentic framework has been applied to games. Unlike math or code, gaming
environments are partially observable, evolve quickly, and demand long-horizon strategies that rely
on persistent memory and planning, capabilities that remain difficult for LLMs.

To address this gap, we introduce the TAME (Task-Adaptive Modular Emergence) framework,
a genetic-driven approach for LLMs to automatically discover and configure effective agentic
structures for diverse gaming environments. TAME consists of a series of human-designed modules
that enable different capabilities that might be relevant in games. Examples of that capabilities
include hierarchical planning, exploration or long-term memory. However, unlike in other domains,
games can encode very diverse dynamics, e.g., Nethack is a game where exploration, long-term
planning and memory are of paramount importance, while none of those skills help in a game like
TextWorld. Thus, TAME undergoes an evolutionary process, iteratively exploring the best structure
for a specific game. Figure [I]illustrates this process. Each candidate structure is encoded through
a vector that represents which modules are activated, along with the hyperparameters and the
prompts selected for this candidate. Through successive generations, TAME employs mutation and
cross-over operations on the genomes of the selected candidates to discover increasingly effective
structures, balancing performance and diversity in their selection.

We validate TAME through extensive experiments on the BALROG benchmark. Our results show
that TAME-discovered configurations improve overall progression scores by 28% compared to the
baseline LLM performance, including progress in the most challenging domains such as Nethack.
Moreover, we show that architectures discovered by TAME exhibit strong transferability: genomes
evolved using Gemini-2.0-Flash directly enhance the performance of Gemini-2.5-Flash-Lite and
Gemini 2.5-Pro without additional adaptation. In the case of Gemini-2.5-Pro achieving new state-
of-the-art results on BALROG. Through ablation studies, we further demonstrate the individual
contributions of our long-term memory system and the effectiveness of the genetic adaptation.

We summarise our contributions as follows: (1) we introduce TAME, the first emergent agentic
framework that enables LLMs to evolve modular structures tailored to gaming environments; (2) we
propose a novel and effective long-term memory system that combines embedding-based retrieval
with LLM-augmented semantic memory (3) we demonstrate TAME’s strong performance on the
BALROG benchmark, with a new state-of-the-art system; (4) we show that TAME-discovered
architectures transfer effectively, enhancing models without additional adaptation.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Prompting and Memory. Hallucinations remain a key challenge for LLMs (Kalai et al.| [2025),
which can be mitigated through prompting techniques like chain-of-thought (Wei et al., 2022)) and
step-by-step reasoning. Limited context windows (Brown et al., [2020) is another limitation, driv-
ing development of memory systems. Retrieval-Augmented Generation (RAG) (Lewis et al., [2021)
combines LLMs with external document retrieval to reduce hallucinations without retraining. HiA-
gent (Hu et al.l |2024) manages hierarchical memory using subgoals, dividing into “working mem-
ory” and “cross-trial memory” with LLM-based observation summarisation, while|Park et al.|(2023))
balance memory retrieval using recency, importance, and relevance scores. Jarvisl (Wang et al.|
2024b) stores task names, plans, and observation sequences using embedding (CLIP) for encod-
ing and retrieval. A-mem (Xu et al., [2025)) introduces structured memory notes with timestamps,
keywords, and embeddings, establishing inter-memory connections through LLM calls.

LLMs as hierarchical planners. In TWOSOME (Tan et al., 2024), LLMs score actions based on
observations, allowing RL agents to leverage world knowledge for improved decisions. MaestroMo-
tif (Klissarov et al.}|2024) uses LLMs to generate reward functions for skills, while LLM-Augmented
Hierarchical Agents (Prakash et al., [2023) use LLMs to inject commonsense priors for more effi-
cient policy learning. Jarvisl (Wang et al.,[2024b)), consists of planner and controller, enhanced by
multimodal memory system. An important limitation of Jarvis-1 is the necessity of human-crafted
goals based on specific skills, limiting its application in games with emerging tasks.

Agentic frameworks. Agentic frameworks are systems that enable Large Language Models to
act as autonomous agents capable of reasoning, planning, and interacting with external tools and
environments. Recent work, such as AGENTBREEDER Rosser & Foerster] (2025), shows that
optimising frameworks provides superior multi-agent performance on reasoning, mathematics, and
safety benchmarks. Moreover, multiple works show improvements in scientific discovery (Lu et al.,
2024) and software development (Yang et al., 2024)) through these structured frameworks.

Evolutionary Strategies. Recent work incorporates LLMs into evolutionary frameworks. Lehman
et al.| (2022) propose “evolution through large models” using LL.Ms as evolutionary operators. Evo-
Prompt (Guo et al.l 2025) employs LLMs for crossover and mutation in genetic algorithms to
discover diverse prompts, while Rainbow Teaming (Samvelyan et al.l |2024) mutates adversarial
prompts to populate MAP-Elites archives systematically. DOMiNO (Zahavy et al., [2022) balances
quality-diversity trade-offs using Lagrange multipliers. Eureka (Ma et al.,[2023) shows evolutionary
optimisation over reward code benefits from human initialisation.

3 TAME FRAMEWORK

We introduce TAME (Task-Adaptive Modular Emergence framework), a novel agentic framework
designed for dynamic LLM adaptation across diverse gaming environments. Inspired by Eureka
(Ma et al., 2024), which shows that human priors significantly improve LLM-based evolutionary
optimisation performance, TAME begins with an initial population Py comprising diverse modular
structure configurations, each encoding different combinations of human-crafted modules and hy-
perparameters. The framework’s modular architecture consists of six core components illustrated
in Figure [2} hierarchical goal decomposition (comprising a Meta-Controller, Low-Level Executor,
and Completion Validator), Long-Term Memory, Critic, Loop Detector, Amygdala, and Explorer.
TAME’s evolutionary process operates iteratively: in each generation, the framework evaluates all
new members p € P; on the target game and selects candidates for the next generation based on
two criteria: (1) the top N performers by absolute score, and (2) M additional diverse solutions
that achieve at least a fraction « of the best performer’s score. This dual selection strategy balances
exploitation of successful structures with exploration of the relevant solution space. Each candi-
date’s genome is represented as a vector encoding active modules, hyperparameters (e.g., memory
decay rates, exploration-exploitation trade-offs), and module-specific prompts. After every itera-
tion of TAME, the genomes of the selected candidates undergo mutation and crossover operations
to generate the new members of the subsequent population P, ;. Through successive generations,
TAME discovers increasingly effective structures tailored to each game’s requirements.The remain-
ing of this section details the genetic algorithm and the design and functionality of each modular
component in TAME.

Under review as a conference paper at ICLR 2026

IF TRUE

£ o
7
o ﬂ’z GAME COMPLETION LONG-TERM
ACTIONS VALIDATOR MEMORY
CONTROLLER GAME TS
PTION COMPLETE?
OPTIONS EXECUTOR
EXPLORATION IFFALSE
INCENTIVES IF FALSE
EXPLORER TS @ E&L
A
AMYGDALA Loop CRITIC
DANGER? DETECTOR

IF TRUE

Figure 2: Fully enabled TAME modular structure: an epsilon-greedy mechanism selects between
Meta-controller (providing options toward game objectives) and Explorer (options towards explor-
ing the environment). Low-level Executor proposes actions, while Amygdala checks for danger
and prioritises survival. Completion Validator checks option completion while the Loop Detector
identifies stuck states, and the Critic summarises key actions that led to the outcome of the option.
Long-term memory saves successful and failed trajectories and adds them to LLM context.

3.1 NOTATION AND FUNCTIONAL INPUTS

LetG = {g1,...,9gn} the set of decomposed options towards the game objective, A the action space,
O the observation space, S the state space, H the set of option summaries, and 7, space of natural
text. Each state s; € S at time ¢ is defined as:

+
St = (Otvla hi—l,ginia Mi aFrecemyFi; Fi,actyFi,obs)

where o; € O is the current agent’s observation and I provides game context (objective and available
actions), h;_1 € H summarises the previous option’s outcome, g; € G is the active option with
termination condition 7;, Mii contains the top successful K. and failed k f4;; options. Frecent Stores
the last m action-observation pairs, while Fj, F; 4ctions, and Fj o5 maintain action-observation,
action-only, and observation-only trajectories for the current option respectively.

Each component within s; can serve as a functional input to any module within the framework.
Through early experimentation we noted that the selection of appropriate functional inputs has a
significant impact on performance, and it is up to the evolutionary process to find the most appro-
priate inputs for each module. For the initial population generation, we hand-crafted inputs that we
consider most relevant for each module, providing the genetic algorithm with informative human
priors. This is further detailed in Section [3.2]

3.2 GAME ADAPTATION

Given the diverse dynamics and requirements across different gaming environments, we propose
a genetic optimisation approach that automatically explores diverse agentic architectures to adapt
the underlying LLM to the specific game characteristics. To that end, we first encode the agentic
structure descriptors into genomes. Each genome is constructed from three core components:

* Modules: TAME modules (See Section [3.3) are parametrised as a set of binary values.
Such values indicate if a module is active (1) or not (0). The set of modules include:
Hierarchy (enables or disables hierarchical goal decomposition, includes Meta-controller,
Low-level executor and Completion Validator), Long-Term Memory (stores past experi-
ences), Critic (summarises key actions toward the current option), Amygdala (activates
survival mode), Loop Detector (detects looping behaviour), Explorer (controls exploration
strategies).

* Hyperparameters: A set of continuous values encoding: Long-Term Memory Time De-
cay Factor)\, which sets the option priority decay rate; Long-Term Memory Similarity
Threshold T.,s, which specifies the cosine similarity cutoff for storing memories; Explo-
ration Parameter e, which controls the epsilon-greedy exploration; and Language Model
Temperature.

Under review as a conference paper at ICLR 2026

* Prompts: The last component of the genome includes the prompts used by the modules of
the agentic structure.

For any game G the initial population Py consists of four predefined genomes:

7)0 = {gbasica hierarchical y Sdefaults gfull}

Where gp,sic is genome corresponding to a baseline structure (no modules activated) with a single
prompt as in [Paglieri et al.| (BALROG). Spicrarchical cOrresponds to TAME[Hierarchical+Long-Term
Memory], a genome with the hierarchical and long-term memory modules activated. ggefayy - refers
to TAME[Full Structure], a genome with all the modules activated that employs prompts proposed
by Claude-Sonnet-4. Finally, gn,y is TAME[Full Structure] is also a genome with all the modules
active, but with our own engineered prompts. See Appendix |O|for full detail.

Genetic Operations. Given the distinct nature of the components within the genome (i.e., binary or
continuous values, or prompts) TAME employs distinct crossover and mutation strategies depending
on the type of variable or representation that is handled. For binary variables, we use a parent-based
probabilistic flipping mechanism that incorporates an inheritance bias. Continuous variables are
handled through Gaussian perturbation for mutation and linear interpolation for crossover. Finally,
for prompt optimisation, we adopt the EvoPrompt methodology by |Guo et al.|(2025), which enables
crossover and mutation tailored to LLM-based prompts (availabe in Appendix [N).

Genome Evaluation. Each genome is evaluated using the average game progression across 7,
episodes as a fitness function. Moreover, we embed the genome representation and calculate the
minimum distance to genomes already existing in the population as a score of diversity, alowing for
keeping population of best scoring and most diverse genomes.

Genetic Algorithm. Our genetic algorithm iterates through four steps: 1) Parent Population
Selection: TAME chooses parents based on wheel selection 2) Reproduction: Parents for repro-
duction are chosen from parent population with pgng1e and 1 — pgingie referring to the probability
of single-parent or two-parent, respectively. Genetic operations are applied, represented by muta-
tion+crossover or mutation alone (based on the number of parents) 3) Fitness Evaluation: calculates
genome’s performance score and diversity based on average game progression and embeded genome
representation, respectively. 4) Population Pruning: the population is trimmed to maintain a max-
imum of N + M individuals — N highest-performing plus M most diverse genomes (subject to
achieving a factor « of the performance of the best genome within the population). Most diverse
genomes are those with largest minimum distance of their embedding with respect to the already
existing embeddings in the population. Further detail and discussion can be found in Appendix |G}
together with pseudocode and hyperparameters in Appendix [G.3]and [C] respectively.

3.3 MODULAR BLUEPRINTS

As anticipated through Section [3] inspired by how Eureka improved its ability to find better reward
functions by starting from a human-crafted set of prior, TAME incorporates a set of human-crafted
modules that target essential capabilities for agents in interactive games. The remaining of this
section details such components. We remind the reader than s7"¢, sl¢, 5 s¢ s¢ 5%, st used in
sections below, represent subsets of s; selected by the genetic algorithm for corresponding modules.

3.3.1 HIERARCHICAL PLANNING

The hierarchical module consists of three main components illustrated in Figure 2} Meta-Controller
suggests sequence of options, Low-Level Executor performs a sequence of actions towards each
option, and Completion Validator judges if an option has been completed successfully or failed.

Meta-Controller. The Meta-Controller decomposes the game objective into a more manageable
sequence of options. Specifically, it implements mpgn : S — G, mapping the current state to an
ordered sequence of options:

9 = Thign(sy"®) = LLMprompty, ., (sy") = (91,92, -) (1)

Each option g; consists of the fields: name, description, prerequisites, success conditions, penalty
component, progress indicators, estimated priority.

Under review as a conference paper at ICLR 2026

Low-level Executor. This system implements 7,y : S — A, producing an action sequence based
on the current state information provided s!¢:

a= wlow(sée) = LLMpromptlow(sée) = (a1, asg,...) 2)

where the length of the sequence is decided by the Low-level Executor.

Completion Validator. The Completion Validator implements the binary classifier ¢ : S —
{0, 1}, determining whether an option has been completed:

Ci = ¢(s;") = LLMprompt,, (si”) € {0,1}.)

Here C; = 1 indicates successful termination. For details on the hand-crafted LLM prompts used as
initial seeds we refer the reader to Appendix [O]

3.4 LONG-TERM MEMORY

TAME implements a novel memory system that seeks to leverage the cost and speed efficiency of
embedding-based systems like Jarvis-1 (Wang et al.| |2023) while achieving a performance closer to
more complex systems like A-mem (Xu et al.,|2025). To that end, our system adopts Jarvis-1’s stor-
age framework, maintaining option information including name, description, prerequisites, success
conditions, progress indicators, penalty components, and observation sequences. We extend this
with two key additions: (1) Critic llm-generated summaries highlighting key success/failure actions,
and (2) success/failure classification labels obtained from Completion Validator. This enhancement
provides actionable guidance for future tasks requiring a single LLM call while avoiding A-mem’s
computational overhead of three LLM calls for memory and link creations, and evolutions. We now
provide further detail of how TAME'’s long-term memory works:

Critic. The Critic module is a function p : S x {0,1} — 7, mapping the state and recent option
outcome from Completion Validator to text:

h; = p(s{,C;) = LLMprompt ,(s;) 4)
where the text aims to summarise the key factor that led to the success or failure of the option.

Creation of the memory. Each memory entry is defined as:
M; = {gi, Ci,0,h;} (5)

where g; is the option, C; € {0,1} is the output of the Completion Validator, o is the observation
sequence towards current option, and h; is the option summary from the Critic. Then, the mem-
ory structure is implemented as follows: each memory entry is stored as a vector embedding of
the above, enabling efficient similarity-based retrieval. The embedding function ¢ transforms each
entry:

e; = ¢(M;) € R (©)

Similarity-Based Filtering. Following the “importance” scoring approach from the generative
agents framework (Park et al., 2023)), we prevent storage of repetitive experiences. A new memory
M,e 1s stored only if:
max ——new € <1 — Tops (7)
MieM |lepew|| - [|es]|
where 7., is a set constant. This method effectively filters out frequently repeated actions (e.g.,
“chop wood” in Crafter) that provide limited learning value.

Long-Term Memory Retrieval Mechanism. In order to address the limited context window size,
we only extract Ky, + K rq4 best scoring memories at each option execution. Inspired by Retrieval-
Augmented Generation (RAG) (Lewis et al., 2021), we enable access to past experiences through
the following steps:

* Query Encoding: The new option name (n4,) and description (d,,) are embedded into the
same vector space as stored memories using sentence embeddings:

q; = ¢(ngi’dgi) € Rd (3)

Under review as a conference paper at ICLR 2026

» Temporal Decay: Following A-mem (Xu et al., 2025), we prioritise recent experiences
using exponential decay:
w(er) = exp(—A-t))
where ¢ is the time elapsed since memory creation.
* Memory score: We combine similarity and recency through weighted sum:
SCOFC(Qh ej) = Wsimilarity * Sim(qh ej) + Wrecency * ’U)(e_]) (10)
* Stratified Retrieval: The system retrieves top-k successful and failed memories:
M;“ = Top-ksucc(score(qi, €;) : ¢; = 1) 11
M, = Top-kyq(score(qi, e;) : p; =0) (12)
where ¢; indicates success/failure of memory j.
* Context Integration: All kgyc. + kfqq retrieved memories are integrated into the modules

prompts (modules incluing memory are decided by genetic algorithm).

This process gives access to both effective strategies and failure patterns, allowing for informed
decision-making. Visualisations of retrieval patterns are shown in Appendix [E]

3.5 SKILL-SPECIFIC MODULES

On top of the hierarchical structure, we identify survival and exploration as two key components in
many video games. Moreover, we identify looping behaviour as a significant LLM limitation. All
three modules are illustrated in Figure

Explorer. Let explorer be defined as a function mezpiorer : S —+ Gexplores Where Geyplore is the set
of exploration-oriented options, and:

gt = Wexplorer(sf) - LLMexplorer(Sf) (13)
exp _exp

where ¢“? = {g7"", 95", ..., g5 } is the sequential exploration plan, and each g; " is structured
identically to regular options but prompted for discovery rather than game goal completion.

» Exploration Strategy We implement an e-greedy exploration strategy where the Meta-
controller selection becomes:

Texplorer (S7) ~ With probability e,

14
Thigh(877¢) with probability 1 — ¢, a4

Controller(s;) = {
with €0 = 0.1,6t =0.99 x €t—1 = 099t X €

Amygdala. Leto : S — {0,1} be the amygdala function mapping observations to binary classi-
fication of danger assessment:

Di = 0/(s%) = LLMumygdata(5%) (5)

At each Low-Lever Executor step, if D; = 1, the system immediately activates a “survival option”
(see Appendix for details); otherwise, normal execution continues.

Loop Detector. The loop detector implements ¢ : S — {0, 1}, detecting repetitive behavior in
recent execution history:

L; = 1(si") = LLMprompt,, (si) € {0,1}. (16)

Where L; = 1 means looping behaviour is detected.

4 EMPIRICAL EVALUATION

We evaluate our method through three key experiments. First, we benchmark our genetic algo-
rithm with Gemini-2.0-Flash against the SOTA systems on the BALROG benchmark. Second, we
demonstrate the transferability of TAME’s selected genomes across different Gemini models without
additional training. Third, we compare our memory system against Jarvis-1 and A-mem baselines.

Under review as a conference paper at ICLR 2026

4.1 TAME RESULTS

This section compares the baseline and TAME’s performance on the BALROG benchmark. Baseline
scores are obtained by evaluating the BALROG repository with Gemini-2.0-Flash following the
original author’s methodology. TAME scores represent the best performance achieved selected by
our genetic algorithm (Section. We run genetic algorithm through n ., = 4 iterations, with each
iteration producing n¢n414 = 5 children. Through empirical evaluation we notice that gives sufficient
performance gains. Number of episodes per each child evaluation is adapted from BALROG.

Environment Baseline[2.0-Flash] (1) TAME (1) Episodes \ A Full Pop. Score(?)
Average 27.16% + 2.12% 34.78% + 2.22% - | +12.18%
babyai 58.00% =+ 6.98% 72.0% + 6.35% 50 +6.69%
babaisai 30.83% + 4.22% 41.67% =+ 4.50% 120 +10.00%
textworld 32.55% =+ 6.95% 32.55% =+ 6.95% 30 +26.47%
crafter 29.09% =+ 4.51% 39.09% + 4.9% 10 +19.09%
minihack 12.50% =+ 5.23% 22.5% + 6.6% 40 +10.00%
nle 0.00% =+ 0.00% 0.85% + 0.47% 5 +0.85%

Table 1: Average game progression of baseline LLM and TAME (with Gemini-2.0-Flash base). Re-
sults also include the scores with all modules activated and human-crafted prompts (full) to illustrate
the impact of the genetic adaptation algorithm on the framework.

As shown in TabldI] TAME consistently outperforms the baseline achieving relative gain of ~28%.
TAME improves performance in five out of six games, with the same score on TextWorld, as it is
the environment where original BALROG’s paper approach was chosen by the genetic algorithm.
Notably, while the baseline model cannot achieve any noticeable progress on Nethack (the hardest
game) TAME achieves 0.85% average score (note that the best model scores 1.8% on Nethack).
In order to access the performance gain of genetic algorithm, we compare it against human-crafted
Full Structure. We notice the average performance gain of 12.18%, illustrating the importance of
adaptation in games. Detailed per-task results are provided in Appendix [l along with an analysis of
module activations in Appendix [H| The final genomes returned by genetic algorithm are available in
Appendix [P with further results of the performance of initial population Py in Appendix

4.2 TRANSFERABILITY OF TAME STRUCTURES

Next, we evaluate whether architectures evolved with Gemini-2.0-Flash can be effective when trans-
ferred to other models. Thus, we use TAME selection to evaluate populations of Gemini-2.5-Flash-
Lite and Gemini-2.5-Pro models to exlusively choose between the base configuration from BAL-
ROG or the best-performing structure discovered with Gemini-2.0-Flash for each game.

Method Score (1) BALROG Rank (|)
Gemini-2.5-Pro[Transferred] 47.65% =+ 2.20% M1
Grok-4 43.60% + 2.20% 1

Gemini-2.5-Pro[Baseline] 43.35% + 2.3 2

Gemini-2.0-Flash[TAME] 34.78% =+ 2.22% @) 18
Gemini-2.0-Flash[Baseline] 27.16% =+ 2.12% (12)
Gemini-2.5-Flash-Lite[Transferred] 22.76% =+ 1.73% (13)1 10
Gemini-2.5-Flash-Lite[Baseline] 11.87% + 1.32% 23)

Table 2: Comparison of TAME against top scoring models in BALROG leaderboard (September
2025). We show how they would rank (in parenthesis) relative to the current leaderboard. Rank
improvements are indicated with 1.

From Table [2] presenting the results, we observe that Gemini-2.5-Flash-Lite achieves almost 100%
improvement. Detailed analysis in Table [6] in Appendix J] demonstrate that TAME’s discovered
structures successfully transfers in four out of six environments, with only TextWorld and NetHack
achieving baseline performance. For Gemini-2.5-Pro, we also observe gains although more mod-
erate. Table [7]in Appendix [J] shows that the transferred structures significant improvements in

Under review as a conference paper at ICLR 2026

the BabyAl and BabalsAl environments, which require extensive planning, highlighting the frame-
work’s strengths in this domain. However, improvements are not observed in the remaining en-
vironments. We hypothesise that Gemini-2.5-Flash-Lite benefits more substantially because it is
a non-reasoning model similar to Gemini-2.0-Flash, where we carried the optimisation, whereas
Gemini-2.5-Pro is a reasoning-based models. Notably, transferring TAME’s discovered genomes to
Gemini-2.5-Pro we achieve state-of-art performance above the best model on the BALROG leader-
board - Grok-4. Similarly, we see large improvements on the leaderboard for Gemini-2.5-Flash-Lite
and Gemini-2.0-Flash with TAME, now occupying rank 13 and 4 from 23 and 12 respectively.

4.3 ABLATION: MEMORY TYPES

We also include ablations to demonstrate the effectiveness of our long-term memory system. In order
to test memory, we use the hierarchical structure described in Section @], combined with three
different memory architectures: Jarvis, TAME-Memory[ours] and A-mem. Both Jarvis memory
and A-mem store the same core elements: g; (the option, including all information associated with
it), C; € {0,1} (the status indicator), and o (the observation sequence corresponding to the current
option). TAME extends Jarvis framework by introducing a critic, as well as a filter for successful and
failed trajectories (but does not create links between memories). This requires one additional LLM
call compared to Jarvis, but two fewer LLM calls per generation compared to A-mem. Thus, our
approach explores a trade-off between the simplicity of Jarvis and the more complex and expensive
structure of A-mem.

We notice an improvement compared to Jarvis and A-mem as shown on Table [3| motivating the
integration of critic module for memory storage. Moreover, we achieve this while requiring a third
of the LLM calls that A-mem employs. Thus allowing our system to iterate faster and with a reduced
compute cost. Further details are included in Appendix[[]

Environment Jarivs (1) TAME-Memory[ours] (1) A-mem (1)
Average 17.52% + 1.73% 23.11% + 1.75% 21.45% + 1.80%

Table 3: Comparison of average game progression across 6 games using different memory types.

S5 DISCUSSION AND CONCLUSION

We presented TAME, a genetic framework for evolving LLM-based agents that is both game-
agnostic and adaptive. Through genetic mutations and in-game evaluation, TAME configures
human-crafted modules for core gaming skills such as exploration, survival, long-term memory,
and loop detection. Its novel memory system combines the efficiency of embedding retrieval with
the contextual depth of LLM-augmented memory. To our knowledge, this is the first application of
such a memory design in this domain.

We evaluated TAME on the well-established BALROG benchmark and find that it consistently en-
hances the underlying LLMs. Gemini-2.0-Flash improves from 27.16% to 34.78%, while solu-
tions discovered on one architecture transfer training-free to others, with Gemini-2.5-Pro reaching
47.65% and outperforming the state-of-the-art. These results showcase both the generalisability of
the core modules and the effectiveness of our genetic approach. We further confirm the importance
of long-term memory and adaptive architecture, with our proposed memory system outperforming
two existing baselines while remaining more cost-efficient than complex agentic systems.

We note some limitations. We find that TAME provides greater benefits to some games than others,
where it defaults to the baseline architecture. We also observed that while TAME improves com-
plex reasoning tasks overall, spatial reasoning remains a weakness. This suggests the potential not
only for expanding the set but for genetic discovery of entirely new modules and capabilities, be-
yond those hand-crafted in this work. Moreover, while transferability proved effective, gains were
less pronounced for reasoning models, motivating further study of transfer and emergence across
different architectures.

Overall, TAME establishes a new state of the art in game-playing LLM agents, laying the foundation
for more efficient and emergent frameworks.

Under review as a conference paper at ICLR 2026

REFERENCES

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Yuri Chervonyi, Trieu H Trinh, Miroslav OlIsdk, Xiaomeng Yang, Hoang Nguyen, Marcelo Mene-
gali, Junehyuk Jung, Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in
solving olympiad geometry with alphageometry2. arXiv preprint arXiv:2502.03544, 2025.

Francgois Chollet. Openai 03 breakthrough high score on arc-agi-pub. https://arcprize.
org/blog/oai-o3-pub-breakthrough, December 2024. Accessed: 2025-09-12.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604, 2024. URL https://arxiv.org/abs/2412.
04604.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt
optimizers, 2025. URL https://arxiv.org/abs/2309.08532,

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a
multi-agent collaborative framework. In International Conference on Learning Representations,
ICLR, 2024.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wengqi Shao, and Ping Luo. Hiagent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model, 2024. URL https://arxiv.org/abs/2408.095509.

Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models
hallucinate, 2025. URL https://arxiv.org/abs/2509.04664.

Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
Pierre-Luc Bacon, Doina Precup, Marlos C. Machado, and Pierluca D’Oro. Maestromotif: Skill
design from artificial intelligence feedback, 2024. URL https://arxiv.org/abs/2412.
08542.

Martin Klissarov, R Devon Hjelm, Alexander T Toshev, and Bogdan Mazoure. On the modeling
capabilities of large language models for sequential decision making. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=vodsIF307N.

Heinrich Kiittler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktidschel. The nethack learning environment, 2020. URL https:
//arxiv.org/abs/2006.13760.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution through large models, 2022. URL https://arxiv.org/abs/2206.08896,

10

https://arxiv.org/abs/2005.14165
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2408.09559
https://arxiv.org/abs/2509.04664
https://arxiv.org/abs/2412.08542
https://arxiv.org/abs/2412.08542
https://openreview.net/forum?id=vodsIF3o7N
https://openreview.net/forum?id=vodsIF3o7N
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2206.08896

Under review as a conference paper at ICLR 2026

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktidschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.orqg/abs/2005.11401.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models, 2024. URL https://arxiv.org/abs/2310.12931l

MiniHack Team. Battle environments. MiniHack Documentation. URL https://minihack.
readthedocs.io/en/latest/envs/navigation/battle.html. Accessed: 2025-
09-15.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Davide Paglieri, Bartlomiej Cupial, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
Khan, Eduardo Pignatelli, Lukasz Kuciriski, Lerrel Pinto, Rob Fergus, et al. Balrog: Bench-
marking agentic llm and vlm reasoning on games.

Ruwei Pan, Hongyu Zhang, and Chao Liu. Codecor: An llm-based self-reflective multi-agent frame-
work for code generation. arXiv preprint arXiv:2501.07811, 2025.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Bharat Prakash, Tim Oates, and Tinoosh Mohsenin. LIm augmented hierarchical agents, 2023. URL
https://arxiv.org/abs/2311.05596.

J Rosser and Jakob Nicolaus Foerster. Agentbreeder: Mitigating the ai safety impact of multi-agent
scaffolds via self-improvement. arXiv preprint arXiv:2502.00757, 2025.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Zhang, Shimon Jiang, and Jakob Foerster.
Minihack the planet: A sandbox for open-ended reinforcement learning research. arXiv preprint
arXiv:2109.13202, 2021.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, et al. Rainbow
teaming: Open-ended generation of diverse adversarial prompts. Advances in Neural Information
Processing Systems, 37:69747-69786, 2024.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
comes from practice: Aligning 1lms with embodied environments via reinforcement learning,
2024. URL https://arxiv.org/abs/2401.14151.

DeepMind Team. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature,
575:350-354, 2019. doi: 10.1038/541586-019-1724-z.

11

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2310.12931
https://minihack.readthedocs.io/en/latest/envs/navigation/battle.html
https://minihack.readthedocs.io/en/latest/envs/navigation/battle.html
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2311.05596
https://arxiv.org/abs/2401.14151

Under review as a conference paper at ICLR 2026

MiniHack Team. Minihack: Corridor environment, 2024. URL https://minihack.
readthedocs.io/en/latest/envs/navigation/corridor.html. Accessed:
September 15, 2025.

Sony AI Team and Polyphony Digital. Outracing champion gran turismo drivers with deep rein-
forcement learning. Nature, 602:223-228, 2022. doi: 10.1038/s41586-021-04357-7.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. In The Twelfth International Conference on Learning Represen-
tations, ICLR, 2024a.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023. URL
https://arxiv.org/abs/2311.05997.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with
memory-augmented multimodal language models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V.

Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110l

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebastian Flennerhag, Shaobo
Hou, and Satinder Singh. Discovering policies with domino: Diversity optimization maintaining
near optimality. arXiv preprint arXiv:2205.13521, 2022.

12

https://minihack.readthedocs.io/en/latest/envs/navigation/corridor.html
https://minihack.readthedocs.io/en/latest/envs/navigation/corridor.html
https://arxiv.org/abs/2311.05997
https://arxiv.org/abs/2502.12110

Under review as a conference paper at ICLR 2026

A LLM USAGE DECLARATION

We employed LLMs to assist us in the writing of this paper. Our writing pipeline consisted of one
of the authors first writing a draft paragraph, then using an LLM to assist in polishing the writing
and grammar, and finally having other authors review and provide the final version to the text.
Additionally, we employed foundational models to assist us in creating illustrations.

Finally, throughout the course of this research we used LLM-powered search engines like Perplexity
in addition to traditional alternatives such as Google Scholar and conference proceedings while
gathering relevant literature.

B BALROG GAME DETAILS

The BALROG framework incorporates six distinct gaming environments, each designed to evaluate
specific aspects of agentic reasoning (Figure [3):

BabyAI BabyAl is a grid-based environment with different difficulty levels. The agent is pre-
sented wth five different tasks.

TextWorld TextWorld offers a text-based exploration environment where agents interact exclu-
sively through natural language commands. There are three different tasks.

Crafter Crafter simulates a Minecraft-inspired survival environment where progression is mea-
sured through 22 distinct achievements.

BabalsAI BabalsAl presents a rule-based puzzle environment where agents must navigate grid-
based scenarios. There are 40 different tasks.

MiniHack MiniHack represents a task-oriented version of the classic NetHack (Kiittler et al.,
2020) game, evaluating agents across eight challenges testing different skills.

NetHack Learning Environment (NLE) NLE implements the complete NetHack roguelike
game, presenting the most comprehensive challenge within the benchmark. This environment si-
multaneously evaluates navigation, survival instincts, long-term strategic planning, resource man-
agement, and exploration skills within an unpredictable, dynamically evolving game state.

Skills BabyAl TextWorld Crafter Babals AI MiniHack NLE
Navigation v v v "4 v v
Exploration v v 4 v v 4

Resource Management X 4 4 X v v
Complex Credit Assignment X X 4 v "4 v
Deducing Env. Dynamics X X X v v 4
Long-term Planning X X X v v %4
Turns to Complete 10* 10? 10® 102 10? 10*-10°
Time to Master for Humans Seconds Minutes Hours Hours Hours Years

Figure 3: Game environments overview. Adapted from BALROG (Paglieri et al.)

C HYPERPARAMETERS SELECTED

This Appendix details the choice of hyperparameters in our methodology. Table 4] details the values
and descriptions.

13

Under review as a conference paper at ICLR 2026

The genetic algorithm optimises four hyperparameters: 705, A, €9, and 7. We establish lower bounds
of 0 for 7o, A, and €, effectively disabling these components when not beneficial to performance.
Upper bounds were determined in order to maintaini sufficient search space for optimisation.

The language model temperature 7' follows standard practice with a default value of 1.0, allowing
the genetic algorithm to explore a range of solutions. We implement exponential decay for ¢; fol-
lowing established reinforcement learning approaches, enabling the transition from exploration to
exploitation as the system learns optimal behaviours. We follow the short term memory length in
BALROG and set it to m = 16. We set kgycc = 5 and k¢4 = 5, limiting the number of informa-
tion added to the prompt, but also adding significant amount of past experiences; through empirical
evaluation we notice that a higher number of memories added is not beneficial.

Following DOMiNO methodology, we set o = 0.7 to ensure meaningful population diversity whilst
maintaining performance standards. Our similarity-recency weighting (Wsimitarity = 0.7, Wrecency =
0.3) prioritises semantic relevance over temporal proximity, reflecting the hypothesis that content
similarity is more beneficial than recency.

The genetic algorithm parameters balance computational efficiency with solution quality. We set
probability of selecting single parent in genetic algorithm to be 70% (vs two parents to be 30%),
allowing for more mutations without crossover operations. We set n = 4 iterations as empirical
evaluation demonstrated satisfactory performance is achieved at this point, providing an effective
balance between solution quality and computational cost. Population management parameters N =
M = 5 maintain an optimal balance between preserving high-performing solutions and promoting
genetic diversity, following established evolutionary computation principles that prevent premature
convergence whilst ensuring computational tractability.

D BALROG BASELINE CONFIGURATIONS

This section details number of episodes and their length per each BALROG game. Moreover, we
show the BALROG prompt that we use as initial seed for the baseline architecture.

Episode details Table 5] details the episode specifications per game. The table shows time needed
for each episode completion, as well as details on number of tasks per different environments.

Baseline Prompt (BALROG) Below we present a prompt from BALROG (Paglieri et al.)) paper,
used for Baseline evaluation.

Baseline BALROG Prompt

"""You always have to output one of the above actions at a time and no other text. You always have
< to output an action until the episode terminates."""

E TESTING THE RETRIEVAL MECHANISM LONG-TERM MEMORY SYSTEM

In this section we test the retrieval of saved memories and the abilities to act upon them. Due to
stochasticity, we need to have a reliable comparison. We focus our evaluation on Crafter, as it is
an environment requiring long-term planning, giving motivation to log-term memory approach. We
disable life hazards such as zombies and skeletons, as they are not relevant to the testing subject. We
set random seed to 32 for all episodes.

To evaluate our information-retrieval mechanism we test a long-horizon “craft iron sword” task in
Crafter. We replace the environment’s default objective with the production of an iron sword (see
Appendix [E-T-T)). This task is intentionally complex: it requires chopping wood, crafting and placing
a crafting table, crafting a wooden pickaxe, collecting stone, crafting a stone pickaxe, placing a
furnace adjacent to the crafting table, collecting iron, and finally crafting an iron sword. We selected
this objective because, in prior baseline runs without our memory system, the agent never completed
the task. Through the episode we would like to check if memories are activated at relevant time

14

Under review as a conference paper at ICLR 2026

Parameter Value Description

Embedding all-MiniIM-L6-v2 Pre-trained sentence embedding model used for
semantic similarity calculations

d 384 Dimension of the embedding

Teos [0,0.1] Cosine similarity threshold parameter

A [0,0.1] Long-Term Memory decay factor

€0 [0,0.1] Initial exploration parameter

T [0.1,2] Language Model Temperature

€t 0.99% x € Time-decayed parameter following exponential
decay

m 16 Short-term memory length (most recent action-
observation pairs)

ksuccess 5 Number of top scoring successful long-term mem-
ories added to the LLM prompt

kfail 5 Number of top scoring failed long-term memories
added to the LLM prompt

« 0.7 Minimum fraction of highest scoring genome for
diversity

Wsimilarity 0.7 Weight assigned to similarity component in scor-
ing

Wrecency 0.3 Weight assigned to recency component in scoring

Psingle 70% Percentage chance to choose single parent for re-
production

1 — Psingle 30% Percentage chance to choose two parents for re-
production

Ngen 4 Number of iterations (parent population creation)
of genetic algorithm

Nehild 5 Number of children created for each population of
parents in genetic algorithm

N 5 Number of best scoring genomes saved at each
step of genetic algorithm

M 5 Number of most diverse genomes saved at each
step of genetic algorithm (scoring at least « frac-
tion of top performing genome)

Nep dependent on the game Number of episodes for each child evaluation. De-

tails in the Appendix|D|

Table 4: Hyperparameter values used in the TAME framework

steps, showing retrieval ability. Moreover, successful completion under our system provides strong
evidence that the memory-critic architecture supports multi-step planning and sequential options.

In order to track the memories activated, we inject five task-oriented memories at the start of each
episode: “craft wooden pickaxe”, “craft stone pickaxe”, “mine iron”, “place furnace”, and “craft iron
sword” (see Appendix [E.-1.2). Each memory is paired with a human-crafted critic that summarises
the steps needed to achieve particular option. During each episode we log when each memory

activates. An example progression through episode is provided in Figure] and the corresponding

15

Under review as a conference paper at ICLR 2026

Environment Evals Tasks per Eval Total Episode Length

BabyAl 10 5 50 107
BabalsAl 3 40 120 102
Crafter 10 1 10 103
TextWorld 10 3 30 102
MiniHack 5 8 40 102
NetHack 5 1 5 10% — 10°

Table 5: Episode details per BALROG game

memories activated can be seen in Figure [S| More examples on activation timelines are provided in
Appendix[E2]

1
(a) step 35 (b) step 55 (c) step 85 (d) step 135 (e) step 225

Figure 4: Testing memory retrieval: Task progression across episode: (a) agent crafts wood pickaxe,
(b) agent crafts stone pickaxe, (c) agent collects iron, (d) agent collects iron, (e) agents attempts to
craft iron sword

Mine Iron 1 ||| @
Craft Wood Pickaxe - |||| || ||| | | | | | | | | | |

Craft Stone Pickaxe ||H H
Craft Iron Sword |||| || || @ | @ | || || ||| |
100

0 50

Memory Type

150 200 250 300
Steps

Figure 5: Testing memory retrieval: memories activated based on the step

Discussion of the example: From Figure [5| we can notice that all memories are activated at the
beggining. This is due to the fact that very early in the game, those are they only memories present.
We can then see that “Craft Wood Pickaxe” and “Craft Stone Pickaxe” are heavily retrieved until
around 25th-60th step. This is when agent completed “Craft Stone Pickaxe task™ (agent completes
“Craft Wood Pickaxe” task earlier, but due to similarity of those two tasks, it it activated when
focusing on stone version). “Mine Iron” memory activates two times between 80-100 steps, when
agent is mining two pieces of iron. “Craft Iron Sword” appears often around step number 100 which
is when agent first attempts to complete it, but realises that it needs to place a furnace and table first.
Then the memory is activated later as well, which is after placing table and furnace and attempting to
craft iron sword. Unfortunately, agent is unsuccessful because it didn’t place furnace close enough
to the table. This experiment demonstrates that relevant memories are activated at the right time, and
that agent is able to act upon them. Also, when not needed (i.e. the task is completed), memories are
activated far less often. It is also important to notice that the “Craft Iron Sword” memory continues
to be retrieved even towards the end of the episode when the agent is actively attempting this task.
This indicates that the memory system maintains access to relevant historical experiences throughout
the entire episode, regardless of when they were initially formed.

Results Across 10 independent runs the agent succeeded in producing an iron sword in 1/10
episodes (baseline: 0% from all previous runs that we did with Gemini-2.0-Flash). This is a sub-

16

Under review as a conference paper at ICLR 2026

stantial improvement, which suggests that when memories are stored, agent is able to retrieve them,
and act upon them. This is a simplified case, as we provided human crafted memories, but with
the right prompting we believe that the critic module will be able to reproduce those. Additional
observations:

* Memories reliably activated when their prerequisites were satisfied and were deactivated
immediately after the corresponding option was completed.

* The specificity of the critic strongly affected performance. For example, phrasing a critic as
“place the furnace next to the crafting table” versus “place the furnace adjacent to the table”
produced different success scores. This highlights the value of precise, action-oriented
critic definitions that focus on the key state features leading to success or failure. Following
on that we prompted the critic accordingly.

* This experiment also demonstrates the difficulty of the “Craft Iron Sword” task, even when
given with clear instructions agent fails 90% of the time.

E.1 TESTING MEMORY RETRIEVAL PROMPTS

This subsection details prompts used in order to test long-term memory retrieval. First we show the
prompt detailing the goal of iron sword creation, then we show memories added at the begging of the
episode: Craft Wood Pickaxe, Craft Stone Pickaxe, Craft Stone Sword, Mine Iron, Place Furnace,
Create Iron Sword. Those are hand-crafted memories, designed in order to track memory retrieval.

E.1.1 IRON SWORD GOAL PROMPT

This subsection details the prompt for Craft Iron Sword goal that the agent is tasked with during the
long-term memory retrieval experiment.

Craft Iron Sword Goal

""" You are playing Crafter. The following are the only valid actions you can take in the game,
<+ followed by a short description of each action:

{action_strings}.
Your goal is to craft an iron sword. """

E.1.2 INJECTED MEMORIES

This subsection details the memories added at the beggining of the episode, in order to track memory
retrieval.

Craft Wood Pickaxe Memory

craft_wood_pickaxe = {

"name": "Craft Wood Pickaxe",

"description": "Craft Wood Pickaxe for gathering stone",

"subgoal_prerequisites": "Agent has 1 piece of wood in inventory and table is placed",

"success_condition": "Wood Pickaxe is in inventory",

"subgoal_progress_indicators": "Agent is gathering wood near table",

"subgoal_penalty_component": "Agent crafts pickaxe without enough wood",

"status": ’successful’,

"summary of the run": "Agent collects three pieces of wood and places a table in a clear spot. Then
< agent crafts a wood pickaxe at the table.",

}
Craft Stone Pickaxe Memory

stone_pickaxe_memory = {

"name": "Craft Stone Pickaxe",

"description": "Craft Stone Pickaxe",

"subgoal_prerequisites": "Agent has 1 piece of stone and 1 piece of wood in inventory and table is
~— placed",

"success_condition": "Stone Pickaxe is in inventory",

Under review as a conference paper at ICLR 2026

"subgoal_progress_indicators":

"subgoal_penalty_component":

"status": ’successful’

"summary of the run": "Agent collects four pieces of wood and places a table in a clear spot. Then
< agent collects one piece of stone using wood pickaxe. Then agent crafts a stone pickaxe at
<~ the table.",

"Agent is gathering stone near table",
"Agent crafts pickaxe without enough resources",

Craft Stone Sword Memory

stone_sword_memory {

"name": "Craft Stone Sword",

"description": "Craft Stone Sword for

"subgoal_prerequisites": "Agent has 1
<~ placed",

"success_condition": "Agent has stone sword in inventory",

"subgoal_progress_indicators": "Agent has 1 pieces of stone and 1 piece of wood",

"subgoal_penalty_component": "Agent crafts sword without enough resources",

"status": ’successful’,

"summary of the run": "Agent collects 4 pieces of wood. Then agent places a table and crafts a wood
< pickaxe. Lastly, agent uses wood pickaxe to craft 2 pieces of stone and crafts a stone sword
< at the table.",

combat",
piece of stone and 1 piece of wood in inventory and table is

Mine Iron Memory

mine_iron {
"name": "Mine Iron",

"description": "Mine Iron",

"success_condition":

"subgoal_prerequisites":

"Agent has 1 wood pickaxe in inventory",
"Wood Pickaxe is in inventory",

"subgoal_penalty_component":

"subgoal_progress_indicators":

"Agent is gathering iron near table or furnace",
"Agent iron sword without enough resources",

"status": ’failed’,
"summary of the run":
<~ collect iron.

"Agent repetadely tried ‘Do’ action using pickaxe near iron but fails to
It is recommended agent tries using different tool.",

Place Furnace Memory

furnace_memory {
"name": "Place Furnace next to Table",
"description": "Place furnace next to the Table for crafing iron tools",
"subgoal_prerequisites": "Agent has 4 pieces of stone in inventory. Table is placed.
"success_condition": "Furnace is placed",
"subgoal_progress_indicators": "Agent is gathering stone",
"subgoal_penalty_component": "Agent places furnace in unsuitable location or without enough

<> stone",

"status": ’successful’,
"summary of the run": "Agent placed a furnace next to the table using 4 pieces of stone.

"
’

"
’

Craft Iron Sword Memory

iron_sword_memory = {

"name": "Craft Iron Sword",

"description": "Craft Iron Sword"

"subgoal_prerequisites": "Agent has 1 piece of stone, 1 piece of wood,
< and table and furnace is placed next to each other",

1 piece of coal in inventory

"success_condition":

"Iron Pickaxe is in inventory"

"subgoal_penalty_component":

"subgoal_progress_indicators":

"Agent is gathering iron near table and furnace",
"Agent iron sword without enough resources",

"status":
"summary of the run":

< Then agent collects one piece of iron using stone pickaxe.
< next to the table and furnace.",

’successful’

"Agent collects 1 piece of stone and one piece of wood using wood pickaxe.
Then agent crafts an iron sword

18

Under review as a conference paper at ICLR 2026

E.2 ADDITIONAL LONG-TERM MEMORY RETRIEVAL EXPERIMENTS
This section shows additional experiemnts carried out in order to test memory retrieval, when tasked

the agent with iron sword task. Eachof the experiments consists of images showing agent progres-
sion, as well as memory activation across the episode.

E.2.1 EPISODE 1

Ilustrations from the game available in Figure[6and memory activations in[7} The reason why agent
didn’t succeed in completing the task is because the agent didn’t place table close enough to furnace.

(b) 100

Figure 6: Episode 1: Task progression across episode

Mine Iron q

Craft Stone Pickaxe q

Memory Type

Craft Wood Pickaxe - | | |
Craft Iron Sword | | |

Steps

Figure 7: Episode 1: Memory retrieval along the episode

E.2.2 EPISODE 2

Mlustrations from the game available in Figure[8]and memory activations in[0] The reason why agent
didn’t succeed in completing the task is because the agent focuses on placing furnaces a few times.

E.2.3 EPISODE 3
Ilustrations from the game available in Figure [I0] and memory activations in[T1] The reason why

agent did not succeed in completing the task is because agent does not have enough wood (also
crafts multiple tables and furnaces).

E.2.4 EPISODE 4
Ilustrations from the game available in Figure [I2] and memory activations in[I3] The reason why

agent did not succeed in completing the task is because agent does nott have enough wood (also
crafts multiple tables and furnaces).

19

Under review as a conference paper at ICLR 2026

(b) 100 (d) 200

(e) 250 (f) 300 (g) 350 (h) 350

Figure 8: Episode 2: Task progression across episode

Mine Iron - H | || |

amwoanemsel ||

Craft Stone Pickaxe q H | |H | ‘ H | | | | | | |
s I 11t e 1 A I 1 A

0 25 50 75 100 125 150 175
Steps

| I |

Memory Type

Figure 9: Episode 2: Memory retrieval along the episode

(a) 50 (b) 100

() 300 (h) 400

Figure 10: Episode 3: Task progression across episode

20

Under review as a conference paper at ICLR 2026

Mine Iron ” | | |

cananarcaret | [T WET 1 [THHI
casonsrcase ||| I[P 1 -
e LT A T | FE I A1 0

0 25 50 75 100 125 150 175
Steps

Memory Type

Figure 11: Episode 3: Memory retrieval along the episode

(b) 100 (d) 200

() 250 (h) 250
Figure 12: Episode 4: Task progression across episode
. Mine Iron - | || ||
g conwesarcmet | I Q0L (T | I
goemnsonercae) | I |1 | |
carvonswo | I TINEANANT TOFED T TRIET (O T
(I) 160 2(’)0 360 460

Steps

Figure 13: Episode 4: Memory retrieval along the episode

F EXAMPLES OF MODULES OUTPUTS

This section shows examples of amygdala and explorer modules behaviours.

F.1 AMYGDALA

This section details Amygdala submodule. First, we show defualt survival option, then we illustrate
an example of amygdala in the episode (using Crafter).

21

Under review as a conference paper at ICLR 2026

Default survival option The prompt below shows default survival option, that agent is switching
to, whenever danger is encountered.

Default Survival Option

subgoal = {

"name" : "respond to danger",

"description": "Respond to danger.",

"prerequisites": "Agent is in immediate danger",
"success_condition": "Agent has eliminated the danger",
"penalty_component”: "Agent is not responsing to danger.",
"progress_indicators": "Agent is closer to eliminating the danger",
"estimated_priority": "high"

Amygdala module activation. Here we present an example from Crafter when amygdala is ac-
tivated. The agent is initially focused on exploring the environment and fulfilling subgoals such as
placing plants. However, in the early stages of the game, a skeleton appears. As soon as the agent
observes the skeleton within its field of view, it activates survival mode.

After survival mode is activated, the agent begins gathering resources for combat:
1. Chops down wood

2. Places a crafting table
3. Creates a wooden sword necessary for the fight

The agent then chases the skeleton, and once it is adjacent to the enemy, it initiates combat. During
the chase and fight, the agent loses health but successfully manages to defeat the skeleton. Shortly
afterwards, the amygdala is deactivated and the agent returns to working towards general game
objective.

*%. 8y g5l *%.7¢7 g5l
1

(a) Amygdala activated (b) Creation of the table (c) Creation of the sword

-~ ; - P
E 54 652 5.5 & 652
1 1
(d) Chasing the skeleton (e) Fighting the skeleton (f) Amygdala deactivated

%254 s 5l2
1

Figure 14: Amygdala survival response sequence: (a) activation, (b)&(c) resource gathering, (d)&(e)
combuat, (f) deactivation.

22

Under review as a conference paper at ICLR 2026

F.2 EXPLORER
In this section we show an example of exploration plan proposed by Explorer.

{’ reasoning’: ’'The agent needs to break out of its repetitive westward
movement and explore new areas, prioritizing resource gathering and
different directions. Sand has been identified as a new area to explore.’,
" subgoals’: [
{’name’ : 'Move Towards Sand’,
"description’: ’'Move towards the sand to the south-east to explore
new terrain.’,
'prerequisites’: ',
"success_condition’: "Agent is standing on sand.’,
"penalty_component’: ‘Moving in the opposite direction (North or West)
for more than 3 steps without collecting resources.’,
"progress_indicators’: 'Decreasing distance to sand in long_term_context.’,
"estimated_priority’: "high’},
{"name’: "Explore Area Around Sand’,
"description’: ’Once on the sand, explore in all directions (North, South,
East, and West) to discover resources and new landmarks.’,
"prerequisites’: 'Agent 1is standing on sand.’,
"success_condition’: "Agent has moved at least 3 steps in each cardinal
direction from the sand.’,
"penalty_component’: ’Staying within the same 3x3 area on the sand for
more than 5 steps.’,
"progress_indicators’: ‘Number of unique tiles visited around the sand.’,
"estimated_priority’: ‘medium’}

1}

G DETAILED GENETIC ALGORITHM

In this Appendix we present the detailed specifications of the genetic algorithm.
Parameter selection:

Generations = 4 17

Population size = |Paiverse| + |Prest| = 5 + 5 = 10 (18)

Children per generation = 5 19)
DPbinary = Pcontinuous = Pprompt = 0.5 (20)

where:

* Generations — the number of evolutionary iterations performed

* Population size — the total number of genomes maintained across diverse and best-
performing subpopulations

¢ Children per generation — the number of new offspring genomes created through mutation
in each generation

® Dbinarys Peontinuous » Pprompt — the probabilities of applying binary, continuous, or prompt mu-
tation operations, respectively, when creating offspring.

The number of generations was limited to four due to the significant computational cost and long
runtimes associated with evaluating each genome, particularly in environments like NetHack. How-
ever, this was sufficient to demonstrate a clear performance improvement and allow for the discovery
of specialised architectures.

Parent Selection Parent selection follows roulette wheel selection with fitness-proportionate prob-
abilities:
f(g:)

P(gi) = — ol —
®) = 7 e

23

Under review as a conference paper at ICLR 2026

where f(g;) is the fitness score of genome g;;.

Offspring Generation For each child gcpjia:

* With probability psingie: select one parent
* With probability 1 — pgingic: select two parents

For each genome component, evolutionary operations are applied with probability
Dbinarys Peontinuouss Pprompt> depending on the component. Otherwise parent attributes are
copied directly. In the two-parent case, the parent from which to copy each attribute is chosen with
Bernoulli(0.5) probability.

G.1 GENETIC OPERATIONS

This subsection focuses on methodology of crossover and mutations operations.

Modules Operations Single parent:

p(ehild) _ p{parent) with probability 0.8
: 1— P with probability 0.2

Two parents:

bPY = @ with probability 0.9 if ") = p{P?)

. K3
B = L1 eV with probability 0.1 if b = {7
Bernoulli(0.5) if b{"") # b

Hyperprameter Operations The continuous value inheritance depends on parent activity states.
Let Agp *) indicate if feature i is active in parent k:

For single parent:
C§Chlld) _ Clip(cz(_lmrent) +N(O, 0'2)7Ci,mina Ci,max)

For two parents:

APV L N(0, 02) if AP = 1,4 —
(enita) _) PP + N(0,02) £ AP o A _ g
¢ ¢ — 7) i y A
’ acgpl) +(1- a)cgﬂ) +N(0,0%) if Agpl) _ AEpZ) -1
Ci, default if APY = AP? — ¢

where o ~ U(0,1). ¢ min, Ci,maz» Cide fault are detailed in Appendix [C]

Prompt Operations Prompt evolution utilises the EvoPrompt prompt methodology |Guo et al.
(2025). Using a similar approach we use LLM as a crossover and mutation operator.

* Single parent: pg(jhild) = LLMpromptmumte(pl(,pm’e”t))
* Two parentS: p1(',6hild) = LLMpromptmutate (LLMpromptcrossover (pgpl)) p£p2)))

If a parent has module ¢ disabled (b; = 0), the corresponding prompt reverts to default: p; = p; default
(default prompts in Appendix [O.T].

LLM mutation and crossover prompts available in Appendix [N| It is important to notice that this
approach enables functional mutation: LLM is prompted with all possible functional inputs to be
used in any prompt (described in Section [3.1)).

24

Under review as a conference paper at ICLR 2026

G.2 POPULATION MANAGEMENT

This subsection focuses on population management: details about fitness function, diversity measure
and population pruning.

Fitness Evaluation Each genome is evaluated using the fitness function:

Nep

Z GameProgression, (g)

n
P j=1

1

flg) =

where 7., is the number of episodes for specific game (see Table [3).

Diversity measure The genome distance function uses an embedding-based approach where
each genome is represented as a single embedding vector (here we use sentence-transformers/all-
MiniLM-L6-v2 embedding). The distance between two genomes is calculated using cosine similar-

1ty:

d(g1,82) =1 — cos(er, e2) 21

where e; is the embedding vector representation of genome g;;.

The cosine similarity between two embedding vectors is computed as:

(e1,02) = 2
cos(eq, e = -
VP led 2zl

Each genome g = {b, ¢, p} is transformed into a unified embedding vector e € R? that captures
the semantic representation of all genome components (binary variables, continuous parameters,
and prompts) in a single high-dimensional space. The way we measure diversity, is the minimum
distance to the genomes already existing in the archive.

Population Pruning After children evaluation, population pruning maintains diversity using the
following algorithm:

1. Initialise Ppew = 0
2. Add top-N scoring genomes: Phey < tops(P)
3. For remaining genomes Gremaining:

(a) Calculate minimum distance to current population:

dmin(g) = g}g,})n d<g7g/)

(b) Select genome maximising diversity with performance constraint:

g =arg max dmn(g) st f(g) > 0.7 f(Spest)

€ Gremaining

(c) Add g* to Pyew and remove from Gremaining

4. Repeat step 3 until the desired population size reached (N + M)

25

Under review as a conference paper at ICLR 2026

G.3 GENETIC APPROACH: PSEUDO CODE

Algorithm 1 TAME: Genetic Algorithm

Require: Game environment
Ensure: Optimised genome g*
1: Initialize Py = {gbasiCa Ghierarchical ; 9default gfull}

2: for each g € Py do
3: gfimess < EvaluateFitness(g)
4: end for
5: P+ P, 0
6: for generation = 1 to GENERATIONS do
7: C <+ ({Children population}
8: for : = 1 to CHILDREN_PER_GENERATION do
9: if rand() < 0.7 then
10 p1 < RouletteWheelSelection(P)
11: ¢ < SingleParentOperations(p;)
12 else
13: p1, p2 < RouletteWheelSelection(P, 2)
14: ¢ < TwoParentOperations(p1, p2)
15: end if
16: Chimess <— EvaluateFitness(c)
17: C+ CU{c}
18: end for
19: P <+ PopulationPruning(P U C)
20: end for
21:

22: return argmaxXgecp Yfiness

H MODULES ACTIVATED

In this Appendix we discuss module activation based on the game. Module activation is based
on final genomes returned by genetic algorithm, available in Appendix [Pl Module activation plot
is demonstrated in Figure [[5] When selecting the baseline configuration, no additional modules
apart from Long-Term Memory can be activated. We notice that 4 out of 6 environments selected
hierarchical module, highlighting the effectiveness of complex goal decomposition. TextWorld is a
text-based environment where it is difficult to predict next actions due to their dependence on current
observation, therefore hierarchical structure and memory are not adding value. Moreover, MiniHack
has relatively short length (100 steps), which might be also why baseline structure was favoured.

Module Activation per Environment

Amygdala - 0 0
3
=

S . 9
o,v ~xV & Y
¢ & 3 & S

! Q, A N\
X & (3y § «f
Environment

Figure 15: Module activation in TAME across environments.

26

Under review as a conference paper at ICLR 2026

I TASK PERFORMANCE

In this Appendix, we compare different tasks performance across BabyAl, BabalsAl, and Minihack
for baseline versus TAME. Crafter and Nethack are excluded because they each have only one
default task. TextWorld is also excluded since its genetic output matches the baseline.

MiniHack Interestingly, five out of eight tasks are never solved by any method, showcasing the
difficulty (see Figure[I6). The Corridor-R3 task, which is never completed by the baseline, never-
theless shows 40% progress with TAME. Corridor-R3 is an exploration problem in which the goal
is to find the staircase Team|(2024), illustrating TAME agent’s improved exploration ability. In both
CorridorBattle-Dark and MazeWalk-9x9, TAME achieves higher performance. CorridorBattle-Dark
requires the agent to fight monsters, thereby testing planning and memory MiniHack Team| whereas
MazeWalk-9x9 is a maze in which the agent must reach a terminal goal, testing exploration and
memory Samvelyan et al.|(2021]).

MiniHack Subtask Performance Comparison
(with Standard Deviation)

100 Baseline
TAME

80

60

40 |

Progression Percentage (%)

MiniHack Subtasks

Figure 16: MiniHack tasks progression, Baseline vs TAME using Gemini-2.0-Flash.

BabyAI We observe clear performance improvements across all tasks except “putnext” where both
agents achieve 0% success rate (see Figure [I7). The putnext task presents significant challenges
due to its complex spatial reasoning requirements. Through empirical analysis, we identified that
agents fail to understand the necessary positioning strategy: they must navigate to a location one
step away from the target position (which is adjacent to the object) before dropping the item. The
persistence of this failure in our improved method highlights fundamental limitations in the agent’s
spatial reasoning capabilities. In all the other tasks, we notice an improvement when comparing
TAME with baseline.

BabalsAI This environment consists of 40 distinct tasks that can be categorised into four main
types: make_win, make_you, goto_win, and make_wall_win. Our analysis reveals substantial im-
provements in the goto_win category and notable progress in make_win tasks, where performance
increased from 0% baseline (see Figure [I8). When examining performance across different room
configurations (two_room versus single_room layouts), we observe consistent improvements in both
settings. For difficulty categorisation, we define three levels based on task complexity: simple
tasks have no modifiers or distractors, medium tasks contain 1-2 modifiers/distractors, and com-
plex tasks have more than 2 modifiers/distractors. Most notably, the greatest performance gains
occur in medium and complex categories, demonstrating that our method is particularly effective for
challenging scenarios that require sophisticated reasoning capabilities.

27

Under review as a conference paper at ICLR 2026

1458 BabyAl Subtask Performance Comparison
1459 (with Standard Deviation)
1462

1463
1464 60
1465
1466 ‘@ 40
1467
1468 20
1469

0

1470 pick open pickup putnext goto
1471 se

go
1472 to
1473
1474
1475

1476

1460 100 ™= Baseline
1461 . TAME

Progression Percentage (%)

BabyAl Subtasks

Figure 17: BabyAlI tasks progression, Baseline vs TAME using Gemini-2.0-Flash.

100 Performance by Room Type Performance by Task Complexity
1477 - Baseline W Baseline
1478 . TAME s TAME

1479 8 8

1480 50.0% 53.3%
1481 60 o 45.8%
1 482 37.8% 28.6% 28.6% 375%
1483 " 29.3%
1484 2053
1485

20 20
1486
1487

0 0 simple medium complex

1488 po-een Room Type snote-soom Task Complexity
1489

1490
1491
1492 10

8
Average Performance (%)

Average Performance (%)

(a) Performance by Room Type (b) Performance by Difficulty

Performance by Main Objective

B Baseline

e TAME
1493 .

1494 &
1495
1496
1497
1498
1499
1500
1501 0

1502

0.0% 0.0% 0.0%
1503 0 _ i .
1504 & 5

1505 «‘*‘ég/
1506 Main Objective

60

40

Average Performance (%)

1507 (c) Performance by Objective
1508
1509 Figure 18: BabalsAl task progression, Baseline vs TAME using Gemini-2.0-Flash

1510
1511

28

Under review as a conference paper at ICLR 2026

J GENOME TRANSFERABILITY TO OTHER GEMINI MODELS

In this Appendix we detail transerability of genomes obtained through genetic algorithm using
Gemini-2.0-Flash, to Gemini-2.5-Flash-Lite and Gemini-2.5-Pro without additional training. In the
Table [6| we compare performance of Baseline using Gemini-2.5-Flash-Lite vs TAME transferred
to the same model. In the Table [7] we compare performance of Baseline using Gemini-2.5-Pro vs
TAME transferred to the same model. Lastly, we show combined results in the Figure[19]

Environment Baseline [2.5-Flash-Lite] TAME[Transferred] Episodes
Average 11.87% + 1.32% 22.76% + 1.73% -
babyai 46.00% + 7.05% 62.00% + 6.93% 50
babaisai 9.17% + 2.63 38.33% + 4.44% 120
textworld 7.45% + 2.30% 7.45% =+ 2.30% 30
crafter 8.64% + 1.00% 21.3% £+ 4.22% 10
minihack 0.00% =+ 0.00% 7.50% + 4.16% 40
nle 0.00% =+ 0.00% 0.00% =+ 0.00% 5

Table 6: Comparison of Baseline vs. TAME[Transferred] using Gemini-2.5-Flash-Lite.

Game Baseline [2.5-Pro] Top Model TAME|[Transferred] Runs
Average 43.35% +2.31% 43.60% + 2.17% 47.65% + 2.20% -
babyai 80.0% + 5.70% 76.00% =+ 6.00% 90.0% =+ 4.24% 50
babaisai 56.70% =+ 4.50% 45.80% =+ 4.50% 72.50% + 4.08% 120
textworld 49.20% + 8.20% 62.90% =+ 7.90% 49.20% + 8.20% 30
crafter 55.0% + 6.0% 57.30% =+ 3.90% 55.0% + 6.0% 10
minihack 17.50% =+ 6.00% 17.5% =+ 6.00% 17.50% = 6.00% 40
nle 1.70% =+ 0.20% 1.8% + 0.8% 1.70% =+ 0.20% 5

Table 7: Comparison of Baseline vs. TAME[Transferred] using Gemini-2.5-Pro.

Performance (%)

Baseline vs TAME[Transferred] Performance on Different Environments

Baseline [2.5-flash-lite]
B TAME [2.5-flash-lite]
Baseline [2.5-Pro]
BN TAME [2.5-Pro]

S <«
<@

Environment

Figure 19: Evaluation of TAME Structure Transferability: Identical performance to the baseline
indicates that the genetic algorithm favored the baseline architecture over the transferred TAME

genome.

29

Under review as a conference paper at ICLR 2026

K TAME CHILD EVALUATION PSEUDO CODE

This Appendix presents the pseudo code behind TAME evaluation on specific game when all mod-
ules are active, as decided by the genetic algorithm (overview in Figure [2). The algorithm works as
follows: until maximum number of steps is reached, with probability e choose exploration, otherwise
exploitation. For each option, retrieve top scoring successful and failed memories.. For each option,
it retrieves top successful and failed memories, then the Low-level Executor decides and executes
actions. If danger is detected, the survival module is triggered and execution stops. Otherwise, the
Critic evaluates success, summarizes key actions, and in case of loops, the summary is replaced by
the Loop Detector summary. The resulting memory is stored, and the cycle repeats.

Algorithm 2 TAME [Full Structure]
Require: 1, sg
Ensure: st (final game state)
while num_steps < maz_steps do
if rand() < € then
g Tewplorer(s§) {Exploration}
else
g < Thigh(si*¢) {Exploitation}
end if
for g; € gdo
Mt < retrieve_success ful(ng,, dg;, memory)
M « retrieve_failed(ng,, dg,, memory)
a+— mow(s,lf)
for a; € ado
st < execute_action(a, S;)
S; < St
if o(s;) then
g < g" {Activate survival option}
break {Move to option selection and force g* }
end if
end for
Ci < ¢(si)
hi < p(si, Ci)
if C; then
store-memory(gi, hi, 0, “success ful”)
else
if 1 (s;) then
hi < 1(s:)
end if
store_memory(g;, hi, 0, “failed”)
break {Escalate to replanning }
end if
end for
end while

L DETAILED MEMORY ABLATIONS

In this section we show detailed results when comparing our memory system with Craft-Jarvis-
1 and A-Mem. Table [§] shows that TAME-Memory consistently outperforms both Craft-Jarvis-1
and A-Mem on most environments, yielding the highest overall average of 23.11%. The gains
are particularly strong in TextWorld and Crafter, where our system nearly doubles or surpasses
the baselines by a large margin. While performance is comparable in Minihack and NLE, these
tasks remain challenging for all methods. Overall, the results highlight the efficiency of our hybrid
memory system.

30

Under review as a conference paper at ICLR 2026

Environment Jarivs (1) TAME-Memory[ours] (1) A-mem (1) Episodes
Average 17.52% + 1.73% 23.11% + 1.75% 21.45% + 1.80% -
babyai 48.00 % + 7.06 % 62.00% + 6.86% 58.00% + 6.98% 50
babaisai 24.17 % + 3.90 % 29.17% + 4.15% 26.67% + 4.04% 120
textworld 0.59 % £+ 0.58 % 8.24% + 1.95% 4.51% + 2.35% 30
crafter 19.55 % + 3.81 % 35.45% + 3.20% 26.36% + 4.25% 10
minihack 12.5% + 5.23% 3.45% + 5.65% 12.5% + 5.23% 40
nle 0.31% + 0.28% 0.37% + 0.33% 0.68% =+ 0.37 % 5

Table 8: Comparison of TAME average game progression across different memory types.

M INITIAL POPULATION SCORES

This section details the scores of initial population used during genetic algorithm. Scores per envi-
ronment can be seen in Table [0l

Environment Basic (1) Hierarchical (1) Default (1) Full (1)
Average % + % % + % % + % -

babyai 58.00% + 6.98% 62.00% + 6.86% 58.00% + 6.98% 65.31% + 6.80%
babaisai 30.83% +4.22% 29.17% + 4.15% 40.83% +4.49% 31.67% + 4.25%
textworld 32.55% + 6.95% 8.24% + 2.25% 4.67% + 1.50% 6.08% £+ 1.70%
crafter 29.09% +4.51 33.64% +4.64% 31.36 % £3.55% 20.00% + 1.72%
minihack 12.50% + 5.23% 5.00% + 3.45% 12.50% + 5.23% 12.50% + 5.23%
nle 0.00% 4+ 0.00% 0.37% + 0.33% 0.68% + 0.37% 0.00% =+ 0.00%

Table 9: Comparison of performance across environments under Basic, Stable, Default, and Ad-
vanced settings.

N LLM MUTATION AND CROSSOVER PROMPTS

This Appendix details the prompts used for LLM based Crossover (in the case of single parent) and
LLM based Crossover and Mutation (in the case of two parents) used in genetic algorithm. Prompts
created with the help of Claude-Sonnet-4.

LLM Mutation Prompt

Please follow the instruction step-by-step to generate a better prompt.

1. Consider prompt:
Prompt 1: <promptl>

2. Apply ONE of the following mutation strategies to create a significantly different prompt:

++xStrategy A - Perspective Shift:** Change the role/perspective (e.g., "As an expert analyst..." or

< "From the viewpoint of...")

xStrategy B - Methodology Change:x Alter the approach (step-by-step -> holistic analysis, direct
< —> comparative, etc.)

*xStrategy C - Output Format Transformation:** Change how results are presented (narrative ->
< structured, single response -> multi-part, etc.)

xStrategy D - Contextual Enhancement:x Add specific domain knowledge or constraints that weren’t
<+ in the original

*xStrategy E - Complexity Modulation:*x Significantly increase or decrease the cognitive complexity
< of the task

xStrategy F - Functional Input Integration:« Incorporate functional inputs in a novel way that
< changes the prompt’s core operation

31

Under review as a conference paper at ICLR 2026

3. Generate the final mutated prompt bracketed with <prompt> and </prompt>.

Available Functional Inputs:

- {obs} : current observation

- {game_info} : information about the game (possible actions and goal)

- {subgoal} : current subgoal that you’re working towards

- {action_sequence}: action sequence towards current subgoal

- {observation_sequence}: observation sequence towards current subgoal

- {success_condition}: termination condition of the current subgoal

- {action_obs_seq}: action-observation pairs towards current subgoal

- {survival_plan}: survival plan

- {history}: history of the last 16 action-observation pairs

- {entries_successful_goal}: most similar successful subgoals to the current one
- {entries_failed_goal}: most similar failed subgoals to the current one

*%*CRITICAL:x* Use functional inputs with exact bracket names. Ensure the mutation creates a
< substantially different prompt that would produce notably different outputs.

Output your asnwer in thne follwing way:

REASONING: <your reasoning>

PROMPT: <mutated prompt>

won

LLM Mutation and Crossover Prompt

won

Please follow the instruction step-by-step to generate a better prompt.
1. Crossover the following prompts and generate a new prompt:

Prompt 1: <promptl>

Prompt 2: <prompt2>

2. Apply ONE of the following mutation strategies to create a significantly different prompt:

«*Strategy A - Perspective Shift:** Change the role/perspective (e.g., "As an expert analyst..." or
< "From the viewpoint of...")

Strategy B — Methodology Change: Alter the approach (step-by-step -> holistic analysis, direct
<~ —> comparative, etc.)

*xStrategy C - Output Format Transformation:** Change how results are presented (narrative ->
< structured, single response -> multi-part, etc.)

*xStrategy D - Contextual Enhancement:*x Add specific domain knowledge or constraints that weren’t
< in the original

xStrategy E - Complexity Modulation:x Significantly increase or decrease the cognitive complexity
<> of the task

xStrategy F - Functional Input Integration:+ Incorporate functional inputs in a novel way that
— changes the prompt’s core operation

3. Generate the final mutated prompt bracketed with <prompt> and </prompt>.

Available Functional Inputs:

- {obs} : current observation
- {game_info} : information about the game (possible actions and goal)
- {subgoal} : current subgoal that you’re working towards

- {action_sequence}: action sequence towards current subgoal

- {observation_sequence}: observation sequence towards current subgoal

- {success_condition}: termination condition of the current subgoal

- {action_obs_seq}: action-observation pairs towards current subgoal

- {survival_plan}: survival plan

- {history}: history of the last 16 action-observation pairs

- {entries_successful_goal}: most similar successful subgoals to the current one
- {entries_failed_goal}: most similar failed subgoals to the current one

**CRITICAL:++ Use functional inputs with exact bracket names. Ensure the mutation creates a
<~ substantially different prompt that would produce notably different outputs than the
<> crossover result.

Output your asnwer in thne follwing way:

REASONING: <your reasoning>

PROMPT: <mutated prompt>

wnn

O INITIAL POPULATION GENOMES

This Appendix details the initial population of genetic algorithm described in section [3.2] First, we
show examples of prompts proposed by Claude-Sonnet-4 for each of the modules. We use those

32

Under review as a conference paper at ICLR 2026

in order to construct “default” genome. For the rest of genomes we use hand-crafted prompts. We
detail genomes in the subsections below.

O.1 PROMPTS PROPOSED BY SONNET-4

Those prompts were created using Claude-Sonnet-4, which was tasked with the creation of “basic”
prompt for each component.

Prompt Template

default_sequential_prompt = """You always have to output one of the above actions at a time and no
< other text. You always have to output an action until the episode terminates."""

default_highlevel prompt = """
You are a strategic planner for a video game AI. Analyze the current game state and create
<~ achievable subgoals that advance toward the main objective.

REQUIREMENTS :

- Subgoals must be immediately achievable with current capabilities
— Focus on next logical steps, not distant goals

— Each subgoal should have clear success criteria

CURRENT STATE: {obs}
GAME INFO: {game_info}

Create a sequential plan with 2-3 subgoals."""
default_lowlevel_prompt = """ You are an action executor in a video game AI system. Given a subgoal
< from the high-level planner, propose a sequence of actions to achieve it.
Siaddasisssssdsdsasiiasiissassdssisasiiissiisasssi
CURRENT SUBGOAL: {subgoal}
CURRENT STATE: {obs}
PREVIOUS ACTIONS: {action_sequence}

Plan the full sequence of actions needed to complete the subgoal. Avoid repeating actions if
< observations don’t change.
Avoid extra commentary outside the REASONING and ACTIONS list.
wn
default_termination_prompt = """
You are a termination evaluator for a video game AI. Check if the agent has completed
<+ its subgoal.

CURRENT STATE: {obs}

SUBGOAL: {subgoal}

SUCCESS CONDITION: {success_condition}
RECENT ACTIONS: {action_sequence}

Compare the current state with the success condition to determine if the subgoal is
< complete. Provide feedback to help the agent improve.

won

default_summariser_prompt = """
You are a critic analyzing an agent’s subgoal attempt. Identify the key factor that caused
< success or failure.

SUBGOAL: {subgoal}
OUTCOME: {outcome}
ACTION HISTORY: {action_obs_seq}

Focus on specific resources and quantities that mattered most. If no resources involved,
< identify the next most important factor.
wan
default_amygdala_prompt = """
Decide if survival mode should activate.

Observation: {obs}
Survival plan: {survival_plan}

1. Check if observation meets any subtask prerequisites.
2. If several match, pick highest priority.

wun

default_loop_prompt = """
Task: Decide if the agent is stuck in a loop.

Loop = repeating actions without meaningful progress toward the subgoal
(progress = closer to goal, new info, removing failed paths, or advancing game state).

Data:

- Observation: {obs}

— Subgoal: {subgoal}

- Termination condition: {success_condition}
- Action-observation history: {history}

Steps:
1. Check if enough steps have been taken to allow exploration.
2. Look for repeated patterns without progress.

33

Under review as a conference paper at ICLR 2026

3. If loop detected, identify cause: missing info, unknown prerequisite, or unexplored path.
W

default_explorer_prompt = """
Task: Create an exploration plan to help the agent discover new skills.

Data:

- Game info: {game_info}

- Observation: {obs}

- Subgoal summary: {summary}

— Recent 16 action-observation pairs: {history}

Steps:
1. Analyze the environment and agent’s situation.
2. Propose a focused exploration plan with clear purpose, conditions, and indicators.

nn

0.2 INITIAL POPULATION

Detailed genome descriptions for the initial population.

Basic genome This genome corresponds to the baseline structure used in BALROG.

Basic Genome

genome_basic = {

"id": "3",

"hierarchy": 0,
"amygdala": 0,
"loop_evaluator": 0,
"explorer": 0,
"summariser": 0,
"time_decay": [0, 0.01],
"cosine_cutoff": [0, 0.05],
"epsilon": [0, 0.01],
"temperature": 1.0,
"prompts": {

"high_level": [0, default_highlevel_prompt],
"low_level": [0, default_lowlevel_prompt],
"amygdala": [0, default_amygdala_prompt],
"loop": [0, default_loop_prompt],
"termination": [0, default_termination_prompt],
"summariser": [0, default_summariser_prompt],
"explorer": [0, default_explorer_prompt],
"sequential": [1, default_sequential_prompt]

}

"fitness":

}

Hierarchical genome This genome corresponds to hierarchy from Section combined with
memory [3.4] without amygdala and explorer. We use this architecture as one of the initial seeds,
because we found that it gives the most stable operformance across all environments.

Hierarchical Genome

genome_stable = {
"igdr: "2n,
"hierarchy": 1,
"amygdala": O,
"loop_evaluator": 1,
"explorer": O,

"summariser": 1,
"time_decay": [1, 0.01],
"cosine_cutoff": [0, 0.1],
"epsilon": [0, 0.01],
"temperature": 1.0,
"prompts": {

"high_level": [1,

"""You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
< the current game state and generate achievable subgoals that strategically advance toward
< the main objective.

CRITICAL CONSTRAINTS:
- Subgoals must be immediately achievable given the current agent state and capabilities
- Focus on the next logical progression steps, not distant end-goals

34

Under review as a conference paper at ICLR 2026

- Each subgoal should have clear, observable success criteria
- Subgoals should be novel and interesting, compared to previous attempts

Below I will provide the game description, available actions, and current state information.

Game description:

{game_info}

FHEFEFEF AR AR REREF AR AR R R R R R R

CURRENT CONTEXT: \n

— Game State: {obs} \n

— Survival plan provided by the survival planner, that you should consider for your tasks:
> {survival_plan}

— Here are most similar successful entries from the archive: {entries_successful_goal} \n

— Here are most similar failed entries from the archive: {entries_failed_goal} \n

ANALYSIS FRAMEWORK:

Analyse the summary from previous runs and let it guide your decision making.
Assess what is immediately possible given current agent state and environment
Identify what kind of actions could be considered novel or interesting
Identify the most direct path toward the main objective

Select subgoals that form a logical sequence

Ensure each subgoal can be verified through observable game state changes

AU WN

SUBGOAL SELECTION CRITERIA:

- Feasible: Can be started immediately with current resources/position

- Measurable: Success/failure can be determined from game observations

- Progressive: Each subgoal enables the next or advances toward main goal
— Specific: Clear enough for a lower-level agent to understand and execute
— Considerate of the summary of previos runs

Make sure that your subgoals are sequential. """],

"low_level": [1,
"""You are an important executor component of a hierarchical video game system. You are given
< one of higher level option and its termination condition proposed by the higher level
< planner. Your role is to propose a sequence of actions that will make you progress towards
< the given option."™ \
Below I will provide you with the game description, possible actions you can take and the
<~ overall goal of the game.

iidassssasassassadas s atiassssasiasiaissisiississssdi

Here is a subgoal provided by the high level planner that you should focus on completing:
< {subgoal} \n

Here is your current state: {obs} \n

Here is the action-observation sequence towards current subgoal: {action_sequence} \n

Here are the most similar successful entries from the archive: {entries_successful_goal} \n

Here are the most similar failed entries from the archive: {entries_failed_goal} \n

Use the action and observation sequence together with the current state to decide the xxfull
< ordered sequence of actions*x that will achieve the subgoal. \n

Avoid repeating the same actions if the observation doesn’t change. \n"""],

"amygdala": [0, """
You are an important component in a hierarchical video game system. Your role is to
< determine if the agent is in danger and should activate survival mode. Below I will provide
<~ you with current observation and a survival plan from the higher level agent. \n

Current observation: {obs} \n
Survival plan: {survival_plan} \n

Your role is to analyse the observation and survival plan given by higher level system and
<~ determine if the current observation satisfies any of the prerequites for any of the
< survival components. If there are prerequsites satisfied for multiple components, then
< return the one with the highest priority. \n

First reason, then output True or False depending if you decide to activate survival plan.
< If you output True, then output one of the survival subtasks. If you decide to not activate
<~ survival plan, then output None as the survival subtask. \n

REASONING: <your reasoning> \n
ACTIVATE SURVIVAL: <True/False> \n
SURVIVAL SUBTASK: <survival subtask name or None if False> \n

"loop": [1,
"""You are an important loop evaluator component of a hierarchical video game system.
You are going to receive details about game progress such as: current observation, current
— subgoal, current termination conditions, action sequence towards current subgoal and
<~ observation sequence towards current subgoal.
Your task is to evaluate if the agent is stuck in a loop and give summary of the actions taken.
A loop occurs when the agent repeats a sequence of actions multiple times without achieving
— meaningful progress toward its current goal, where ’'meaningful progress’ includes: getting
< closer to the objective, discovering new information, eliminating failed approaches, or
< changing the game state in a way that advances toward the subgoal.
It is important that you let the agent explore enough but also decide when to terminate to get
< out of the loop. \n

Details: \n

Here is your current state: {obs} \n

Here is a subgoal lower level agent is working towards: {subgoal} \n

Here is the most recent action-observation pairs that should help you decide if agent is stuck
< in a loop: {history}\n \n

35

Under review as a conference paper at ICLR 2026

Instructions:\n

Analyse the details. Avoid giving any judgement. \n

Think about how many steps the agent needs in order to complete the subgoal and use that to help
<> you reason if agent is stuck in a loop. \n

Then, given your analysis, decide if the actions proposed by the lower level agent are leading
< to the termination condition or if the agent is stuck in a loop.

If a loop is detected, analyse if the agent is stuck due to a lack of necessary information, an
< unknown prerequisite, or an unexplored path. Your summary should clearly articulate this gap
< in knowledge and suggest that exploration might be required to break the loop and find
<> alternative solutions. \n"""],

"termination": [1, """

You are an important termination evaluator component of a hierarchical video game system. \n

Your task is to: \n

1. Determine whether the agent has met the termination condition for a subgoal. \n

2. Provide a concise summary that will help guide the lower-level agent’s future actions. \n\n

Details: \n

Here is your currect state that you should compare with termination condition: {obs} \n

Here is the subgoal lower level agent is working towards: {subgoal} \n

Here is the termination condition of the above subgoal given by the higher level agent:
< {success_condition} \n \n

Instructions:\n

Analyse the subgoal and its termination condition and decide if the subgoal is completed. \n

Then use action-observation sequence: {action_sequence} to give a high level summary of current
< evaluation. This summary will later be passed to low level agent in order to improve its
< actions.

Remember that your summary will be passed to low level component in order to improve its
< actions. \n \n"""],

"summariser": [1,

"""You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game
< environment.

Your task is to identify the **single most important factorxx that caused SUCCESS or FAILURE.

Information:

— Target subgoal: {subgoal}

— Outcome of the action-observation sequence: {outcome}
- Action-observation history: {action_obs_seq}

- Game context: {game_info}

Instructions:

Think briefly about what helped or prevented success.

Focus mostly on sxspecific resources and their quantities+* (e.g., "3 pieces of wood", "1 iron
< ingot") .

If resources were missing, state xxexactly which and how manyx* were missing.

Ignore minor details or redundant actions.

Express the result in x+one short sentencexx.

If no resources are involved, state the next most relevant factor."""],
"explorer": [0, default_explorer_prompt],
"sequential": [0, default_sequential_prompt]
}
"fitness":

}

Default genome Default genome consits of all components being active and prompts proposed by
Claude-Sonnet-4. We add this genome to initial population, as we here we remove human bias.

Default Genom

genome_default = {
WiglWg D,
"hierarchy": 1,
"amygdala": 1,
"loop_evaluator": 1,
"explorer": 1,

"summariser 1L,

"time_decay [1, 0.011, # [active_flag, value]
"cosine_cutoff": [1, 0.05],

"epsilon": [1, 0.1],

"temperature": 1.0, # continuous
"prompts": { # [active_flag, text]
"high_level": [1, default_highlevel_prompt],
"low_level": [1, default_lowlevel_prompt],

"amygdala": [1, default_amygdala_prompt],
"loop": [1, default_loop_prompt],
"termination": [1, default_termination_prompt],
"summariser": [1l, default_summariser_prompt],
"explorer": [1, default_explorer_prompt],
"sequential": [0, default_sequential_ prompt]

}

"fitness":

}

36

Under review as a conference paper at ICLR 2026

Full genome This genome represents full structure with all modules active and hand-crafted
prompts.

Full Genome

genome_full = {

migrs wiw,
"hierarchy": 1,

"amygdala": 1,

"loop_evaluator": 1,

"explorer": 1,

"summariser": 1,

"time_decay": [1, 0.01],

"cosine_cutoff": [1, 0.05],

"epsilon": [1, 0.1],

"temperature": 1.0,

"prompts": {

"high_level": [1, """You are a strategic planner in a hierarchical video game AI system. Your

< role is to analyze the current game state and generate achievable subgoals that
< strategically advance toward the main objective.
CRITICAL CONSTRAINTS:
— Subgoals must be immediately achievable given the current agent state and capabilities
— Focus on the next logical progression steps, not distant end-goals
- Each subgoal should have clear, observable success criteria
— Subgoals should be novel and interesting, compared to previous attempts

Below I will provide the game description, available actions, and current state information.

Game description:

{game_info}

figddsssidsssidsdssassisassdsssidssssssisasiidissiidsiisasi

CURRENT CONTEXT: \n

— Game State: {obs} \n

- Summary from the previous high level plan : {summary} \n

- Survival plan provided by the survival planner, that you should consider for your tasks:
— {survival_plan}

- Here are most similar successful entries from the archive: {entries_successful_goal} \n

- Here are most similar failed entries from the archive: {entries_failed_goal} \n

ANALYSIS FRAMEWORK:

Analyse the summary from previous runs and let it guide your decision making.
Assess what is immediately possible given current agent state and environment
Identify what kind of actions could be considered novel or interesting
Identify the most direct path toward the main objective

Select subgoals that form a logical sequence

Ensure each subgoal can be verified through observable game state changes

oUW NP

SUBGOAL SELECTION CRITERIA:

- Feasible: Can be started immediately with current resources/position

- Measurable: Success/failure can be determined from game observations

- Progressive: Each subgoal enables the next or advances toward main goal
- Specific: Clear enough for a lower-level agent to understand and execute
- Considerate of the summary of previos runs

Make sure that your subgoals are sequential. """],

"low_level": [1l, """You are an important executor component of a hierarchical video game system.
< You are given one of higher level option and its termination condition proposed by the
< higher level planner. Your role is to propose an action that will make you progress towards
< the given option." \

Below I will provide you with the game description, possible actions you can take and the
< overall goal of the game.

FHEFEHEE AR AR R R AR R A R R R

Here is a subgoal provided by the high level planner that you should focus on completing:
< {subgoal} \n

Here is your current state: {obs} \n

Here is the action-observation sequence towards current subgoal: {action_sequence} \n

Here are the most similar successful entries from the archive: {entries_successful_goal} \n

Here are the most similar failed entries from the archive: {entries_failed_goal} \n

Use the action and observation sequence together with the current state to decide the xxfull
— ordered sequence of actions*x that will achieve the subgoal. \n

Avoid repeating the same actions if the observation doesn’t change. \n"""],

"amygdala": [1, """

You are an important component in a hierarchical video game system. Your role is to determine if
< the agent is in danger and should activate survival mode. Below I will provide you with
< current observation and a survival plan from the higher level agent. \n

Current observation: {obs} \n
Survival plan: {survival_plan} \n

Your role is to analyse the observation and survival plan given by higher level system and
< determine if the current observation satisfies any of the prerequites for any of the
< survival components. If there are prerequsites satisfied for multiple components, then
<~ return the one with the highest priority. \n

First reason, then output True or False depending if you decide to activate survival plan. If
< you output True, then output one of the survival subtasks. If you decide to not activate
< survival plan, then output None as the survival subtask. \n

37

Under review as a conference paper at ICLR 2026

REASONING: <your reasoning> \n
ACTIVATE SURVIVAL: <True/False> \n
SURVIVAL SUBTASK: <survival subtask name or None if False> \n

LR

"loop": [1l, """You are an important loop evaluator component of a hierarchical video game system.
You are going to receive details about game progress such as: current observation, current
— subgoal, current termination conditions, action sequence towards current subgoal and
<~ observation sequence towards current subgoal.
Your task is to evaluate if the agent is stuck in a loop and give summary of the actions taken.
A loop occurs when the agent repeats a sequence of actions multiple times without achieving
< meaningful progress toward its current goal, where ’'meaningful progress’ includes: getting
<+ closer to the objective, discovering new information, eliminating failed approaches, or
<+ changing the game state in a way that advances toward the subgoal.
It is important that you let the agent explore enough but also decide when to terminate to get
< out of the loop. \n

Details: \n

Here is your current state: {obs} \n

Here is a subgoal lower level agent is working towards: {subgoal} \n

Here is the most recent action-observation pairs that should help you decide if agent is stuck
< in a loop: {historyl}\n \n

Instructions:\n

Analyse the details. Avoid giving any judgement. \n

Think about how many steps the agent needs in order to complete the subgoal and use that to help
<> you reason if agent is stuck in a loop. \n

Then, given your analysis, decide if the actions proposed by the lower level agent are leading
< to the termination condition or if the agent is stuck in a loop.

If a loop is detected, analyse if the agent is stuck due to a lack of necessary information, an
< unknown prerequisite, or an unexplored path. Your summary should clearly articulate this gap
<+ in knowledge and suggest that exploration might be required to break the loop and find
< alternative solutions. \n"""],

"termination": [1, """

You are an important termination evaluator component of a hierarchical video game system. \n

Your task is to: \n

1. Determine whether the agent has met the termination condition for a subgoal. \n

2. Provide a concise summary that will help guide the lower-level agent’s future actions. \n\n

Details: \n

Here is your currect state that you should compare with termination condition: {obs} \n

Here is the subgoal lower level agent is working towards: {subgoal} \n

Here is the termination condition of the above subgoal given by the higher level agent:
<> {success_condition} \n \n

Instructions:\n

Analyse the subgoal and its termination condition and decide if the subgoal is completed. \n

Then use action-observation sequence: {action_sequence} to give a high level summary of current
< evaluation. This summary will later be passed to low level agent in order to improve its
< actions.

Remember that your summary will be passed to low level component in order to improve its
< actions. \n \n"""],

"summariser": [1, """You are a critic module analyzing an agent’s attempt to achieve a subgoal
< in a game environment.

Your task is to identify the xxsingle most important factors* that caused SUCCESS or FAILURE.

Information:

— Target subgoal: {subgoal}

- Outcome of the action-observation sequence: {outcome}
- Action-observation history: {action_obs_seq}

- Game context: {game_info}

Instructions:

— Think briefly about what helped or prevented success.

— Focus mostly on x*specific resources and their quantities*x (e.g., "3 pieces of wood", "1 iron
<~ ingot") .

- If resources were missing, state x*exactly which and how manyx* were missing.

— Ignore minor details or redundant actions.

- Express the result in xxone short sentencexx.

- If no resources are involved, state the next most relevant factor."""],

"explorer": [1l, """You are an important component of a hierarchical video game AI system.

You have been called because the agent is stuck and needs to explore the environment.

Please provide a percise exploration plan that will help the agent to explore the new areas of
< the environment.

Below I will provide you with details about the game:

Game info: {game_info} \n

Current observation: {obs} \n

Most recent 16 action-observation pairs: {history} \n

Use the information above to reason about the environment and provide a plan that will help the
< agent to explore the new areas of the environment.

Output your answer in the following format:

REASONING : <your reasoning>

EXPLORATION PLAN:

8

"reasoning": "Brief analysis of environment and strategic approach",
"subgoals": [{{
"Explore": {{
"description": "Describe exploration strategy and its purpose",
"prerequisites": None,
"success_condition": "Observable conditions that indicate completion",

38

Under review as a conference paper at ICLR 2026

"penalty_component": "What agent should be penalised for"
"progress_indicators": "Intermediate signs that the agent is making progress",
"estimated_priority": "high/medium/low based on urgency for main objective"
by

}H]

+}

"y,

"sequential": [0, default_sequential prompt]

}
"fitness":

}

P FINAL GENOMES RETURNED BY TAME

In this Appendix we present genomes returned by TAME per each game through genetic algorithm.

BabyAlI Final Genome

{

"hierarchy": 1,
"amygdala": 1,
"loop_evaluator": 1,
"explorer": 0,
"summariser": 1,
"time_decay": [

1

0.014080444046038391
1,
"cosine_cutoff": [
1
0.05
1,
"epsilon": [
0,
0.01
1,
"temperature": 1.0,
"prompts": {
"high_level": [
1
"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
the current game state and generate achievable subgoals that strategically advance toward

the main objective.\n\n CRITICAL CONSTRAINTS:\n

— Subgoals must be immediately achievable given the current agent state and
capabilities\n - Focus on the next logical progression steps, not
distant end-goals\n — Each subgoal should have clear, observable
success criteria\n - Subgoals should be novel and interesting,
compared to previous attempts \n\n Below I will provide the game
description, available actions, and current state information.\n
Game description:\n {game_info}\n
FREFEHHE R AR AR R R R R R R R R A\
CURRENT CONTEXT: \n\n - Game State: {obs} \n\n

— Survival plan provided by the survival planner, that you should consider for your
tasks: {survival_plan}\n - Here are most similar successful
entries from the archive: {entries_successful_goal} \n\n - Here
are most similar failed entries from the archive: {entries_failed_goal} \n\n\n

ANALYSIS FRAPAPMEWORK:\n 1. Analyse the summary from

previous runs and let it guide your decision making. \n 2. Assess

what is immediately possible given current agent state and environment\n
3. Identify what kind of actions could be considered novel or interesting\n
4. Identify the most direct path toward the main objective\n

5. Select subgoals that form a logical sequence\n 6.
Ensure each subgoal can be verified through observable game state changes\n\n
SUBGOAL SELECTION CRITERIA:\n - Feasible: Can be

started immediately with current resources/position\n =
Measurable: Success/failure can be determined from game observations\n
- Progressive: Each subgoal enables the next or advances toward main goal\n
- Specific: Clear enough for a lower-level agent to understand and execute\n
— Considerate of the summary of previos runs\n\n
Make sure that your subgoals are sequential. "

A

1

"low_level": [

’
"Hello! I am your AI Game Coach. My purpose is to analyze your game state and provide
strategic advice to help you achieve your goals. Think of me as your co-pilot!\n\nHere’s the
situation: The high-level planner has assigned you a subgoal to work towards. I will analyze
your current state, past actions, and learn from successful and failed attempts at similar
subgoals. Then, I’1ll recommend a sequence of actions to help you reach your
objective.\n\n#########FH#4HFHHFREHEREREREHSF RSB E RS EF R4 #H 44 \n\nCurrent Subgoal:
{subgoal}\n\nTermination Condition: {success_condition}\n\nGame Information (Possible
Actions, Overall Goal): {game_info}\n\nYour Current State: {obs}\n\nAction-Observation
History: {history}\n\nMost Similar Successful Attempts at This Subgoal:

FELEEERD

39

Under review as a conference paper at ICLR 2026

— {entries_successful_goal}\n\nMost Similar Failed Attempts at This Subgoal:

— {entries_failed_goal}\n\nBased on this information, what xxsequence of actions*x do I

< recommend *youx take to achieve the subgoal? Be sure to consider the history, and learn from

< both the successes and failures of others. I'm looking for strategic advice, not just a

< single action. Explain your reasoning behind each action."
1,
"amygdala": [

1,

"\n You are an important component in a hierarchical video game

<~ system. Your role is to determine if the agent is in danger and should activate survival
mode. Below I will provide you with current observation and a survival plan from the higher
level agent. \n\n\n Current observation: {obs} \n\n

Survival plan: {survival_plan} \n\n \n
Your role is to analyse the observation and survival plan given by higher level
system and determine if the current observation satisfies any of the prerequites for any of
the survival components. If there are prerequsites satisfied for multiple components, then
return the one with the highest priority. \n\n First reason, then
output True or False depending if you decide to activate survival plan. If you output True,
then output one of the survival subtasks. If you decide to not activate survival plan, then
output None as the survival subtask. \n\n\n REASONING: <your
reasoning> \n\n ACTIVATE SURVIVAL: <True/False> \n \n
SURVIVAL SUBTASK: <survival subtask name or None if False> \n\n\n

"

(8T AT (T

"loop": [
1
"You are an important loop evaluator component of a hierarchical video game system. \n

You are going to receive details about game progress such as: current
observation, current subgoal, current termination conditions, action sequence towards

current subgoal and observation sequence towards current subgoal. \n

Your task is to evaluate if the agent is stuck in a loop and give summary of the actions

taken. \n A loop occurs when the agent repeats a sequence of actions

multiple times without achieving meaningful progress toward its current goal, where

'meaningful progress’ includes: getting closer to the objective, discovering new

information, eliminating failed approaches, or changing the game state in a way that

advances toward the subgoal. \n It is important that you let the
agent explore enough but also decide when to terminate to get out of the loop. \n\n\n
Details: \n\n Here is your current state: {obs} \n\n

Here is a subgoal lower level agent is working towards: {subgoal} \n\n
Here is the most recent action-observation pairs that should help you
decide if agent is stuck in a loop: {history}\n \n\n\n
Instructions:\n\n Analyse the details. Avoid giving any judgement.
\n\n Think about how many steps the agent needs in order to complete
the subgoal and use that to help you reason if agent is stuck in a loop. \n\n
Then, given your analysis, decide if the actions proposed by the lower level agent
are leading to the termination condition or if the agent is stuck in a loop.\n
If a loop is detected, analyse if the agent is stuck due to a lack of necessary
information, an unknown prerequisite, or an unexplored path. Your summary should clearly
articulate this gap in knowledge and suggest that exploration might be required to break the
loop and find alternative solutions. \n"

A T

]
"termination": [
1,
"You are a risk-aware termination evaluator within a hierarchical video game system, focused
< on survival and mission success. Assume the game environment is dynamic and potentially
< hostile.\n\nYour task is to:\n\nl. Determine whether the agent has met the termination
<— condition for a subgoal, AND assess the risk incurred while pursuing that subgoal.\n\n2.
< Provide a concise summary that will guide the lower-level agent’s future actions
<> specifically considering risk mitigation strategies.\n\nDetails:\n\nHere is the current
<> state: {obs} and a history of recent states and actions {history}. The game environment
< details and survival instructions are : {game_info} and {survival_plan} respectively.
< Compare these with the subgoal and its termination condition.\n\nHere is the subgoal the
< lower-level agent is working towards: {subgoal}\n\nHere is the termination condition of the
<~ above subgoal given by the higher-level agent: {success_condition}\n\nHere is the
<+ action-observation sequence executed to achieve the subgoal:
< {action_obs_seq}\n\nInstructions:\n\nl. Analyze the subgoal, its termination condition, the
< game environment, and the action-observation sequence.\n2. Determine if the subgoal is
— completed.\n3. Evaluate the risk associated with the actions taken. Consider factors such
< as proximity to dangers (enemies, hazards), resource consumption, and deviation from the
— {survival_plan}.\n4. Compare the current situation with similar successful
— {entries_successful_goal} and failed {entries_failed_goal} subgoals.\n5. Provide a summary
< that addresses both subgoal completion AND risk. The summary xmustx include actionable
— suggestions for the lower-level agent to improve its actions, with a strong emphasis on
< mitigating risk in future attempts. Focus on information that would have been useful to
<— avoid failures described in {entries_failed_goal}.\nRemember that your summary will be
< passed to a low level component in order to improve its actions and survivability."
1,
"summariser": [
1
"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game
environment.\n Your task is to identify the **single most important
factorx* that caused SUCCESS or FAILURE.\n\n Information:\n
- Target subgoal: {subgoal}\n — Outcome of the
action-observation sequence: {outcome}\n — Action-observation
history: {action_obs_seq}\n — Game context: {game_info}\n\n
Instructions:\n — Think briefly about what helped or
prevented success.\n — Focus mostly on xxspecific resources and their
quantities** (e.g., \"3 pieces of wood\", \"1 iron ingot\").\n - If
resources were missing, state xxexactly which and how many** were missing.\n
- Ignore minor details or redundant actions.\n - Express the

FELLEEERRL

40

Under review as a conference paper at ICLR 2026

< result in *xone short sentencexx.\n - If no resources are involved,

<> state the next most relevant factor."
1,

"explorer": [
0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
< Data:\n - Game info: {game_info}\n - Observation: {obs}\n - Subgoal
< summary: {summary}\n - Recent 16 action\u20l3observation pairs: {history}\n\n
<~ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a

"

< focused exploration plan with clear purpose, conditions, and indicators.\n\n
1,
"sequential": [
0,
"You always have to output one of the above actions at a time and no other text. You always
<+ have to output an action until the episode terminates."
]
}
"fitness": 72.0,
"id": "8c52d35e-bbb7-4b7d-b683-26b0e7aa3936",
"_std_error": 6.349803146555017

Baba Final Genom

{

"hierarchy": 1,
"amygdala": O,
"loop_evaluator": 1,
"explorer": 1,
"summariser": 1,
"time_decay": [

1,

0.004528704008914386
1,
"cosine_cutoff": [
1
0.06037953831283245
1,
"epsilon": [
1
0.08233296401956124
1,
"temperature": 1.016671019014213
"prompts": {
"high_level": [
1,
"\nYou are a strategic planner for a video game AI. Analyze the current game state and create
— achievable subgoals that advance toward the main objective.\n\nREQUIREMENTS:\n- Subgoals
< must be immediately achievable with current capabilities\n- Focus on next logical steps, not
< distant goals\n- Each subgoal should have clear success criteria\n\nCURRENT STATE:
<> {obs}\nGAME INFO: {game_info}\n\nCreate a sequential plan with 2-3 subgoals."
1,
"low_level": [
1
"You are an action executor in a video game AI system, responsible for survival and goal
achievement. Given a subgoal from the high-level planner, propose a sequence of actions to
achieve it while minimizing risk.\n\n
FHEFEH R E AR AR R R A R R R\ CURRENT SUBGOAL: {subgoal}\n
CURRENT STATE: {obs}\n GAME INFORMATION: {game_info}\n PREVIOUS
ACTION-OBSERVATION SEQUENCE: {action_obs_seq}\n SIMILAR SUCCESSFUL SUBGOALS:
{entries_successful_goal}\n SIMILAR FAILED SUBGOALS: {entries_failed_goal}\n\n
Consider the potential risks associated with each action in the context of the current state
and previous actions. Actions that lead to outcomes similar to those in
’{entries_failed_goal}’ should be avoided. Prioritize actions that are consistent with the
success patterns observed in ’ {entries_successful_goal}’. Use ’{game_info}’ for possible
actions. Use ’{survival_plan}’ to help avoiding fatal errors.\n \n Plan the
full sequence of actions needed to complete the subgoal. Ensure survival is prioritized
throughout the sequence. If a planned action has high risk, select a safer alternative or
terminate the current sequence and replan.\n Avoid extra commentary outside the
REASONING and ACTIONS list."

FLELEERERELLELE]

1
"amygdala": [

0,
AN Decide if survival mode should activate.\n\n Observation: {obs}\n

< Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
< prerequisites.\n 2. If several match, pick highest priority.\n"
1,
"loop": [
1,
"\n Task: Decide if the agent is stuck in a loop.\n\n Loop = repeating actions
— without meaningful progress toward the subgoal\n (progress = closer to goal, new
< info, removing failed paths, or advancing game state).\n\n Data:\n -
< Observation: {obs}\n - Subgoal: {subgoal}\n - Termination condition:
<— {success_condition}\n - Action\u20l13observation history: {history}\n\n
— Steps:\n 1. Check if enough steps have been taken to allow exploration.\n Bo

41

Under review as a conference paper at ICLR 2026

— Look for repeated patterns without progress.\n 3. If loop detected, identify cause:
> missing info, unknown prerequisite, or unexplored path.\n "

1,

"termination": [
1,
"\n You are a termination evaluator for a video game AI. Check if the agent has
< completed its subgoal.\n\n CURRENT STATE: {obs}\n SUBGOAL: {subgoal}\n
— SUCCESS CONDITION: {success_condition}\n RECENT ACTIONS:
< {action_sequence}\n\n Compare the current state with the success condition to

< determine if the subgoal is complete. Provide feedback to help the agent improve.\n"
1,
"summariser": [

1

"You are a critic analyzing an agent’s subgoal attempt by comparing it to similar past
attempts. Identify the key factors that caused success or failure by contrasting this
attempt with the most similar successful and failed attempts.\n\nSUBGOAL:
{subgoal}\nOUTCOME: {outcome}\nACTION HISTORY: {action_obs_seq}\nSUCCESSFUL ATTEMPTS:
{entries_successful_goal}\nFAILED ATTEMPTS: {entries_failed_goal}\n\nCompare the resources
used, quantities involved, and the sequence of actions in the current attempt to those in
the SUCCESSFUL ATTEMPTS and FAILED ATTEMPTS. What specific differences seem to have led to
the observed OUTCOME? If no resources were involved, what differences in action sequences
were crucial? Provide a concise explanation."

(T A

]
"explorer": [

1,

"\n Task: Create an exploration plan to help the agent discover new skills.\n\n

— Data:\n - Game info: {game_info}\n — Observation: {obs}\n — Subgoal

< summary: {summary}\n — Recent 16 action\u20l3observation pairs: {history}\n\n

<~ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a

<~ focused exploration plan with clear purpose, conditions, and indicators.\n\n "

1,
"sequential": [
0,
"You always have to output one of the above actions at a time and no other text. You always
< have to output an action until the episode terminates."
]
}
"fitness": 41.66666666666667,
"id": "08d71e90-74f1-4f22-al0a-£f438431£f93de",
"_std_error": 4.500514373894347

TextWorld Final Genom:

genome_basic = {

"id": "3",

"hierarchy": 0,

"amygdala": 0,

"loop_evaluator": O,

"explorer": 0,

"summariser": O,

"time_decay": [0, 0.01],

"cosine_cutoff": [0, 0.05],

"epsilon": [0, 0.01],

"temperature": 1.0,

"prompts": {
"high_level": [0, default_highlevel prompt],
"low_level": [0, default_lowlevel_prompt],
"amygdala": [0, default_amygdala_prompt],

"loop": [0, default_loop_prompt],
"termination": [0, default_termination_prompt],
"summariser": [0, default_summariser_prompt],
"explorer": [0, default_explorer_prompt],

"sequential": [1, default_sequential_prompt]

I
"fitness": 32.55

\. .

Crafter Final Genom

{
"hierarchy": 1,
"amygdala":
"loop_evaluator": 1,
"explorer": 1,
"summariser": 1,
"time_decay": [

1
0.01

1,
"cosine_cutoff": [

42

Under review as a conference paper at ICLR 2026

1
0
1,

0
1,

1

"

]

"

1

"

.05018667404330796

"epsilon": [
1

.08838153559623807

"temperature": 1.0550853142525738
"prompts": {
"high_level": [

1

"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze

the current game state and generate achievable subgoals that strategically advance toward

the main objective. Your analysis should now *predict* the outcome of possible action

sequences.\n\n CRITICAL CONSTRAINTS:\n

— Subgoals must be immediately achievable given the current agent state and capabilities\n
— Focus on the next logical progression steps, not distant

end-goals\n - Each subgoal should have clear, observable success
criteria\n - Subgoals should be novel and interesting, compared
to previous attempts \n\n Below I will provide the game
description, available actions, and current state information.\n
Game description:\n {game_info}\n
FREFEHFFHEFRER A A E IR R R R R\
CURRENT CONTEXT: \n\n - Game State: {obs} \n\n

— Survival plan provided by the survival planner, that you should consider for your
tasks: {survival_plan}\n — Here are most similar successful
entries from the archive: {entries_successful_goal} \n\n — Here

are most similar failed entries from the archive: {entries_failed_goal} \n\n
— Recent History (last 16 action-observation pairs): {history}\n
— Action-Observation Sequences of the most similar examples: {action_obs_seq}\n\n
ANALYSIS FRAPAPMEWORK:\n 1. Analyse the
summary from previous runs and let it guide your decision making. \n
2. Assess what is immediately possible given current agent state and environment\n
3. Based on the current Game State, recent history ({history}), and past
action-observation sequences ({action_obs_seq}), predict the xmost likely outcomex

(observation) of performing a few different possible action sequences. Consider at least 3
different potential action sequences.\n 4. Identify what kind of
actions could be considered novel or interesting\n 5. Identify
the most direct path toward the main objective, taking into account the predicted outcomes
of potential actions.\n 6. Select subgoals that form a logical
sequence\n 7. Ensure each subgoal can be verified through
observable game state changes\n\n SUBGOAL SELECTION CRITERIA:\n
- Feasible: Can be started immediately with current
resources/position\n - Measurable: Success/failure can be
determined from game observations\n — Progressive: Each subgoal
enables the next or advances toward main goal\n — Specific: Clear

enough for a lower-level agent to understand and execute\n -
Considerate of the summary of previous runs\n -
xOutcome-Based:+» The subgoal should lead to a *predicted outcomex that is advantageous for
achieving the main objective.\n\n Make sure that your subgoals
are sequential."

A 9

low_level": [
1
"You are an important executor component of a hierarchical video game system in a x*survival
crafting gamex*. You are given a high-level option (subgoal) and its termination condition
proposed by a higher-level planner. Your role is to propose an action that will make you
progress towards the given option, keeping in mind the core mechanics of survival crafting:
resource gathering, crafting, base building, and defending against threats. Below I will
provide you with the game description, possible actions you can take, and the overall goal
of the game.\n\n############H4#HE#E#HEHAEHEHEFREHHH R4 #4444 \nHere is a subgoal
provided by the high level planner that you should focus on completing: {subgoal}\n\nHere is
your current state: {obs}\n\nHere is the action-observation sequence towards current
subgoal: {action_sequence}\n\nHere are the most similar successful entries from the archive:
{entries_successful_goal}\n\nHere are the most similar failed entries from the archive:
{entries_failed_goal}\n\nHere is your survival plan: {survival_plan}\n\nHere is the history
of the last 16 action-observation pairs: {history}\n\nUse the action and observation
sequence together with the current state, your survival plan, and recent history to decide
the xxfull ordered sequence of actionsxx that will achieve the subgoal. Consider how your
actions contribute to the overall survival plan. Prioritize actions that contribute to the
core survival crafting goals of resource acquisition, building, crafting, and
defense.\n\nAvoid repeating the same actions if the observation doesn’t change. Ensure your
actions are consistent with the survival plan and adapt as needed based on the recent
history. If the {entries_successful_goal} indicates successful resource gathering or
crafting strategies, lean towards replicating those. If {entries_failed_goal} indicates
dangers, prioritize actions that increase safety. Consider the {obs} and choose actions
appropriate for a survival crafting environment."

(A AT

’
amygdala": [

0,

"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
<~ Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
< prerequisites.\n 2. If several match, pick highest priority.\n"

’

loop": [

1,

"You are an expert game designer reviewing the behavior of an agent in your game. Your goal is
< to identify and eliminate situations where the agent gets stuck in unproductive

<~ loops.\n\nYou will receive the following details about the agent’s current situation:\n\nx
<« xxCurrent Observation:xx {obs}\nx **xSubgoal:*x {subgoal}\nx* *xAction-Observation

43

Under review as a conference paper at ICLR 2026

History:xx {history}\nx «+xGame Informationxx: {game_info}\n\nInstructions:\n\nl.

*xAnalyze the Situation:x Carefully review the provided information. Do not make any
immediate judgments about the agent’s competence.\n\n2. «xIdentify the Loop (if any) :xx
Determine if the agent is repeating a sequence of actions without making meaningful progress
towards the subgoal. \"Meaningful progress\" includes getting closer to completing the
subgoal, discovering new and relevant information, or eliminating potential pathways.\n\n3.
xRoot Cause Analysis:+ If a loop is detected, analyze the underlying reasons. Is the loop
caused by a flaw in the game design, an unclear subgoal, a lack of necessary information
available to the agent, missing game mechanics, an impossible subgoal given the current
mechanics, or an unexplored path?\n\n4. x*Design Improvement Recommendations:x* Based on
your analysis, suggest specific changes to the game design to prevent the agent from getting
stuck in this loop in the future. Consider the following:\n\n * **Subgoal
Modification:x* Should the subgoal be rephrased, simplified, or broken down into smaller
steps? Is the success condition well-defined and easily achievable?\n * **xGame
Mechanics Adjustment:** Should new actions or mechanics be added to the game to allow the
agent to overcome the obstacle? Should existing mechanics be modified to be more intuitive

or less restrictive? Should the rewards be changed?\n * *xInformation Availability:**
Does the agent have access to all the information it needs to make informed decisions?
Should new information sources be added to the game?\n * **Survival Plan:xx Does the

survival plan influence this loop? Should it be altered to avoid this loop?\n\nYour
recommendation should be specific and actionable, detailing exactly what aspects of the game
design should be changed and why."

(A T T A

1

"termination": [
1,
" \n You are an important termination evaluator component of a
< hierarchical video game system. \n\n Your task is to: \n\n
— 1. Determine whether the agent has met the termination condition for a subgoal.
< \n\n 2. Provide a concise summary that will help guide the
<~ lower-level agent’s future actions. \n\n\n\n Details: \n\n
— Here is your currect state that you should compare with termination condition:
— {obs} \n\n Here is the subgoal lower level agent is working towards:
< {subgoal} \n\n Here is the termination condition of the above subgoal
< given by the higher level agent: {success_condition} \n \n\n\n
<— Instructions:\n\n Analyse the subgoal and its termination condition
< and decide if the subgoal is completed. \n\n Then use
< action-observation sequence: {action_sequence} to give a high level summary of current
< evaluation. This summary will later be passed to low level agent in order to improve its
— actions.\n Remember that your summary will be passed to low level
<> component in order to improve its actions. \n \n"

1,

"summariser": [

-

"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a survival game
environment where resources decay over time. Your task is to identify the **xsingle most
important factorsx that caused SUCCESS or FAILURE by x*comparing the current
action-observation sequence to similar successful and failed attempts.**\n\nInformation:\n-
Target subgoal: {subgoal}\n- Outcome of the action-observation sequence: {outcome}\n-
Action-observation history: {action_obs_seq}\n- Game context: {game_info}\n- Survival plan:
{survival_plan}\n- Similar successful attempts: {entries_successful_goal}\n- Similar failed
attempts: {entries_failed_goal}\n\nInstructions:\n- Analyze the current {action_obs_seq} in
the context of {entries_successful_goal} and {entries_failed_goal}. Focus on identifying key
differences in resource management, timing, and actions taken.\n- Consider the resources
available and their decay rates as indicated in {game_info}, paying close attention to how
resource states differ between the successful, failed, and current attempt *xat the moment
of subgoal completion or failurexx.\n- Identify the x*single most critical divergencex*x that
explains the outcome. This could be a specific resource that was more abundant (or less
abundant) in the successful attempt, a crucial action that was taken (or not taken), or a
timing difference that impacted resource availability.\n- Express the result in xxone short
sentence++ highlighting the comparative aspect. For example: \"Unlike successful attempts,
the agent failed to prioritize gathering berries before attempting to craft the tool,
leading to starvation.\" Or, \"The agent successfully gathered wood within the same
timeframe as past successful attempts, but, unlike those attempts, the observation sequence
shows the agent prioritized building a fire and not water collection which lead to
dehydration and subsequent death.\"\n- If resource decay is not the primary factor revealed
by the comparison, state the next most relevant factor based on the differences observed
between the current attempt and {entries_successful_goal} and {entries_failed_goal}, also
taking into account {survival_plan} and {obs}."

g A T

"explorer": [
0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
< Data:\n - Game info: {game_info}\n — Observation: {obs}\n — Subgoal
— summary: {summary}\n - Recent 16 action\u20l3observation pairs: {history}\n\n
— Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a

"

< focused exploration plan with clear purpose, conditions, and indicators.\n\n
1,
"sequential": [
0,
"You always have to output one of the above actions at a time and no other text. You always
< have to output an action until the episode terminates."
1
}
"fitness": 39.090909090909086,
"id": "97c9c973-9f66-4391-a4cl1-£8904921e95d",
"_std_error": 4.904037803367701

44

Under review as a conference paper at ICLR 2026

MiniHack 1 Genom

"hierarchy": 0,
"amygdala": O,
"loop_evaluator": 0,
"explorer": O,
"summariser": 0,
"time_decay": [

0,

0.01

1,
"cosine_cutoff": [

0,

0.05
1,

"epsilon": [

0,
0.01
1,

"temperature": 1.036744932065481
"prompts": {
"high_level": [
o,
"\nYou are a strategic planner for a video game AI. Analyze the current game state and create
< achievable subgoals that advance toward the main objective.\n\nREQUIREMENTS:\n- Subgoals
< must be immediately achievable with current capabilities\n- Focus on next logical steps, not
< distant goals\n- Each subgoal should have clear success criteria\n\nCURRENT STATE:
<> {obs}\nGAME INFO: {game_info}\n\nCreate a sequential plan with 2-3 subgoals."
1,
"low_level": [
0,
" You are an action executor in a video game AI system. Given a subgoal from the high-level
— planner, propose a sequence of actions to achieve it.\n
S FHEE R AR R R R R R R R R R CURRENT SUBGOAL: {subgoal}\n
— CURRENT STATE: {obs}\n PREVIOUS ACTIONS: {action_sequence}\n\n Plan the
< full sequence of actions needed to complete the subgoal. Avoid repeating actions if
— observations don’t change.\n Avoid extra commentary outside the REASONING and ACTIONS
<— list.\n "
1,
"amygdala": [
0,
"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
< Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
<> prerequisites.\n 2. If several match, pick highest priority.\n"
1,
"loop": [

0,

"\n Task: Decide if the agent is stuck in a loop.\n\n Loop = repeating actions
without meaningful progress toward the subgoal\n (progress = closer to goal, new
info, removing failed paths, or advancing game state).\n\n Data:\n -
Observation: {obs}\n — Subgoal: {subgoal}\n — Termination condition:
{success_condition}\n — Action\u20l13observation history: {history}\n\n
Steps:\n 1. Check if enough steps have been taken to allow exploration.\n Bo
Look for repeated patterns without progress.\n 3. If loop detected, identify cause:
missing info, unknown prerequisite, or unexplored path.\n "

EELLELS

1,

"termination": [
0,

"\n You are a termination evaluator for a video game AI. Check if the agent has

<~ completed its subgoal.\n\n CURRENT STATE: {obs}\n SUBGOAL: {subgoal}\n

— SUCCESS CONDITION: {success_condition}\n RECENT ACTIONS:

< {action_sequence}\n\n Compare the current state with the success condition to

— determine if the subgoal is complete. Provide feedback to help the agent improve.\n"

1,

"summariser": [
0,
"\n You are a critic analyzing an agent’s subgoal attempt. Identify the key factor that
< caused success or failure.\n\n SUBGOAL: {subgoal}\n OUTCOME: {outcome}\n
<> ACTION HISTORY: {action_obs_seq}\n\n Focus on specific resources and quantities that

<~ mattered most. If no resources involved, identify the next most important factor.\n "

1,

"explorer": [
0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
< Data:\n - Game info: {game_info}\n — Observation: {obs}\n — Subgoal
< summary: {summary}\n - Recent 16 action\u20l3observation pairs: {history}\n\n
< Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a

"

< focused exploration plan with clear purpose, conditions, and indicators.\n\n
1,

"sequential": [

1,

"As an AI survival agent operating within a dynamic resource-scarce environment, your
objective is to maximize long-term survivability. Prioritize actions that maintain vital
resource levels while mitigating immediate threats. Given your current observation ({obs}),
game information ({game_info}) including potential actions, and the history of your past 16
action-observation pairs ({history}), evaluate the following:\n\nl. xxResource
Assessment:x*x Determine current levels of critical resources (e.g., health, energy, food,

EELLS

45

Under review as a conference paper at ICLR 2026

water) as reflected in {obs}. Identify actions within {game_info} that deplete or replenish
these resources. Consider the ‘survival_plan‘' for guidance on sustainable resource
management.\n2. xThreat Analysis:** Identify immediate dangers based on {obs}. Prioritize
actions that avoid or neutralize these threats, considering the action-observation sequence
towards the current subgoal (‘{action_obs_seq}').\n3. #xGoal Alignment:** Assess how each
possible action aligns with your current subgoal ({subgoal}) and overarching survival plan
(Y{survival_plan}‘). Use ‘{entries_successful_goal}' and ‘{entries_failed_goal}' to learn
from past attempts to achieve similar subgoals.\n4. *+Predictive Risk Mitigation:xx
Evaluate the potential for each action to lead to a critical failure within the next few
steps. Prioritize actions that maintain options and avoid irreversible negative consequences
based on your history (‘{history}‘). The ‘success_condition' should also be
considered.\n\nSelect the single most optimal action from {game_info} that balances resource
acquisition/conservation, threat mitigation, goal progression, and predictive risk
mitigation. Justify your selection briefly based on the above analysis.\n\nOutput format:
ACTION: [selected action] | RATIONALE: [brief justification]\n\nYou must provide an output
in this format at each step until the episode terminates. Do not output any other text. If
no immediately safe or advantageous action is available, select the least detrimental action
while adjusting your ‘survival_plan‘' accordingly."

FELLLEEEEEOLLREEELELRD

]
}
"fitness": 22.5,
"id"™: "d1914812-4881-4b8e-85f6-eed7cccedfdi",
"_std_error": 6.602556323122129

NetHack Final Genom

{

"hierarchy": 1,
"amygdala": O,
"loop_evaluator": 1,
"explorer": O,
"summariser": 1,
"time_decay": [

1

0.004870010771374662
1,
"cosine_cutoff": [
1
0.01
1,
"epsilon": [
0,
0.01
1,
"temperature": 1.0,
"prompts": {
"high_level": [
1
"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
the current game state and generate achievable subgoals that strategically advance toward

the main objective.\n\n CRITICAL CONSTRAINTS:\n
— Subgoals must be immediately achievable given the current agent state and
capabilities\n — Focus on the next logical progression steps, not
distant end-goals\n — Each subgoal should have clear, observable
success criteria\n — Subgoals should be novel and interesting,
compared to previous attempts\n — xxSubgoals should consider
resource acquisition and conservation. Avoid actions that waste valuable resources unless
absolutely necessary for survival or progression.**\n\n Below I
will provide the game description, available actions, and current state information.\n
Game description:\n {game_info}\n
FhEFEE R R AR R R R R R R R R R R\
CURRENT CONTEXT: \n\n - Game State: {obs} \n\n
- Survival plan provided by the survival planner, that you should
consider for your tasks: {survival_plan}\n - Here are most

similar successful entries from the archive: {entries_successful_goal} \n\n
- Here are most similar failed entries from the archive: {entries_failed_goal}
\n\n\n ANALYSIS FRAPAPMEWORK:\n 1,
Analyse the summary from previous runs and let it guide your decision making. \n
2. Assess what is immediately possible given current agent state and

environment\n 3. Identify what kind of actions could be
considered novel or interesting\n 4. Identify the most direct
path toward the main objective\n 5. Select subgoals that form a
logical sequence\n 6. Ensure each subgoal can be verified through
observable game state changes\n\n SUBGOAL SELECTION CRITERIA:\n

- Feasible: Can be started immediately with current
resources/position\n - Measurable: Success/failure can be
determined from game observations\n — Progressive: Each subgoal
enables the next or advances toward main goal\n - Specific: Clear
enough for a lower-level agent to understand and execute\n =
Considerate of the summary of previos runs\n\n Make sure that

A

your subgoals are sequential."

"low_level": [

46

Under review as a conference paper at ICLR 2026

"You are an important executor component of a hierarchical video game system. You are given
one of higher level option and its termination condition proposed by the higher level
planner. Your role is to propose a sequence of actions that will make you progress towards
the given option.\" Below I will provide you with the game
description, possible actions you can take and the overall goal of the game.\n\n
FhEFH R R R R \n
Here is a subgoal provided by the high level planner that you should focus on completing:
{subgoal} \n\n Here is your current state: {obs} \n\n
Here is the action-observation sequence towards current subgoal:
{action_sequence} \n\n Here are the most similar successful
entries from the archive: {entries_successful_goal} \n\n Here are
the most similar failed entries from the archive: {entries_failed_goal} \n\n
Use the action and observation sequence together with the current state to decide
the xxfull ordered sequence of actionsx* that will achieve the subgoal. \n\n
Avoid repeating the same actions if the observation doesn’t change. \n"

ELLEEENEBOLLLS

]
"amygdala": [

’
D\® Decide if survival mode should activate.\n\n Observation: {obs}\n
<~ Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
<~ prerequisites.\n 2. If several match, pick highest priority.\n"
1,
"loop": [
1,
"You are a Senior Game AI Debugging Specialist, tasked with analyzing the behavior of an agent
< in a hierarchical video game system. Your primary goal is to determine if the agent’s
< current behavior constitutes a genuine \"stuck\" state, which requires
< intervention.\n\nConsider the following details about the agent’s progress:\n\nx *xCurrent

<> Observation:** {obs}\nx* +xCurrent Subgoal:xx {subgoal}\n=* **Success Condition:*x
< {success_condition}\n«* +*Action-Observation History:+x {history}\n= **Game
< Information:xx {game_info}\nx* **Survival Plan:** {survival_plan}\n\nCritically evaluate

— the agent’s actions, considering the following factors specific to Game AI:\n\nl.
< xxInformation Gain vs. Redundancy:** Is the agent genuinely gathering xnewx and xrelevantx
< information? Merely observing a change in the environment after an action doesn’t
< necessarily indicate progress. Determine if the information gained helps reduce uncertainty
< related to achieving the current subgoal or aligns with the overall game objective, given by
<— ‘survival_plan‘.\n2. «xExploration Strategy:*x Is the agent’s exploration strategy
— sufficient to overcome potential local minima or deceptive landscapes? Many \"stuck\"
<~ situations arise from poor exploration. Consider if the agent’s ‘action_sequence' explores
< diverse enough actions, or if it is repeating the same action variations in a small
< area.\n3. *xWorld Model Limitations:xx Assess whether the agent’s internal model of the
< game world (implied by its actions and reactions in ‘action_obs_seq' and ‘history‘) is
< incomplete or inaccurate. Is it missing key information about the game mechanics, object
< interactions, or environmental dynamics? If so, suggest avenues for improving the world
— model, such as targeted exploration or observation of specific events.\n4. xxLeverage
< entries_successful_goal and entries_failed_goal:x* Look into similar subgoals in the past to
<+ help you understand how the agent behaved then and compare that with the current
<~ behavior.\n\nxxYour Task:++\n\nBased on the provided details and your expertise in Game AI,
< determine if the agent is genuinely stuck, meaning it’s unlikely to achieve its subgoal
< without external intervention. Focus on xwhyx the agent is stuck. Specifically, is the
— agent’s failure due to:\n\nx A lack of crucial information that could be obtained through
— more effective exploration?\nx An inaccurate or incomplete world model preventing it from
— making informed decisions?\nx A fundamental flaw in its action selection
— strategy?\n\nProvide a concise justification for your conclusion, outlining the specific
< factors that support your assessment. Prioritize identifying concrete steps the agent could
— take to overcome the \"stuck\" state, considering the limited information it may possess.
< Avoid vague statements and focus on actionable recommendations rooted in Game AI best
— practices."

1,

"termination": [
1,
"You are an important termination evaluator component of a hierarchical video game system,
<~ functioning as a specialized AI reinforcement learning analyst.\n\nYour task is to:\n\nl.
<~ Determine whether the agent has met the termination condition for a subgoal.\n\n2. Provide a
< concise summary that will help guide the lower-level agent’s future actions, specifically
<+ addressing potential issues related to reinforcement learning
<~ strategies.\n\nDetails:\n\nHere is your current state that you should compare with the
< termination condition: {obs}\n\nHere is the subgoal the lower-level agent is working
— towards: {subgoal}\n\nHere is the termination condition of the above subgoal given by the
< higher-level agent: {success_condition}\n\nInstructions:\n\nAnalyze the subgoal and its
< termination condition and decide if the subgoal is completed. Then, using the
< action-observation sequence: {action_obs_seq}, provide a high-level summary of your current
— evaluation.\n\nIn your summary, consider the following reinforcement learning concepts:\n\nx
— xxExploration vs. Exploitation:xx Is the agent adequately exploring the environment, or is
< it prematurely exploiting a sub-optimal strategy? If the agent has been repeating the same
< actions in similar states (as observed in {history}) without success, encourage more
— exploration.\n\nx xxReward Shaping:* Consider how the higher-level agent’s reward
< structure (implicit or explicit) might be influencing the agent’s behavior. Is the agent
<~ being incentivized towards unintended consequences?\n\n* *xLocal Optima:** Is the agent
< potentially stuck in a local optimum? Compare the current situation with
< {entries_failed_goal} to identify if similar action sequences have previously led to
<~ failure. If so, suggest a drastic change in strategy.\n\n* **Credit Assignment:x* How can
< the agent better understand which actions are contributing to success or failure? Suggest
< focusing on the most recent actions, especially in light of {observation_sequence}.\n\nIf
< the agent has failed similar subgoals in the past, provide an alternative approach based on
< {entries_successful_goal}. Highlight alternative actions it can take in a similar
< situation.\n\nRemember that your summary will be passed to the low-level component to
< improve its actions. It should be actionable and specific. It should be in simple language
< for the low-level agent to understand and must contain suggestions to avoid common RL

47

Under review as a conference paper at ICLR 2026

< pitfalls based on the information provided. The survival plan is {survival_plan} for high

<~ level goals."
1,
"summariser": [

1

"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game
environment, considering the agent’s survival plan.\n\nYour task is to identify the xxsingle
most important factors+ that caused SUCCESS or FAILURE, given the broader context of
survival.\n\nInformation:\n- Target subgoal: {subgoal}\n- Outcome of the action-observation
sequence: {outcome}\n- Action-observation history: {action_obs_seq}\n- Game context:
{game_info}\n- Agent’s Survival Plan: {survival_plan}\n- Success Condition:
{success_condition}\n\nInstructions:\n- First, read the survival plan and understand the key
threats and resource priorities.\n- Then, analyze the action-observation sequence in the
context of the target subgoal and survival plan.\n- Focus on xxspecific resources and their
quantitiesx* that were critical according to the survival plan. Consider if failing to meet
{success_condition} resulted from a resource shortfall, specifically referencing the
quantities mentioned in the action-observation history.\n- How did the agent’s actions
either help or hinder the broader survival strategy defined in {survival_plan}?\n- If
resources were missing that were crucial to survival, state xxexactly which resources and
how many** were missing and how it violated the survival plan.\n- If no resources are the
primary issue, state the next most relevant factor that impacted both the subgoal and
survival chance.\n- Express the result in x+one short sentencex* highlighting the connection
to {survival_plan}."

FELLEEERRRNLLEEEL g8

"explorer": [
0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
< Data:\n - Game info: {game_info}\n — Observation: {obs}\n - Subgoal
< summary: {summary}\n — Recent 16 action\u20l3observation pairs: {history}\n\n
<~ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
< focused exploration plan with clear purpose, conditions, and indicators.\n\n "
1,
"sequential": [
0,
"You always have to output one of the above actions at a time and no other text. You always
< have to output an action until the episode terminates."
]
}
"fitness": 0.852770822245459¢6,
"id": "aaac4dfb-4a3c-4090-a8bc-5f9265d65eda",
"_std_error": 0.4739428639198163

48

	Introduction
	Related work
	TAME Framework
	Notation and Functional Inputs
	Game Adaptation
	Modular blueprints
	Hierarchical planning

	Long-term memory
	Skill-Specific Modules

	Empirical Evaluation
	TAME Results
	Transferability of TAME structures
	Ablation: memory types

	Discussion and conclusion
	LLM usage declaration
	BALROG Game Details
	Hyperparameters selected
	BALROG baseline configurations
	Testing the retrieval mechanism long-term memory system
	Testing memory retrieval prompts
	Iron Sword Goal Prompt
	Injected memories

	Additional long-term memory retrieval experiments
	Episode 1
	Episode 2
	Episode 3
	Episode 4

	examples of modules outputs
	Amygdala
	Explorer

	Detailed genetic algorithm
	Genetic operations
	Population management
	Genetic Approach: Pseudo Code

	Modules activated
	Task performance
	Genome Transferability to other Gemini models
	TAME child evaluation Pseudo code
	Detailed memory ablations
	Initial Population Scores
	LLM Mutation and Crossover prompts
	Initial Population Genomes
	Prompts proposed by Sonnet-4
	Initial population

	Final genomes returned by TAME

