Under review as a conference paper at ICLR 2026

TAME THE BALROG:
TASK-ADAPTIVE MODULAR EMERGENCE FRAME-
WORK FOR GAME AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interactive games have proven to be key benchmarks for advancing Artificial In-
telligence (AI), requiring capabilities like long-term planning, exploration, and
adaptation to stochastic environments. While Large Language Models (LLMs)
have achieved notable results across many domains, they struggle in complex
gaming environments like those in the BALROG benchmark. The absence of
adaptive frameworks that can dynamically configure themselves based on environ-
mental characteristics, limits the progress of Al in games. To this end, we intro-
duce the Task-Adaptive Modular Emergence (TAME) framework, which employs
genetic algorithms to evolve environment-specific structures from modular com-
ponents, enabling significant performance improvements of LLMs across diverse
domains. TAME discovers high-performing configurations by selecting between
baseline and hierarchical structures, selectively incorporating specialised mod-
ules, and fine-tuning each component through systematic mutations. Evaluating
TAME across the BALROG benchmark, TAME discovers high-performing archi-
tectures that deliver substantial gains: Gemini-2.0-Flash improves from 27.16%
to 35.05%, while GPT4.1-nano rises from 9.91% to 17.20%. Moreover, these
structures demonstrate good transferability for larger models of the same family.
Transfering these architectures to Gemini-2.5-Pro, we achieve new state-of-art
performance on BALROG.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable growth across a wide range of tasks,
from general language understanding (Hendrycks et al., [2020) and code generation (Wang et al.,
2024a; |Pan et al., 2025; |Hong et al.l [2024), to recent breakthroughs including mastering the ARC
reasoning benchmark (Chollet, 2024; |Chollet et al.l 2024) and performing at gold-medal level on
International Mathematical Olympiad (Chervonyi et al.| 2025). However, these models struggle
significantly in interactive decision-making environments that require sequential actions, state
awareness, and long-term planning (Liu et al., 2024} Klissarov et al., [2025)).

Interactive games have historically served as major testbeds for artificial intelligence, with examples
including Atari (Mnih et al., [2013)), Starcraft (Team, 2019)), or GrantTurismo (Leon et al., [2024)).
Those successes predominantly emerged from reinforcement learning (RL) approaches specifically
engineered for each domain, often requiring millions of training episodes and domain-specific
reward shaping. While LL.Ms hold considerable promise on the possibility of zero-shot generalisa-
tion across games through their vast pretraining experience, e.g., game wikis, strategy guides, and
gameplay discussions, they fail to translate this latent knowledge effectively. This performance gap
is clearly illustrated in the BALROG benchmark (Paglieri et al., 2025), a suite of diverse games
traditionally employed in RL research, where even state-of-the-art LLMs achieve only partial
success in the simpler games and barely progress with more challenging ones.

Notably, agentic frameworks have emerged as a dominant approach to enhancing LLM capabilities
in other complex domains, including software development (Yang et al.l [2024; [Hong et al., 2024;
Pan et al.| [2025) or scientific research (Bran et al.l 2023} Wang et al., [2024a; |Lu et al., [2024).
There are also recurrent efforts to improve long-term memory management in agentic frameworks,

Under review as a conference paper at ICLR 2026

with solutions that prioritise either speed and cost efficiency, such as Jarvis-1 (Wang et al., 2024b),
or performance, such as A-mem (Xu et al., 2025). Yet, despite presenting similar challenges, no
agentic framework has been applied to games, which requires to handle challenges such as partially
observability or exploration that are not as critical in most math or coding applications.

TAME
GENETIC ALGORITHM

G8
50

L 2 RO« gf ﬁg_,
SCORES
GAME LOOP g& Rl ST

SELECTION & CROSS
» BREEDING

GAME A

u

\ Ve FINAL el
GENOME TAME READY!
& § Kot
7 ‘% ;?
[START)
Po LOOP DETECTOR

HIERARCHICAL

[AMYGDALA ARCHITECTURE

EXPLORER cgiTic LONG-TERM MEMORY

POOL OF MODULES

Figure 1: TAME evolutionary framework overview. TAME runs a genetic algorithm to generate a
population of genomes representing different module combinations, hyperparameters, and prompts,
tune them through a series of genetic operation, and selects the genome achieving the highest score.
Icons were generated with Google Gemini Pro 2.5, 2025.

To address this gap, we introduce the TAME (Task-Adaptive Modular Emergence) framework, a
genetic framework for LLMs to evolve agent architectures for diverse games. TAME consists of a
series of handcrafted game skill modules that enable different capabilities that might be relevant in
games, e.g., hierarchical planning, memory. However, unlike in other domains, games can encode
very diverse dynamics, e.g., Nethack is a game where exploration, long-term planning and memory
are of paramount importance, while none of those skills help in a game like TextWorld. Thus,
TAME undergoes an evolutionary process, iteratively exploring the best configuration for a specific
game. Figure [I]illustrates this process. Each candidate structure is encoded through a vector that
represents which modules are activated, along with the hyperparameters and the prompt discovered
for this candidate. Through successive generations, TAME employs mutation and cross-over
operations on the genomes of the selected candidates to discover increasingly effective structures,
hyperparameters, prompts and inputs, balancing performance and diversity in their selection.

We validate TAME through extensive experiments on the BALROG benchmark. We find that
TAME-discovered configurations achieve relative score improvement of 29% and 74% compared
to the baseline LLM performance, Gemini Flash 2.0 and GPT-4.1-nano, respectively. Moreover, we
show that architectures discovered by TAME exhibit strong transferability across the same family
of models: genomes evolved using Gemini-2.0-Flash directly enhance the performance of Gemini-
2.5-Flash-Lite and Gemini 2.5-Pro without additional adaptation, and same pattern repeats on the
GPT models. In the case of Gemini-2.5-Pro, we achieve new state-of-the-art results on BALROG.

Thus, our contributions can be summarised as follows: (1) We introduce TAME, the first emergent
game-agentic framework that enables LLMs to evolve modular structures tailored to gaming
environments and achieve state-of-the-art performance in the BALROG benchmark; (2) We present
a genetic approach key for the functioning of this framework, introducing a set of modules for
general gaming capabilities and a genome that captures modules, hyperparameters and prompts
enabling TAME to adapt the agent to the game with a low evolutionary budget (4 generations and 5
children); (3) We demonstrate that TAME can be used to find effective agentic configurations with
smaller models that directly transfer and improve the performance of larger and reasoning models
of the same family; (4) We propose a novel and effective long-term memory system that combines
embedding-based retrieval with LLM-augmented semantic memory matching the performance of
state-of-the-art memory methods requiring three times less LLM calls.

2 RELATED WORK

Prompting and Memory. Hallucinations remain a key challenge for LLMs (Kalai et al., |2025),
which can be mitigated through prompting techniques like chain-of-thought (Wei et al., 2022) and

Under review as a conference paper at ICLR 2026

step-by-step reasoning. Limited context windows (Brown et al., 2020) is another limitation, driv-
ing development of memory systems. Retrieval-Augmented Generation (RAG) (Lewis et al., [2021]))
combines LLMs with external document retrieval to reduce hallucinations without retraining. HiA-
gent (Hu et al.| 2024a) manages hierarchical memory using subgoals, dividing into “working mem-
ory” and “cross-trial memory” with LLM-based observation summarisation, while |Park et al.|(2023)
balance memory retrieval using recency, importance, and relevance scores. Jarvisl (Wang et al.|
2024b) stores task names, plans, and observation sequences using embedding (CLIP) for encod-
ing and retrieval. A-mem (Xu et al., [2025)) introduces structured memory notes with timestamps,
keywords, and embeddings, establishing inter-memory connections through LLM calls.

LLMs as hierarchical planners. In TWOSOME (Tan et al., 2024), LLMs score actions based on
observations, allowing RL agents to leverage world knowledge for improved decisions. MaestroMo-
tif (Klissarov et al.,2024) uses LLMs to generate reward functions for skills, while LLM-Augmented
Hierarchical Agents (Prakash et al 2023) use LLMs to inject commonsense priors for more effi-
cient policy learning. Jarvisl (Wang et al.,2024b), consists of planner and controller, enhanced by
multimodal memory system. An important limitation of Jarvis-1 is the necessity of human-crafted
goals based on specific skills, limiting its application in games with emerging tasks.

Agentic frameworks. Agentic frameworks are systems that enable Large Language Models to
act as autonomous agents capable of reasoning, planning, and interacting with external tools and
environments. Recent work, such as AGENTBREEDER Rosser & Foerster| (2025), shows that
optimising frameworks provides superior multi-agent performance on reasoning, mathematics, and
safety benchmarks. Moreover, multiple works show improvements in scientific discovery (Lu et al.,
2024) and software development (Yang et al., [2024) through these structured frameworks. Related
research like AFLOW (Zhang et al.,|2024) and ADAS (Hu et al.l 2024b) focus on optimising agent
workflows, i.e. the sequential flow and coordination of processing steps. Other frameworks (Yuan
et al.l 2024} Zhang et al., |2025) use evolutionary search to construct multi-agent systems, where
multiple distinct agents are coordinated with specialised roles. Different from these works, we
present a single-agent system operating on a fixed workflow architecture and evolves the internal
implementations. Closer to our work, AgentSquare (Shang et al., |2024) proposes a single-agent
framework but with several key shortcomings over our approach when applied to games. Unlike
AgentSquare, which relies on manual tool definitions and a restricted module set, TAME does not
require additional user input to adapt to different games. TAME also expands the search space to
include critical gaming skills—such as exploration, loop detection, and survival (see Figure[I5) and
introduces a novel, more effective long-term memory system.

Evolutionary Strategies. = While earlier work in Evolutionary Hyperparameter Optimization
(EHO) focused on optimising over numerical hyperparameters |Vincent & Jidesh| (2023)) and neu-
ral network topologies [Lu et al.| (2019); |Stanley et al.| (2019)), recent literature has also explored
combining LLMs and evolutionary frameworks. Genetic algorithms are a common choice due
to easy parallelisation across hardware (Ma et al., 2024} |[Rosser & Foerster, [2025; Sarkar et al.,
2025)).(Lehman et al.| [2022) propose “evolution through large models” using LLMs as evolutionary
operators. EvoPrompt (Guo et al., [2025) employs LLMs for crossover and mutation in genetic algo-
rithms to discover diverse prompts, while Rainbow Teaming (Samvelyan et al. [2024) mutates ad-
versarial prompts to populate MAP-Elites archives systematically. DOMiNO (Zahavy et al., [2022)
balances quality-diversity trade-offs using Lagrange multipliers. Eureka (Ma et al., [2024) shows
evolutionary optimisation over reward code benefits from human initialisation.

Options. We propose a hierarchical structure for decision-making, a method common in robotics
(Wohlke et al.| [2021)), autonomous driving (Duan et al., [2020), and games (Lin et al., 2021). Fol-
lowing the Options Framework (Sutton et al.,|1999), we use the term options to denote manageable
subtasks that decompose the main objective.

3 TAME FRAMEWORK

We introduce TAME (Task-Adaptive Modular Emergence framework), a novel agentic framework
designed for dynamic LLM adaptation across diverse gaming environments. Inspired by Eureka
(Ma et al., 2024), which shows that human priors significantly improve LLM-based evolutionary
optimisation performance, TAME begins with an initial population Py comprising diverse modular
structure configurations, each encoding different combinations of human-crafted modules and hy-

Under review as a conference paper at ICLR 2026

perparameters. The framework’s modular architecture consists of six core components illustrated
in Figure [2} hierarchical goal decomposition (comprising a Meta-Controller, Low-Level Executor,
and Completion Validator), Long-Term Memory, Critic, Loop Detector, Amygdala, and Explorer.
TAME’s evolutionary process operates iteratively: in each generation, the framework evaluates all
new members p € P; on the target game and selects candidates for the next generation based on
two criteria: (1) the top IV performers by absolute score, and (2) M additional diverse solutions that
achieve at least a fraction « of the best performer’s score. This dual selection strategy balances ex-
ploitation of successful structures with exploration of the relevant solution space. Each candidate’s
genome is represented as a vector encoding active modules, hyperparameters (e.g., memory decay
rates, exploration-exploitation trade-offs), and module-specific prompts. After every iteration of
TAME, the genomes of the selected candidates undergo mutation and crossover operations to gen-
erate the new members of the subsequent population P; ;. Through successive generations, TAME
discovers increasingly effective structures tailored to each game’s requirements. The remaining of
this section details the genetic algorithm and the design and functionality of each modular compo-
nent in TAME.

IF TRUE

4
META- gCA'T"II;NS COMPLETION LONG-TERM
CONTROLLER GAME LOW-LEVEL VALIDATOR MEMORY
OPTIONS COMPLETE?
EXECUTOR
EXPLORATION |FFALSE
INCENTIVES \FFALSE
EXPLORER SN\ Py Q]
A]
AMYGDALA oo
CRITIC
DANGER? DETECTOR

IF TRUE

Figure 2: Fully enabled TAME modular architecture: an epsilon-greedy mechanism selects between
Meta-controller (providing options toward game objectives) and Explorer (options towards explor-
ing the environment). Low-level Executor proposes actions, while Amygdala checks for danger
and prioritises survival. Completion Validator checks option completion while the Loop Detector
identifies stuck states, and the Critic summarises key actions that led to the outcome of the option.
Long-term memory saves successful and failed trajectories and adds them to LLM context.

3.1 NOTATION AND FUNCTIONAL INPUTS

LetG = {g1,...,gn} the set of decomposed options towards the game objective, A the action space,
O the observation space, S the state space, H the set of option summaries, and 7, space of natural
text. Each state s; € .S at time ¢ is defined as:

+
St = (0t7 I, hi 1,97, Mz s Frecent, Fi, Fi,act>Fi,obs)

where 0, € O is the current agent’s observation and I provides game context (objective and available
actions), h;_1 € H summarises the previous option’s outcome, g; € G is the active option with
termination condition 7;, M Z-i contains the top successful ks, and failed k44, options. Frecent Stores
the last m action-observation pairs, while F;, I} 4ctions, and F; ;s maintain action-observation,
action-only, and observation-only trajectories for the current option respectively.

Each component within s; can serve as a functional input to any module within the framework.
Through early experimentation we noted that the selection of appropriate functional inputs has a
significant impact on performance, and it is up to the evolutionary process to find the most appro-
priate inputs for each module. For the initial population generation, we hand-crafted inputs that we
consider most relevant for each module, providing the genetic algorithm with informative human
priors. This is further detailed in Section[3.2]

3.2 GAME ADAPTATION

Given the diverse dynamics and requirements across different gaming environments, we propose
a genetic optimisation approach that automatically explores diverse agentic architectures to adapt

Under review as a conference paper at ICLR 2026

the underlying LLM to the specific game characteristics. To that end, we first encode the agentic
structure descriptors into genomes. Each genome is constructed from three core components:

* Modules: TAME modules (See Section [3.3) are parametrised as a set of binary values.
Such values indicate if a module is active (1) or not (0). The set of modules include:
Hierarchy (enables or disables hierarchical goal decomposition, includes Meta-controller,
Low-level executor and Completion Validator), Long-Term Memory (stores past experi-
ences), Critic (summarises key actions toward the current option), Amygdala (activates
survival mode), Loop Detector (detects looping behaviour), Explorer (controls exploration
strategies).

* Hyperparameters: A set of continuous values encoding: Long-Term Memory Time De-
cay Factor)\, which sets the option priority decay rate; Long-Term Memory Similarity
Threshold T.,s, which specifies the cosine similarity cutoff for storing memories; Explo-
ration Parameter e, which controls the epsilon-greedy exploration; and Language Model
Temperature.

* Prompts: The last component of the genome includes the prompts used by the modules of
the agentic structure.

For any game G the initial population Py consists of four predefined genomes:

7)0 = {gBaseline7 BHierarchical[Hand-Crafted] ; 8Full[Claude] s gFull[Hand—Crafted]}

Where gpaseline 1S genome corresponding to a baseline structure (no modules activated) with
a single prompt as in [Pagliert et al| (2025) (BALROG). gHicrarchical[Hand-Crafted] COrresponds to
TAME[Hierarchical+Long-Term Memory], a genome with the hierarchical and long-term mem-
ory modules activated. grunjclaude] - refers to a genome with all the modules activated that employs
prompts proposed by Claude-Sonnet-4. Finally, gruiifHand-Crafied) 18 also a genome with all the mod-
ules active, but with our own engineered prompts. See Appendix [Qfor full detail.

Genetic Operations. Given the distinct nature of the components within the genome (i.e., binary or
continuous values, or prompts) TAME employs distinct crossover and mutation strategies depending
on the type of variable or representation that is handled. For binary variables, we use a parent-based
probabilistic flipping mechanism that incorporates an inheritance bias. Continuous variables are
handled through Gaussian perturbation for mutation and linear interpolation for crossover. Finally,
for prompt optimisation, we adopt the EvoPrompt methodology by |Guo et al.|(2025), which enables
crossover and mutation tailored to LLM-based prompts (availabe in Appendix [P).

Genome Evaluation. Each genome is evaluated using the average game progression across 7,
episodes as a fitness function. Moreover, we embed the genome representation and calculate the
minimum distance to genomes already existing in the population as a score of diversity, alowing for
keeping population of best scoring and most diverse genomes.

Genetic Algorithm. Our genetic algorithm iterates through four steps: 1) Parent Population Se-
lection: TAME chooses parents based on roulette wheel selection (a probabilistic parent-picking
method where each individual’s chance of being chosen is proportional to its fitness score) 2) Re-
production: Parents for reproduction are chosen from parent population with psingie and 1 — pgingie
referring to the probability of single-parent or two-parent, respectively. Genetic operations are ap-
plied, represented by mutation+crossover or mutation alone (based on the number of parents) 3)
Fitness Evaluation: calculates genome’s performance score and diversity based on average game
progression and embeded genome representation, respectively. 4) Population Pruning: the popula-
tion is trimmed to maintain a maximum of N + M individuals — N highest-performing plus M
most diverse genomes (subject to achieving a factor « of the performance of the best genome within
the population). Most diverse genomes are those with largest minimum distance of their embedding
with respect to the already existing embeddings in the population. For comprehensive information
on the genetic algorithm, refer to the appendices: Appendix [H|provides further detail and discussion,
while Appendix and Appendix [D]contain the pseudocode and hyperparameters, respectively.

3.3 MODULAR BLUEPRINTS

As anticipated through Section [3] inspired by how Eureka improved its ability to find better reward
functions by starting from a human-crafted set of prior, TAME incorporates a set of human-crafted

Under review as a conference paper at ICLR 2026

modules that target essential capabilities for agents in interactive games. The remaining of this
section details such components. We remind the reader than sI"¢, sl¢ ¢V s¢ s¢ s¢ st used in

sections below, represent subsets of s; selected by the genetic algorithm for corresponding modules.

3.3.1 HIERARCHICAL PLANNING

The hierarchical module consists of three main components illustrated in Figure [2} Meta-Controller
suggests sequence of options, Low-Level Executor performs a sequence of actions towards each
option, and Completion Validator judges if an option has been completed successfully or failed.

Meta-Controller. The Meta-Controller decomposes the game objective into a more manageable
sequence of options. Specifically, it implements mpgn : S — G, mapping the current state to an
ordered sequence of options:

9 = Thign(s;"®) = LLMprompty,; ., (s"°) = (g1, g2, - - -) (1

Each option g; consists of the fields: name, description, prerequisites, success conditions, penalty
component, progress indicators, estimated priority.

Low-level Executor. This system implements 7y : S — A, producing an action sequence based
on the current state information provided s!¢:

a = Tiow(sk) = LLMprompt,,, (i) = (a1, ag, . ..) 2)
where the length of the sequence is decided by the Low-level Executor.

Completion Validator. The Completion Validator implements the binary classifier ¢ : S —
{0, 1}, determining whether an option has been completed:

Ci = ¢(s¢") = LLMprompt,(s{") € {0,1}. @)

Here C; = 1 indicates successful termination. For details on the hand-crafted LLM prompts used as
initial seeds we refer the reader to Appendix [Q]

3.4 LONG-TERM MEMORY

TAME implements a novel memory system that seeks to leverage the cost and speed efficiency of
embedding-based systems like Jarvis-1 (Wang et al.| |2023) while achieving a performance closer to
more complex systems like A-mem (Xu et al.|[2025). To that end, our system adopts Jarvis-1’s stor-
age framework, maintaining option information including name, description, prerequisites, success
conditions, progress indicators, penalty components, and observation sequences. We extend this
with two key additions: (1) Critic llm-generated summaries highlighting key success/failure actions,
and (2) success/failure classification labels obtained from Completion Validator. This enhancement
provides actionable guidance for future tasks requiring a single LLM call while avoiding A-mem’s
computational overhead of three LLM calls for memory and link creations, and evolutions. We now
provide further detail of how TAME’s long-term memory works:

Critic. The Critic module is a function p : S x {0,1} — 7, mapping the state and recent option
outcome from Completion Validator to text:

h; = p(s{,C;) = LLMprompt,,(sy) “4)
where the text aims to summarise the key factor that led to the success or failure of the option.

Creation of the memory. Each memory entry is defined as:
Mi - {gi»Cz‘»O, h’L} (5)

where g; is the option, C; € {0, 1} is the output of the Completion Validator, o is the observation
sequence towards current option, and h; is the option summary from the Critic. Then, the mem-
ory structure is implemented as follows: each memory entry is stored as a vector embedding of
the above, enabling efficient similarity-based retrieval. The embedding function ¢ transforms each
entry:

e; = ¢(M;) € R* (©)

Under review as a conference paper at ICLR 2026

Similarity-Based Filtering. Following the “importance” scoring approach from the generative
agents framework (Park et al., 2023)), we prevent storage of repetitive experiences. A new memory
M eq 18 stored only if:

€new * €
max ——————— < 1—7, @
M;eM HenewH : HeTH -

where 7., is a set constant. This method effectively filters out frequently repeated actions (e.g.,
“chop wood” in Crafter) that provide limited learning value.

Long-Term Memory Retrieval Mechanism. In order to address the limited context window size,
we only extract Ksycc + K rqq best scoring memories at each option execution. Inspired by Retrieval-
Augmented Generation (RAG) (Lewis et al., 2021), we enable access to past experiences through
the following steps:

* Query Encoding: The new option name (n,,) and description (d,,) are embedded into the
same vector space as stored memories using sentence embeddings:

Qi = p(ng,, dg,) € R? (8)

» Temporal Decay: Following A-mem (Xu et al., 2025), we prioritise recent experiences
using exponential decay:
w(ey) = exp(—A - t) 9)

where ¢ is the time elapsed since memory creation.

* Memory score: We combine similarity and recency through weighted sum:
score(qi, €j) = Wsimilarity - SIM(di, €j) + Wrecency - W(€j) (10)
o Stratified Retrieval: The system retrieves top-k successful and failed memories:
Mt = Top-ksuce(score(qi, e;) : p; = 1) (11)

M. = Top-kqi(score(qs, ;) : ¢; = 0) (12)
where ¢; indicates success/failure of memory j.

* Context Integration: All kgycc + kfqq retrieved memories are integrated into the modules
prompts (modules incluing memory are decided by genetic algorithm).

This process gives access to both effective strategies and failure patterns, allowing for informed
decision-making. Visualisations of retrieval patterns are shown in Appendix [F|

3.5 SKILL-SPECIFIC MODULES

On top of the hierarchical structure, we identify survival and exploration as two key components in
many video games. Moreover, we identify looping behaviour as a significant LLM limitation. All
three modules are illustrated in Figure 2]

Explorer. Let explorer be defined as a function Tegpiorer @ S — Gexplore» Where Gexplore 18 the set
of exploration-oriented options, and:

9°"P = Texplorer (sf) = LLMexpiorer (s7) 1
€Xp _exp

where ¢“? = {g7"", 95", ..., gy "} is the sequential exploration plan, and each g; " is structured
identically to regular options but prompted for discovery rather than game goal completion.

* Exploration Strategy We implement an e-greedy exploration strategy where the Meta-
controller selection becomes:

Texplorer (S7) ~ With probability e,

14
Thign(s7°) with probability 1 — ¢, 14

Controller(s;) = {

witheg = 0.1, ¢, = 0.99 x €,_1 = 0.99¢ x ¢

Under review as a conference paper at ICLR 2026

Amygdala. Leto : S — {0,1} be the amygdala function mapping observations to binary classi-
fication of danger assessment:

Di = O'(S?) = LLMamygdala(S?) (15)
At each Low-Lever Executor step, if D; = 1, the system immediately activates a “survival option”
(see Appendix [G.I]for details); otherwise, normal execution continues.

Loop Detector. The loop detector implements v : S — {0, 1}, detecting repetitive behavior in
recent execution history:

L; = ¢(si") = LLMprompt,,(si*) € {0, 1}. (16)

Where L; = 1 means looping behaviour is detected.

4 EMPIRICAL EVALUATION

We evaluate our method through three key experiments. First, we benchmark our genetic algorithm
with Gemini-2.0-Flash and GPT4.1-nano against the SOTA systems on the BALROG benchmark.
Second, we demonstrate the transferability of TAME’s selected genomes across different Gemini
and GPT models without additional training. Third, we compare our memory system against Jarvis-
1 and A-mem baselines. The detailed experiments on Gemini family can be found in the Appendix
and detailed experiments on GPT can be found in the Appendix[L].

4.1 TAME RESULTS

This section compares the baseline and TAME’s performance on the BALROG benchmark. Baseline
scores are obtained by evaluating the BALROG repository with Gemini-2.0-Flash and GPT4.1-
nano following the original author’s methodology. TAME scores represent the best performance
achieved selected by our genetic algorithm (Section . We run genetic algorithm through nye, =
4 iterations, with each iteration producing n.p;;q = 5 children. We then repeat the genetic algorithm
3 times and average the results (see detailed results from independent runs in the Appendix
and Appendix[L.T). Through empirical evaluation we notice that gives sufficient performance gains.
Number of episodes per each child evaluation is adapted from BALROG.

Gemini-2.0-Flash GPT4.1-nano

Environment Baseline (1) TAME (1) Baseline (1) TAME (1) Episodes
Average 27.16% + 2.24% 35.05% + 2.18% ‘ 9.90% 4+ 1.33% 17.20% + 1.47% ‘ -
babayi 58.00% + 6.98% 72.00% + 6.65% | 32.00% + 6.60% 48.67% + 7.07% 50
babaisai 30.83% + 4.22% 42.50% + 6.51% | 12.50% + 3.02% 21.55% + 3.76 % 120
textworld 32.55% + 6.95% 33.40% + 7.23% 0.59% =+ 0.58% 2.88% ~+ 0.94% 30
crafter 29.09% + 4.51% 38.18% + 4.25% | 11.82% +2.15% 19.78% + 2.33% 10
minihack 12.50% £+ 5.23% 23.33% + 6.69% 2.50% +2.47% 10.00% + 2.78% 40
nle 0.00% = 0.00% 0.91% + 0.44% 0.00% =+ 0.00% 0.22% =+ 0.20% 5

Table 1: Baseline vs. TAME progression across three runs of genetic algorithm using Gemini-2.0-
Flash and GPT-4.1-nano. For full details across independent runs see Appendix [K.2]and[L.1] Note:
Values are absolute scores, not relative improvements.

As shown in TabldI] TAME consistently outperforms the baseline achieving relative gain of ~29%
in the case of Gemini-2.0-Flash and ~74% in the case of GPT4.1-nano. Moreover, TAME improves
performance in all the games for both models. Notably, while the baseline models cannot achieve
any noticeable progress on Nethack (the hardest game) TAME achieves 0.91% and 0.22% as an
average scores (note that the best model on BALROG benchmark scores 1.8% on Nethack). Per-
task details over one run are provided in Appendix [J|along with an analysis of module activations
in Appendix [Il The examples of final genomes returned by one of the genetic algorithm runs are
available in Appendix [R] Further results of the performance of initial population Py in Appendix

K3land[L2

Under review as a conference paper at ICLR 2026

4.2 TRANSFERABILITY OF TAME STRUCTURES

Next, we evaluate whether architectures evolved with Gemini-2.0-Flash and GPT4.1-nano can be
effective when transferred to other models. Thus, we use TAME selection to evaluate populations of
Gemini-2.5-Flash-Lite and Gemini-2.5-Pro models to exclusively choose between the base config-
uration from BALROG or the best-performing structure discovered with Gemini-2.0-Flash for each
game (see details in Appendix [K.6). Similarly, we check for transferability between GPT4.1-nano
and GPT4.1-mini (see details in Appendix [L.4).

Method Score (1) BALROG Rank ({)
Gemini-2.5-Pro[Transferred] 47.57% =+ 2.72% M1
Grok-4 43.60% + 2.20% 1
Gemini-2.5-Pro[Baseline] 43.35% + 2.3% 2
Gemini-2.0-Flash[TAME] 35.05 % + 2.24% 3)19
Gemini-2.0-Flash[Baseline] 27.16% =+ 2.12% (12)
GPT-4.1-mini[Transferred] 26.80% £+ 1.92% (12)
GPT-4.1-mini[Baseline] 24.43% + 1.89% (12)
Gemini-2.5-Flash-Lite[Transferred] 20.48% =+ 0.91% 14)19
GPT-4.1-nano[TAME] 17.20% + 1.47% asg)r+7
Gemini-2.5-Flash-Lite[Baseline] 11.87% 4+ 1.32% 23)
GPT-4.1-nano[Baseline] 9.91% + 1.33% 25)

Table 2: Comparison of TAME against top scoring models in BALROG leaderboard (September
2025). We show how they would rank (in parenthesis) relative to the current leaderboard. Rank
improvements are indicated with 1. Note: Values are absolute scores, not relative improvements.

From Table 2] presenting the results, we observe that the Transferred Gemini-2.5-Flash-Lite achieves
~73% relative improvement. Detailed analysis in Table in Appendix demonstrates that
TAME’s discovered structures successfully transfers in five out of six environments, with only
TextWorld achieving baseline performance. For Gemini-2.5-Pro, we also observe gains although
more moderate. Table [I1]in Appendix shows that the transferred structures significant im-
provements in the BabyAl and BabalsAl environments, which require extensive planning, high-
lighting the framework’s strengths in this domain. We also observe improvements in Textworld
and MiniHack, however, improvements are not shown in Crafter and NetHack. We hypothesise
that Gemini-2.5-Flash-Lite benefits more substantially because it is a non-reasoning model similar
to Gemini-2.0-Flash, where we carried the optimisation, whereas Gemini-2.5-Pro is a reasoning-
based models. Notably, transferring TAME’s discovered genomes to Gemini-2.5-Pro we achieve
state-of-art performance above the best model on the BALROG leaderboard - Grok-4. Similarly, we
see large improvements on the leaderboard for Gemini-2.5-Flash-Lite and Gemini-2.0-Flash with
TAME, now occupying rank 14 and 3 from 23 and 12 respectively. Our results extend beyond the
Gemini model family, demonstrating that the TAME framework generalises across architectures. We
obtain an ~74% relative improvement when comparing TAME against the GPT-4.1-nano baseline
(for more details see Appendix[L.T). Moreover, genomes transferred from GPT4.1-nano to GPT4.1-
mini improve the relative score by ~10% (for more details see Appendix[L.4), further strengthening
our transferability claims.

4.3 ABLATION: MEMORY TYPES

We also include ablations to demonstrate the effectiveness of our long-term memory system. In order
to test memory, we use the hierarchical structure described in Section @ combined with three
different memory architectures: Jarvis, TAME-Memory[ours] and A-mem. Both Jarvis memory
and A-mem store the same core elements: g; (the option, including all information associated with
it), C; € {0,1} (the status indicator), and o (the observation sequence corresponding to the current
option). TAME extends Jarvis framework by introducing a critic, as well as a filter for successful and
failed trajectories (but does not create links between memories). This requires one additional LLM
call compared to Jarvis, but two fewer LLM calls per generation compared to A-mem. Thus, our
approach explores a trade-off between the simplicity of Jarvis and the more complex and expensive
structure of A-mem.

Under review as a conference paper at ICLR 2026

We notice an improvement compared to Jarvis and A-mem as shown on Table [3| motivating the
integration of critic module for memory storage. Moreover, we achieve this while requiring a third
of the LLM calls that A-mem employs. Thus allowing our system to iterate faster and with a reduced
compute cost. Further details are included in Appendix [N]

Environment Jarivs (1) TAME-Memory[ours] (1) A-mem (1)
Average 17.52% =+ 1.73% 23.11% + 1.75% 21.45% 4+ 1.80%

Table 3: Comparison of average game progression across 6 games using different memory types.

5 DISCUSSION AND CONCLUSION

We presented TAME, a genetic framework for evolving LLM-based agents that is both game-
agnostic and adaptive. Through genetic mutations and in-game evaluation, TAME configures
human-crafted modules for core gaming skills such as exploration, survival, long-term memory,
and loop detection. TAME explores diverse modular configurations, inputs, prompts, and hyper-
parameters. We also introduced a novel memory system combining the efficiency of embedding
retrieval with the contextual depth of LLM-augmented memory, matching the performance of state-
of-art LLM-augmented memory systems in games while reducing the number of LLM calls required
to achieve that performance.

We evaluated TAME on the well-established BALROG benchmark and find that it consistently en-
hances the underlying LLMs. Gemini-2.0-Flash improves from 27.16% to 35.05%, and GPT-4.1-
nano from 9.91% to 17.20%,with a limited evolutionary budget of 4 generations and 5 children.
Moreover solutions discovered on smaller models transfer training-free to larger models of the same
family improving their performance. Transferring genomes to Gemini-2.5-Pro we reach 47.57%
overall performance in BALROG and outperform the state-of-the-art. These results showcase both
the generalisability of the core modules and the effectiveness of our genetic approach. We further
confirm the importance of long-term memory and adaptive architecture, with our proposed mem-
ory system outperforming two existing baselines while remaining more cost-efficient than complex
agentic systems.

We note some limitations. We find that TAME provides greater benefits to some games than others,
where it defaults to the baseline architecture. We also observed that while TAME improves complex
reasoning tasks overall, spatial reasoning remains a weakness. This suggests the potential not only
for expanding the set but for genetic discovery of entirely new modules and capabilities, beyond
those hand-crafted in this work. Moreover, while transferability proved effective, gains were less
pronounced for reasoning models, motivating further study of transfer and emergence across dif-
ferent architectures. Finally, future work could explore alternatives for the genetic algorithms, like
MAP-Elites, or different approaches such as Bayesian optimisation.

Overall, TAME establishes a new state of the art in game-playing LLM agents, laying the foundation
for more better gaming agents.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Yuri Chervonyi, Trieu H Trinh, Miroslav OlIsdk, Xiaomeng Yang, Hoang Nguyen, Marcelo Mene-
gali, Junehyuk Jung, Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in
solving olympiad geometry with alphageometry2. arXiv preprint arXiv:2502.03544, 2025.

Francois Chollet. Openai 03 breakthrough high score on arc-agi-pub. https://arcprize.
org/blog/oai-o3-pub-breakthrough, December 2024. Accessed: 2025-09-12.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604, 2024. URL https://arxiv.org/abs/2412.
04604.

Jingliang Duan, Shengbo Eben Li, Yang Guan, Qi Sun, and Bo Cheng. Hierarchical reinforcement
learning for self-driving decision-making without reliance on labelled driving data. IET Intelligent
Transport Systems, 14(5):297-305, February 2020. ISSN 1751-9578. doi: 10.1049/iet-its.2019.
0317. URL http://dx.doi.org/10.1049/iet-1ts.2019.0317.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt
optimizers, 2025. URL https://arxiv.org/abs/2309.08532,

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a
multi-agent collaborative framework. In International Conference on Learning Representations,
ICLR, 2024.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model, 2024a. URL https://arxiv.org/abs/2408.095509.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In NeurlPS 2024
Workshop on Open-World Agents, 2024b.

Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models
hallucinate, 2025. URL https://arxiv.org/abs/2509.04664.

Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
Pierre-Luc Bacon, Doina Precup, Marlos C. Machado, and Pierluca D’Oro. Maestromotif: Skill
design from artificial intelligence feedback, 2024. URL https://arxiv.org/abs/2412.
08542.

Martin Klissarov, R Devon Hjelm, Alexander T Toshev, and Bogdan Mazoure. On the modeling
capabilities of large language models for sequential decision making. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=vodsIF307N.

11

https://arxiv.org/abs/2005.14165
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2412.04604
http://dx.doi.org/10.1049/iet-its.2019.0317
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2408.09559
https://arxiv.org/abs/2509.04664
https://arxiv.org/abs/2412.08542
https://arxiv.org/abs/2412.08542
https://openreview.net/forum?id=vodsIF3o7N
https://openreview.net/forum?id=vodsIF3o7N

Under review as a conference paper at ICLR 2026

Heinrich Kiittler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktidschel. The nethack learning environment, 2020. URL https:
//arxiv.org/abs/2006.13760.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution through large models, 2022. URL https://arxiv.org/abs/2206.08896!

Borja G Ledn, Francesco Riccio, Kaushik Subramanian, Peter R Wurman, and Peter Stone. Discov-
ering creative behaviors through duplex: Diverse universal features for policy exploration. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktdschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu, and Wei Yang. Juewu-mc: Play-
ing minecraft with sample-efficient hierarchical reinforcement learning, 2021. URL https:
//arxiv.orqg/abs/2112.04907.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm.
In Proceedings of the genetic and evolutionary computation conference, pp. 419-427, 2019.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models, 2024. URL https://arxiv.org/abs/2310.12931l

MiniHack Team. Battle environments. MiniHack Documentation. URL https://minihack.
readthedocs.io/en/latest/envs/navigation/battle.html. Accessed: 2025-
09-15.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Davide Paglieri, Bartlomiej Cupial, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
Khan, Eduardo Pignatelli, L.ukasz Kuciniski, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foerster,
Jack Parker-Holder, and Tim Rocktéschel. Balrog: Benchmarking agentic 1lm and vlm reasoning
on games, 2025. URL https://arxiv.org/abs/2411.13543.

Ruwei Pan, Hongyu Zhang, and Chao Liu. Codecor: An llm-based self-reflective multi-agent frame-
work for code generation. arXiv preprint arXiv:2501.07811, 2025.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Bharat Prakash, Tim Oates, and Tinoosh Mohsenin. LIm augmented hierarchical agents, 2023. URL
https://arxiv.org/abs/2311.05596.

J Rosser and Jakob Nicolaus Foerster. Agentbreeder: Mitigating the ai safety impact of multi-agent
scaffolds via self-improvement. arXiv preprint arXiv:2502.00757, 2025.

12

https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2206.08896
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2112.04907
https://arxiv.org/abs/2112.04907
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2310.12931
https://minihack.readthedocs.io/en/latest/envs/navigation/battle.html
https://minihack.readthedocs.io/en/latest/envs/navigation/battle.html
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2411.13543
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2311.05596

Under review as a conference paper at ICLR 2026

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Zhang, Shimon Jiang, and Jakob Foerster.
Minihack the planet: A sandbox for open-ended reinforcement learning research. arXiv preprint
arXiv:2109.13202, 2021.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, et al. Rainbow
teaming: Open-ended generation of diverse adversarial prompts. Advances in Neural Information
Processing Systems, 37:69747-69786, 2024.

Bidipta Sarkar, Mattie Fellows, Juan Agustin Duque, Alistair Letcher, Antonio Leén Villares, Anya
Sims, Dylan Cope, Jarek Liesen, Lukas Seier, Theo Wolf, et al. Evolution strategies at the hyper-
scale. arXiv preprint arXiv:2511.16652, 2025.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Auto-
matic llm agent search in modular design space. In The Thirteenth International Conference on
Learning Representations, 2024.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24-35, 2019.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181-211,
1999.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
comes from practice: Aligning llms with embodied environments via reinforcement learning,
2024. URL https://arxiv.org/abs/2401.14151.

DeepMind Team. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature,
575:350-354, 2019. doi: 10.1038/s41586-019-1724-z.

MiniHack Team. Minihack: Corridor environment, 2024. URL https://minihack.
readthedocs.io/en/latest/envs/navigation/corridor.html. Accessed:
September 15, 2025.

Amala Mary Vincent and P Jidesh. An improved hyperparameter optimization framework for automl
systems using evolutionary algorithms. Scientific Reports, 13(1):4737, 2023.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. In The Twelfth International Conference on Learning Represen-
tations, ICLR, 2024a.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023. URL
https://arxiv.org/abs/2311.05997.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with
memory-augmented multimodal language models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V.
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

Jan Wohlke, Felix Schmitt, and Herke van Hoof. Hierarchies of planning and reinforcement learning
for robot navigation. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pp- 10682-10688. IEEE, May 2021. doi: 10.1109/icra48506.2021.9561151. URL|http://dx.
doi.org/10.1109/ICRA48506.2021.9561151|

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110,

13

https://arxiv.org/abs/2401.14151
https://minihack.readthedocs.io/en/latest/envs/navigation/corridor.html
https://minihack.readthedocs.io/en/latest/envs/navigation/corridor.html
https://arxiv.org/abs/2311.05997
http://dx.doi.org/10.1109/ICRA48506.2021.9561151
http://dx.doi.org/10.1109/ICRA48506.2021.9561151
https://arxiv.org/abs/2502.12110

Under review as a conference paper at ICLR 2026

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: To-
wards automatic multi-agent generation via evolutionary algorithms. In NeurlPS 2024 Workshop
on Open-World Agents, 2024.

Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebastian Flennerhag, Shaobo
Hou, and Satinder Singh. Discovering policies with domino: Diversity optimization maintaining
near optimality. arXiv preprint arXiv:2205.13521, 2022.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, LEI BAI, and Xiang Wang. Multi-agent
architecture search via agentic supernet. In Forty-second International Conference on Machine
Learning, 2025.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiagi Chen, Mingchen

Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. In The Thirteenth International Conference on Learning Representations, 2024.

14

Under review as a conference paper at ICLR 2026

A LLM USAGE DECLARATION

We employed LLMs to assist us in the writing of this paper. Our writing pipeline consisted of one
of the authors first writing a draft paragraph, then using an LLM to assist in polishing the writing
and grammar, and finally having other authors review and provide the final version to the text.
Additionally, we employed foundational models to assist us in creating illustrations.

Finally, throughout the course of this research we used LLM-powered search engines like Perplexity
in addition to traditional alternatives such as Google Scholar and conference proceedings while
gathering relevant literature.

B BALROG GAME DETAILS

The BALROG framework incorporates six distinct gaming environments, each designed to evaluate
specific aspects of agentic reasoning (Figure [3)):

BabyAI BabyAl is a grid-based environment with different difficulty levels. The agent is pre-
sented wth five different tasks.

TextWorld TextWorld offers a text-based exploration environment where agents interact exclu-
sively through natural language commands. There are three different tasks.

Crafter Crafter simulates a Minecraft-inspired survival environment where progression is mea-
sured through 22 distinct achievements.

BabalsAI BabalsAl presents a rule-based puzzle environment where agents must navigate grid-
based scenarios. There are 40 different tasks.

MiniHack MiniHack represents a task-oriented version of the classic NetHack (Kiittler et al.,
2020) game, evaluating agents across eight challenges testing different skills.

NetHack Learning Environment (NLE) NLE implements the complete NetHack roguelike
game, presenting the most comprehensive challenge within the benchmark. This environment si-
multaneously evaluates navigation, survival instincts, long-term strategic planning, resource man-
agement, and exploration skills within an unpredictable, dynamically evolving game state.

Skills BabyAl TextWorld Crafter Babals Al MiniHack NLE
Navigation v 4 4 4 v 4
Exploration v 4 4 4 v 4

Resource Management X 4 4 X v v
Complex Credit Assignment X X v v v 4
Deducing Env. Dynamics X X X 4 v 4
Long-term Planning X X X v v v
Turns to Complete 10! 10? 10® 102 10? 10*-10°
Time to Master for Humans Seconds Minutes Hours Hours Hours Years

Figure 3: Game environments overview. Adapted from BALROG (Paglieri et al., 2025)

C METRIC SCORES

We adapt metric scores from BALROG to quantify how close an agent is to completing each task.
All scores are normalised to a range of 0—100. The scoring scheme varies by environment. In
MiniHack, BabyAl, and BabalsAl, tasks give binary scores: either O (failure) or 100 (success). In
contrast, TextWorld, Crafter, and NetHack return continuous scores between 0 and 100, where the

15

Under review as a conference paper at ICLR 2026

score represents the proportion of achievements completed. For NetHack specifically, the authors
of BALROG introduced a novel scoring system based on data-informed metrics. Authors derived
scores from the probability of a human player winning the game after reaching a particular dungeon
level or experience level. The authors argue that this metric better captures meaningful progression
than previous metrics in that game. We adopt the same procedure for NetHack in our work.

D HYPERPARAMETERS SELECTED

This Appendix details the choice of hyperparameters in our methodology. Table [details the values
and descriptions.

The genetic algorithm optimises four hyperparameters: 7., A, €9, and 7. We establish lower bounds
of 0 for 7,05, A, and €, effectively disabling these components when not beneficial to performance.
Upper bounds were determined in order to maintaini sufficient search space for optimisation.

The language model temperature 1" follows standard practice with a default value of 1.0, allowing
the genetic algorithm to explore a range of solutions. We implement exponential decay for ¢; fol-
lowing established reinforcement learning approaches, enabling the transition from exploration to
exploitation as the system learns optimal behaviours. We follow the short term memory length in
BALROG and set it to m = 16. We set kgycc = 5 and kg = 5, limiting the number of informa-
tion added to the prompt, but also adding significant amount of past experiences; through empirical
evaluation we notice that a higher number of memories added is not beneficial.

Following DOMiNO methodology, we set a = 0.7 to ensure meaningful population diversity whilst
maintaining performance standards. Our similarity-recency weighting (Wsimitariy = 0.7, Wrecency =
0.3) prioritises semantic relevance over temporal proximity, reflecting the hypothesis that content
similarity is more beneficial than recency.

The genetic algorithm parameters balance computational efficiency with solution quality. We set
probability of selecting single parent in genetic algorithm to be 70% (vs two parents to be 30%),
allowing for more mutations without crossover operations. We set n = 4 iterations as empirical
evaluation demonstrated satisfactory performance is achieved at this point, providing an effective
balance between solution quality and computational cost. Population management parameters N =
M = 5 maintain an optimal balance between preserving high-performing solutions and promoting
genetic diversity, following established evolutionary computation principles that prevent premature
convergence whilst ensuring computational tractability.

E BALROG BASELINE CONFIGURATIONS

This section details number of episodes and their length per each BALROG game. Moreover, we
show the BALROG prompt that we use as initial seed for the baseline architecture.

Episode details Table 5] details the episode specifications per game. The table shows time needed
for each episode completion, as well as details on number of tasks per different environments.

Baseline Prompt (BALROG) Below we present a prompt from BALROG (Paglieri et al, [2025))
paper, used for Baseline evaluation.

Baseline BALROG Prompt

"""You always have to output one of the above actions at a time and no other text. You always have
<> to output an action until the episode terminates."""

F TESTING THE RETRIEVAL MECHANISM LONG-TERM MEMORY SYSTEM

In this section we test the retrieval of saved memories and the abilities to act upon them. Due to
stochasticity, we need to have a reliable comparison. We focus our evaluation on Crafter, as it is

16

Under review as a conference paper at ICLR 2026

Parameter Value Description

Embedding all-MiniIM-L6-v2 Pre-trained sentence embedding model used for
semantic similarity calculations

d 384 Dimension of the embedding

Teos [0,0.1] Cosine similarity threshold parameter

A [0,0.1] Long-Term Memory decay factor

€0 [0,0.1] Initial exploration parameter

T [0.1,2] Language Model Temperature

€t 0.99% x € Time-decayed parameter following exponential
decay

m 16 Short-term memory length (most recent action-
observation pairs)

ksuccess 5 Number of top scoring successful long-term mem-
ories added to the LLM prompt

kfail 5 Number of top scoring failed long-term memories
added to the LLM prompt

« 0.7 Minimum fraction of highest scoring genome for
diversity

Wsimilarity 0.7 Weight assigned to similarity component in scor-
ing

Wrecency 0.3 Weight assigned to recency component in scoring

Psingle 70% Percentage chance to choose single parent for re-
production

1 — Psingle 30% Percentage chance to choose two parents for re-
production

Ngen 4 Number of iterations (parent population creation)
of genetic algorithm

Nehild 5 Number of children created for each population of
parents in genetic algorithm

N 5 Number of best scoring genomes saved at each
step of genetic algorithm

M 5 Number of most diverse genomes saved at each
step of genetic algorithm (scoring at least « frac-
tion of top performing genome)

Nep dependent on the game Number of episodes for each child evaluation. De-

tails in the Table |§|

Table 4: Hyperparameter values used in the TAME framework

an environment requiring long-term planning, giving motivation to log-term memory approach. We
disable life hazards such as zombies and skeletons, as they are not relevant to the testing subject. We
set random seed to 32 for all episodes.

To evaluate our information-retrieval mechanism we test a long-horizon “craft iron sword” task in
Crafter. We replace the environment’s default objective with the production of an iron sword (see
Appendix [FI.T). This task is intentionally complex: it requires chopping wood, crafting and placing
a crafting table, crafting a wooden pickaxe, collecting stone, crafting a stone pickaxe, placing a

17

Under review as a conference paper at ICLR 2026

Environment Evals Tasks per Eval Total Episode Length

BabyAl 10 5 50 107
BabalsAl 3 40 120 102
Crafter 10 1 10 103
TextWorld 10 3 30 102
MiniHack 5 8 40 102
NetHack 5 1 5 10% — 10°

Table 5: Episode details per BALROG game

furnace adjacent to the crafting table, collecting iron, and finally crafting an iron sword. We selected
this objective because, in prior baseline runs without our memory system, the agent never completed
the task. Through the episode we would like to check if memories are activated at relevant time
steps, showing retrieval ability. Moreover, successful completion under our system provides strong
evidence that the memory-critic architecture supports multi-step planning and sequential options.

In order to track the memories activated, we inject five task-oriented memories at the start of each

99 ¢ CLIY3 ELINT3

episode: “craft wooden pickaxe”, “craft stone pickaxe”, “mine iron”, “place furnace”, and “craft iron
sword” (see Appendix [F1.2). Each memory is paired with a human-crafted critic that summarises
the steps needed to achieve particular option. During each episode we log when each memory
activates. An example progression through episode is provided in Figure f] and the corresponding
memories activated can be seen in Figure [5| More examples on activation timelines are provided in

Appendix [F.2]

(a) step 35 (b) step 55 (c) step 85 (d) step 135 (e) step 225

Figure 4: Testing memory retrieval: Task progression across episode: (a) agent crafts wood pickaxe,
(b) agent crafts stone pickaxe, (c) agent collects iron, (d) agent collects iron, (e) agents attempts to
craft iron sword

Mine Iron 1 |” @
Craft Wood Pickaxe |||| || | | | | | | | | |

Craft Stone Pickaxe ||H H ‘
——l dab A> 1o
50 100

0 150 200 250 300
Steps

Memory Type

Figure 5: Testing memory retrieval: memories activated based on the step

Discussion of the example: From Figure [5| we can notice that all memories are activated at the
beggining. This is due to the fact that very early in the game, those are they only memories present.
We can then see that “Craft Wood Pickaxe” and “Craft Stone Pickaxe” are heavily retrieved until
around 25th-60th step. This is when agent completed “Craft Stone Pickaxe task™ (agent completes
“Craft Wood Pickaxe” task earlier, but due to similarity of those two tasks, it it activated when
focusing on stone version). “Mine Iron” memory activates two times between 80-100 steps, when
agent is mining two pieces of iron. “Craft Iron Sword” appears often around step number 100 which
is when agent first attempts to complete it, but realises that it needs to place a furnace and table first.

18

Under review as a conference paper at ICLR 2026

Then the memory is activated later as well, which is after placing table and furnace and attempting to
craft iron sword. Unfortunately, agent is unsuccessful because it didn’t place furnace close enough
to the table. This experiment demonstrates that relevant memories are activated at the right time, and
that agent is able to act upon them. Also, when not needed (i.e. the task is completed), memories are
activated far less often. It is also important to notice that the “Craft Iron Sword” memory continues
to be retrieved even towards the end of the episode when the agent is actively attempting this task.
This indicates that the memory system maintains access to relevant historical experiences throughout
the entire episode, regardless of when they were initially formed.

Results Across 10 independent runs the agent succeeded in producing an iron sword in 1/10
episodes (baseline: 0% from all previous runs that we did with Gemini-2.0-Flash). This is a sub-
stantial improvement, which suggests that when memories are stored, agent is able to retrieve them,
and act upon them. This is a simplified case, as we provided human crafted memories, but with
the right prompting we believe that the critic module will be able to reproduce those. Additional
observations:

* Memories reliably activated when their prerequisites were satisfied and were deactivated
immediately after the corresponding option was completed.

* The specificity of the critic strongly affected performance. For example, phrasing a critic as
“place the furnace next to the crafting table” versus “place the furnace adjacent to the table”
produced different success scores. This highlights the value of precise, action-oriented
critic definitions that focus on the key state features leading to success or failure. Following
on that we prompted the critic accordingly.

* This experiment also demonstrates the difficulty of the “Craft Iron Sword” task, even when
given with clear instructions agent fails 90% of the time.

F.1 TESTING MEMORY RETRIEVAL PROMPTS

This subsection details prompts used in order to test long-term memory retrieval. First we show the
prompt detailing the goal of iron sword creation, then we show memories added at the begging of the
episode: Craft Wood Pickaxe, Craft Stone Pickaxe, Craft Stone Sword, Mine Iron, Place Furnace,
Create Iron Sword. Those are hand-crafted memories, designed in order to track memory retrieval.

F.1.1 IRON SWORD GOAL PROMPT

This subsection details the prompt for Craft Iron Sword goal that the agent is tasked with during the
long-term memory retrieval experiment.

Craft Iron Sword Goal

" You are playing Crafter. The following are the only valid actions you can take in the game,
< followed by a short description of each action:

{action_strings}.
Your goal is to craft an iron sword. """

F.1.2 INJECTED MEMORIES

This subsection details the memories added at the beggining of the episode, in order to track memory
retrieval.

Craft Wood Pickaxe Memory

craft_wood_pickaxe = {

"name": "Craft Wood Pickaxe",

"description": "Craft Wood Pickaxe for gathering stone",

"subgoal_prerequisites": "Agent has 1 piece of wood in inventory and table is placed",
"success_condition": "Wood Pickaxe is in inventory"

"subgoal_progress_indicators": "Agent is gathering wood near table",
"subgoal_penalty_component™: "Agent crafts pickaxe without enough wood",

19

Under review as a conference paper at ICLR 2026

"status": ’successful’
"summary of the run": "Agent collects three pieces of wood and places a table in a clear spot. Then
< agent crafts a wood pickaxe at the table.",

Craft Stone Pickaxe Memory

stone_pickaxe_memory = {

"name": "Craft Stone Pickaxe",

"description": "Craft Stone Pickaxe",

"subgoal_prerequisites": "Agent has 1 piece of stone and 1 piece of wood in inventory and table is
<~ placed",

"success_condition": "Stone Pickaxe is in inventory",

"subgoal_progress_indicators": "Agent is gathering stone near table",

"subgoal_penalty_component": "Agent crafts pickaxe without enough resources",

"status": ’successful’,

"summary of the run": "Agent collects four pieces of wood and places a table in a clear spot. Then

< agent collects one piece of stone using wood pickaxe. Then agent crafts a stone pickaxe at
< the table.",

Craft Stone Sword Memory

stone_sword_memory = {

"name": "Craft Stone Sword",

"description": "Craft Stone Sword for combat",

"subgoal_prerequisites": "Agent has 1 piece of stone and 1 piece of wood in inventory and table is
<~ placed",

"success_condition": "Agent has stone sword in inventory",

"subgoal_progress_indicators": "Agent has 1 pieces of stone and 1 piece of wood",

"subgoal_penalty_component": "Agent crafts sword without enough resources",

"status": ’successful’,

"summary of the run": "Agent collects 4 pieces of wood. Then agent places a table and crafts a wood

< pickaxe. Lastly, agent uses wood pickaxe to craft 2 pieces of stone and crafts a stone sword
~— at the table.",

Mine Iron Memory

mine_iron = {

"name": "Mine Iron",

"description": "Mine Iron",

"subgoal_prerequisites": "Agent has 1 wood pickaxe in inventory",

"success_condition": "Wood Pickaxe is in inventory",

"subgoal_progress_indicators": "Agent is gathering iron near table or furnace",
"subgoal_penalty_component": "Agent iron sword without enough resources",

"status": ’failed’,

"summary of the run": "Agent repetadely tried ‘Do’ action using pickaxe near iron but fails to

< collect iron. It is recommended agent tries using different tool.",

Place Furnace Memory

furnace_memory = {
"name": "Place Furnace next to Table",
"description": "Place furnace next to the Table for crafing iron tools",
"subgoal_prerequisites": "Agent has 4 pieces of stone in inventory. Table is placed. ",
"success_condition": "Furnace is placed",
"subgoal_progress_indicators": "Agent is gathering stone",
"subgoal_penalty_component": "Agent places furnace in unsuitable location or without enough
<~ stone",
"status": "successful’
"summary of the run": "Agent placed a furnace next to the table using 4 pieces of stone. ",
}

Under review as a conference paper at ICLR 2026

Craft Iron Sword Memory

iron_sword_memory = {

"name": "Craft Iron Sword",

"description": "Craft Iron Sword",

"subgoal_prerequisites": "Agent has 1 piece of stone, 1 piece of wood, 1 piece of coal in inventory
< and table and furnace is placed next to each other",

"success_condition": "Iron Pickaxe is in inventory"

"subgoal_progress_indicators": "Agent is gathering iron near table and furnace",

"subgoal_penalty_component": "Agent iron sword without enough resources",

"status": ’successful’

"summary of the run": "Agent collects 1 piece of stone and one piece of wood using wood pickaxe.

< Then agent collects one piece of iron using stone pickaxe. Then agent crafts an iron sword
~— next to the table and furnace.",

F.2 ADDITIONAL LONG-TERM MEMORY RETRIEVAL EXPERIMENTS
This section shows additional experiemnts carried out in order to test memory retrieval, when tasked

the agent with iron sword task. Eachof the experiments consists of images showing agent progres-
sion, as well as memory activation across the episode.

F.2.1 EPISODE 1

Ilustrations from the game available in Figure[6and memory activations in[7} The reason why agent
didn’t succeed in completing the task is because the agent didn’t place table close enough to furnace.

(b) 100

Figure 6: Episode 1: Task progression across episode

Mine Iron

Memory Type

Craft Stone Pickaxe -

Craft Iron Sword -

Craft Wood Pickaxe - | | | | | | | | |

Steps

Figure 7: Episode 1: Memory retrieval along the episode

F.2.2 EPISODE 2

Mlustrations from the game available in Figure[8]and memory activations in[0] The reason why agent
didn’t succeed in completing the task is because the agent focuses on placing furnaces a few times.

21

Under review as a conference paper at ICLR 2026

(b) 100 (d) 200

(e) 250 (f) 300 (g) 350 (h) 350

Figure 8: Episode 2: Task progression across episode

Mine Iron H | || |

camwoasamset 1AL

Craft Stone Pickaxe 1 H | |H | ‘ H | | | | | | |
s I L T 1 1 s Y R

T
0 25 50 75 100 125 150 175
Steps

Memory Type

Figure 9: Episode 2: Memory retrieval along the episode

F.2.3 EPISODE 3

Ilustrations from the game available in Figure [[0]and memory activations in [[1] The reason why
agent did not succeed in completing the task is because agent does not have enough wood (also
crafts multiple tables and furnaces).

F.2.4 EPISODE 4

Ilustrations from the game available in Figure [I2] and memory activations in[I3] The reason why
agent did not succeed in completing the task is because agent does nott have enough wood (also
crafts multiple tables and furnaces).

G EXAMPLES OF MODULES OUTPUTS

This section shows examples of amygdala and explorer modules behaviours.

G.1 AMYGDALA

This section details Amygdala submodule. First, we show defualt survival option, then we illustrate
an example of amygdala in the episode (using Crafter).

22

Under review as a conference paper at ICLR 2026

(b) 100

(e) 250 (f) 300 (g) 350 (h) 400

Figure 10: Episode 3: Task progression across episode

Mine Iron 1 ” | | |

cawanarcaret | [[[IHI[NITNTAET 1 [THHI

Memory Type

enrsionsricased ||| I] | | -
e LR | N (il

0 25 50 75 100 125 150 175
Steps

Figure 11: Episode 3: Memory retrieval along the episode

(a) 50 (b) 100 (c) 150 (d) 200

(f) 250 (g) 250 (h) 250

Figure 12: Episode 4: Task progression across episode

23

Under review as a conference paper at ICLR 2026

e R E {1 | I

Mine Iron -

Craft Stone Pickaxe q

Memory Type

AT 10 11| |
Ut R i {0

0 100 200 300 400
Steps

Craft Iron Sword -

Figure 13: Episode 4: Memory retrieval along the episode

Default survival option The prompt below shows default survival option, that agent is switching
to, whenever danger is encountered.

Default Survival Option

subgoal = {

"name" : "respond to danger",

"description": "Respond to danger.",

"prerequisites": "Agent is in immediate danger",
"success_condition": "Agent has eliminated the danger",
"penalty_component": "Agent is not responsing to danger.",
"progress_indicators": "Agent is closer to eliminating the danger",
"estimated_priority": "high"

Amygdala module activation. Here we present an example from Crafter when amygdala is ac-
tivated. The agent is initially focused on exploring the environment and fulfilling subgoals such as
placing plants. However, in the early stages of the game, a skeleton appears. As soon as the agent
observes the skeleton within its field of view, it activates survival mode.

After survival mode is activated, the agent begins gathering resources for combat:

1. Chops down wood
2. Places a crafting table

3. Creates a wooden sword necessary for the fight

The agent then chases the skeleton, and once it is adjacent to the enemy, it initiates combat. During
the chase and fight, the agent loses health but successfully manages to defeat the skeleton. Shortly
afterwards, the amygdala is deactivated and the agent returns to working towards general game
objective.

G.2 EXPLORER
In this section we show an example of exploration plan proposed by Explorer.

{’ reasoning’: ’'The agent needs to break out of its repetitive westward
movement and explore new areas, prioritizing resource gathering and
different directions. Sand has been identified as a new area to explore.’,
"subgoals’: [

{’name’ : "Move Towards Sand’,

"description’: ’'Move towards the sand to the south-east to explore

new terrain.’,

'prerequisites’: ’’,

’success_condition’: "Agent is standing on sand.’,

"penalty_component’: "Moving in the opposite direction (North or West)

for more than 3 steps without collecting resources.’,

"progress_indicators’: 'Decreasing distance to sand in long_term_context.’,

"estimated_priority’: "high’},

24

Under review as a conference paper at ICLR 2026

~ .

587 35l
1
(a) Amygdala activated (b) Creation of the table (c) Creation of the sword

75 & 65l E 54 652 5.5 & 652
p ! p p !
(d) Chasing the skeleton (e) Fighting the skeleton (f) Amygdala deactivated

Figure 14: Amygdala survival response sequence: (a) activation, (b)&(c) resource gathering, (d)&(e)
combuat, (f) deactivation.

{"name’: "Explore Area Around Sand’,

"description’: ’Once on the sand, explore in all directions (North, South,
East, and West) to discover resources and new landmarks.’,
"prerequisites’: ’Agent 1is standing on sand.’,

’"success_condition’: "Agent has moved at least 3 steps in each cardinal
direction from the sand.’,

"penalty_component’: ’Staying within the same 3x3 area on the sand for
more than 5 steps.’,

"progress_indicators’: 'Number of unique tiles visited around the sand.’,
"estimated_priority’: ’‘medium’}

1}

H DETAILED GENETIC ALGORITHM

In this Appendix we present the detailed specifications of the genetic algorithm.
Parameter selection:

Generations = 4 a7

Population size = | Paiverse| + | Poest| =5+ 5 = 10 (18)

Children per generation = 5 (19)
DPbinary = Pcontinuous = Pprompt = 0.5 (20)

where:

* Generations — the number of evolutionary iterations performed

* Population size — the total number of genomes maintained across diverse and best-
performing subpopulations

25

Under review as a conference paper at ICLR 2026

* Children per generation — the number of new offspring genomes created through mutation
in each generation

® Dbinarys Peontinuous > Pprompt — the probabilities of applying binary, continuous, or prompt mu-
tation operations, respectively, when creating offspring.

The number of generations was limited to four due to the significant computational cost and long
runtimes associated with evaluating each genome, particularly in environments like NetHack. How-
ever, this was sufficient to demonstrate a clear performance improvement and allow for the discovery
of specialised architectures.

Parent Selection Parent selection follows roulette wheel selection (a probabilistic parent-picking
method where each individual’s chance of being chosen is proportional to its fitness score) with
fitness-proportionate probabilities:

f(gi)
Plg) = — 2 &)
(&) SI2 fe))

where f(g;) is the fitness score of genome g;;.

Offspring Generation For each child gcpja:

* With probability psingie: select one parent
* With probability 1 — ps;ngie: select two parents

For each genome component, evolutionary operations are applied with probability
Dbinarys Peontinuouss Pprompt> depending on the component. Otherwise parent attributes are
copied directly. In the two-parent case, the parent from which to copy each attribute is chosen with
Bernoulli(0.5) probability.

H.1 GENETIC OPERATIONS

This subsection focuses on methodology of crossover and mutations operations.

Modules Operations Single parent:

plehild) _ bz(»p arent) with probability 0.8
: 1— P with probability 0.2

Two parents:
bPY = P with probability 0.9 if 5" = p{P?)
BN = £ pleD) with probability 0.1 if 5" = p{P?)
Bernoulli(0.5) if bP") # (P
Hyperparameter Operations The continuous value inheritance depends on parent activity states.
Let AE” *) indicate if feature 7 is active in parent k:

For single parent:

cgchild) _ Clip(cgparent) +N(0’ U2)aci,min7 Ci,max)
For two parents:
e + N (0,0%) if APV =1,4%% =0
(lehild) _ P £ N(0,02) if APY =0, 4% =1
1 acl(pl) + (1 _ OZ)C,EP2) +N(O,02) lf A,Epl) — A§p2) _ 1
Ci default if AP = AP —

where o ~ U(0, 1). ¢ min, Ci,maz> Ci,de fauit are detailed in Appendix@

26

Under review as a conference paper at ICLR 2026

Prompt Operations Prompt evolution utilises the EvoPrompt prompt methodology |Guo et al.
(2025). Using a similar approach we use LLM as a crossover and mutation operator.

* Single parent: pl(c’nld) = LLMprompt, ;e (pl(,PW‘ent))
* Two parents: pl('Child) = LLMpromptmutate (LLMpromptcrossover <p£271) ’ p£p2)))

If a parent has module ¢ disabled (b; = 0), the corresponding prompt reverts to default: p; = p;_ defauit
(default prompts in Appendix [Q.I).

LLM mutation and crossover prompts available in Appendix [P| It is important to notice that this
approach enables functional mutation: LLM is prompted with all possible functional inputs to be
used in any prompt (described in Section [3.1).

H.2 POPULATION MANAGEMENT

This subsection focuses on population management: details about fitness function, diversity measure
and population pruning.

Fitness Evaluation Each genome is evaluated using the fitness function:

Nep
1

Z GameProgression, (g)
i=1

f(g) =

Nep
where 7., is the number of episodes for specific game (see Table [3).

Diversity measure The genome distance function uses an embedding-based approach where
each genome is represented as a single embedding vector (here we use sentence-transformers/all-
MiniLM-L6-v2 embedding). The distance between two genomes is calculated using cosine similar-

1ty:
d(g1,82) =1 — cos(er, e2) 21

where e; is the embedding vector representation of genome g;.

The cosine similarity between two embedding vectors is computed as:

() €] - €
cos(eq, e = -
P led 2 [zl

Each genome g = {b, ¢, p} is transformed into a unified embedding vector e € R? that captures
the semantic representation of all genome components (binary variables, continuous parameters,
and prompts) in a single high-dimensional space. The way we measure diversity, is the minimum
distance to the genomes already existing in the archive.

Population Pruning After children evaluation, population pruning maintains diversity using the
following algorithm:
1. Initialise Ppew = 0
2. Add top-N scoring genomes: Phey < tops(P)
3. For remaining genomes Gremaining:
(a) Calculate minimum distance to current population:

dmin(g) = g’Iggnlew d<g7 g/)
(b) Select genome maximising diversity with performance constraint:

g" =arg_Imax dmin(8) s-t. f(g) = 0.7+ f(gpest)

(c) Add g” to Pyew and remove from Gremaining
4. Repeat step 3 until the desired population size reached (N + M)

27

Under review as a conference paper at ICLR 2026

H.3 GENETIC APPROACH: PSEUDO CODE

Algorithm 1 TAME: Genetic Algorithm

Require: Game environment
Ensure: Optimised genome g*

1: Initialize Py = {goasics Ghierarchical s Jdefault Jull }
2: for each g € Py do
3: gfimess < EvaluateFitness(g)
4: end for
5: P+ Py
6
7
8

. for generation = 1 to GENERATIONS do
C <+ () {Children population}
. for i =1 to CHILDREN_PER_GENERATION do
9: if rand() < 0.7 then

10 p1 + RouletteWheelSelection(P)
11: ¢ < SingleParentOperations(p;)
12: else

13: p1, p2 < RouletteWheelSelection(P, 2)
14: ¢ < TwoParentOperations(p1, p2)
15: end if

16: Chimess — EvaluateFitness(c)

17: C+ CU{c}

18: end for

19: P <+ PopulationPruning(P U C)

20: end for

21:

22: return argmaXgep Gfimess =0

I MODULES ACTIVATED

In this Appendix we discuss module activation based on the game. The results are taken from the
first one of genetic algorithm using Gemini-2.0-Flash. Module activation is based on final genomes
returned by genetic algorithm, available in Appendix R} Module activation plot is demonstrated in
Figure[I3] When selecting the baseline configuration, no additional modules apart from Long-Term
Memory can be activated. We notice that 4 out of 6 environments selected hierarchical module, high-
lighting the effectiveness of complex goal decomposition. TextWorld is a text-based environment
where it is difficult to predict next actions due to their dependence on current observation, therefore
hierarchical structure and memory are not adding value. Moreover, MiniHack has relatively short
length (100 steps), which might be also why baseline structure was favoured.

Module Activation per Environment

0 0

o

Amygdala -

0

o

Explorer -| 0 0

S . S
& & & & & S
Q) Q, ~ & e\% o
& S
S ,\f

Module

=)

Environment

Figure 15: Module activation in TAME across environments.

28

Under review as a conference paper at ICLR 2026

J TASK PERFORMANCE

In this Appendix, we compare different tasks performance across BabyAl, BabalsAl, and Minihack
for baseline versus TAME (first run using Gemini-2.0-Flash). Crafter and Nethack are excluded
because they each have only one default task. TextWorld is also excluded since its genetic output
matches the baseline.

MiniHack Interestingly, five out of eight tasks are never solved by any method, showcasing the
difficulty (see Figure[I6). The Corridor-R3 task, which is never completed by the baseline, never-
theless shows 40% progress with TAME. Corridor-R3 is an exploration problem in which the goal
is to find the staircase Team|(2024), illustrating TAME agent’s improved exploration ability. In both
CorridorBattle-Dark and MazeWalk-9x9, TAME achieves higher performance. CorridorBattle-Dark
requires the agent to fight monsters, thereby testing planning and memory MiniHack Team, whereas
MazeWalk-9x9 is a maze in which the agent must reach a terminal goal, testing exploration and
memory Samvelyan et al.| (2021]).

MiniHack Subtask Performance Comparison
(with Standard Deviation)

100 Baseline
TAME

80
60

40 | |

Progression Percentage (%)

MiniHack Subtasks

Figure 16: MiniHack tasks progression, Baseline vs TAME using Gemini-2.0-Flash.

BabyAI We observe clear performance improvements across all tasks except “putnext” where both
agents achieve 0% success rate (see Figure [[7). The putnext task presents significant challenges
due to its complex spatial reasoning requirements. Through empirical analysis, we identified that
agents fail to understand the necessary positioning strategy: they must navigate to a location one
step away from the target position (which is adjacent to the object) before dropping the item. The
persistence of this failure in our improved method highlights fundamental limitations in the agent’s
spatial reasoning capabilities. In all the other tasks, we notice an improvement when comparing
TAME with baseline.

BabalsAI This environment consists of 40 distinct tasks that can be categorised into four main
types: make_win, make_you, goto_win, and make_wall_win. Our analysis reveals substantial im-
provements in the goto_win category and notable progress in make_win tasks, where performance
increased from 0% baseline (see Figure [I8). When examining performance across different room
configurations (two_room versus single_room layouts), we observe consistent improvements in both
settings. For difficulty categorisation, we define three levels based on task complexity: simple
tasks have no modifiers or distractors, medium tasks contain 1-2 modifiers/distractors, and com-
plex tasks have more than 2 modifiers/distractors. Most notably, the greatest performance gains
occur in medium and complex categories, demonstrating that our method is particularly effective for
challenging scenarios that require sophisticated reasoning capabilities.

29

Under review as a conference paper at ICLR 2026

1566 BabyAl Subtask Performance Comparison
1567 (with Standard Deviation)

1578 pick open pickup putnext goto
1579 se

go
1580 to

1581
1582
1583

1584
100 Performance by Room Type 100 Performance by Task Complexity
1585 - Baseline W Baseline

1586 T TAME — TAME

1568 100 ™= Baseline
1569 . TAME

1570
1571
1572 60
1573
1574 @ 40
1575
1576
1577
0

Progression Percentage (%)

n
=]

BabyAl Subtasks

Figure 17: BabyAlI tasks progression, Baseline vs TAME using Gemini-2.0-Flash.

1587 80 80
1588 53.3%
1589

60 45.8%
44.0%

1590 37.8% 286% 28.6% 3%
1591 " 29.3%
1592 244%
1593

20 20
1594
1595

0 0

1 596 two_room single_room simple medium complex

Room Type Task Complexity
1597

1598
1599

50.0%

8
Average Performance (%)

Average Performance (%)

(a) Performance by Room Type (b) Performance by Difficulty

100 Performance by Main Objective
1600 B Baseline

e TAME
1601 .

1602 80
1603
1604
1605
1606
1607
1608
1609

1610

0.0% 0.0% 0.0%
1611 0 _ i N
1612 - 5

1613 <~"§g
1614 Main Objective

60

40

Average Performance (%)

20

1615 (c) Performance by Objective
1616
1617 Figure 18: BabalsAl task progression, Baseline vs TAME using Gemini-2.0-Flash

1618
1619

30

Under review as a conference paper at ICLR 2026

K DETAILS OF GEMINI EXPERIMENTS

This section details the setup and exact result of our Gemini model family. In our experimentation
we repeat the genetic algorithm 3 times in order to access its variance across runs. The number of
runs per episode remains the same as in BALROG benchmark.

K.1 ‘IMPROVED PROMPT’ GEMINI RESULTS

First, we compare Baseline together with “Improved Prompt”, and TAME. “Improved Prompt” (see
Appendix [O) is created by prompting Claude-Sonnet-4.5 for a prompt that improves the Baseline
prompt and allowing it for functional inputs as described in . This experiment demonstrates
the difficulty of crafting a prompt that works well for every environment, motivating our genetic

approach, adapting the framework based on the game.

Environment Baseline (1) ImprovedPrompt[Claude] (1) TAME (1) Episodes
Average 27.16% + 2.12% 23.36% + 1.44% 35.05% + 2.24% -
babyai 58.00% + 6.98% 78.00% + 5.86% 72.00% + 6.65% 50
babaisai 30.83% + 4.22% 27.50% + 4.08% 42.50% + 4.51% 120
textworld 32.55% + 6.95% 0.78% + 0.77% 33.40% + 7.23% 30
crafter 29.09% + 4.51% 26.36% + 2.47% 38.18% + 4.25% 10
minihack 12.50% + 5.23% 7.50% + 4.16% 23.33% + 6.69% 40
nle 0.00% + 0.00% 0.00% =+ 0.00% 0.91% + 0.44% 5

Table 6: “Improved Prompt” results with Gemini-2.0-flash

K.2 SCORES ACROSS 3 GENETIC ALGORITHM RUNS WITH GEMINI-2.0-FLASH

In Table [/] we see detailed scores across all environments and across all 3 independent genetic
algorithm runs. The main results in the Table|l|are averaged across those 3 runs.

TAME[Run3] (1)

Environment Baseline (1) TAME[Runl] (1) TAME[Run2] (1)

Average 27.16% +2.12% 34.78% +2.22% 34.87% +2.20% 35.52% + 2.24%
babyai 58.00% + 6.98% 72.0% + 6.35% 68.0% + 6.60% 76.0% + 6.04%
babaisai 30.83% +4.22% 41.67% £ 4.50% 43.33% + 4.52% 42.5% + 4.51%
textworld 32.55% + 6.95% 32.55% +6.95% 32.55% £ 6.95% 35.10% £ 7.78%
crafter 29.09% + 4.51% 39.09% + 4.9% 39.55% +391% 3591% £ 4.33%
minihack 12.50% + 5.23% 22.5% + 6.6% 25.0% + 6.85% 22.50% + 6.61%
nle 0.00% =+ 0.00% 0.85% + 0.47% 0.79% =+ 0.44% 1.10% + 0.41%

Table 7: Detailed scores across 3 genetic algorithm runs with Gemini-2.0-Flash.

K.3 INITIAL POPULATION SCORES

This section details the scores of initial population used during genetic algorithm. Scores per envi-
ronment can be seen in Table[8] The details of each components of initial population can be found

in the Appendix

K.4 INITIAL POPULATION IMPROVEMENT

In order to access the performance gain of genetic algorithm, we compare it against initial popula-
tion. In the Table [0 we present the percentage improvement of final TAME score when compared
to the best score from initial population (see Appendix [K.3). Those results show that even with
relatively small budget, TAME structure is able to improve on average of 25.27% when compared to
initial population, showcasing the effectiveness of the genetic algorithm over human-crafted initial

population.

31

Under review as a conference paper at ICLR 2026

Environment Baseline (1) Hierarchical[Hand-Crafted] (1) Full[Claude] (1) Full[Hand-Crafted] (1)
Average 38.80% =+ 5.32% 38.48% =+ 4.06% 34.53% =+ 3.99% 33.93% + 4.07%
babyai 58.00% =+ 6.98% 62.00% =+ 6.86% 58.00% =+ 6.98% 65.31% =+ 6.80%
babaisai 30.83% + 4.22% 29.17% + 4.15% 40.83% =+ 4.49% 31.67% + 4.25%
textworld 32.55% + 6.95% 8.24% + 2.25% 4.67% + 1.50% 6.08% + 1.70%
crafter 29.09% + 4.51 33.64% + 4.64% 31.36 % + 3.55 % 20.00% + 1.72%
minihack 12.50% =+ 5.23% 5.00% + 3.45% 12.50% =+ 5.23% 12.50% + 5.23%
nle 0.00% =+ 0.00% 0.37% =+ 0.33% 0.68% =+ 0.37% 0.00% =+ 0.00%

Table 8: Initial population for Gemini-2.0-Flash genetic algorithm.

Environment Relative Improvement (1)
Average 25.27% =+ 3.05%
TAME[Run 1] 22.24%
TAME[Run 2] 24.00%
TAME[Run 3] 29.47%

Table 9: Relative percentage improvement of TAME over the best-performing initial population
scores across environments using Gemini-2.0-Flash. Note: The values indicate the percentage pro-
gression relative to the best performing initial genome, not the raw scores themselves.

K.5 CONVERGENCE PROPERTIES OF GENETIC ALGORITHM

We also show in Figure[I9|the graphical representation of average game progression (% completion)
over generations in genetic algorithm with Gemini-2.0-Flash. In each generation we consider 5 top
scoring genomes. We present average and standard deviation of the score across all 6 games over
3 runs, showcasing that there is a clear improvement in terms of average progress, which shows
promise for convergence when algorithm is run for longer.

Average Progression Across All Games Across 3 Runs

—e— Mean Score
50 Std Dev
£ 40
C
)
)
wn
)
2
[T
()
o
g 20
<
10

0 1 2 3 4
Generation

Figure 19: Average progression across all games (3 runs) with + standard deviation. Note: Values
are absolute scores, not relative improvements.

K.5.1 CONVERGENCE PROPERTIES ACROSS GAMES
Figure 20]expands on Figure[T9] presenting the convergence patterns accross all games. We measure

the mean and standard deviation of the top 5 scoring genomes in the population at each generation.
The results show a clear convergence trend: the standard deviation decreases in all environments

32

Under review as a conference paper at ICLR 2026

except for MiniHack. This demonstrates that increasing the computational budget enables conver-
gence. Note that due to the scale of the y-axis, NetHack’s standard deviation appears negligible in
the figure. However, Table [| confirms that measurable variance exists and that TAME continues to
show improvement in this environment.

Average Progression of Top 5 Genomes Per Generation

—— Babaisai

BabyAi
60 —— Minihack
— Crafter
—— Textworld
— Nle

I’
S

Progression (%)
w
8

|

-
)

0 1 2 3 4
Generation

Figure 20: Average progression of top 5 scoring genomes in each generation over environments
using Gemini-2.0-Flash. Note: Values are absolute scores, not relative improvements.

K.6 GENOME TRANSFERABILITY TO OTHER GEMINI MODELS

In this Appendix we detail transerability of genomes obtained through genetic algorithm using
Gemini-2.0-Flash, to Gemini-2.5-Flash-Lite and Gemini-2.5-Pro without additional training. In the
Table [I0] we compare performance of Baseline using Gemini-2.5-Flash-Lite vs TAME transferred
to the same model. In the Table [T1] we compare performance of Baseline using Gemini-2.5-Pro
vs TAME transferred to the same model. Lastly, we show combined results in the Figure The
Transferred results are averaged over 3 independent runs of genetic algorithm.

Environment Baseline [2.5-Flash-Lite] TAME[Transferred] Episodes

Average 11.87% + 1.32% 20.48% =+ 0.91% -

babyai 46.00% + 7.05% 58.00% =+ 3.06% 50
babaisai 9.17% =+ 2.63 38.33% + 0.48% 120
textworld 7.45% + 2.30% 7.45% + 0.00% 30
crafter 8.64% + 1.00% 13.01% + 4.15% 10
minihack 0.00% =+ 0.00% 5.83% + 1.67% 40
nle 0.00% =+ 0.00% 0.27% + 0.15% 5

Table 10: Comparison of Baseline vs.

TAME][Transferred] averaged across 3 genetic algorithm runs.

TAME|[Transferred] using Gemini-2.5-Flash-Lite.

K.6.1 TRANSFER SCORES ACROSS INDIVIDUAL GENETIC RUNS
In the Table [12| we present detailed results of genetic algorithm transferability to Gemini-2.5-Pro.

Similarly, in Table[I3] we show results of genetic algorithm transferability to Gemini-2.5-Flash-Lite
across 3 independent genetic runs.

L DETAILS OF GPT EXPERIMENTS

In this section we aim to test if we can get similar improvement when applying TAME to another
family of Language Models. We test GPT4.1-nano, as it provides a fast inference, and we also test
transferability to GPT4.1-mini. We run genetic algorithm 3 times and average results.

33

Under review as a conference paper at ICLR 2026

Game Baseline [2.5-Pro] Top Model TAME|[Transferred] Episodes
Average 43.35% +231% 43.60% =+ 2.17% 47.57% + 2.72% -

babyai 80.0% +£ 5.70% 76.00% + 6.00% 92.00% =+ 3.46% 50
babaisai 56.70% £ 4.50% 45.80% + 4.50% 67.50% + 5.00% 120
textworld 49.20% + 8.20% 62.90% =+ 7.90% 52.73% + 6.12% 30

crafter 55.0% £ 6.0% 57.30% + 3.90% 55.00% =+ 0.00% 10
minihack 17.50% =+ 6.00% 17.5% =+ 6.00% 18.33% + 1.44% 40

nle 1.70% =+ 0.20% 1.80% + 0.8% 1.70% =+ 0.00% 5

Table 11: Comparison of Baseline vs. TAME]|Transferred] using Gemini-2.5-Pro.

TAME]|Transferred] averaged across 3 genetic algorithm runs.

Baseline vs TAME[Transferred]

100
Baseline (2.5-Lite)
Emm TAME (2.5-Lite)
80 Baseline (2.5-Pro)
mm TAME (2.5-Pro)
S
o 60
| I
©
€
S
£ 401
9]
o
201 I
I I z
= millem

textworld crafter minihack nie

Environment

babasiai

babayi

Figure 21: Evaluation of TAME Structure Transferability: Identical performance to the baseline
indicates that the genetic algorithm favored the baseline architecture over the transferred TAME
genome.

L.1 TAME RESULTS OVER GPT MODEL FAMILY

We repeat the same procedure as described in section [3.2]applied to the initial population described
in Section Table [T4] shows the final TAME result, illustrating the relative gain of 74% when
comparing average result over Baseline (see Table [I3] for detailed results from independent runs).
Additionally, we include results of applying the “Improved Prompt” proposed by Claude-Sonnet-
4.5 (see Appendix [O]). We conclude that TAME outperforms both baseline and ImprovedPrompt
results. Those results demonstrate that TAME architecture are transferrable on more than onefamily
of Language Models.

L.2 INITIAL POPULATION OF GPT FAMILY MODELS
Table [T6] shows initial population for GPT4.1-nano genetic algorithm. It follows the same structure
as Gemini experiment and each component is described more in detail in the Appendix [Q.2]

L.3 IMPROVEMENT OVER INITIAL POPULATION

Table[I7]shows the relative improvement when TAME is contrasted with best scoring genome from
initial population described in Appendix The results demonstrate average relative gain of
around 37.10%, showing the effectiveness of genetic algorithm over human-crafted inital popula-
tion. Note that since NetHack baseline performance is 0%, even though we notice an improvement

34

Under review as a conference paper at ICLR 2026

Environment Baseline[2.5-Pro] TAME[Runl1] TAME[Run2] TAME[Run3] Episodes
Average 4335% £ 2.31% 47.65% £2.20% 47.82% +2.14% 48.17% + 2.25%
babyai 80.00 £ 5.70% 90.00 4 4.24 96.0 £ 2.77% 90% + 4.24% 50
babaisai 56.710% + 4.50% 72.50% + 4.08% 67.5% +4.28% 62.5% + 4.42% 120
textworld 49.20% £ 8.20% 49.20% + 8.20% 49.20% + 8.20% 59.80% =+ 8.34% 30
crafter 55.0% + 6.00% 55.00% + 6.00% 55.00% + 6.00% 55.00% =+ 6.00% 10
minihack 17.50% + 6.00% 17.50% + 6.00% 17.50% 4+ 6.00% 20.00% =+ 6.32% 40
nle 1.70% =+ 0.20% 1.70% + 0.20% 1.70% =+ 0.20% 1.70% =+ 0.20% 5
Table 12: Details of independent runs of transferability to Gemini-2.5-Pro
Environment Baseline[2.5-Flash-Lite] TAME[Runl] TAME[Run2] TAME[Run3] Episodes
Average 11.88% + 1.32% 19.25% £ 1.63% 19.43% £ 1.49% 22.76% + 1.73%
babyai 46.00% =+ 7.05% 52.00% £ 7.07% 60.00% £ 6.93% 62.00% + 6.93% 50
babaisai 9.17% £ 2.63 39.17% £ 4.46% 37.50% £ 4.42% 38.33% + 4.44% 120
textworld 7.45% + 2.30% 7.45% + 2.30% 7.45% + 2.30% 7.45% + 2.30% 30
crafter 8.64% + 1.00% 9.09% + 1.70% 8.64% + 1.00% 21.3% + 4.22% 10
minihack 0.00% =+ 0.00% 7.5% + 4.16% 2.5 % +2.47 7.50% £ 4.16% 40
nle 0.00% =+ 0.00% 0.31% + 0.28% 0.51% £ 0.42% 0.00% + 0.00% 5
Table 13: Details of independent runs of transferability to Gemini-2.5-Flash-Lite
Environment Baseline (1) ImprovedPrompt[Claude] (1) TAME (1) Episodes
Average 9.90% + 1.33% 6.10% + 1.12% 17.20% + 1.47% -
babyai 32.0% + 6.60% 20.00% =+ 5.66% 48.67% + 7.07% 50
babaisai 12.5% + 3.02% 6.67% + 2.28% 21.55% + 3.76% 120
textworld 0.59% =+ 0.58% 0.39% + 0.39% 2.88% + 0.94% 30
crafter 11.82% + 2.15% 7.07% + 1.26% 19.78% + 2.33% 10
minihack 2.5% + 2.47% 2.50% + 2.47% 10.00% + 2.78% 40
nle 0.0% + 0.0% 0.00% =+ 0.00% 0.22% + 0.20% 5

Table 14: Baseline vs. ImprovedPrompt[Claude] vs. TAME using GPT4.1-nano averaged over 3
runs.

after applying TAME, we can’t measure its relative improvement, therefore we exclude it from cal-
culation in Table 7l

L.4 TRANSFERABILITY ACROSS GPT FAMILY MODELS

In this section we test if results can transfer within GPT family. We follow the same procedure as
in Gemini case. Therefore, for each environment we evaluate the best scoring genome (obtained
from TAME run with GPT4.1-nano) using GPT4.1-mini. We apply the same procedure for all
independent genetic algorithm runs and average results. Table [T8]shows the results, demonstrating
a relative gain of around 10%, when compared to Baseline GPT4.1-mini results (see Table |19 for
more details across independent runs) .

M TAME CHILD EVALUATION PSEUDO CODE

This Appendix presents the pseudo code behind TAME evaluation on specific game when all mod-
ules are active, as decided by the genetic algorithm (overview in Figure[2). The algorithm works as
follows: until maximum number of steps is reached, with probability € choose exploration, other-
wise exploitation. For each option, it retrieves top successful and failed memories, then the Low-
level Executor decides and executes actions. If danger is detected, the survival module is triggered
and execution stops. Otherwise, the Critic evaluates success, summarizes key actions, and in case
of loops, the summary is replaced by the Loop Detector summary. The resulting memory is stored,
and the cycle repeats.

35

Under review as a conference paper at ICLR 2026

TAME[Runl] (1)

TAME[Run2] (1)

TAME[Run3] (1)

18.06% + 1.65%

17.19% + 1.60%

16.31% + 1.58%

Environment Baseline (1)
Average 9.90% + 1.33%
babyai 32.00% =+ 6.60%
babaisai 12.50% + 3.02%
textworld 0.59% + 0.58%
crafter 11.82% + 2.15%
minihack 2.5% + 2.47%
nle 0.0% =+ 0.0%

52.00% £ 7.07%
22.5% + 3.81%
3.13% £+ 0.95%
20.71% =+ 3.04%
10.00% + 4.86%
0.0% £ 0.0%

48.00% £ 7.07%
22.5% £ 3.81%
2.75% £ 0.93%
19.55% + 2.14%
10.00% + 4.74%
0.31% + 0.28%

46.00% £ 7.06%
19.66% =+ 3.67%
2.75% %+ 0.93%
19.09% + 1.80%
10.00% =+ 4.74%
0.38% + 0.33%

Table 15: Detailed scores across 3 genetic algorithm runs with GPT4.1-nano.

Hierarchical[Hand-Crafted] (1)

Full[Claude] (1)

Full[Hand-Crafted] (1)

10.40% + 2.07%

10.95% + 2.77%

9.28% =+ 2.15%

Environment Baseline (1)

Average 9.90% + 1.33%
babyai 32.0% =+ 6.60%
babaisai 12.50% =+ 3.02%
textworld 0.59% =+ 0.58%
crafter 11.82% + 2.15%
minihack 2.50% + 2.47%
nle 0.00% + 0.00%

12.00% =+ 4.60%
16.67% + 3.40%
1.18% + 0.60%
7.58% + 1.01%
5.00% + 3.45%
0.00% =+ 0.00%

22.00% =+ 5.86%
16.10% =+ 3.38%
2.75% £ 0.93%
15.00% + 1.71%
0.00% + 0.00%
0.00% =+ 0.00%

10.00% =+ 4.24%
19.66% + 3.67%
1.37% + 0.70%
12.27% + 1.82%
2.50% + 2.47%
0.00% =+ 0.00%

Table 16: Initial population for GPT-4.1-nano genetic algorithm.

N DETAILED MEMORY ABLATIONS

In this section we show detailed results when comparing our memory system with Craft-Jarvis-1
and A-Mem using Gemini-2.0-Flash. Table [20] shows that TAME-Memory consistently outper-
forms both Craft-Jarvis-1 and A-Mem on most environments, yielding the highest overall average
of 23.11%. The gains are particularly strong in TextWorld and Crafter, where our system nearly
doubles or surpasses the baselines by a large margin. While performance is comparable in Minihack
and NLE, these tasks remain challenging for all methods. Overall, the results highlight the efficiency
of our hybrid memory system.

O ‘IMPROVED PROMPT’ PROPOSED BY CLAUDE

Here we present a prompt proposed by Claude-Sonnet-4.5, when tasked to improve the Baseline
(BALROG) prompt. As well as the baseline prompt, we gave information about functional inputs
(see Section[3.1)) and gave it an option to use them.

Improved Prompt proposed by Claude

Game Agent Instructions

You are an autonomous agent navigating a game environment. Your task is to select the optimal next
< action based on the current state.

Current State

— **Observation*x*:
— xxCurrent Subgoalx*x:
- **Success Conditionx:

{obs}
{subgoal}
{success_condition}

Context
- »xRecent History*x: {history}
- xxAction Sequence (Current Subgoal)x*: {action_sequence}

Knowledge Base
— **Similar Successful Attempts**: {entries_successful_subgoal}
- »xSimilar Failed Attemptsx*: {entries_failed_subgoal}

Available Actions
{game_info}

Output Format

36

Under review as a conference paper at ICLR 2026

Environment Relative Improvement (1)
Average 37.10% =+ 2.08%
TAME[Run 1] 38.14%
TAME[Run 2] 38.96%
TAME[Run 3] 34.20%

Table 17: Relative percentage improvement of TAME over the best-performing initial population
scores across environments using GPT4.1-nano averaged over 3 genetic algorithm runs. Note: The
values indicate the percentage progression relative to the best performing initial genome, not the
raw scores themselves.

Environment Baseline[GPT-4.1-mini] TAME[Transferred] Episodes
Average 24.43% + 1.89% 26.80% + 1.92% -
babyai 72.00% =+ 7.18% 72.00% =+ 7.18% 50
babaisai 29.17% + 4.15% 35.00% =+ 4.33% 120
textworld 13.33% =+ 5.74% 13.33% =+ 5.74% 30
crafter 21.00% =+ 2.00% 29.43% =+ 2.65% 10
minihack 10.00% =+ 4.74% 10.00% =+ 4.74% 40
nle 1.09% =+ 0.41% 1.09% =+ 0.41% 5

Table 18: Transferability of TAME across GPT family averaged over 3 runs.

Output ONLY a single valid action from the available actions list. No explanations, no additional
— text.

Decision Strategy
1. Analyze current observation against the success condition
2. Learn from similar past attempts (successful and failed)
3. Consider recent action history to avoid loops
4. Select the action most likely to progress toward the subgoal
Output in the following format: \n
REASONING: <your reasoning> \n
ACTION: <your action>

P LLM MUTATION AND CROSSOVER PROMPTS

This Appendix details the prompts used for LLM based Crossover (in the case of single parent) and
LLM based Crossover and Mutation (in the case of two parents) used in genetic algorithm. Prompts
created with the help of Claude-Sonnet-4.

LLM Mutation Prompt

won

Please follow the instruction step-by-step to generate a better prompt.

1. Consider prompt:
Prompt 1: <promptl>

2. Apply ONE of the following mutation strategies to create a significantly different prompt:

xStrategy A - Perspective Shift: Change the role/perspective (e.g., "As an expert analyst..." or
< "From the viewpoint of...")

xStrategy B - Methodology Change:x Alter the approach (step-by-step -> holistic analysis, direct
< —-> comparative, etc.)

xStrategy C - Output Format Transformation:x Change how results are presented (narrative ->
< structured, single response -> multi-part, etc.)

*xStrategy D - Contextual Enhancement:*x Add specific domain knowledge or constraints that weren’t
< in the original

37

Under review as a conference paper at ICLR 2026

Environment Baseline[GPT4.1-mini] TAME[Runl1] TAME[Run2] TAME[Run3] Episodes
Average 24.43% + 4.04% 28.33% £4.17% 2540% £+ 1.09% 25.44% + 1.92% -
babyai 72.00% + 7.18% 72.00% + 7.18% 72.00% £+ 7.18% 72.00% + 7.18% 50
babaisai 29.17% + 4.15% 40.83% +4.49 % 35.00% +4.35% 29.17% + 4.15% 120
textworld 13.33% £ 5.74% 13.33% £5.74% 13.33% +5.74% 13.33% + 5.74% 30
crafter 21.00% + 2.00% 30.73% +247% 21.00% + 2.00% 34.55% + 3.47% 10
minihack 10.00% =+ 4.74% 10.00% £+ 4.74% 10.00% + 4.74% 10.00% =+ 4.74% 40
nle 1.09% + 0.41% 1.09% + 0.41% 1.09% + 0.41% 1.09% + 0.41% 5
Table 19: Details of independent runs of transferability to GPT4.1-mini
Algorithm 2 TAME [Full Structure]
Require: 1, sg
Ensure: st (final game state)
while num_steps < maz_steps do
if rand() < e then
g < Texplorer(si) {Exploration}
else
g < Thigh(s7*°) {Exploitation}
end if
for g; € g do
Mt + retrieve_success ful(ng,, dg,, memory)
M, < retrieve_failed(ng,, dgy, , memory)
a < ﬂ—low(sie)
for a; € ado
st + execute_action(a, s;)
Si < St
if o(s;) then
g < g" {Activate survival option}
break {Move to option selection and force g*}
end if
end for
Ci = p(s4)
hi < p(si, Ci)
if C; then
store_memory(gi, hi, 0, “success ful”)
else
if ¢ (s;) then
hi <= 1(si)
end if
store_-memory(gi, hi, 0, “failed”)
break {Escalate to replanning }
end if
end for
end while=0
xStrategy E - Complexity Modulation:x Significantly increase or decrease the cognitive complexity

< of the task

< changes the prompt’s core operation

Available Functional Inputs:

{survival_plan}: survival plan

38

3. Generate the final mutated prompt bracketed with <prompt> and </prompt>.

{obs} : current observation
{game_info} : information about the game (possible actions and goal)
{subgoal} : current subgoal that you’re working towards

{action_sequence}: action sequence towards current subgoal
{observation_sequence}: observation sequence towards current subgoal
{success_condition}: termination condition of the current subgoal
{action_obs_seq}: action-observation pairs towards current subgoal

{history}: history of the last 16 action-observation pairs
{entries_successful_goal}: most similar successful subgoals to the current one
{entries_failed_goal}: most similar failed subgoals to the current one

xStrategy F - Functional Input Integration:+ Incorporate functional inputs in a novel way that

Under review as a conference paper at ICLR 2026

Environment Jarvis (1) TAME-Memory[ours] (1) A-mem (1) Epi

sodes

Average 17.52% + 1.73% 23.11% + 1.75% 21.45% + 1.80%

babyai 48.00 % + 7.06 % 62.00% =+ 6.86% 58.00% + 6.98% 50
babaisai 24.17 % £+ 3.90 % 29.17% + 4.15% 26.67% + 4.04% 120
textworld 0.59 % £ 0.58 % 8.24% + 1.95% 4.51% + 2.35% 30

crafter 19.55 % + 3.81 % 35.45% + 3.20% 26.36% £ 4.25%

10

minihack 12.5% + 5.23% 3.45% + 5.65% 12.5% + 5.23% 40

nle 0.31% + 0.28% 0.37% %+ 0.33% 0.68% =+ 0.37%

5

Table 20: Comparison of TAME average game progression across different memory types
Gemini-2.0-Flash.

**CRITICAL:xx Use functional inputs with exact bracket names. Ensure the mutation creates a
< substantially different prompt that would produce notably different outputs.

Output your asnwer in thne follwing way:

REASONING: <your reasoning>

PROMPT: <mutated prompt>

won

using

won

Please follow the instruction step-by-step to generate a better prompt.
1. Crossover the following prompts and generate a new prompt:

Prompt 1: <promptl>

Prompt 2: <prompt2>

2. Apply ONE of the following mutation strategies to create a significantly different prompt:

xStrategy A - Perspective Shift: Change the role/perspective (e.g., "As an expert analyst..." or
< "From the viewpoint of...")

*xStrategy B - Methodology Change:*x Alter the approach (step-by-step -> holistic analysis, direct
< —> comparative, etc.)

xStrategy C - Output Format Transformation:x Change how results are presented (narrative ->
< structured, single response -> multi-part, etc.)

*xStrategy D - Contextual Enhancement:** Add specific domain knowledge or constraints that weren’t
< in the original

Strategy E - Complexity Modulation: Significantly increase or decrease the cognitive complexity
— of the task

*xStrategy F - Functional Input Integration:** Incorporate functional inputs in a novel way that
<+ changes the prompt’s core operation

3. Generate the final mutated prompt bracketed with <prompt> and </prompt>.

Available Functional Inputs:

- {obs} : current observation
- {game_info} : information about the game (possible actions and goal
- {subgoal} : current subgoal that you’re working towards

- {action_sequence}: action sequence towards current subgoal

- {observation_sequence}: observation sequence towards current subgoal

- {success_condition}: termination condition of the current subgoal

- {action_obs_seq}: action-observation pairs towards current subgoal

- {survival_plan}: survival plan

- {history}: history of the last 16 action-observation pairs

— {entries_successful_goal}: most similar successful subgoals to the current one
- {entries_failed_goal}: most similar failed subgoals to the current one

**CRITICAL:xx Use functional inputs with exact bracket names. Ensure the mutation creates a
< substantially different prompt that would produce notably different outputs than the
< crossover result.

Output your asnwer in thne follwing way:

REASONING: <your reasoning>

PROMPT: <mutated prompt>

won

LLM Mutation and Crossover Prompt

39

Under review as a conference paper at ICLR 2026

Q INITIAL POPULATION GENOMES

This Appendix details the initial population of genetic algorithm described in section [3.2] First, we
show examples of prompts proposed by Claude-Sonnet-4 for each of the modules. We use those in
order to construct Full[Claude] genome. For the rest of genomes we use hand-crafted prompts. We
detail genomes in the subsections below.

Q.1 PROMPTS PROPOSED BY SONNET-4

Those prompts were created using Claude-Sonnet-4, which was tasked with the creation of a prompt
for each module. We call those “default” prompts

Prompt Template

default_sequential prompt = """You always have to output one of the above actions at a time and no
< other text. You always have to output an action until the episode terminates."""

default_highlevel_prompt = """
You are a strategic planner for a video game AI. Analyze the current game state and create
<+ achievable subgoals that advance toward the main objective.

REQUIREMENTS :

— Subgoals must be immediately achievable with current capabilities
— Focus on next logical steps, not distant goals

— Each subgoal should have clear success criteria

CURRENT STATE: {obs}
GAME INFO: {game_info}

Create a sequential plan with 2-3 subgoals."""
default_lowlevel_prompt = """ You are an action executor in a video game AI system. Given a subgoal
< from the high-level planner, propose a sequence of actions to achieve it.
FHEFEHHF AR R R R R R R R R R
CURRENT SUBGOAL: {subgoal}
CURRENT STATE: {obs}
PREVIOUS ACTIONS: {action_sequence}

Plan the full sequence of actions needed to complete the subgoal. Avoid repeating actions if
<+ observations don’t change.
Avoid extra commentary outside the REASONING and ACTIONS list.
wan
default_termination_prompt = """
You are a termination evaluator for a video game AI. Check if the agent has completed
< its subgoal.

CURRENT STATE: {obs}

SUBGOAL: {subgoal}

SUCCESS CONDITION: {success_condition}
RECENT ACTIONS: {action_sequence}

Compare the current state with the success condition to determine if the subgoal is
<~ complete. Provide feedback to help the agent improve.

nnn

default_summariser_prompt = """
You are a critic analyzing an agent’s subgoal attempt. Identify the key factor that caused
<~ success or failure.

SUBGOAL: {subgoal}
OUTCOME: {outcome}
ACTION HISTORY: {action_obs_seq}

Focus on specific resources and quantities that mattered most. If no resources involved,
< identify the next most important factor.
wn
default_amygdala_prompt = """
Decide if survival mode should activate.

Observation: {obs}
Survival plan: {survival_plan}

1. Check if observation meets any subtask prerequisites.
2. If several match, pick highest priority.

wun

default_loop_prompt = """
Task: Decide if the agent 1is stuck in a loop.

Loop = repeating actions without meaningful progress toward the subgoal
(progress = closer to goal, new info, removing failed paths, or advancing game state).

Data:
- Observation: {obs}

40

Under review as a conference paper at ICLR 2026

— Subgoal: {subgoal}
- Termination condition: {success_condition}
- Action-observation history: {history}

Steps:
1. Check if enough steps have been taken to allow exploration.
2. Look for repeated patterns without progress.
3. If loop detected, identify cause: missing info, unknown prerequisite, or unexplored path.
W
default_explorer_prompt = """
Task: Create an exploration plan to help the agent discover new skills.

Data:

- Game info: {game_info}

— Observation: {obs}

- Subgoal summary: {summary}

— Recent 16 action-observation pairs: {history}

Steps:
1. Analyze the environment and agent’s situation.
2. Propose a focused exploration plan with clear purpose, conditions, and indicators.

nun

Q.2 INITIAL POPULATION

Detailed genome descriptions for the initial population.

Baseline genome This genome corresponds to the baseline structure used in BALROG.

Baseline Geno:!

genome_basic = {

wigm, m3m,

"hierarchy": 0,

"amygdala": 0,

"loop_evaluator": 0,

"explorer": 0,

"summariser": 0,

"time_decay": [0, 0.01],

"cosine_cutoff": [0, 0.05],

"epsilon": [0, 0.01],

"temperature": 1.0,

"prompts": {
"high_level": [0, default_highlevel_prompt],
"low_level": [0, default_lowlevel prompt],
"amygdala": [0, default_amygdala_prompt],
"loop": [0, default_loop_prompt],

"termination": [0, default_termination_prompt],
"summariser": [0, default_summariser_prompt],
"explorer": [0, default_explorer_prompt],
"sequential": [1, default_sequential_prompt]

}

"fitness":

}

Hierarchical[Hand-Crafted] genome This genome corresponds to hierarchy from Section [3.3.1]
combined with memory [3.4] without amygdala and explorer. We use this architecture as one of the
initial seeds, because we found that it gives the most stable performance across all environments.

Hierarchical[Hand-Crafted] Genome

genome_stable = {
wigny mom,
"hierarchy": 1,
"amygdala": O,
"loop_evaluator": 1,
"explorer": O,
"summariser": 1,
"time_decay": [1, 0.01],
"cosine_cutoff": [0, 0.1],
"epsilon": [0, 0.01],
"temperature": 1.0,
"prompts": {
"high_level": [1,

41

Under review as a conference paper at ICLR 2026

"""You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
< the current game state and generate achievable subgoals that strategically advance toward
< the main objective.

CRITICAL CONSTRAINTS:

- Subgoals must be immediately achievable given the current agent state and capabilities
- Focus on the next logical progression steps, not distant end-goals

- Each subgoal should have clear, observable success criteria

- Subgoals should be novel and interesting, compared to previous attempts

Below I will provide the game description, available actions, and current state information.

Game description:

{game_info}

FHEFEHEE R AR AR R A R R R R R R R R R R R

CURRENT CONTEXT: \n

- Game State: {obs} \n

— Survival plan provided by the survival planner, that you should consider for your tasks:
< {survival_plan}

- Here are most similar successful entries from the archive: {entries_successful_goal} \n

- Here are most similar failed entries from the archive: {entries_failed_goal} \n

ANALYSIS FRAMEWORK:

Analyse the summary from previous runs and let it guide your decision making.
Assess what is immediately possible given current agent state and environment
Identify what kind of actions could be considered novel or interesting
Identify the most direct path toward the main objective

Select subgoals that form a logical sequence

Ensure each subgoal can be verified through observable game state changes

oUW

SUBGOAL SELECTION CRITERIA:

— Feasible: Can be started immediately with current resources/position

- Measurable: Success/failure can be determined from game observations

- Progressive: Each subgoal enables the next or advances toward main goal
- Specific: Clear enough for a lower-level agent to understand and execute
— Considerate of the summary of previos runs

Make sure that your subgoals are sequential. "

"low_level": [1,
"""You are an important executor component of a hierarchical video game system. You are given
< one of higher level option and its termination condition proposed by the higher level
< planner. Your role is to propose a sequence of actions that will make you progress towards
<> the given option." \
Below I will provide you with the game description, possible actions you can take and the
< overall goal of the game.

FHEFEHEE R AR AR R R R R R R
Here is a subgoal provided by the high level planner that you should focus on completing:
<~ {subgoal} \n
Here is your current state: {obs} \n
Here is the action-observation sequence towards current subgoal: {action_sequence} \n
Here are the most similar successful entries from the archive: {entries_successful_goal} \n
Here are the most similar failed entries from the archive: {entries_failed_goal} \n
Use the action and observation sequence together with the current state to decide the xxfull
— ordered sequence of actions+x that will achieve the subgoal. \n
Avoid repeating the same actions if the observation doesn’t change. \n"

1,

"amygdala": [0, """
You are an important component in a hierarchical video game system. Your role is to

< determine if the agent is in danger and should activate survival mode. Below I will provide

< you with current observation and a survival plan from the higher level agent. \n

Current observation: {obs} \n
Survival plan: {survival_plan} \n

Your role is to analyse the observation and survival plan given by higher level system and
<+ determine if the current observation satisfies any of the prerequites for any of the
< survival components. If there are prerequsites satisfied for multiple components, then
< return the one with the highest priority. \n

First reason, then output True or False depending if you decide to activate survival plan.
< If you output True, then output one of the survival subtasks. If you decide to not activate
— survival plan, then output None as the survival subtask. \n

REASONING: <your reasoning> \n
ACTIVATE SURVIVAL: <True/False> \n
SURVIVAL SUBTASK: <survival subtask name or None if False> \n

"y,
"loop": [1,
"""You are an important loop evaluator component of a hierarchical video game system.
You are going to receive details about game progress such as: current observation, current
<+ subgoal, current termination conditions, action sequence towards current subgoal and
<~ observation sequence towards current subgoal.
Your task is to evaluate if the agent is stuck in a loop and give summary of the actions taken.
A loop occurs when the agent repeats a sequence of actions multiple times without achieving
< meaningful progress toward its current goal, where ’'meaningful progress’ includes: getting
< closer to the objective, discovering new information, eliminating failed approaches, or
< changing the game state in a way that advances toward the subgoal.
It is important that you let the agent explore enough but also decide when to terminate to get
< out of the loop. \n

42

Under review as a conference paper at ICLR 2026

Details: \n

Here is your current state: {obs} \n

Here is a subgoal lower level agent is working towards: {subgoal} \n

Here is the most recent action-observation pairs that should help you decide if agent is stuck
< in a loop: {historyl}\n \n

Instructions:\n

Analyse the details. Avoid giving any judgement. \n

Think about how many steps the agent needs in order to complete the subgoal and use that to help
< you reason if agent is stuck in a loop. \n

Then, given your analysis, decide if the actions proposed by the lower level agent are leading
< to the termination condition or if the agent is stuck in a loop.

If a loop is detected, analyse if the agent is stuck due to a lack of necessary information, an
< unknown prerequisite, or an unexplored path. Your summary should clearly articulate this gap
< in knowledge and suggest that exploration might be required to break the loop and find
< alternative solutions. \n"""],

"termination": [1, """

You are an important termination evaluator component of a hierarchical video game system. \n

Your task is to: \n

1. Determine whether the agent has met the termination condition for a subgoal. \n

2. Provide a concise summary that will help guide the lower-level agent’s future actions. \n\n

Details: \n

Here is your currect state that you should compare with termination condition: {obs} \n

Here is the subgoal lower level agent is working towards: {subgoal} \n

Here is the termination condition of the above subgoal given by the higher level agent:
< {success_condition} \n \n

Instructions:\n

Analyse the subgoal and its termination condition and decide if the subgoal is completed. \n

Then use action-observation sequence: {action_sequence} to give a high level summary of current
< evaluation. This summary will later be passed to low level agent in order to improve its
<> actions.

Remember that your summary will be passed to low level component in order to improve its
< actions. \n \n"""],

"summariser": [1,

"""You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game
< environment.

Your task is to identify the *xsingle most important factorxx that caused SUCCESS or FAILURE.

Information:

- Target subgoal: {subgoal}

— Outcome of the action-observation sequence: {outcome}
- Action-observation history: {action_obs_seq}

- Game context: {game_info}

Instructions:

— Think briefly about what helped or prevented success.

— Focus mostly on xxspecific resources and their quantities*x (e.g., "3 pieces of wood", "1 iron
< ingot") .

— If resources were missing, state xxexactly which and how manyx* were missing.

- Ignore minor details or redundant actions.

- Express the result in xxone short sentencexx.

- If no resources are involved, state the next most relevant factor."""],
"explorer": [0, default_explorer_prompt],
"sequential": [0, default_sequential_ prompt]

}

"fitness":

}

Full[Claude] genome Default genome consits of all modules being active and prompts proposed
by Claude-Sonnet-4. We add this genome to initial population, as they remove human bias.

Full[Claude] Genome

genome_default = {
migw, win,
"hierarchy": 1,
"amygdala": 1,
"loop_evaluator": 1,

"explorer": 1,

"summariser

"time_decay 0.01], # [active_flag, value]
"cosine_cutoff": [1, 0.05],

"epsilon": [1, 0.1],

"temperature": 1.0, # continuous
"prompts": { # [active_flag, text]
"high_level": [1, default_highlevel prompt],
"low_level": [1, default_lowlevel prompt],

"amygdala": [1, default_amygdala_prompt],
"loop": [1l, default_loop_prompt],
"termination": [1, default_termination_prompt],

43

Under review as a conference paper at ICLR 2026

"summariser": [1l, default_summariser_prompt],
"explorer": [1, default_explorer_prompt],
"sequential": [0, default_sequential_prompt]
}
"fitness":

}

Full[Hand-Crafted] This genome represents a full structure with all modules active and hand-
crafted prompts.

Full[Hand-Crafted] Gen

genome_full = {
mign: wiw,
"hierarchy": 1,
"amygdala": 1,
"loop_evaluator": 1,
"explorer": 1,

"summariser": 1,

"time_decay": [1, 0.01],

"cosine_cutoff": [1, 0.05],

"epsilon": [1, 0.1],

"temperature": 1.0,

"prompts": {

"high_level": [1, """You are a strategic planner in a hierarchical video game AI system. Your

< role is to analyze the current game state and generate achievable subgoals that
< strategically advance toward the main objective.
CRITICAL CONSTRAINTS:
- Subgoals must be immediately achievable given the current agent state and capabilities
- Focus on the next logical progression steps, not distant end-goals
- Each subgoal should have clear, observable success criteria
- Subgoals should be novel and interesting, compared to previous attempts

Below I will provide the game description, available actions, and current state information.

Game description:

{game_info}

FHEFEHHE R AR AR R R R A R R R R R R R

CURRENT CONTEXT: \n

— Game State: {obs} \n

— Summary from the previous high level plan : {summary} \n

— Survival plan provided by the survival planner, that you should consider for your tasks:
< {survival_plan}

- Here are most similar successful entries from the archive: {entries_successful_goal} \n

- Here are most similar failed entries from the archive: {entries_failed_goal} \n

ANALYSIS FRAMEWORK:

Analyse the summary from previous runs and let it guide your decision making.
Assess what is immediately possible given current agent state and environment
Identify what kind of actions could be considered novel or interesting
Identify the most direct path toward the main objective

Select subgoals that form a logical sequence

Ensure each subgoal can be verified through observable game state changes

oUW NP

SUBGOAL SELECTION CRITERIA:

— Feasible: Can be started immediately with current resources/position

- Measurable: Success/failure can be determined from game observations

— Progressive: Each subgoal enables the next or advances toward main goal
— Specific: Clear enough for a lower-level agent to understand and execute
— Considerate of the summary of previos runs

Make sure that your subgoals are sequential. """],

"low_level": [1l, """You are an important executor component of a hierarchical video game system.
< You are given one of higher level option and its termination condition proposed by the
< higher level planner. Your role is to propose an action that will make you progress towards
<~ the given option." \

Below I will provide you with the game description, possible actions you can take and the
< overall goal of the game.

FREFEHHE AR AR R R R R R R R R

Here is a subgoal provided by the high level planner that you should focus on completing:
— {subgoal} \n

Here is your current state: {obs} \n

Here is the action-observation sequence towards current subgoal: {action_sequence} \n

Here are the most similar successful entries from the archive: {entries_successful_goal} \n

Here are the most similar failed entries from the archive: {entries_failed_goal} \n

Use the action and observation sequence together with the current state to decide the xxfull
— ordered sequence of actions+x that will achieve the subgoal. \n

Avoid repeating the same actions if the observation doesn’t change. \n"""],

"amygdala": [1, """

You are an important component in a hierarchical video game system. Your role is to determine if
< the agent is in danger and should activate survival mode. Below I will provide you with
< current observation and a survival plan from the higher level agent. \n

44

Under review as a conference paper at ICLR 2026

Current observation: {obs} \n
Survival plan: {survival_plan} \n

Your role is to analyse the observation and survival plan given by higher level system and
< determine if the current observation satisfies any of the prerequites for any of the
< survival components. If there are prerequsites satisfied for multiple components, then
< return the one with the highest priority. \n

First reason, then output True or False depending if you decide to activate survival plan. If
< you output True, then output one of the survival subtasks. If you decide to not activate
< survival plan, then output None as the survival subtask. \n

REASONING: <your reasoning> \n
ACTIVATE SURVIVAL: <True/False> \n
SURVIVAL SUBTASK: <survival subtask name or None if False> \n

wny
"loop": [1l, """You are an important loop evaluator component of a hierarchical video game system.
You are going to receive details about game progress such as: current observation, current
< subgoal, current termination conditions, action sequence towards current subgoal and
< observation sequence towards current subgoal.
Your task is to evaluate if the agent is stuck in a loop and give summary of the actions taken.
A loop occurs when the agent repeats a sequence of actions multiple times without achieving
<~ meaningful progress toward its current goal, where ’meaningful progress’ includes: getting
< closer to the objective, discovering new information, eliminating failed approaches, or
< changing the game state in a way that advances toward the subgoal.
It is important that you let the agent explore enough but also decide when to terminate to get
< out of the loop. \n

Details: \n

Here is your current state: {obs} \n

Here is a subgoal lower level agent is working towards: {subgoal} \n

Here is the most recent action-observation pairs that should help you decide if agent is stuck
< in a loop: {history}\n \n

Instructions:\n

Analyse the details. Avoid giving any judgement. \n

Think about how many steps the agent needs in order to complete the subgoal and use that to help
<— you reason if agent is stuck in a loop. \n

Then, given your analysis, decide if the actions proposed by the lower level agent are leading
< to the termination condition or if the agent is stuck in a loop.

If a loop is detected, analyse if the agent is stuck due to a lack of necessary information, an
< unknown prerequisite, or an unexplored path. Your summary should clearly articulate this gap
< in knowledge and suggest that exploration might be required to break the loop and find
<> alternative solutions. \n"""],

"termination": [1, """

You are an important termination evaluator component of a hierarchical video game system. \n

Your task is to: \n

1. Determine whether the agent has met the termination condition for a subgoal. \n

2. Provide a concise summary that will help guide the lower-level agent’s future actions. \n\n

Details: \n

Here is your currect state that you should compare with termination condition: {obs} \n

Here is the subgoal lower level agent is working towards: {subgoal} \n

Here is the termination condition of the above subgoal given by the higher level agent:
< {success_condition} \n \n

Instructions:\n

Analyse the subgoal and its termination condition and decide if the subgoal is completed. \n

Then use action-observation sequence: {action_sequence} to give a high level summary of current
< evaluation. This summary will later be passed to low level agent in order to improve its
< actions.

Remember that your summary will be passed to low level component in order to improve its
— actions. \n \n"""],

"summariser": [1, """You are a critic module analyzing an agent’s attempt to achieve a subgoal
< in a game environment.

Your task is to identify the xxsingle most important factorx+ that caused SUCCESS or FAILURE.

Information:

- Target subgoal: {subgoal}

— Outcome of the action-observation sequence: {outcome}
- Action-observation history: {action_obs_seq}

- Game context: {game_info}

Instructions:

- Think briefly about what helped or prevented success.

- Focus mostly on xxspecific resources and their quantities+* (e.g., "3 pieces of wood", "1 iron
< ingot") .

- If resources were missing, state x*exactly which and how many** were missing.

— Ignore minor details or redundant actions.

— Express the result in x+one short sentencexx.

— If no resources are involved, state the next most relevant factor."""],

"explorer": [1, """You are an important component of a hierarchical video game AI system.

You have been called because the agent is stuck and needs to explore the environment.

Please provide a percise exploration plan that will help the agent to explore the new areas of
<~ the environment.

Below I will provide you with details about the game:

Game info: {game_info} \n

Current observation: {obs} \n

Most recent 16 action-observation pairs: {history} \n

45

Under review as a conference paper at ICLR 2026

Use the information above to reason about the environment and provide a plan that will help the
< agent to explore the new areas of the environment.

Output your answer in the following format:

REASONING : <your reasoning>

EXPLORATION PLAN:

i

"reasoning": "Brief analysis of environment and strategic approach",
"subgoals": [{{
"Explore": {{
"description": "Describe exploration strategy and its purpose",
"prerequisites": None,
"success_condition": "Observable conditions that indicate completion",
"penalty_component": "What agent should be penalised for"
"progress_indicators": "Intermediate signs that the agent is making progress",
"estimated_priority": "high/medium/low based on urgency for main objective"
1N
1]
+}
"y,
"sequential": [0, default_sequential_prompt]
}
"fitness":

}

R FINAL GENOMES RETURNED BY TAME

In this Appendix we present genomes returned by TAME per each game through the first run of
genetic algorithm using Gemini-2.0-Flash.

BabyAlI Final Geno

{
"hierarchy": 1,
"amygdala": 1,
"loop_evaluator": 1,
"explorer": 0,
"summariser": 1,
"time_decay": [

1

0.014080444046038391
1,
"cosine_cutoff": [

1
0.05
1,
"epsilon": [

0,

0.01
1,
"temperature": 1.0,
"prompts": {

"high_level": [

1

"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
the current game state and generate achievable subgoals that strategically advance toward

the main objective.\n\n CRITICAL CONSTRAINTS:\n

— Subgoals must be immediately achievable given the current agent state and
capabilities\n - Focus on the next logical progression steps, not
distant end-goals\n — Each subgoal should have clear, observable
success criterial\n - Subgoals should be novel and interesting,
compared to previous attempts \n\n Below I will provide the game
description, available actions, and current state information.\n
Game description:\n {game_info}\n
FREFEHFFHEFRE A REFE IR RS R R R R R A\
CURRENT CONTEXT: \n\n - Game State: {obs} \n\n

— Survival plan provided by the survival planner, that you should consider for your
tasks: {survival_plan}\n — Here are most similar successful
entries from the archive: {entries_successful_goal} \n\n — Here
are most similar failed entries from the archive: {entries_failed_goal} \n\n\n

ANALYSIS FRAPAPMEWORK:\n 1. Analyse the summary from

previous runs and let it guide your decision making. \n 2. Assess

what is immediately possible given current agent state and environment\n
3. Identify what kind of actions could be considered novel or interesting\n
4. Identify the most direct path toward the main objective\n

5. Select subgoals that form a logical sequence\n 6.
Ensure each subgoal can be verified through observable game state changes\n\n
SUBGOAL SELECTION CRITERIA:\n - Feasible: Can be

started immediately with current resources/position\n =
Measurable: Success/failure can be determined from game observations\n
- Progressive: Each subgoal enables the next or advances toward main goal\n
- Specific: Clear enough for a lower-level agent to understand and execute\n

(A

46

Under review as a conference paper at ICLR 2026

— - Considerate of the summary of previos runs\n\n
— Make sure that your subgoals are sequential. "
1,
"low_level": [
1,
"Hello! I am your AI Game Coach. My purpose is to analyze your game state and provide

<> strategic advice to help you achieve your goals. Think of me as your co-pilot!\n\nHere’s the
< situation: The high-level planner has assigned you a subgoal to work towards. I will analyze
< your current state, past actions, and learn from successful and failed attempts at similar
< subgoals. Then, I’1ll recommend a sequence of actions to help you reach your
< objective.\n\n##########HE#HFHEFREREEREH SR EHHFHEHHEHEHHEHEHH#HE4 \n\nCurrent Subgoal:
< {subgoal}\n\nTermination Condition: {success_condition}\n\nGame Information (Possible
< Actions, Overall Goal): {game_info}\n\nYour Current State: {obs}\n\nAction-Observation
<~ History: {history}\n\nMost Similar Successful Attempts at This Subgoal:
< {entries_successful_goal}\n\nMost Similar Failed Attempts at This Subgoal:
< {entries_failed_goal}\n\nBased on this information, what x*sequence of actionsxx do I
< recommend *youx take to achieve the subgoal? Be sure to consider the history, and learn from
< both the successes and failures of others. I'm looking for strategic advice, not just a
< single action. Explain your reasoning behind each action."
1,
"amygdala": [
1,
"\n You are an important component in a hierarchical video game

< system. Your role is to determine if the agent is in danger and should activate survival
< mode. Below I will provide you with current observation and a survival plan from the higher
< level agent. \n\n\n Current observation: {obs} \n\n

Survival plan: {survival_plan} \n\n \n

Your role is to analyse the observation and survival plan given by higher level
system and determine if the current observation satisfies any of the prerequites for any of
the survival components. If there are prerequsites satisfied for multiple components, then
return the one with the highest priority. \n\n First reason, then
output True or False depending if you decide to activate survival plan. If you output True,
then output one of the survival subtasks. If you decide to not activate survival plan, then
output None as the survival subtask. \n\n\n REASONING: <your
reasoning> \n\n ACTIVATE SURVIVAL: <True/False> \n \n

SURVIVAL SUBTASK: <survival subtask name or None if False> \n\n\n

T

"loop": [

-

"You are an important loop evaluator component of a hierarchical video game system. \n

You are going to receive details about game progress such as: current
observation, current subgoal, current termination conditions, action sequence towards
current subgoal and observation sequence towards current subgoal. \n
Your task is to evaluate if the agent is stuck in a loop and give summary of the actions
taken. \n A loop occurs when the agent repeats a sequence of actions
multiple times without achieving meaningful progress toward its current goal, where
'meaningful progress’ includes: getting closer to the objective, discovering new
information, eliminating failed approaches, or changing the game state in a way that

advances toward the subgoal. \n It is important that you let the
agent explore enough but also decide when to terminate to get out of the loop. \n\n\n
Details: \n\n Here is your current state: {obs} \n\n

Here is a subgoal lower level agent is working towards: {subgoal} \n\n
Here is the most recent action-observation pairs that should help you
decide if agent is stuck in a loop: {history}\n \n\n\n
Instructions:\n\n Analyse the details. Avoid giving any judgement.
\n\n Think about how many steps the agent needs in order to complete
the subgoal and use that to help you reason if agent is stuck in a loop. \n\n
Then, given your analysis, decide if the actions proposed by the lower level agent
are leading to the termination condition or if the agent is stuck in a loop.\n
If a loop is detected, analyse if the agent is stuck due to a lack of necessary
information, an unknown prerequisite, or an unexplored path. Your summary should clearly
articulate this gap in knowledge and suggest that exploration might be required to break the
loop and find alternative solutions. \n"

(g o

1
"termination": [

1

"You are a risk-aware termination evaluator within a hierarchical video game system, focused
on survival and mission success. Assume the game environment is dynamic and potentially
hostile.\n\nYour task is to:\n\nl. Determine whether the agent has met the termination
condition for a subgoal, AND assess the risk incurred while pursuing that subgoal.\n\n2.
Provide a concise summary that will guide the lower-level agent’s future actions,
specifically considering risk mitigation strategies.\n\nDetails:\n\nHere is the current
state: {obs} and a history of recent states and actions {history}. The game environment
details and survival instructions are : {game_info} and {survival_plan} respectively.
Compare these with the subgoal and its termination condition.\n\nHere is the subgoal the
lower-level agent is working towards: {subgoal}\n\nHere is the termination condition of the
above subgoal given by the higher-level agent: {success_condition}\n\nHere is the
action-observation sequence executed to achieve the subgoal:
{action_obs_seq}\n\nInstructions:\n\nl. Analyze the subgoal, its termination condition, the
game environment, and the action-observation sequence.\n2. Determine if the subgoal is
completed.\n3. Evaluate the risk associated with the actions taken. Consider factors such
as proximity to dangers (enemies, hazards), resource consumption, and deviation from the
{survival_plan}.\n4. Compare the current situation with similar successful
{entries_successful_goal} and failed {entries_failed_goal} subgoals.\n5. Provide a summary
that addresses both subgoal completion AND risk. The summary xmustx include actionable
suggestions for the lower-level agent to improve its actions, with a strong emphasis on
mitigating risk in future attempts. Focus on information that would have been useful to
avoid failures described in {entries_failed_goal}.\nRemember that your summary will be
passed to a low level component in order to improve its actions and survivability."

(g T T

47

Under review as a conference paper at ICLR 2026

1,

"summariser": [
1

"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game

Your task is to identify the *xsingle most important

< environment.\n
< factorx that caused SUCCESS or FAILURE.\n\n Information:\n
— - Target subgoal: {subgoal}\n — Outcome of the
< action-observation sequence: {outcome}\n - Action-observation
< history: {action_obs_seq}\n - Game context: {game_info}\n\n
— Instructions:\n — Think briefly about what helped or
<~ prevented success.\n — Focus mostly on x+specific resources and their
< quantities* (e.g., \"3 pieces of wood\", \"1 iron ingot\").\n = I
<~ resources were missing, state xxexactly which and how many** were missing.\n
— — Ignore minor details or redundant actions.\n — Express the
< result in *xone short sentencexx.\n - If no resources are involved,
<> state the next most relevant factor."
1,
"explorer": [
0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
< Data:\n - Game info: {game_info}\n — Observation: {obs}\n — Subgoal
— summary: {summary}\n - Recent 16 action\u20l3observation pairs: {history}\n\n
— Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a

"

< focused exploration plan with clear purpose, conditions, and indicators.\n\n
1,
"sequential": [
0,
"You always have to output one of the above actions at a time and no other text. You always
< have to output an action until the episode terminates."
1
}
"fitness": 72.0,
"id": "8c52d35e-bbb7-4b7d-b683-26b0e7aa3936",
"_std_error": 6.349803146555017

BabalsAI Final Genom

{
"hierarchy": 1,
"amygdala": 0,
"loop_evaluator": 1,
"explorer": 1,
"summariser": 1,
"time_decay": [

1
0.004528704008914386

1,
"cosine_cutoff": [

1
0.06037953831283245
1,
"epsilon": [
1
0.08233296401956124
1,
"temperature": 1.016671019014213
"prompts": {
"high_level": [
1,
"\nYou are a strategic planner for a video game AI. Analyze the current game state and create
— achievable subgoals that advance toward the main objective.\n\nREQUIREMENTS:\n- Subgoals
— must be immediately achievable with current capabilities\n- Focus on next logical steps, not
<~ distant goals\n- Each subgoal should have clear success criteria\n\nCURRENT STATE:
<~ {obs}\nGAME INFO: {game_info}\n\nCreate a sequential plan with 2-3 subgoals."
1,
"low_level": [
1
"You are an action executor in a video game AI system, responsible for survival and goal
achievement. Given a subgoal from the high-level planner, propose a sequence of actions to
achieve it while minimizing risk.\n\n
FHEFEHHEREE AR R R R R R R R R CURRENT SUBGOAL: {subgoal}\n
CURRENT STATE: {obs}\n GAME INFORMATION: {game_info}\n PREVIOUS
ACTION-OBSERVATION SEQUENCE: {action_obs_seq}\n SIMILAR SUCCESSFUL SUBGOALS:
{entries_successful_goal}\n SIMILAR FAILED SUBGOALS: {entries_failed_goal}\n\n
Consider the potential risks associated with each action in the context of the current state
and previous actions. Actions that lead to outcomes similar to those in
’{entries_failed_goal}’ should be avoided. Prioritize actions that are consistent with the
success patterns observed in ’ {entries_successful_goal}’. Use ’{game_info}’ for possible
actions. Use ' {survival_plan}’ to help avoiding fatal errors.\n \n Plan the
full sequence of actions needed to complete the subgoal. Ensure survival is prioritized
throughout the sequence. If a planned action has high risk, select a safer alternative or
terminate the current sequence and replan.\n Avoid extra commentary outside the
REASONING and ACTIONS list."

ELLEEEEERNLLLL ge

48

Under review as a conference paper at ICLR 2026

"amygdala": [

’

"\n Decide if survival mode should activate.\n\n Observation: {obs}\n

<— Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask

<> prerequisites.\n 2. If several match, pick highest priority.\n"

1,
"loop": [

1,

"\n Task: Decide if the agent is stuck in a loop.\n\n Loop = repeating actions
without meaningful progress toward the subgoalln (progress = closer to goal, new
info, removing failed paths, or advancing game state).\n\n Data:\n -
Observation: {obs}\n — Subgoal: {subgoal}\n - Termination condition:
{success_condition}\n — Action\u20l13observation history: {history}\n\n
Steps:\n 1. Check if enough steps have been taken to allow exploration.\n Bo
Look for repeated patterns without progress.\n 3. If loop detected, identify cause:
missing info, unknown prerequisite, or unexplored path.\n "

ELLEELL

1,

"termination": [
1,

"\n You are a termination evaluator for a video game AI. Check if the agent has

< completed its subgoal.\n\n CURRENT STATE: {obs}\n SUBGOAL: {subgoal}\n

— SUCCESS CONDITION: {success_condition}\n RECENT ACTIONS:

<~ {action_sequence}\n\n Compare the current state with the success condition to

< determine if the subgoal is complete. Provide feedback to help the agent improve.\n"
1,
"summariser": [

1

"You are a critic analyzing an agent’s subgoal attempt by comparing it to similar past
attempts. Identify the key factors that caused success or failure by contrasting this
attempt with the most similar successful and failed attempts.\n\nSUBGOAL:
{subgoal}\nOUTCOME: {outcome}\nACTION HISTORY: {action_obs_seq}\nSUCCESSFUL ATTEMPTS:
{entries_successful_goal}\nFAILED ATTEMPTS: {entries_failed_goal}\n\nCompare the resources
used, quantities involved, and the sequence of actions in the current attempt to those in
the SUCCESSFUL ATTEMPTS and FAILED ATTEMPTS. What specific differences seem to have led to
the observed OUTCOME? If no resources were involved, what differences in action sequences
were crucial? Provide a concise explanation."

FELEEELD

]
"explorer": [
1,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
< Data:\n - Game info: {game_info}\n - Observation: {obs}\n - Subgoal
< summary: {summary}\n - Recent 16 action\u20l3observation pairs: {history}\n\n
<— Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
<~ focused exploration plan with clear purpose, conditions, and indicators.\n\n "
1,
"sequential": [
0,
"You always have to output one of the above actions at a time and no other text. You always
< have to output an action until the episode terminates."

1

}

"fitness": 41.66666666666667,

"id": "08d71e90-74f1-4f22-al0a-£f438431£93de",
"_std_error": 4.500514373894347

rld Final Genom:

genome_basic = {
mign. 3w,
"hierarchy": 0,
"amygdala": 0,
"loop_evaluator": 0,
"explorer": 0,
"summariser": O,
"time_decay": [0, 0.01],

"cosine_cutoff": [0, 0.05],

"epsilon": [0, 0.01],

"temperature": 1.0,

"prompts": {
"high_level”: [0, default_highlevel_prompt],
"low_level": [0, default_lowlevel_prompt],

"amygdala": [0, default_amygdala_prompt],
"loop": [0, default_loop_prompt],
"termination": [0, default_termination_prompt],
"summariser": [0, default_summariser_prompt],
"explorer": [0, default_explorer_prompt],

"sequential": [1l, default_sequential_prompt]

I
"fitness": 32.55

49

Under review as a conference paper at ICLR 2026

Crafter Final Genom

{

"hierarchy": 1,
"amygdala": O,
"loop_evaluator": 1,
"explorer": 1,
"summariser": 1,
"time_decay": [

1

0.01

1,
"cosine_cutoff": [
1
0.05018667404330796
1,
"epsilon": [
1
0.08838153559623807
1,
"temperature": 1.0550853142525738,
"prompts": {
"high_level": [
1
"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
the current game state and generate achievable subgoals that strategically advance toward
the main objective. Your analysis should now xpredict+ the outcome of possible action
sequences.\n\n CRITICAL CONSTRAINTS:\n
- Subgoals must be immediately achievable given the current agent state and capabilities\n
- Focus on the next logical progression steps, not distant

end-goals\n - Each subgoal should have clear, observable success
criteria\n - Subgoals should be novel and interesting, compared
to previous attempts \n\n Below I will provide the game
description, available actions, and current state information.\n
Game description:\n {game_info}\n
FHEFEHHE AR AR R R R A R R R R
CURRENT CONTEXT: \n\n — Game State: {obs} \n\n
- Survival plan provided by the survival planner, that you should consider for your
tasks: {survival_plan}\n - Here are most similar successful
entries from the archive: {entries_successful_goal} \n\n - Here
are most similar failed entries from the archive: {entries_failed_goal} \n\n
- Recent History (last 16 action-observation pairs): {history}\n
- Action-Observation Sequences of the most similar examples: {action_obs_seq}\n\n
ANALYSIS FRAPAPMEWORK:\n 1. Analyse the

summary from previous runs and let it guide your decision making. \n
2. Assess what is immediately possible given current agent state and environment\n
3. Based on the current Game State, recent history ({history}), and past
action-observation sequences ({action_obs_seq}), predict the *most likely outcomex
(observation) of performing a few different possible action sequences. Consider at least 3

different potential action sequences.\n 4. Identify what kind of
actions could be considered novel or interesting\n 5. Identify
the most direct path toward the main objective, taking into account the predicted outcomes
of potential actions.\n 6. Select subgoals that form a logical
sequence\n 7. Ensure each subgoal can be verified through
observable game state changes\n\n SUBGOAL SELECTION CRITERIA:\n

- Feasible: Can be started immediately with current
resources/position\n - Measurable: Success/failure can be
determined from game observations\n - Progressive: Each subgoal
enables the next or advances toward main goal\n - Specific: Clear

enough for a lower-level agent to understand and execute\n =
Considerate of the summary of previous runs\n =
xOutcome-Based: x The subgoal should lead to a xpredicted outcomex that is advantageous for
achieving the main objective.\n\n Make sure that your subgoals
are sequential."

(R

]
"low_level": [

-

"You are an important executor component of a hierarchical video game system in a *xsurvival
crafting gamex*. You are given a high-level option (subgoal) and its termination condition
proposed by a higher-level planner. Your role is to propose an action that will make you
progress towards the given option, keeping in mind the core mechanics of survival crafting:
resource gathering, crafting, base building, and defending against threats. Below I will
provide you with the game description, possible actions you can take, and the overall goal
of the game.\n\n#######4#44d#4#t44 4444444444444 44444444444 \nHere is a subgoal
provided by the high level planner that you should focus on completing: {subgoal}\n\nHere is
your current state: {obs}\n\nHere is the action-observation sequence towards current
subgoal: {action_sequence}\n\nHere are the most similar successful entries from the archive:
{entries_successful_goal}\n\nHere are the most similar failed entries from the archive:
{entries_failed_goal}\n\nHere is your survival plan: {survival_plan}\n\nHere is the history
of the last 16 action-observation pairs: {historyl}\n\nUse the action and observation
sequence together with the current state, your survival plan, and recent history to decide
the xxfull ordered sequence of actionsxx that will achieve the subgoal. Consider how your
actions contribute to the overall survival plan. Prioritize actions that contribute to the
core survival crafting goals of resource acquisition, building, crafting, and
defense.\n\nAvoid repeating the same actions if the observation doesn’t change. Ensure your
actions are consistent with the survival plan and adapt as needed based on the recent
history. If the {entries_successful_goal} indicates successful resource gathering or
crafting strategies, lean towards replicating those. If {entries_failed_goal} indicates

(T g A T

50

Under review as a conference paper at ICLR 2026

< dangers, prioritize actions that increase safety. Consider the {obs} and choose actions
< appropriate for a survival crafting environment."
1,

"amygdala": [
’
"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
< Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
<~ prerequisites.\n 2. If several match, pick highest priority.\n"
1,
"loop": |
1

"You are an expert game designer reviewing the behavior of an agent in your game. Your goal is
to identify and eliminate situations where the agent gets stuck in unproductive
loops.\n\nYou will receive the following details about the agent’s current situation:\n\nx
Current Observation: {obs}\nx **Subgoal:x* {subgoal}\nx **Action-Observation
History:** {history}\nx +*Game Informationxx: {game_info}\n\nInstructions:\n\nl.

*xAnalyze the Situation:xx Carefully review the provided information. Do not make any
immediate judgments about the agent’s competence.\n\n2. «xIdentify the Loop (if any) :xx
Determine if the agent is repeating a sequence of actions without making meaningful progress
towards the subgoal. \"Meaningful progress\" includes getting closer to completing the
subgoal, discovering new and relevant information, or eliminating potential pathways.\n\n3.
*xRoot Cause Analysis:*x If a loop is detected, analyze the underlying reasons. Is the loop
caused by a flaw in the game design, an unclear subgoal, a lack of necessary information
available to the agent, missing game mechanics, an impossible subgoal given the current
mechanics, or an unexplored path?\n\n4. x*Design Improvement Recommendations:xx Based on
your analysis, suggest specific changes to the game design to prevent the agent from getting
stuck in this loop in the future. Consider the following:\n\n * **Subgoal
Modification:x* Should the subgoal be rephrased, simplified, or broken down into smaller
steps? Is the success condition well-defined and easily achievable?\n * **xGame
Mechanics Adjustment:** Should new actions or mechanics be added to the game to allow the
agent to overcome the obstacle? Should existing mechanics be modified to be more intuitive

or less restrictive? Should the rewards be changed?\n * *xInformation Availability:*x*
Does the agent have access to all the information it needs to make informed decisions?
Should new information sources be added to the game?\n * *xSurvival Plan:x+ Does the

survival plan influence this loop? Should it be altered to avoid this loop?\n\nYour
recommendation should be specific and actionable, detailing exactly what aspects of the game
design should be changed and why."

T Y A

1

"termination": [
1,
" \n You are an important termination evaluator component of a
< hierarchical video game system. \n\n Your task is to: \n\n
— 1. Determine whether the agent has met the termination condition for a subgoal.
— \n\n 2. Provide a concise summary that will help guide the
— lower-level agent’s future actions. \n\n\n\n Details: \n\n
— Here is your currect state that you should compare with termination condition:
< {obs} \n\n Here is the subgoal lower level agent is working towards:
< {subgoal} \n\n Here is the termination condition of the above subgoal
< given by the higher level agent: {success_condition} \n \n\n\n
< Instructions:\n\n Analyse the subgoal and its termination condition
< and decide if the subgoal is completed. \n\n Then use
< action-observation sequence: {action_sequence} to give a high level summary of current
< evaluation. This summary will later be passed to low level agent in order to improve its
— actions.\n Remember that your summary will be passed to low level
<~ component in order to improve its actions. \n \n"

1,

"summariser": [

1
"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a survival game
environment where resources decay over time. Your task is to identify the xxsingle most
important factor** that caused SUCCESS or FAILURE by x*comparing the current
action-observation sequence to similar successful and failed attempts.**\n\nInformation:\n-
Target subgoal: {subgoal}\n- Outcome of the action-observation sequence: {outcome}\n-
Action-observation history: {action_obs_seq}\n- Game context: {game_info}\n- Survival plan:
{survival_plan}\n- Similar successful attempts: {entries_successful_goal}\n- Similar failed
attempts: {entries_failed_goal}\n\nInstructions:\n- Analyze the current {action_obs_seq} in
the context of {entries_successful_goal} and {entries_failed_goal}. Focus on identifying key
differences in resource management, timing, and actions taken.\n- Consider the resources
available and their decay rates as indicated in {game_info}, paying close attention to how
resource states differ between the successful, failed, and current attempt *%at the moment
of subgoal completion or failurexx.\n- Identify the xxsingle most critical divergencex*x that
explains the outcome. This could be a specific resource that was more abundant (or less
abundant) in the successful attempt, a crucial action that was taken (or not taken), or a
timing difference that impacted resource availability.\n- Express the result in xxone short
sentencex* highlighting the comparative aspect. For example: \"Unlike successful attempts,
the agent failed to prioritize gathering berries before attempting to craft the tool,
leading to starvation.\" Or, \"The agent successfully gathered wood within the same
timeframe as past successful attempts, but, unlike those attempts, the observation sequence
shows the agent prioritized building a fire and not water collection which lead to
dehydration and subsequent death.\"\n- If resource decay is not the primary factor revealed
by the comparison, state the next most relevant factor based on the differences observed
between the current attempt and {entries_successful_goal} and {entries_failed_goal}, also
taking into account {survival_plan} and {obs}."

g T

1,

"explorer": [
0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
< Data:\n - Game info: {game_info}\n — Observation: {obs}\n — Subgoal
< summary: {summary}\n - Recent 16 action\u20l3observation pairs: {history}\n\n

51

Under review as a conference paper at ICLR 2026

— Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
—> focused exploration plan with clear purpose, conditions, and indicators.\n\n "
1,
"sequential": [
0,
"You always have to output one of the above actions at a time and no other text. You always
<~ have to output an action until the episode terminates."
]
}
"fitness": 39.090909090909086
"id": "97c9c973-9£66-4391-a4c1-£8904921e95d",
"_std_error": 4.904037803367701

MiniHack Final Genome

"hierarchy": 0,
"amygdala": O,
"loop_evaluator": 0,
"explorer": O,
"summariser": O,
"time_decay": [
0,
0.01
1,
"cosine_cutoff": [
o,
0.05
1,
"epsilon": [
0,
0.01
1,
"temperature": 1.036744932065481,
"prompts": {
"high_level": [
0,
"\nYou are a strategic planner for a video game AI. Analyze the current game state and create
— achievable subgoals that advance toward the main objective.\n\nREQUIREMENTS:\n- Subgoals
< must be immediately achievable with current capabilities\n- Focus on next logical steps, not
< distant goals\n- Each subgoal should have clear success criteria\n\nCURRENT STATE:
<~ {obs}\nGAME INFO: {game_info}\n\nCreate a sequential plan with 2-3 subgoals."
1,
"low_level": [
0,
" You are an action executor in a video game AI system. Given a subgoal from the high-level
— planner, propose a sequence of actions to achieve it.\n
Sl iidissssdadisdsassdssssdadadisssasadsisasatiaiadassassin CURRENT SUBGOAL: {subgoal}\n
— CURRENT STATE: {obs}\n PREVIOUS ACTIONS: {action_sequence}\n\n Plan the
< full sequence of actions needed to complete the subgoal. Avoid repeating actions if
<~ observations don’t change.\n Avoid extra commentary outside the REASONING and ACTIONS
— list.\n
1,
"amygdala": [
0,
"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
< Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
< prerequisites.\n 2. If several match, pick highest priority.\n"
1,
"loop": [
0,
"\n Task: Decide if the agent is stuck in a loop.\n\n Loop = repeating actions
without meaningful progress toward the subgoal\n (progress = closer to goal, new
info, removing failed paths, or advancing game state).\n\n Data:\n -
Observation: {obs}\n - Subgoal: {subgoal}\n - Termination condition:
{success_condition}\n - Action\u20l13observation history: {history}\n\n
Steps:\n 1. Check if enough steps have been taken to allow exploration.\n 2.
Look for repeated patterns without progress.\n 3. If loop detected, identify cause:
missing info, unknown prerequisite, or unexplored path.\n "

FLLELERS

1
"termination": [

0,

"\n You are a termination evaluator for a video game AI. Check if the agent has

< completed its subgoal.\n\n CURRENT STATE: {obs}\n SUBGOAL: {subgoal}\n
— SUCCESS CONDITION: {success_condition}\n RECENT ACTIONS:

— {action_sequence}\n\n Compare the current state with the success condition to

<~ determine if the subgoal is complete. Provide feedback to help the agent improve.\n"

1,

"summariser": [
0,
"\n You are a critic analyzing an agent’s subgoal attempt. Identify the key factor that
< caused success or failure.\n\n SUBGOAL: {subgoal}\n OUTCOME: {outcome}\n

52

Under review as a conference paper at ICLR 2026

—> ACTION HISTORY: {action_obs_seq}\n\n Focus on specific resources and quantities that
— mattered most. If no resources involved, identify the next most important factor.\n "

1,

"explorer": [
0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
<~ Data:\n - Game info: {game_info}\n - Observation: {obs}\n - Subgoal
< summary: {summary}\n - Recent 16 action\u20l3observation pairs: {history}\n\n
<~ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a

< focused exploration plan with clear purpose, conditions, and indicators.\n\n LJ
1,
"sequential": [

1

"As an AI survival agent operating within a dynamic resource-scarce environment, your

< objective is to maximize long-term survivability. Prioritize actions that maintain vital
resource levels while mitigating immediate threats. Given your current observation ({obs}),
game information ({game_info}) including potential actions, and the history of your past 16
action-observation pairs ({history}), evaluate the following:\n\nl. **Resource
Assessment:** Determine current levels of critical resources (e.g., health, energy, food,
water) as reflected in {obs}. Identify actions within {game_info} that deplete or replenish
these resources. Consider the ‘survival_plan‘ for guidance on sustainable resource
management.\n2. +xThreat Analysis:** Identify immediate dangers based on {obs}. Prioritize
actions that avoid or neutralize these threats, considering the action-observation sequence
towards the current subgoal (‘{action_obs_seq}').\n3. *xGoal Alignment:** Assess how each
possible action aligns with your current subgoal ({subgoal}) and overarching survival plan
(Y{survival_plan}‘). Use ‘{entries_successful_goal}' and ‘{entries_failed_goal}' to learn
from past attempts to achieve similar subgoals.\n4. *+Predictive Risk Mitigation:xx
Evaluate the potential for each action to lead to a critical failure within the next few
steps. Prioritize actions that maintain options and avoid irreversible negative consequences
based on your history (‘{history}‘). The ‘success_condition' should also be
considered.\n\nSelect the single most optimal action from {game_info} that balances resource
acquisition/conservation, threat mitigation, goal progression, and predictive risk
mitigation. Justify your selection briefly based on the above analysis.\n\nOutput format:
ACTION: [selected action] | RATIONALE: [brief justification]\n\nYou must provide an output
in this format at each step until the episode terminates. Do not output any other text. If
no immediately safe or advantageous action is available, select the least detrimental action
while adjusting your ‘survival plan‘ accordingly."

(g 8 o T

]
}
"fitness": 22.5,
"id"™: "d1914812-4881-4b8e-85f6-eed7cccedf4i",
"_std_error": 6.602556323122129

NetHack Final Genom

{
"hierarchy": 1,
"amygdala": O,
"loop_evaluator": 1,
"explorer": 0,
"summariser": 1,
"time_decay": [
1
0.004870010771374662
1,
"cosine_cutoff": [
1
0.01
1,
"epsilon": [
o,
0.01
1,
"temperature": 1.0,
"prompts": {
"high_level": [
1,
"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
< the current game state and generate achievable subgoals that strategically advance toward
< the main objective.\n\n CRITICAL CONSTRAINTS:\n
— — Subgoals must be immediately achievable given the current agent state and
<~ capabilities\n — Focus on the next logical progression steps, not
<+ distant end-goals\n — Each subgoal should have clear, observable
< success criterial\n — Subgoals should be novel and interesting,
<~ compared to previous attempts\n — xxSubgoals should consider
<+ resource acquisition and conservation. Avoid actions that waste valuable resources unless
< absolutely necessary for survival or progression.*x\n\n Below I
— will provide the game description, available actions, and current state information.\n
— Game description:\n {game_info}\n
— FhEFHE R E AR AR R R R R R R R R R R R R\
— CURRENT CONTEXT: \n\n - Game State: {obs} \n\n
— - Survival plan provided by the survival planner, that you should
<> consider for your tasks: {survival plan}\n - Here are most
<~ similar successful entries from the archive: {entries_successful_goal} \n\n

53

Under review as a conference paper at ICLR 2026

— Here are most similar failed entries from the archive: {entries_failed_goal}
\n\n\n ANALYSIS FRAPAPMEWORK:\n 1o
Analyse the summary from previous runs and let it guide your decision making. \n

2. Assess what is immediately possible given current agent state and
environment\n 3. Identify what kind of actions could be
considered novel or interesting\n 4. Identify the most direct
path toward the main objective\n 5. Select subgoals that form a
logical sequence\n 6. Ensure each subgoal can be verified through
observable game state changes\n\n SUBGOAL SELECTION CRITERIA:\n
— Feasible: Can be started immediately with current

resources/position\n - Measurable: Success/failure can be
determined from game observations\n — Progressive: Each subgoal
enables the next or advances toward main goal\n — Specific: Clear
enough for a lower-level agent to understand and execute\n =
Considerate of the summary of previos runs\n\n Make sure that
your subgoals are sequential."

8 (T

"low_level": [
1
"You are an important executor component of a hierarchical video game system. You are given

one of higher level option and its termination condition proposed by the higher level

planner. Your role is to propose a sequence of actions that will make you progress towards
the given option.\" Below I will provide you with the game
description, possible actions you can take and the overall goal of the game.\n\n
FhEFHE R R R R R R R R \n
Here is a subgoal provided by the high level planner that you should focus on completing:
{subgoal} \n\n Here is your current state: {obs} \n\n
Here is the action-observation sequence towards current subgoal:

{action_sequence} \n\n Here are the most similar successful

entries from the archive: {entries_successful_goal} \n\n Here are

the most similar failed entries from the archive: {entries_failed_goal} \n\n

Use the action and observation sequence together with the current state to decide

the x»xfull ordered sequence of actionsx* that will achieve the subgoal. \n\n

Avoid repeating the same actions if the observation doesn’t change. \n"

FELEEEREROLLEL e

"amygdala": [

'
"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
< Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
<~ prerequisites.\n 2. If several match, pick highest priority.\n"

]

"loop": [
1
"You are a Senior Game AI Debugging Specialist, tasked with analyzing the behavior of an agent

in a hierarchical video game system. Your primary goal is to determine if the agent’s

current behavior constitutes a genuine \"stuck\" state, which requires

intervention.\n\nConsider the following details about the agent’s progress:\n\nx *xCurrent
Observation:** {obs}\nx +xCurrent Subgoal:xx {subgoal}\n* *xSuccess Condition:xx
{success_condition}\nx +*Action-Observation History:+x {history}\n= **xGame
Information:** {game_info}\n«* **Survival Plan:** {survival_plan}\n\nCritically evaluate

the agent’s actions, considering the following factors specific to Game AI:\n\nl.
*xInformation Gain vs. Redundancy:** Is the agent genuinely gathering xnewx and xrelevantx
information? Merely observing a change in the environment after an action doesn’t
necessarily indicate progress. Determine if the information gained helps reduce uncertainty
related to achieving the current subgoal or aligns with the overall game objective, given by
‘survival_plan‘.\n2. ++Exploration Strategy:xx Is the agent’s exploration strategy
sufficient to overcome potential local minima or deceptive landscapes? Many \"stuck\"
situations arise from poor exploration. Consider if the agent’s ‘action_sequence‘ explores
diverse enough actions, or if it is repeating the same action variations in a small
area.\n3. *xWorld Model Limitations:xx Assess whether the agent’s internal model of the
game world (implied by its actions and reactions in ‘action_obs_seqg‘ and ‘history?') is
incomplete or inaccurate. Is it missing key information about the game mechanics, object
interactions, or environmental dynamics? If so, suggest avenues for improving the world
model, such as targeted exploration or observation of specific events.\n4. xxLeverage
entries_successful_goal and entries_failed_goal:*x Look into similar subgoals in the past to
help you understand how the agent behaved then and compare that with the current
behavior.\n\nxxYour Task:++\n\nBased on the provided details and your expertise in Game AI,
determine if the agent is genuinely stuck, meaning it’s unlikely to achieve its subgoal
without external intervention. Focus on xwhyx the agent is stuck. Specifically, is the
agent’s failure due to:\n\nx A lack of crucial information that could be obtained through
more effective exploration?\nx An inaccurate or incomplete world model preventing it from
making informed decisions?\nx A fundamental flaw in its action selection
strategy?\n\nProvide a concise justification for your conclusion, outlining the specific
factors that support your assessment. Prioritize identifying concrete steps the agent could
take to overcome the \"stuck\" state, considering the limited information it may possess.
Avoid vague statements and focus on actionable recommendations rooted in Game AI best
practices."

(A8

"termination": [
1
"You are an important termination evaluator component of a hierarchical video game system,

functioning as a specialized AI reinforcement learning analyst.\n\nYour task is to:\n\nl.

Determine whether the agent has met the termination condition for a subgoal.\n\n2. Provide a

concise summary that will help guide the lower-level agent’s future actions, specifically

addressing potential issues related to reinforcement learning
strategies.\n\nDetails:\n\nHere is your current state that you should compare with the
termination condition: {obs}\n\nHere is the subgoal the lower-level agent is working
towards: {subgoal}\n\nHere is the termination condition of the above subgoal given by the
higher-level agent: {success_condition}\n\nInstructions:\n\nAnalyze the subgoal and its
termination condition and decide if the subgoal is completed. Then, using the

(T A

54

Under review as a conference paper at ICLR 2026

b

action-observation sequence: {action_obs_seq}, provide a high-level summary of your current
evaluation.\n\nIn your summary, consider the following reinforcement learning concepts:\n\nx

xxExploration vs. Exploitation:xx Is the agent adequately exploring the environment, or is
it prematurely exploiting a sub-optimal strategy? If the agent has been repeating the same
actions in similar states (as observed in {history}) without success, encourage more
exploration.\n\nx* xxReward Shaping:++ Consider how the higher-level agent’s reward
structure (implicit or explicit) might be influencing the agent’s behavior. Is the agent
being incentivized towards unintended consequences?\n\n* x*xLocal Optima:x* Is the agent
potentially stuck in a local optimum? Compare the current situation with
{entries_failed_goal} to identify if similar action sequences have previously led to
failure. If so, suggest a drastic change in strategy.\n\nx *xCredit Assignment:*x How can
the agent better understand which actions are contributing to success or failure? Suggest
focusing on the most recent actions, especially in light of {observation_sequence}.\n\nIf
the agent has failed similar subgoals in the past, provide an alternative approach based on
{entries_successful_goal}. Highlight alternative actions it can take in a similar
situation.\n\nRemember that your summary will be passed to the low-level component to
improve its actions. It should be actionable and specific. It should be in simple language
for the low-level agent to understand and must contain suggestions to avoid common RL
pitfalls based on the information provided. The survival plan is {survival_plan} for high
level goals."

A

]
"summariser": [

1

"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game
environment, considering the agent’s survival plan.\n\nYour task is to identify the xxsingle
most important factors+ that caused SUCCESS or FAILURE, given the broader context of
survival.\n\nInformation:\n- Target subgoal: {subgoal}\n- Outcome of the action-observation
sequence: {outcome}\n- Action-observation history: {action_obs_seq}\n- Game context:
{game_info}\n- Agent’s Survival Plan: {survival_plan}\n- Success Condition:
{success_condition}\n\nInstructions:\n- First, read the survival plan and understand the key
threats and resource priorities.\n- Then, analyze the action-observation sequence in the
context of the target subgoal and survival plan.\n- Focus on **specific resources and their
quantitiesx* that were critical according to the survival plan. Consider if failing to meet
{success_condition} resulted from a resource shortfall, specifically referencing the
quantities mentioned in the action-observation history.\n- How did the agent’s actions
either help or hinder the broader survival strategy defined in {survival_plan}?\n- If
resources were missing that were crucial to survival, state xxexactly which resources and
how many** were missing and how it violated the survival plan.\n- If no resources are the
primary issue, state the next most relevant factor that impacted both the subgoal and
survival chance.\n- Express the result in x*xone short sentencex* highlighting the connection
to {survival_plan}."

FELLEEERRROLLLEEL g8

"explorer": [
0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
< Data:\n - Game info: {game_info}\n — Observation: {obs}\n - Subgoal
< summary: {summary}\n — Recent 16 action\u20l3observation pairs: {history}\n\n
<~ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
< focused exploration plan with clear purpose, conditions, and indicators.\n\n "

1,

"sequential": [
0,
"You always have to output one of the above actions at a time and no other text. You always
< have to output an action until the episode terminates."

1

"fitness": 0.8527708222454596
"id": "aaac4dfb-4a3c-4090-a8bc-5f9265d65eda",
"_std_error": 0.4739428639198163

55

	Introduction
	Related work
	TAME Framework
	Notation and Functional Inputs
	Game Adaptation
	Modular blueprints
	Hierarchical planning

	Long-term memory
	Skill-Specific Modules

	Empirical Evaluation
	TAME Results
	Transferability of TAME structures
	Ablation: memory types

	Discussion and conclusion
	LLM usage declaration
	BALROG Game Details
	Metric scores
	Hyperparameters selected
	BALROG baseline configurations
	Testing the retrieval mechanism long-term memory system
	Testing memory retrieval prompts
	Iron Sword Goal Prompt
	Injected memories

	Additional long-term memory retrieval experiments
	Episode 1
	Episode 2
	Episode 3
	Episode 4

	examples of modules outputs
	Amygdala
	Explorer

	Detailed genetic algorithm
	Genetic operations
	Population management
	Genetic Approach: Pseudo Code

	Modules activated
	Task performance
	Details of Gemini Experiments
	`Improved prompt' GEMINI results
	Scores across 3 genetic algorithm runs with Gemini-2.0-Flash
	Initial Population Scores
	Initial population improvement
	Convergence properties of genetic algorithm
	Convergence properties across games

	Genome Transferability to other Gemini models
	Transfer scores across individual genetic runs

	Details of GPT Experiments
	TAME results over GPT model family
	Initial population of GPT family models
	Improvement over initial population
	Transferability across GPT family models

	TAME child evaluation Pseudo code
	Detailed memory ablations
	`Improved Prompt' proposed by Claude
	LLM Mutation and Crossover prompts
	Initial Population Genomes
	Prompts proposed by Sonnet-4
	Initial population

	Final genomes returned by TAME

