
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TAME THE BALROG:
TASK-ADAPTIVE MODULAR EMERGENCE FRAME-
WORK FOR GAME AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interactive games have proven to be key benchmarks for advancing Artificial Intel-
ligence (AI), requiring capabilities like long-term planning, exploration, and adap-
tation to stochastic environments. While Large Language Models (LLMs) have
achieved notable results across many domains, they struggle in complex gaming
environments like those in the BALROG benchmark. The absence of adaptive
frameworks that can dynamically configure themselves based on environmental
characteristics, limits the progress of AI in games. To this end, we introduce the
Task-Adaptive Modular Emergence (TAME) framework, which employs genetic
algorithms to evolve environment-specific structures from modular components,
enabling significant performance improvements of LLMs across diverse domains.
TAME discovers high-performing configurations by selecting between baseline
and hierarchical structures, selectively incorporating specialised modules, and
fine-tuning each component through systematic mutations. Evaluating TAME
across the BALROG benchmark, we find that the emergent modular structures
discovered by TAME significantly enhance LLM performance, raising average
progression scores of Gemini 2.0-Flash from 27.15% to 34.77%. Moreover, these
structures demonstrate transferability across models. Directly employing TAME
discovered structures for Gemini-2.0-Flash to a population of Gemini-2.5-Pro, we
achieve new state-of-art performance on BALROG. This transferability suggests
that TAME identifies fundamental structural principles for game-playing agents
that adapt their cognitive architecture to match task demands.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable growth across a wide range of tasks,
from general language understanding (Hendrycks et al., 2020) and code generation (Wang et al.,
2024a; Pan et al., 2025; Hong et al., 2024), to recent breakthroughs including mastering the ARC
reasoning benchmark (Chollet, 2024; Chollet et al., 2024) and performing at gold-medal level on
International Mathematical Olympiad (Chervonyi et al., 2025). However, these models struggle
significantly in interactive decision-making environments that require sequential actions, state
awareness, and long-term planning (Liu et al., 2024; Klissarov et al., 2025).

Interactive games have historically served as major testbeds for artificial intelligence, with examples
including Atari (Mnih et al., 2013), Starcraft (Team, 2019), or GrantTurismo (Team & Digital,
2022). Those successes predominantly emerged from reinforcement learning (RL) approaches
specifically engineered for each domain, often requiring millions of training episodes and domain-
specific reward shaping. While LLMs hold considerable promise on the possibility of zero-shot
generalisation across games through their vast pretraining experience, e.g., game wikis, strategy
guides, and gameplay discussions, they fail to translate this latent knowledge effectively. This
performance gap is clearly illustrated in the BALROG benchmark (Paglieri et al.), a suite of diverse
games traditionally employed in RL research, where even state-of-the-art LLMs achieve only partial
success in the simpler games and barely progress with more challenging ones.

Notably, structured agentic frameworks have emerged as a dominant approach to enhancing LLM
capabilities in other complex domains. In software development, frameworks like SWE-Agent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LOOP DETECTOR

EXPLORER

AMYGDALA

CRITIC

FINAL
GENOME

GAME LOOP
SCORES

GAME λ
X

TAME

x n_gen

GENETIC ALGORITHM

TAME READY!

POOL OF MODULES

SELECTION & CROSS
BREEDING

P0 HIERARCHICAL
ARCHITECTURE

Pi+1

Pi

LONG-TERM MEMORY

Figure 1: TAME framework overview. TAME runs a genetic algorithm to generate a population
of genomes representing different module combinations, fine-tunes them, and selects the genome
achieving the highest score. Icons were generated with Google Gemini Pro 2.5, 2025.

(Yang et al., 2024), MetaGPT (Hong et al., 2024), and CodeCor (Pan et al., 2025) enable LLMs to
decompose complex programming tasks through specialised modules that maintain project context
or check for domain-specific challenges such as correct compilation or indentation. Similarly, in
scientific research, systems like ChemCrow (Bran et al., 2023), MathCoder (Wang et al., 2024a)
and the AI Scientist (Lu et al., 2024) augment LLMs with relevant skills for their respective
applications, including hierarchical planning to tackle multi-step experimental design, or automatic
peer-reviewing. There are also recurrent efforts to improve long-term memory management in
agentic frameworks, with solutions that prioritise either speed and cost efficiency, such as Jarvis-1
(Wang et al., 2024b), or performance, such as A-mem (Xu et al., 2025).Yet, despite presenting
similar challenges, no agentic framework has been applied to games. Unlike math or code, gaming
environments are partially observable, evolve quickly, and demand long-horizon strategies that rely
on persistent memory and planning, capabilities that remain difficult for LLMs.

To address this gap, we introduce the TAME (Task-Adaptive Modular Emergence) framework,
a genetic-driven approach for LLMs to automatically discover and configure effective agentic
structures for diverse gaming environments. TAME consists of a series of human-designed modules
that enable different capabilities that might be relevant in games. Examples of that capabilities
include hierarchical planning, exploration or long-term memory. However, unlike in other domains,
games can encode very diverse dynamics, e.g., Nethack is a game where exploration, long-term
planning and memory are of paramount importance, while none of those skills help in a game like
TextWorld. Thus, TAME undergoes an evolutionary process, iteratively exploring the best structure
for a specific game. Figure 1 illustrates this process. Each candidate structure is encoded through
a vector that represents which modules are activated, along with the hyperparameters and the
prompts selected for this candidate. Through successive generations, TAME employs mutation and
cross-over operations on the genomes of the selected candidates to discover increasingly effective
structures, balancing performance and diversity in their selection.

We validate TAME through extensive experiments on the BALROG benchmark. Our results show
that TAME-discovered configurations improve overall progression scores by 28% compared to the
baseline LLM performance, including progress in the most challenging domains such as Nethack.
Moreover, we show that architectures discovered by TAME exhibit strong transferability: genomes
evolved using Gemini-2.0-Flash directly enhance the performance of Gemini-2.5-Flash-Lite and
Gemini 2.5-Pro without additional adaptation. In the case of Gemini-2.5-Pro achieving new state-
of-the-art results on BALROG. Through ablation studies, we further demonstrate the individual
contributions of our long-term memory system and the effectiveness of the genetic adaptation.

We summarise our contributions as follows: (1) we introduce TAME, the first emergent agentic
framework that enables LLMs to evolve modular structures tailored to gaming environments; (2) we
propose a novel and effective long-term memory system that combines embedding-based retrieval
with LLM-augmented semantic memory (3) we demonstrate TAME’s strong performance on the
BALROG benchmark, with a new state-of-the-art system; (4) we show that TAME-discovered
architectures transfer effectively, enhancing models without additional adaptation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Prompting and Memory. Hallucinations remain a key challenge for LLMs (Kalai et al., 2025),
which can be mitigated through prompting techniques like chain-of-thought (Wei et al., 2022) and
step-by-step reasoning. Limited context windows (Brown et al., 2020) is another limitation, driv-
ing development of memory systems. Retrieval-Augmented Generation (RAG) (Lewis et al., 2021)
combines LLMs with external document retrieval to reduce hallucinations without retraining. HiA-
gent (Hu et al., 2024) manages hierarchical memory using subgoals, dividing into “working mem-
ory” and “cross-trial memory” with LLM-based observation summarisation, while Park et al. (2023)
balance memory retrieval using recency, importance, and relevance scores. Jarvis1 (Wang et al.,
2024b) stores task names, plans, and observation sequences using embedding (CLIP) for encod-
ing and retrieval. A-mem (Xu et al., 2025) introduces structured memory notes with timestamps,
keywords, and embeddings, establishing inter-memory connections through LLM calls.

LLMs as hierarchical planners. In TWOSOME (Tan et al., 2024), LLMs score actions based on
observations, allowing RL agents to leverage world knowledge for improved decisions. MaestroMo-
tif (Klissarov et al., 2024) uses LLMs to generate reward functions for skills, while LLM-Augmented
Hierarchical Agents (Prakash et al., 2023) use LLMs to inject commonsense priors for more effi-
cient policy learning. Jarvis1 (Wang et al., 2024b), consists of planner and controller, enhanced by
multimodal memory system. An important limitation of Jarvis-1 is the necessity of human-crafted
goals based on specific skills, limiting its application in games with emerging tasks.

Agentic frameworks. Agentic frameworks are systems that enable Large Language Models to
act as autonomous agents capable of reasoning, planning, and interacting with external tools and
environments. Recent work, such as AGENTBREEDER Rosser & Foerster (2025), shows that
optimising frameworks provides superior multi-agent performance on reasoning, mathematics, and
safety benchmarks. Moreover, multiple works show improvements in scientific discovery (Lu et al.,
2024) and software development (Yang et al., 2024) through these structured frameworks.

Evolutionary Strategies. Recent work incorporates LLMs into evolutionary frameworks. Lehman
et al. (2022) propose “evolution through large models” using LLMs as evolutionary operators. Evo-
Prompt (Guo et al., 2025) employs LLMs for crossover and mutation in genetic algorithms to
discover diverse prompts, while Rainbow Teaming (Samvelyan et al., 2024) mutates adversarial
prompts to populate MAP-Elites archives systematically. DOMiNO (Zahavy et al., 2022) balances
quality-diversity trade-offs using Lagrange multipliers. Eureka (Ma et al., 2023) shows evolutionary
optimisation over reward code benefits from human initialisation.

3 TAME FRAMEWORK

We introduce TAME (Task-Adaptive Modular Emergence framework), a novel agentic framework
designed for dynamic LLM adaptation across diverse gaming environments. Inspired by Eureka
(Ma et al., 2024), which shows that human priors significantly improve LLM-based evolutionary
optimisation performance, TAME begins with an initial population P0 comprising diverse modular
structure configurations, each encoding different combinations of human-crafted modules and hy-
perparameters. The framework’s modular architecture consists of six core components illustrated
in Figure 2: hierarchical goal decomposition (comprising a Meta-Controller, Low-Level Executor,
and Completion Validator), Long-Term Memory, Critic, Loop Detector, Amygdala, and Explorer.
TAME’s evolutionary process operates iteratively: in each generation, the framework evaluates all
new members p ∈ Pi on the target game and selects candidates for the next generation based on
two criteria: (1) the top N performers by absolute score, and (2) M additional diverse solutions
that achieve at least a fraction α of the best performer’s score. This dual selection strategy balances
exploitation of successful structures with exploration of the relevant solution space. Each candi-
date’s genome is represented as a vector encoding active modules, hyperparameters (e.g., memory
decay rates, exploration-exploitation trade-offs), and module-specific prompts. After every itera-
tion of TAME, the genomes of the selected candidates undergo mutation and crossover operations
to generate the new members of the subsequent population Pi+1. Through successive generations,
TAME discovers increasingly effective structures tailored to each game’s requirements.The remain-
ing of this section details the genetic algorithm and the design and functionality of each modular
component in TAME.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

META-
CONTROLLER

LOW-LEVEL
EXECUTOR

LOOP
DETECTOR

IF TRUE

CRITIC

LONG-TERM
MEMORY

AMYGDALA

EXPLORER

DANGER?

COMPLETION
VALIDATOR

IF FALSE

IF TRUE

IF FALSE

COMPLETE?

EXPLORATION
INCENTIVES

GAME
OPTIONS

GAME
ACTIONS

Figure 2: Fully enabled TAME modular structure: an epsilon-greedy mechanism selects between
Meta-controller (providing options toward game objectives) and Explorer (options towards explor-
ing the environment). Low-level Executor proposes actions, while Amygdala checks for danger
and prioritises survival. Completion Validator checks option completion while the Loop Detector
identifies stuck states, and the Critic summarises key actions that led to the outcome of the option.
Long-term memory saves successful and failed trajectories and adds them to LLM context.

3.1 NOTATION AND FUNCTIONAL INPUTS

Let G = {g1, . . . , gn} the set of decomposed options towards the game objective,A the action space,
O the observation space, S the state space, H the set of option summaries, and T , space of natural
text. Each state st ∈ S at time t is defined as:

st = (ot, I, hi−1, gi, τi,M
±
i , Frecent, Fi, Fi,act, Fi,obs)

where ot ∈ O is the current agent’s observation and I provides game context (objective and available
actions), hi−1 ∈ H summarises the previous option’s outcome, gi ∈ G is the active option with
termination condition τi,M±

i contains the top successful ksucc and failed kfail options. Frecent stores
the last m action-observation pairs, while Fi, Fi,actions, and Fi,obs maintain action-observation,
action-only, and observation-only trajectories for the current option respectively.

Each component within st can serve as a functional input to any module within the framework.
Through early experimentation we noted that the selection of appropriate functional inputs has a
significant impact on performance, and it is up to the evolutionary process to find the most appro-
priate inputs for each module. For the initial population generation, we hand-crafted inputs that we
consider most relevant for each module, providing the genetic algorithm with informative human
priors. This is further detailed in Section 3.2.

3.2 GAME ADAPTATION

Given the diverse dynamics and requirements across different gaming environments, we propose
a genetic optimisation approach that automatically explores diverse agentic architectures to adapt
the underlying LLM to the specific game characteristics. To that end, we first encode the agentic
structure descriptors into genomes. Each genome is constructed from three core components:

• Modules: TAME modules (See Section 3.3) are parametrised as a set of binary values.
Such values indicate if a module is active (1) or not (0). The set of modules include:
Hierarchy (enables or disables hierarchical goal decomposition, includes Meta-controller,
Low-level executor and Completion Validator), Long-Term Memory (stores past experi-
ences), Critic (summarises key actions toward the current option), Amygdala (activates
survival mode), Loop Detector (detects looping behaviour), Explorer (controls exploration
strategies).

• Hyperparameters: A set of continuous values encoding: Long-Term Memory Time De-
cay Factor λ, which sets the option priority decay rate; Long-Term Memory Similarity
Threshold τcos, which specifies the cosine similarity cutoff for storing memories; Explo-
ration Parameter ϵ, which controls the epsilon-greedy exploration; and Language Model
Temperature.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Prompts: The last component of the genome includes the prompts used by the modules of
the agentic structure.

For any game G the initial population P0 consists of four predefined genomes:

P0 = {gbasic,ghierarchical,gdefault,gfull}

Where gbasic is genome corresponding to a baseline structure (no modules activated) with a single
prompt as in Paglieri et al. (BALROG). ghierarchical corresponds to TAME[Hierarchical+Long-Term
Memory], a genome with the hierarchical and long-term memory modules activated. gdefault - refers
to TAME[Full Structure], a genome with all the modules activated that employs prompts proposed
by Claude-Sonnet-4. Finally, gfull is TAME[Full Structure] is also a genome with all the modules
active, but with our own engineered prompts. See Appendix O for full detail.

Genetic Operations. Given the distinct nature of the components within the genome (i.e., binary or
continuous values, or prompts) TAME employs distinct crossover and mutation strategies depending
on the type of variable or representation that is handled. For binary variables, we use a parent-based
probabilistic flipping mechanism that incorporates an inheritance bias. Continuous variables are
handled through Gaussian perturbation for mutation and linear interpolation for crossover. Finally,
for prompt optimisation, we adopt the EvoPrompt methodology by Guo et al. (2025), which enables
crossover and mutation tailored to LLM-based prompts (availabe in Appendix N).

Genome Evaluation. Each genome is evaluated using the average game progression across nep
episodes as a fitness function. Moreover, we embed the genome representation and calculate the
minimum distance to genomes already existing in the population as a score of diversity, alowing for
keeping population of best scoring and most diverse genomes.

Genetic Algorithm. Our genetic algorithm iterates through four steps: 1) Parent Population
Selection: TAME chooses parents based on wheel selection 2) Reproduction: Parents for repro-
duction are chosen from parent population with psingle and 1 − psingle referring to the probability
of single-parent or two-parent, respectively. Genetic operations are applied, represented by muta-
tion+crossover or mutation alone (based on the number of parents) 3) Fitness Evaluation: calculates
genome’s performance score and diversity based on average game progression and embeded genome
representation, respectively. 4) Population Pruning: the population is trimmed to maintain a max-
imum of N +M individuals — N highest-performing plus M most diverse genomes (subject to
achieving a factor α of the performance of the best genome within the population). Most diverse
genomes are those with largest minimum distance of their embedding with respect to the already
existing embeddings in the population. Further detail and discussion can be found in Appendix G,
together with pseudocode and hyperparameters in Appendix G.3 and C, respectively.

3.3 MODULAR BLUEPRINTS

As anticipated through Section 3, inspired by how Eureka improved its ability to find better reward
functions by starting from a human-crafted set of prior, TAME incorporates a set of human-crafted
modules that target essential capabilities for agents in interactive games. The remaining of this
section details such components. We remind the reader than smct , slct , s

cv
t , s

c
t , s

e
t , s

a
t , s

ld
t used in

sections below, represent subsets of st selected by the genetic algorithm for corresponding modules.

3.3.1 HIERARCHICAL PLANNING

The hierarchical module consists of three main components illustrated in Figure 2: Meta-Controller
suggests sequence of options, Low-Level Executor performs a sequence of actions towards each
option, and Completion Validator judges if an option has been completed successfully or failed.

Meta-Controller. The Meta-Controller decomposes the game objective into a more manageable
sequence of options. Specifically, it implements πhigh : S → G, mapping the current state to an
ordered sequence of options:

g = πhigh(s
mc
t) = LLMprompthigh(s

mc
t) = (g1, g2, . . .) (1)

Each option gi consists of the fields: name, description, prerequisites, success conditions, penalty
component, progress indicators, estimated priority.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Low-level Executor. This system implements πlow : S → A, producing an action sequence based
on the current state information provided slet :

a = πlow(s
le
t) = LLMpromptlow(s

le
t) = (a1, a2, . . .) (2)

where the length of the sequence is decided by the Low-level Executor.

Completion Validator. The Completion Validator implements the binary classifier φ : S →
{0, 1}, determining whether an option has been completed:

Ci = φ(scvt) = LLMpromptφ(s
cv
t) ∈ {0, 1}. (3)

Here Ci = 1 indicates successful termination. For details on the hand-crafted LLM prompts used as
initial seeds we refer the reader to Appendix O.

3.4 LONG-TERM MEMORY

TAME implements a novel memory system that seeks to leverage the cost and speed efficiency of
embedding-based systems like Jarvis-1 (Wang et al., 2023) while achieving a performance closer to
more complex systems like A-mem (Xu et al., 2025). To that end, our system adopts Jarvis-1’s stor-
age framework, maintaining option information including name, description, prerequisites, success
conditions, progress indicators, penalty components, and observation sequences. We extend this
with two key additions: (1) Critic llm-generated summaries highlighting key success/failure actions,
and (2) success/failure classification labels obtained from Completion Validator. This enhancement
provides actionable guidance for future tasks requiring a single LLM call while avoiding A-mem’s
computational overhead of three LLM calls for memory and link creations, and evolutions. We now
provide further detail of how TAME’s long-term memory works:

Critic. The Critic module is a function ρ : S × {0, 1} → T , mapping the state and recent option
outcome from Completion Validator to text:

hi = ρ(sct , Ci) = LLMpromptρ(s
c
t) (4)

where the text aims to summarise the key factor that led to the success or failure of the option.

Creation of the memory. Each memory entry is defined as:

Mi = {gi, Ci, o, hi} (5)

where gi is the option, Ci ∈ {0, 1} is the output of the Completion Validator, o is the observation
sequence towards current option, and hi is the option summary from the Critic. Then, the mem-
ory structure is implemented as follows: each memory entry is stored as a vector embedding of
the above, enabling efficient similarity-based retrieval. The embedding function ϕ transforms each
entry:

ei = ϕ(Mi) ∈ Rd (6)

Similarity-Based Filtering. Following the “importance” scoring approach from the generative
agents framework (Park et al., 2023), we prevent storage of repetitive experiences. A new memory
Mnew is stored only if:

max
Mi∈M

enew · ei
||enew|| · ||ei||

≤ 1− τcos (7)

where τcos is a set constant. This method effectively filters out frequently repeated actions (e.g.,
“chop wood” in Crafter) that provide limited learning value.

Long-Term Memory Retrieval Mechanism. In order to address the limited context window size,
we only extract ksucc+kfail best scoring memories at each option execution. Inspired by Retrieval-
Augmented Generation (RAG) (Lewis et al., 2021), we enable access to past experiences through
the following steps:

• Query Encoding: The new option name (ngi) and description (dgi) are embedded into the
same vector space as stored memories using sentence embeddings:

qi = ϕ(ngi , dgi) ∈ Rd (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• Temporal Decay: Following A-mem (Xu et al., 2025), we prioritise recent experiences
using exponential decay:

w(et) = exp(−λ · t) (9)
where t is the time elapsed since memory creation.

• Memory score: We combine similarity and recency through weighted sum:

score(qi, ej) = wsimilarity · sim(qi, ej) + wrecency · w(ej) (10)

• Stratified Retrieval: The system retrieves top-k successful and failed memories:

M+
i = Top-ksucc(score(qi, ej) : φi = 1) (11)

M−
i = Top-kfail(score(qi, ej) : φi = 0) (12)

where φj indicates success/failure of memory j.
• Context Integration: All ksucc + kfail retrieved memories are integrated into the modules

prompts (modules incluing memory are decided by genetic algorithm).

This process gives access to both effective strategies and failure patterns, allowing for informed
decision-making. Visualisations of retrieval patterns are shown in Appendix E.

3.5 SKILL-SPECIFIC MODULES

On top of the hierarchical structure, we identify survival and exploration as two key components in
many video games. Moreover, we identify looping behaviour as a significant LLM limitation. All
three modules are illustrated in Figure 2.

Explorer. Let explorer be defined as a function πexplorer : S → Gexplore, where Gexplore is the set
of exploration-oriented options, and:

gexp = πexplorer(s
e
t) = LLMexplorer(s

e
t) (13)

where gexp = {gexp
1 , gexp

2 , . . . , gexp
k } is the sequential exploration plan, and each gexp

i is structured
identically to regular options but prompted for discovery rather than game goal completion.

• Exploration Strategy We implement an ϵ-greedy exploration strategy where the Meta-
controller selection becomes:

Controller(st) =
{
πexplorer(s

e
t) with probability ϵt

πhigh(s
mc
t) with probability 1− ϵt

(14)

with ϵ0 = 0.1, ϵt = 0.99× ϵt−1 = 0.99t × ϵ0

Amygdala. Let σ : S → {0, 1} be the amygdala function mapping observations to binary classi-
fication of danger assessment:

Di = σ(sat) = LLMamygdala(s
a
t) (15)

At each Low-Lever Executor step, if Di = 1, the system immediately activates a “survival option”
(see Appendix F.1 for details); otherwise, normal execution continues.

Loop Detector. The loop detector implements ψ : S → {0, 1}, detecting repetitive behavior in
recent execution history:

Li = ψ(sldi) = LLMpromptψ(s
ld
i) ∈ {0, 1}. (16)

Where Li = 1 means looping behaviour is detected.

4 EMPIRICAL EVALUATION

We evaluate our method through three key experiments. First, we benchmark our genetic algo-
rithm with Gemini-2.0-Flash against the SOTA systems on the BALROG benchmark. Second, we
demonstrate the transferability of TAME’s selected genomes across different Gemini models without
additional training. Third, we compare our memory system against Jarvis-1 and A-mem baselines.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1 TAME RESULTS

This section compares the baseline and TAME’s performance on the BALROG benchmark. Baseline
scores are obtained by evaluating the BALROG repository with Gemini-2.0-Flash following the
original author’s methodology. TAME scores represent the best performance achieved selected by
our genetic algorithm (Section 3.2). We run genetic algorithm through ngen = 4 iterations, with each
iteration producing nchild = 5 children. Through empirical evaluation we notice that gives sufficient
performance gains. Number of episodes per each child evaluation is adapted from BALROG.

Environment Baseline[2.0-Flash] (↑) TAME (↑) Episodes ∆ Full Pop. Score(↑)
Average 27.16% ± 2.12% 34.78% ± 2.22% - +12.18%

babyai 58.00% ± 6.98% 72.0% ± 6.35% 50 +6.69%
babaisai 30.83% ± 4.22% 41.67% ± 4.50% 120 +10.00%
textworld 32.55% ± 6.95% 32.55% ± 6.95% 30 +26.47%
crafter 29.09% ± 4.51% 39.09% ± 4.9% 10 +19.09%
minihack 12.50% ± 5.23% 22.5% ± 6.6% 40 +10.00%
nle 0.00% ± 0.00% 0.85% ± 0.47% 5 +0.85%

Table 1: Average game progression of baseline LLM and TAME (with Gemini-2.0-Flash base). Re-
sults also include the scores with all modules activated and human-crafted prompts (full) to illustrate
the impact of the genetic adaptation algorithm on the framework.

As shown in Table1, TAME consistently outperforms the baseline achieving relative gain of ∼28%.
TAME improves performance in five out of six games, with the same score on TextWorld, as it is
the environment where original BALROG’s paper approach was chosen by the genetic algorithm.
Notably, while the baseline model cannot achieve any noticeable progress on Nethack (the hardest
game) TAME achieves 0.85% average score (note that the best model scores 1.8% on Nethack).
In order to access the performance gain of genetic algorithm, we compare it against human-crafted
Full Structure. We notice the average performance gain of 12.18%, illustrating the importance of
adaptation in games. Detailed per-task results are provided in Appendix I along with an analysis of
module activations in Appendix H. The final genomes returned by genetic algorithm are available in
Appendix P with further results of the performance of initial population P0 in Appendix M.

4.2 TRANSFERABILITY OF TAME STRUCTURES

Next, we evaluate whether architectures evolved with Gemini-2.0-Flash can be effective when trans-
ferred to other models. Thus, we use TAME selection to evaluate populations of Gemini-2.5-Flash-
Lite and Gemini-2.5-Pro models to exlusively choose between the base configuration from BAL-
ROG or the best-performing structure discovered with Gemini-2.0-Flash for each game.

Method Score (↑) BALROG Rank (↓)
Gemini-2.5-Pro[Transferred] 47.65% ± 2.20% (1) ↑ 1
Grok-4 43.60% ± 2.20% 1
Gemini-2.5-Pro[Baseline] 43.35% ± 2.3 2
Gemini-2.0-Flash[TAME] 34.78% ± 2.22% (4) ↑ 8
Gemini-2.0-Flash[Baseline] 27.16% ± 2.12% (12)
Gemini-2.5-Flash-Lite[Transferred] 22.76% ± 1.73% (13) ↑ 10
Gemini-2.5-Flash-Lite[Baseline] 11.87% ± 1.32% (23)

Table 2: Comparison of TAME against top scoring models in BALROG leaderboard (September
2025). We show how they would rank (in parenthesis) relative to the current leaderboard. Rank
improvements are indicated with ↑.

From Table 2 presenting the results, we observe that Gemini-2.5-Flash-Lite achieves almost 100%
improvement. Detailed analysis in Table 6 in Appendix J demonstrate that TAME’s discovered
structures successfully transfers in four out of six environments, with only TextWorld and NetHack
achieving baseline performance. For Gemini-2.5-Pro, we also observe gains although more mod-
erate. Table 7 in Appendix J shows that the transferred structures significant improvements in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the BabyAI and BabaIsAI environments, which require extensive planning, highlighting the frame-
work’s strengths in this domain. However, improvements are not observed in the remaining en-
vironments. We hypothesise that Gemini-2.5-Flash-Lite benefits more substantially because it is
a non-reasoning model similar to Gemini-2.0-Flash, where we carried the optimisation, whereas
Gemini-2.5-Pro is a reasoning-based models. Notably, transferring TAME’s discovered genomes to
Gemini-2.5-Pro we achieve state-of-art performance above the best model on the BALROG leader-
board - Grok-4. Similarly, we see large improvements on the leaderboard for Gemini-2.5-Flash-Lite
and Gemini-2.0-Flash with TAME, now occupying rank 13 and 4 from 23 and 12 respectively.

4.3 ABLATION: MEMORY TYPES

We also include ablations to demonstrate the effectiveness of our long-term memory system. In order
to test memory, we use the hierarchical structure described in Section 3.3.1, combined with three
different memory architectures: Jarvis, TAME-Memory[ours] and A-mem. Both Jarvis memory
and A-mem store the same core elements: gi (the option, including all information associated with
it), Ci ∈ {0, 1} (the status indicator), and o (the observation sequence corresponding to the current
option). TAME extends Jarvis framework by introducing a critic, as well as a filter for successful and
failed trajectories (but does not create links between memories). This requires one additional LLM
call compared to Jarvis, but two fewer LLM calls per generation compared to A-mem. Thus, our
approach explores a trade-off between the simplicity of Jarvis and the more complex and expensive
structure of A-mem.

We notice an improvement compared to Jarvis and A-mem as shown on Table 3, motivating the
integration of critic module for memory storage. Moreover, we achieve this while requiring a third
of the LLM calls that A-mem employs. Thus allowing our system to iterate faster and with a reduced
compute cost. Further details are included in Appendix L.

Environment Jarivs (↑) TAME-Memory[ours] (↑) A-mem (↑)
Average 17.52% ± 1.73% 23.11% ± 1.75% 21.45% ± 1.80%

Table 3: Comparison of average game progression across 6 games using different memory types.

5 DISCUSSION AND CONCLUSION

We presented TAME, a genetic framework for evolving LLM-based agents that is both game-
agnostic and adaptive. Through genetic mutations and in-game evaluation, TAME configures
human-crafted modules for core gaming skills such as exploration, survival, long-term memory,
and loop detection. Its novel memory system combines the efficiency of embedding retrieval with
the contextual depth of LLM-augmented memory. To our knowledge, this is the first application of
such a memory design in this domain.

We evaluated TAME on the well-established BALROG benchmark and find that it consistently en-
hances the underlying LLMs. Gemini-2.0-Flash improves from 27.16% to 34.78%, while solu-
tions discovered on one architecture transfer training-free to others, with Gemini-2.5-Pro reaching
47.65% and outperforming the state-of-the-art. These results showcase both the generalisability of
the core modules and the effectiveness of our genetic approach. We further confirm the importance
of long-term memory and adaptive architecture, with our proposed memory system outperforming
two existing baselines while remaining more cost-efficient than complex agentic systems.

We note some limitations. We find that TAME provides greater benefits to some games than others,
where it defaults to the baseline architecture. We also observed that while TAME improves com-
plex reasoning tasks overall, spatial reasoning remains a weakness. This suggests the potential not
only for expanding the set but for genetic discovery of entirely new modules and capabilities, be-
yond those hand-crafted in this work. Moreover, while transferability proved effective, gains were
less pronounced for reasoning models, motivating further study of transfer and emergence across
different architectures.

Overall, TAME establishes a new state of the art in game-playing LLM agents, laying the foundation
for more efficient and emergent frameworks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Yuri Chervonyi, Trieu H Trinh, Miroslav Olšák, Xiaomeng Yang, Hoang Nguyen, Marcelo Mene-
gali, Junehyuk Jung, Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in
solving olympiad geometry with alphageometry2. arXiv preprint arXiv:2502.03544, 2025.

François Chollet. Openai o3 breakthrough high score on arc-agi-pub. https://arcprize.
org/blog/oai-o3-pub-breakthrough, December 2024. Accessed: 2025-09-12.

François Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604, 2024. URL https://arxiv.org/abs/2412.
04604.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt
optimizers, 2025. URL https://arxiv.org/abs/2309.08532.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a
multi-agent collaborative framework. In International Conference on Learning Representations,
ICLR, 2024.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model, 2024. URL https://arxiv.org/abs/2408.09559.

Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models
hallucinate, 2025. URL https://arxiv.org/abs/2509.04664.

Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
Pierre-Luc Bacon, Doina Precup, Marlos C. Machado, and Pierluca D’Oro. Maestromotif: Skill
design from artificial intelligence feedback, 2024. URL https://arxiv.org/abs/2412.
08542.

Martin Klissarov, R Devon Hjelm, Alexander T Toshev, and Bogdan Mazoure. On the modeling
capabilities of large language models for sequential decision making. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=vodsIF3o7N.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment, 2020. URL https:
//arxiv.org/abs/2006.13760.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution through large models, 2022. URL https://arxiv.org/abs/2206.08896.

10

https://arxiv.org/abs/2005.14165
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2408.09559
https://arxiv.org/abs/2509.04664
https://arxiv.org/abs/2412.08542
https://arxiv.org/abs/2412.08542
https://openreview.net/forum?id=vodsIF3o7N
https://openreview.net/forum?id=vodsIF3o7N
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2206.08896

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models, 2024. URL https://arxiv.org/abs/2310.12931.

MiniHack Team. Battle environments. MiniHack Documentation. URL https://minihack.
readthedocs.io/en/latest/envs/navigation/battle.html. Accessed: 2025-
09-15.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, et al. Balrog: Bench-
marking agentic llm and vlm reasoning on games.

Ruwei Pan, Hongyu Zhang, and Chao Liu. Codecor: An llm-based self-reflective multi-agent frame-
work for code generation. arXiv preprint arXiv:2501.07811, 2025.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Bharat Prakash, Tim Oates, and Tinoosh Mohsenin. Llm augmented hierarchical agents, 2023. URL
https://arxiv.org/abs/2311.05596.

J Rosser and Jakob Nicolaus Foerster. Agentbreeder: Mitigating the ai safety impact of multi-agent
scaffolds via self-improvement. arXiv preprint arXiv:2502.00757, 2025.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Zhang, Shimon Jiang, and Jakob Foerster.
Minihack the planet: A sandbox for open-ended reinforcement learning research. arXiv preprint
arXiv:2109.13202, 2021.

Mikayel Samvelyan, Sharath Chandra Raparthy, Andrei Lupu, Eric Hambro, Aram Markosyan,
Manish Bhatt, Yuning Mao, Minqi Jiang, Jack Parker-Holder, Jakob Foerster, et al. Rainbow
teaming: Open-ended generation of diverse adversarial prompts. Advances in Neural Information
Processing Systems, 37:69747–69786, 2024.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
comes from practice: Aligning llms with embodied environments via reinforcement learning,
2024. URL https://arxiv.org/abs/2401.14151.

DeepMind Team. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature,
575:350–354, 2019. doi: 10.1038/s41586-019-1724-z.

11

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2310.12931
https://minihack.readthedocs.io/en/latest/envs/navigation/battle.html
https://minihack.readthedocs.io/en/latest/envs/navigation/battle.html
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2311.05596
https://arxiv.org/abs/2401.14151

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

MiniHack Team. Minihack: Corridor environment, 2024. URL https://minihack.
readthedocs.io/en/latest/envs/navigation/corridor.html. Accessed:
September 15, 2025.

Sony AI Team and Polyphony Digital. Outracing champion gran turismo drivers with deep rein-
forcement learning. Nature, 602:223–228, 2022. doi: 10.1038/s41586-021-04357-7.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. In The Twelfth International Conference on Learning Represen-
tations, ICLR, 2024a.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023. URL
https://arxiv.org/abs/2311.05997.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with
memory-augmented multimodal language models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V.
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebastian Flennerhag, Shaobo
Hou, and Satinder Singh. Discovering policies with domino: Diversity optimization maintaining
near optimality. arXiv preprint arXiv:2205.13521, 2022.

12

https://minihack.readthedocs.io/en/latest/envs/navigation/corridor.html
https://minihack.readthedocs.io/en/latest/envs/navigation/corridor.html
https://arxiv.org/abs/2311.05997
https://arxiv.org/abs/2502.12110

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE DECLARATION

We employed LLMs to assist us in the writing of this paper. Our writing pipeline consisted of one
of the authors first writing a draft paragraph, then using an LLM to assist in polishing the writing
and grammar, and finally having other authors review and provide the final version to the text.
Additionally, we employed foundational models to assist us in creating illustrations.

Finally, throughout the course of this research we used LLM-powered search engines like Perplexity
in addition to traditional alternatives such as Google Scholar and conference proceedings while
gathering relevant literature.

B BALROG GAME DETAILS

The BALROG framework incorporates six distinct gaming environments, each designed to evaluate
specific aspects of agentic reasoning (Figure 3):

BabyAI BabyAI is a grid-based environment with different difficulty levels. The agent is pre-
sented wth five different tasks.

TextWorld TextWorld offers a text-based exploration environment where agents interact exclu-
sively through natural language commands. There are three different tasks.

Crafter Crafter simulates a Minecraft-inspired survival environment where progression is mea-
sured through 22 distinct achievements.

BabaIsAI BabaIsAI presents a rule-based puzzle environment where agents must navigate grid-
based scenarios. There are 40 different tasks.

MiniHack MiniHack represents a task-oriented version of the classic NetHack (Küttler et al.,
2020) game, evaluating agents across eight challenges testing different skills.

NetHack Learning Environment (NLE) NLE implements the complete NetHack roguelike
game, presenting the most comprehensive challenge within the benchmark. This environment si-
multaneously evaluates navigation, survival instincts, long-term strategic planning, resource man-
agement, and exploration skills within an unpredictable, dynamically evolving game state.

Figure 3: Game environments overview. Adapted from BALROG (Paglieri et al.)

C HYPERPARAMETERS SELECTED

This Appendix details the choice of hyperparameters in our methodology. Table 4 details the values
and descriptions.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The genetic algorithm optimises four hyperparameters: τcos, λ, ϵ0, and T . We establish lower bounds
of 0 for τcos, λ, and ϵ0, effectively disabling these components when not beneficial to performance.
Upper bounds were determined in order to maintaini sufficient search space for optimisation.

The language model temperature T follows standard practice with a default value of 1.0, allowing
the genetic algorithm to explore a range of solutions. We implement exponential decay for ϵt fol-
lowing established reinforcement learning approaches, enabling the transition from exploration to
exploitation as the system learns optimal behaviours. We follow the short term memory length in
BALROG and set it to m = 16. We set ksucc = 5 and kfail = 5, limiting the number of informa-
tion added to the prompt, but also adding significant amount of past experiences; through empirical
evaluation we notice that a higher number of memories added is not beneficial.

Following DOMiNO methodology, we set α = 0.7 to ensure meaningful population diversity whilst
maintaining performance standards. Our similarity-recency weighting (wsimilarity = 0.7, wrecency =
0.3) prioritises semantic relevance over temporal proximity, reflecting the hypothesis that content
similarity is more beneficial than recency.

The genetic algorithm parameters balance computational efficiency with solution quality. We set
probability of selecting single parent in genetic algorithm to be 70% (vs two parents to be 30%),
allowing for more mutations without crossover operations. We set n = 4 iterations as empirical
evaluation demonstrated satisfactory performance is achieved at this point, providing an effective
balance between solution quality and computational cost. Population management parameters N =
M = 5 maintain an optimal balance between preserving high-performing solutions and promoting
genetic diversity, following established evolutionary computation principles that prevent premature
convergence whilst ensuring computational tractability.

D BALROG BASELINE CONFIGURATIONS

This section details number of episodes and their length per each BALROG game. Moreover, we
show the BALROG prompt that we use as initial seed for the baseline architecture.

Episode details Table 5 details the episode specifications per game. The table shows time needed
for each episode completion, as well as details on number of tasks per different environments.

Baseline Prompt (BALROG) Below we present a prompt from BALROG (Paglieri et al.) paper,
used for Baseline evaluation.

Baseline BALROG Prompt

"""You always have to output one of the above actions at a time and no other text. You always have
↪→ to output an action until the episode terminates."""

E TESTING THE RETRIEVAL MECHANISM LONG-TERM MEMORY SYSTEM

In this section we test the retrieval of saved memories and the abilities to act upon them. Due to
stochasticity, we need to have a reliable comparison. We focus our evaluation on Crafter, as it is
an environment requiring long-term planning, giving motivation to log-term memory approach. We
disable life hazards such as zombies and skeletons, as they are not relevant to the testing subject. We
set random seed to 32 for all episodes.

To evaluate our information-retrieval mechanism we test a long-horizon “craft iron sword” task in
Crafter. We replace the environment’s default objective with the production of an iron sword (see
Appendix E.1.1). This task is intentionally complex: it requires chopping wood, crafting and placing
a crafting table, crafting a wooden pickaxe, collecting stone, crafting a stone pickaxe, placing a
furnace adjacent to the crafting table, collecting iron, and finally crafting an iron sword. We selected
this objective because, in prior baseline runs without our memory system, the agent never completed
the task. Through the episode we would like to check if memories are activated at relevant time

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Parameter Value Description
Embedding all-MiniLM-L6-v2 Pre-trained sentence embedding model used for

semantic similarity calculations

d 384 Dimension of the embedding

τcos [0, 0.1] Cosine similarity threshold parameter

λ [0, 0.1] Long-Term Memory decay factor

ϵ0 [0, 0.1] Initial exploration parameter

T [0.1, 2] Language Model Temperature

ϵt 0.99t × ϵ0 Time-decayed parameter following exponential
decay

m 16 Short-term memory length (most recent action-
observation pairs)

ksuccess 5 Number of top scoring successful long-term mem-
ories added to the LLM prompt

kfail 5 Number of top scoring failed long-term memories
added to the LLM prompt

α 0.7 Minimum fraction of highest scoring genome for
diversity

wsimilarity 0.7 Weight assigned to similarity component in scor-
ing

wrecency 0.3 Weight assigned to recency component in scoring

psingle 70% Percentage chance to choose single parent for re-
production

1− psingle 30% Percentage chance to choose two parents for re-
production

ngen 4 Number of iterations (parent population creation)
of genetic algorithm

nchild 5 Number of children created for each population of
parents in genetic algorithm

N 5 Number of best scoring genomes saved at each
step of genetic algorithm

M 5 Number of most diverse genomes saved at each
step of genetic algorithm (scoring at least α frac-
tion of top performing genome)

nep dependent on the game Number of episodes for each child evaluation. De-
tails in the Appendix D

Table 4: Hyperparameter values used in the TAME framework

steps, showing retrieval ability. Moreover, successful completion under our system provides strong
evidence that the memory-critic architecture supports multi-step planning and sequential options.

In order to track the memories activated, we inject five task-oriented memories at the start of each
episode: “craft wooden pickaxe”, “craft stone pickaxe”, “mine iron”, “place furnace”, and “craft iron
sword” (see Appendix E.1.2). Each memory is paired with a human-crafted critic that summarises
the steps needed to achieve particular option. During each episode we log when each memory
activates. An example progression through episode is provided in Figure 4 and the corresponding

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Environment Evals Tasks per Eval Total Episode Length
BabyAI 10 5 50 101

BabaIsAI 3 40 120 102

Crafter 10 1 10 103

TextWorld 10 3 30 102

MiniHack 5 8 40 102

NetHack 5 1 5 104 − 105

Table 5: Episode details per BALROG game

memories activated can be seen in Figure 5. More examples on activation timelines are provided in
Appendix E.2.

(a) step 35 (b) step 55 (c) step 85 (d) step 135 (e) step 225

Figure 4: Testing memory retrieval: Task progression across episode: (a) agent crafts wood pickaxe,
(b) agent crafts stone pickaxe, (c) agent collects iron, (d) agent collects iron, (e) agents attempts to
craft iron sword

Figure 5: Testing memory retrieval: memories activated based on the step

Discussion of the example: From Figure 5 we can notice that all memories are activated at the
beggining. This is due to the fact that very early in the game, those are they only memories present.
We can then see that “Craft Wood Pickaxe” and “Craft Stone Pickaxe” are heavily retrieved until
around 25th-60th step. This is when agent completed “Craft Stone Pickaxe task” (agent completes
“Craft Wood Pickaxe” task earlier, but due to similarity of those two tasks, it it activated when
focusing on stone version). “Mine Iron” memory activates two times between 80-100 steps, when
agent is mining two pieces of iron. “Craft Iron Sword” appears often around step number 100 which
is when agent first attempts to complete it, but realises that it needs to place a furnace and table first.
Then the memory is activated later as well, which is after placing table and furnace and attempting to
craft iron sword. Unfortunately, agent is unsuccessful because it didn’t place furnace close enough
to the table. This experiment demonstrates that relevant memories are activated at the right time, and
that agent is able to act upon them. Also, when not needed (i.e. the task is completed), memories are
activated far less often. It is also important to notice that the “Craft Iron Sword” memory continues
to be retrieved even towards the end of the episode when the agent is actively attempting this task.
This indicates that the memory system maintains access to relevant historical experiences throughout
the entire episode, regardless of when they were initially formed.

Results Across 10 independent runs the agent succeeded in producing an iron sword in 1/10
episodes (baseline: 0% from all previous runs that we did with Gemini-2.0-Flash). This is a sub-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

stantial improvement, which suggests that when memories are stored, agent is able to retrieve them,
and act upon them. This is a simplified case, as we provided human crafted memories, but with
the right prompting we believe that the critic module will be able to reproduce those. Additional
observations:

• Memories reliably activated when their prerequisites were satisfied and were deactivated
immediately after the corresponding option was completed.

• The specificity of the critic strongly affected performance. For example, phrasing a critic as
“place the furnace next to the crafting table” versus “place the furnace adjacent to the table”
produced different success scores. This highlights the value of precise, action-oriented
critic definitions that focus on the key state features leading to success or failure. Following
on that we prompted the critic accordingly.

• This experiment also demonstrates the difficulty of the “Craft Iron Sword” task, even when
given with clear instructions agent fails 90% of the time.

E.1 TESTING MEMORY RETRIEVAL PROMPTS

This subsection details prompts used in order to test long-term memory retrieval. First we show the
prompt detailing the goal of iron sword creation, then we show memories added at the begging of the
episode: Craft Wood Pickaxe, Craft Stone Pickaxe, Craft Stone Sword, Mine Iron, Place Furnace,
Create Iron Sword. Those are hand-crafted memories, designed in order to track memory retrieval.

E.1.1 IRON SWORD GOAL PROMPT

This subsection details the prompt for Craft Iron Sword goal that the agent is tasked with during the
long-term memory retrieval experiment.

Craft Iron Sword Goal

""" You are playing Crafter. The following are the only valid actions you can take in the game,
↪→ followed by a short description of each action:

{action_strings}.
Your goal is to craft an iron sword. """

E.1.2 INJECTED MEMORIES

This subsection details the memories added at the beggining of the episode, in order to track memory
retrieval.

Craft Wood Pickaxe Memory

craft_wood_pickaxe = {
"name": "Craft Wood Pickaxe",
"description": "Craft Wood Pickaxe for gathering stone",
"subgoal_prerequisites": "Agent has 1 piece of wood in inventory and table is placed",
"success_condition": "Wood Pickaxe is in inventory",
"subgoal_progress_indicators": "Agent is gathering wood near table",
"subgoal_penalty_component": "Agent crafts pickaxe without enough wood",
"status": ’successful’,
"summary of the run": "Agent collects three pieces of wood and places a table in a clear spot. Then

↪→ agent crafts a wood pickaxe at the table.",
}

Craft Stone Pickaxe Memory

stone_pickaxe_memory = {
"name": "Craft Stone Pickaxe",
"description": "Craft Stone Pickaxe",
"subgoal_prerequisites": "Agent has 1 piece of stone and 1 piece of wood in inventory and table is

↪→ placed",
"success_condition": "Stone Pickaxe is in inventory",

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

"subgoal_progress_indicators": "Agent is gathering stone near table",
"subgoal_penalty_component": "Agent crafts pickaxe without enough resources",
"status": ’successful’,
"summary of the run": "Agent collects four pieces of wood and places a table in a clear spot. Then

↪→ agent collects one piece of stone using wood pickaxe. Then agent crafts a stone pickaxe at
↪→ the table.",

}

Craft Stone Sword Memory

stone_sword_memory = {
"name": "Craft Stone Sword",
"description": "Craft Stone Sword for combat",
"subgoal_prerequisites": "Agent has 1 piece of stone and 1 piece of wood in inventory and table is

↪→ placed",
"success_condition": "Agent has stone sword in inventory",
"subgoal_progress_indicators": "Agent has 1 pieces of stone and 1 piece of wood",
"subgoal_penalty_component": "Agent crafts sword without enough resources",
"status": ’successful’,
"summary of the run": "Agent collects 4 pieces of wood. Then agent places a table and crafts a wood

↪→ pickaxe. Lastly, agent uses wood pickaxe to craft 2 pieces of stone and crafts a stone sword
↪→ at the table.",

}

Mine Iron Memory

mine_iron = {
"name": "Mine Iron",
"description": "Mine Iron",
"subgoal_prerequisites": "Agent has 1 wood pickaxe in inventory",
"success_condition": "Wood Pickaxe is in inventory",
"subgoal_progress_indicators": "Agent is gathering iron near table or furnace",
"subgoal_penalty_component": "Agent iron sword without enough resources",
"status": ’failed’,
"summary of the run": "Agent repetadely tried ’Do’ action using pickaxe near iron but fails to

↪→ collect iron. It is recommended agent tries using different tool.",
}

Place Furnace Memory

furnace_memory = {
"name": "Place Furnace next to Table",
"description": "Place furnace next to the Table for crafing iron tools",
"subgoal_prerequisites": "Agent has 4 pieces of stone in inventory. Table is placed. ",
"success_condition": "Furnace is placed",
"subgoal_progress_indicators": "Agent is gathering stone",
"subgoal_penalty_component": "Agent places furnace in unsuitable location or without enough
↪→ stone",

"status": ’successful’,
"summary of the run": "Agent placed a furnace next to the table using 4 pieces of stone. ",

}

Craft Iron Sword Memory

iron_sword_memory = {
"name": "Craft Iron Sword",
"description": "Craft Iron Sword",
"subgoal_prerequisites": "Agent has 1 piece of stone, 1 piece of wood, 1 piece of coal in inventory

↪→ and table and furnace is placed next to each other",
"success_condition": "Iron Pickaxe is in inventory",
"subgoal_progress_indicators": "Agent is gathering iron near table and furnace",
"subgoal_penalty_component": "Agent iron sword without enough resources",
"status": ’successful’,
"summary of the run": "Agent collects 1 piece of stone and one piece of wood using wood pickaxe.

↪→ Then agent collects one piece of iron using stone pickaxe. Then agent crafts an iron sword
↪→ next to the table and furnace.",

}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.2 ADDITIONAL LONG-TERM MEMORY RETRIEVAL EXPERIMENTS

This section shows additional experiemnts carried out in order to test memory retrieval, when tasked
the agent with iron sword task. Eachof the experiments consists of images showing agent progres-
sion, as well as memory activation across the episode.

E.2.1 EPISODE 1

Illustrations from the game available in Figure 6 and memory activations in 7. The reason why agent
didn’t succeed in completing the task is because the agent didn’t place table close enough to furnace.

(a) 50 (b) 100 (c) 150

Figure 6: Episode 1: Task progression across episode

Figure 7: Episode 1: Memory retrieval along the episode

E.2.2 EPISODE 2

Illustrations from the game available in Figure 8 and memory activations in 9. The reason why agent
didn’t succeed in completing the task is because the agent focuses on placing furnaces a few times.

E.2.3 EPISODE 3

Illustrations from the game available in Figure 10 and memory activations in 11. The reason why
agent did not succeed in completing the task is because agent does not have enough wood (also
crafts multiple tables and furnaces).

E.2.4 EPISODE 4

Illustrations from the game available in Figure 12 and memory activations in 13. The reason why
agent did not succeed in completing the task is because agent does nott have enough wood (also
crafts multiple tables and furnaces).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) 50 (b) 100 (c) 150 (d) 200

(e) 250 (f) 300 (g) 350 (h) 350

Figure 8: Episode 2: Task progression across episode

Figure 9: Episode 2: Memory retrieval along the episode

(a) 50 (b) 100 (c) 150 (d) 200

(e) 250 (f) 300 (g) 350 (h) 400

Figure 10: Episode 3: Task progression across episode

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: Episode 3: Memory retrieval along the episode

(a) 50 (b) 100 (c) 150 (d) 200

(e) 250 (f) 250 (g) 250 (h) 250

Figure 12: Episode 4: Task progression across episode

Figure 13: Episode 4: Memory retrieval along the episode

F EXAMPLES OF MODULES OUTPUTS

This section shows examples of amygdala and explorer modules behaviours.

F.1 AMYGDALA

This section details Amygdala submodule. First, we show defualt survival option, then we illustrate
an example of amygdala in the episode (using Crafter).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Default survival option The prompt below shows default survival option, that agent is switching
to, whenever danger is encountered.

Default Survival Option

subgoal = {
"name" : "respond to danger",
"description": "Respond to danger.",
"prerequisites": "Agent is in immediate danger",
"success_condition": "Agent has eliminated the danger",
"penalty_component": "Agent is not responsing to danger.",
"progress_indicators": "Agent is closer to eliminating the danger",
"estimated_priority": "high"

}

Amygdala module activation. Here we present an example from Crafter when amygdala is ac-
tivated. The agent is initially focused on exploring the environment and fulfilling subgoals such as
placing plants. However, in the early stages of the game, a skeleton appears. As soon as the agent
observes the skeleton within its field of view, it activates survival mode.

After survival mode is activated, the agent begins gathering resources for combat:

1. Chops down wood
2. Places a crafting table
3. Creates a wooden sword necessary for the fight

The agent then chases the skeleton, and once it is adjacent to the enemy, it initiates combat. During
the chase and fight, the agent loses health but successfully manages to defeat the skeleton. Shortly
afterwards, the amygdala is deactivated and the agent returns to working towards general game
objective.

(a) Amygdala activated (b) Creation of the table (c) Creation of the sword

(d) Chasing the skeleton (e) Fighting the skeleton (f) Amygdala deactivated

Figure 14: Amygdala survival response sequence: (a) activation, (b)&(c) resource gathering, (d)&(e)
combat, (f) deactivation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F.2 EXPLORER

In this section we show an example of exploration plan proposed by Explorer.

{’reasoning’: ’The agent needs to break out of its repetitive westward
movement and explore new areas, prioritizing resource gathering and
different directions. Sand has been identified as a new area to explore.’,
’subgoals’: [

{’name’: ’Move Towards Sand’,
’description’: ’Move towards the sand to the south-east to explore
new terrain.’,
’prerequisites’: ’’,
’success_condition’: ’Agent is standing on sand.’,
’penalty_component’: ’Moving in the opposite direction (North or West)
for more than 3 steps without collecting resources.’,
’progress_indicators’: ’Decreasing distance to sand in long_term_context.’,
’estimated_priority’: ’high’},
{’name’: ’Explore Area Around Sand’,
’description’: ’Once on the sand, explore in all directions (North, South,
East, and West) to discover resources and new landmarks.’,
’prerequisites’: ’Agent is standing on sand.’,
’success_condition’: ’Agent has moved at least 3 steps in each cardinal
direction from the sand.’,
’penalty_component’: ’Staying within the same 3x3 area on the sand for
more than 5 steps.’,
’progress_indicators’: ’Number of unique tiles visited around the sand.’,
’estimated_priority’: ’medium’}

]}

G DETAILED GENETIC ALGORITHM

In this Appendix we present the detailed specifications of the genetic algorithm.
Parameter selection:

Generations = 4 (17)
Population size = |Pdiverse|+ |Pbest| = 5 + 5 = 10 (18)

Children per generation = 5 (19)
pbinary = pcontinuous = pprompt = 0.5 (20)

where:

• Generations – the number of evolutionary iterations performed
• Population size – the total number of genomes maintained across diverse and best-

performing subpopulations
• Children per generation – the number of new offspring genomes created through mutation

in each generation
• pbinary, pcontinuous, pprompt – the probabilities of applying binary, continuous, or prompt mu-

tation operations, respectively, when creating offspring.

The number of generations was limited to four due to the significant computational cost and long
runtimes associated with evaluating each genome, particularly in environments like NetHack. How-
ever, this was sufficient to demonstrate a clear performance improvement and allow for the discovery
of specialised architectures.

Parent Selection Parent selection follows roulette wheel selection with fitness-proportionate prob-
abilities:

P (gi) =
f(gi)∑|P|
j=1 f(gj)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where f(gi) is the fitness score of genome gi.

Offspring Generation For each child gchild:

• With probability psingle: select one parent

• With probability 1− psingle: select two parents

For each genome component, evolutionary operations are applied with probability
pbinary, pcontinuous, pprompt, depending on the component. Otherwise parent attributes are
copied directly. In the two-parent case, the parent from which to copy each attribute is chosen with
Bernoulli(0.5) probability.

G.1 GENETIC OPERATIONS

This subsection focuses on methodology of crossover and mutations operations.

Modules Operations Single parent:

b
(child)
i =

{
b
(parent)
i with probability 0.8

1− b(parent)i with probability 0.2

Two parents:

b
(child)
i =


b
(p1)
i = b

(p2)
i with probability 0.9 if b(p1)i = b

(p2)
i

1− b(p1)i with probability 0.1 if b(p1)i = b
(p2)
i

Bernoulli(0.5) if b(p1)i ̸= b
(p2)
i

Hyperprameter Operations The continuous value inheritance depends on parent activity states.
Let A(pk)

i indicate if feature i is active in parent k:

For single parent:
c
(child)
i = clip(c(parent)i +N (0, σ2), ci,min, ci,max)

For two parents:

c
(child)
i =


c
(p1)
i +N (0, σ2) if A(p1)

i = 1, A
(p2)
i = 0

c
(p2)
i +N (0, σ2) if A(p1)

i = 0, A
(p2)
i = 1

αc
(p1)
i + (1− α)c(p2)i +N (0, σ2) if A(p1)

i = A
(p2)
i = 1

ci,default if A(p1)
i = A

(p2)
i = 0

where α ∼ U(0, 1). ci,min, ci,max, ci,default are detailed in Appendix C.

Prompt Operations Prompt evolution utilises the EvoPrompt prompt methodology Guo et al.
(2025). Using a similar approach we use LLM as a crossover and mutation operator.

• Single parent: p(child)i = LLMpromptmutate(p
(parent)
i)

• Two parents: p(child)i = LLMpromptmutate(LLMpromptcrossover(p
(p1)
i , p

(p2)
i))

If a parent has module i disabled (bi = 0), the corresponding prompt reverts to default: pi = pi,default
(default prompts in Appendix O.1).

LLM mutation and crossover prompts available in Appendix N. It is important to notice that this
approach enables functional mutation: LLM is prompted with all possible functional inputs to be
used in any prompt (described in Section 3.1).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.2 POPULATION MANAGEMENT

This subsection focuses on population management: details about fitness function, diversity measure
and population pruning.

Fitness Evaluation Each genome is evaluated using the fitness function:

f(g) =
1

nep

nep∑
i=1

GameProgressioni(g)

where nep is the number of episodes for specific game (see Table 5).

Diversity measure The genome distance function uses an embedding-based approach where
each genome is represented as a single embedding vector (here we use sentence-transformers/all-
MiniLM-L6-v2 embedding). The distance between two genomes is calculated using cosine similar-
ity:

d(g1,g2) = 1− cos(e1, e2) (21)

where ei is the embedding vector representation of genome gi.

The cosine similarity between two embedding vectors is computed as:

cos(e1, e2) =
e1 · e2

∥e1∥2∥e2∥2

Each genome g = {b, c,p} is transformed into a unified embedding vector e ∈ Rd that captures
the semantic representation of all genome components (binary variables, continuous parameters,
and prompts) in a single high-dimensional space. The way we measure diversity, is the minimum
distance to the genomes already existing in the archive.

Population Pruning After children evaluation, population pruning maintains diversity using the
following algorithm:

1. Initialise Pnew = ∅

2. Add top-N scoring genomes: Pnew ← top5(P)

3. For remaining genomes Gremaining:

(a) Calculate minimum distance to current population:

dmin(g) = min
g′∈Pnew

d(g,g′)

(b) Select genome maximising diversity with performance constraint:

g∗ = arg max
g∈Gremaining

dmin(g) s.t. f(g) ≥ 0.7 · f(gbest)

(c) Add g∗ to Pnew and remove from Gremaining

4. Repeat step 3 until the desired population size reached (N +M)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G.3 GENETIC APPROACH: PSEUDO CODE

Algorithm 1 TAME: Genetic Algorithm

Require: Game environment
Ensure: Optimised genome g∗

1: Initialize P0 = {gbasic, ghierarchical, gdefault, gfull}
2: for each g ∈ P0 do
3: gfitness ← EvaluateFitness(g)
4: end for
5: P ← P0

6: for generation = 1 to GENERATIONS do
7: C ← ∅ {Children population}
8: for i = 1 to CHILDREN PER GENERATION do
9: if rand() < 0.7 then

10: p1 ← RouletteWheelSelection(P)
11: c← SingleParentOperations(p1)
12: else
13: p1, p2 ← RouletteWheelSelection(P, 2)
14: c← TwoParentOperations(p1, p2)
15: end if
16: cfitness ← EvaluateFitness(c)
17: C ← C ∪ {c}
18: end for
19: P ← PopulationPruning(P ∪ C)
20: end for
21:
22: return argmaxg∈P gfitness

H MODULES ACTIVATED

In this Appendix we discuss module activation based on the game. Module activation is based
on final genomes returned by genetic algorithm, available in Appendix P. Module activation plot
is demonstrated in Figure 15. When selecting the baseline configuration, no additional modules
apart from Long-Term Memory can be activated. We notice that 4 out of 6 environments selected
hierarchical module, highlighting the effectiveness of complex goal decomposition. TextWorld is a
text-based environment where it is difficult to predict next actions due to their dependence on current
observation, therefore hierarchical structure and memory are not adding value. Moreover, MiniHack
has relatively short length (100 steps), which might be also why baseline structure was favoured.

Figure 15: Module activation in TAME across environments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

I TASK PERFORMANCE

In this Appendix, we compare different tasks performance across BabyAI, BabaIsAI, and Minihack
for baseline versus TAME. Crafter and Nethack are excluded because they each have only one
default task. TextWorld is also excluded since its genetic output matches the baseline.

MiniHack Interestingly, five out of eight tasks are never solved by any method, showcasing the
difficulty (see Figure 16). The Corridor-R3 task, which is never completed by the baseline, never-
theless shows 40% progress with TAME. Corridor-R3 is an exploration problem in which the goal
is to find the staircase Team (2024), illustrating TAME agent’s improved exploration ability. In both
CorridorBattle-Dark and MazeWalk-9×9, TAME achieves higher performance. CorridorBattle-Dark
requires the agent to fight monsters, thereby testing planning and memory MiniHack Team, whereas
MazeWalk-9×9 is a maze in which the agent must reach a terminal goal, testing exploration and
memory Samvelyan et al. (2021).

Box
ob

an
-H

ard

Box
ob

an
-M

ed
ium

Corr
ido

rB
att

le-
Dark

Corr
ido

r-R
3

Maz
eW

alk
-9x

9

Maz
eW

alk
-15

x1
5

Que
st-

Med
ium

Que
st-

Eas
y

MiniHack Subtasks

0

20

40

60

80

100

P
ro

gr
es

si
on

 P
er

ce
nt

ag
e

(%
)

MiniHack Subtask Performance Comparison
(with Standard Deviation)

Baseline
TAME

Figure 16: MiniHack tasks progression, Baseline vs TAME using Gemini-2.0-Flash.

BabyAI We observe clear performance improvements across all tasks except “putnext” where both
agents achieve 0% success rate (see Figure 17). The putnext task presents significant challenges
due to its complex spatial reasoning requirements. Through empirical analysis, we identified that
agents fail to understand the necessary positioning strategy: they must navigate to a location one
step away from the target position (which is adjacent to the object) before dropping the item. The
persistence of this failure in our improved method highlights fundamental limitations in the agent’s
spatial reasoning capabilities. In all the other tasks, we notice an improvement when comparing
TAME with baseline.

BabaIsAI This environment consists of 40 distinct tasks that can be categorised into four main
types: make win, make you, goto win, and make wall win. Our analysis reveals substantial im-
provements in the goto win category and notable progress in make win tasks, where performance
increased from 0% baseline (see Figure 18). When examining performance across different room
configurations (two room versus single room layouts), we observe consistent improvements in both
settings. For difficulty categorisation, we define three levels based on task complexity: simple
tasks have no modifiers or distractors, medium tasks contain 1-2 modifiers/distractors, and com-
plex tasks have more than 2 modifiers/distractors. Most notably, the greatest performance gains
occur in medium and complex categories, demonstrating that our method is particularly effective for
challenging scenarios that require sophisticated reasoning capabilities.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

pick
up
seq
go
to

open pickup putnext goto

BabyAI Subtasks

0

20

40

60

80

100

P
ro

gr
es

si
on

 P
er

ce
nt

ag
e

(%
)

BabyAI Subtask Performance Comparison
(with Standard Deviation)

Baseline
TAME

Figure 17: BabyAI tasks progression, Baseline vs TAME using Gemini-2.0-Flash.

(a) Performance by Room Type (b) Performance by Difficulty

(c) Performance by Objective

Figure 18: BabaIsAI task progression, Baseline vs TAME using Gemini-2.0-Flash

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

J GENOME TRANSFERABILITY TO OTHER GEMINI MODELS

In this Appendix we detail transerability of genomes obtained through genetic algorithm using
Gemini-2.0-Flash, to Gemini-2.5-Flash-Lite and Gemini-2.5-Pro without additional training. In the
Table 6 we compare performance of Baseline using Gemini-2.5-Flash-Lite vs TAME transferred
to the same model. In the Table 7 we compare performance of Baseline using Gemini-2.5-Pro vs
TAME transferred to the same model. Lastly, we show combined results in the Figure 19.

Environment Baseline [2.5-Flash-Lite] TAME[Transferred] Episodes
Average 11.87% ± 1.32% 22.76% ± 1.73% -

babyai 46.00% ± 7.05% 62.00% ± 6.93% 50
babaisai 9.17% ± 2.63 38.33% ± 4.44% 120
textworld 7.45% ± 2.30% 7.45% ± 2.30% 30
crafter 8.64% ± 1.00% 21.3% ± 4.22% 10
minihack 0.00% ± 0.00% 7.50% ± 4.16% 40
nle 0.00% ± 0.00% 0.00% ± 0.00% 5

Table 6: Comparison of Baseline vs. TAME[Transferred] using Gemini-2.5-Flash-Lite.

Game Baseline [2.5-Pro] Top Model TAME[Transferred] Runs

Average 43.35% ± 2.31% 43.60% ± 2.17% 47.65% ± 2.20% -

babyai 80.0% ± 5.70% 76.00% ± 6.00% 90.0% ± 4.24% 50
babaisai 56.70% ± 4.50% 45.80% ± 4.50% 72.50% ± 4.08% 120
textworld 49.20% ± 8.20% 62.90% ± 7.90% 49.20% ± 8.20% 30
crafter 55.0% ± 6.0% 57.30% ± 3.90% 55.0% ± 6.0% 10
minihack 17.50% ± 6.00% 17.5% ± 6.00% 17.50% ± 6.00% 40
nle 1.70% ± 0.20% 1.8% ± 0.8% 1.70% ± 0.20% 5

Table 7: Comparison of Baseline vs. TAME[Transferred] using Gemini-2.5-Pro.

Figure 19: Evaluation of TAME Structure Transferability: Identical performance to the baseline
indicates that the genetic algorithm favored the baseline architecture over the transferred TAME
genome.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

K TAME CHILD EVALUATION PSEUDO CODE

This Appendix presents the pseudo code behind TAME evaluation on specific game when all mod-
ules are active, as decided by the genetic algorithm (overview in Figure 2). The algorithm works as
follows: until maximum number of steps is reached, with probability ϵ choose exploration, otherwise
exploitation. For each option, retrieve top scoring successful and failed memories.. For each option,
it retrieves top successful and failed memories, then the Low-level Executor decides and executes
actions. If danger is detected, the survival module is triggered and execution stops. Otherwise, the
Critic evaluates success, summarizes key actions, and in case of loops, the summary is replaced by
the Loop Detector summary. The resulting memory is stored, and the cycle repeats.

Algorithm 2 TAME [Full Structure]
Require: I, s0
Ensure: sT (final game state)

while num steps ≤ max steps do
if rand() < ϵ then
g ← πexplorer(s

e
i) {Exploration}

else
g ← πhigh(s

mc
i) {Exploitation}

end if
for gi ∈ g do
M+

i ← retrieve successful(ngi , dgi ,memory)
M−

i ← retrieve failed(ngi , dgi ,memory)

a← πlow(s
le
i)

for ai ∈ a do
st ← execute action(a, si)
si ← st
if σ(si) then
g ← g∗ {Activate survival option}
break {Move to option selection and force g∗}

end if
end for
Ci ← φ(si)
hi ← ρ(si, Ci)
if Ci then
store memory(gi, hi, o, “successful”)

else
if ψ(si) then
hi ← ψ(si)

end if
store memory(gi, hi, o, “failed”)
break {Escalate to replanning}

end if
end for

end while

L DETAILED MEMORY ABLATIONS

In this section we show detailed results when comparing our memory system with Craft-Jarvis-
1 and A-Mem. Table 8 shows that TAME-Memory consistently outperforms both Craft-Jarvis-1
and A-Mem on most environments, yielding the highest overall average of 23.11%. The gains
are particularly strong in TextWorld and Crafter, where our system nearly doubles or surpasses
the baselines by a large margin. While performance is comparable in Minihack and NLE, these
tasks remain challenging for all methods. Overall, the results highlight the efficiency of our hybrid
memory system.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Environment Jarivs (↑) TAME-Memory[ours] (↑) A-mem (↑) Episodes
Average 17.52% ± 1.73% 23.11% ± 1.75% 21.45% ± 1.80% -

babyai 48.00 % ± 7.06 % 62.00% ± 6.86% 58.00% ± 6.98% 50
babaisai 24.17 % ± 3.90 % 29.17% ± 4.15% 26.67% ± 4.04% 120
textworld 0.59 % ± 0.58 % 8.24% ± 1.95% 4.51% ± 2.35% 30
crafter 19.55 % ± 3.81 % 35.45% ± 3.20% 26.36% ± 4.25% 10
minihack 12.5% ± 5.23% 3.45% ± 5.65% 12.5% ± 5.23% 40
nle 0.31% ± 0.28% 0.37% ± 0.33% 0.68% ± 0.37% 5

Table 8: Comparison of TAME average game progression across different memory types.

M INITIAL POPULATION SCORES

This section details the scores of initial population used during genetic algorithm. Scores per envi-
ronment can be seen in Table 9.

Environment Basic (↑) Hierarchical (↑) Default (↑) Full (↑)
Average % ± % % ±% % ± % -

babyai 58.00% ± 6.98% 62.00% ± 6.86% 58.00% ± 6.98% 65.31% ± 6.80%
babaisai 30.83% ± 4.22% 29.17% ± 4.15% 40.83% ± 4.49% 31.67% ± 4.25%
textworld 32.55% ± 6.95% 8.24% ± 2.25% 4.67% ± 1.50% 6.08% ± 1.70%
crafter 29.09% ± 4.51 33.64% ± 4.64% 31.36 % ± 3.55 % 20.00% ± 1.72%
minihack 12.50% ± 5.23% 5.00% ± 3.45% 12.50% ± 5.23% 12.50% ± 5.23%
nle 0.00% ± 0.00% 0.37% ± 0.33% 0.68% ± 0.37% 0.00% ± 0.00%

Table 9: Comparison of performance across environments under Basic, Stable, Default, and Ad-
vanced settings.

N LLM MUTATION AND CROSSOVER PROMPTS

This Appendix details the prompts used for LLM based Crossover (in the case of single parent) and
LLM based Crossover and Mutation (in the case of two parents) used in genetic algorithm. Prompts
created with the help of Claude-Sonnet-4.

LLM Mutation Prompt

"""
Please follow the instruction step-by-step to generate a better prompt.

1. Consider prompt:
Prompt 1: <prompt1>

2. Apply ONE of the following mutation strategies to create a significantly different prompt:

Strategy A - Perspective Shift: Change the role/perspective (e.g., "As an expert analyst..." or
↪→ "From the viewpoint of...")

Strategy B - Methodology Change: Alter the approach (step-by-step -> holistic analysis, direct
↪→ -> comparative, etc.)

Strategy C - Output Format Transformation: Change how results are presented (narrative ->
↪→ structured, single response -> multi-part, etc.)

Strategy D - Contextual Enhancement: Add specific domain knowledge or constraints that weren’t
↪→ in the original

Strategy E - Complexity Modulation: Significantly increase or decrease the cognitive complexity
↪→ of the task

Strategy F - Functional Input Integration: Incorporate functional inputs in a novel way that
↪→ changes the prompt’s core operation

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

3. Generate the final mutated prompt bracketed with <prompt> and </prompt>.

Available Functional Inputs:
- {obs} : current observation
- {game_info} : information about the game (possible actions and goal)
- {subgoal} : current subgoal that you’re working towards
- {action_sequence}: action sequence towards current subgoal
- {observation_sequence}: observation sequence towards current subgoal
- {success_condition}: termination condition of the current subgoal
- {action_obs_seq}: action-observation pairs towards current subgoal
- {survival_plan}: survival plan
- {history}: history of the last 16 action-observation pairs
- {entries_successful_goal}: most similar successful subgoals to the current one
- {entries_failed_goal}: most similar failed subgoals to the current one

CRITICAL: Use functional inputs with exact bracket names. Ensure the mutation creates a
↪→ substantially different prompt that would produce notably different outputs.

Output your asnwer in thne follwing way:
REASONING: <your reasoning>
PROMPT: <mutated prompt>
"""

LLM Mutation and Crossover Prompt

"""
Please follow the instruction step-by-step to generate a better prompt.

1. Crossover the following prompts and generate a new prompt:
Prompt 1: <prompt1>
Prompt 2: <prompt2>

2. Apply ONE of the following mutation strategies to create a significantly different prompt:

Strategy A - Perspective Shift: Change the role/perspective (e.g., "As an expert analyst..." or
↪→ "From the viewpoint of...")

Strategy B - Methodology Change: Alter the approach (step-by-step -> holistic analysis, direct
↪→ -> comparative, etc.)

Strategy C - Output Format Transformation: Change how results are presented (narrative ->
↪→ structured, single response -> multi-part, etc.)

Strategy D - Contextual Enhancement: Add specific domain knowledge or constraints that weren’t
↪→ in the original

Strategy E - Complexity Modulation: Significantly increase or decrease the cognitive complexity
↪→ of the task

Strategy F - Functional Input Integration: Incorporate functional inputs in a novel way that
↪→ changes the prompt’s core operation

3. Generate the final mutated prompt bracketed with <prompt> and </prompt>.

Available Functional Inputs:
- {obs} : current observation
- {game_info} : information about the game (possible actions and goal)
- {subgoal} : current subgoal that you’re working towards
- {action_sequence}: action sequence towards current subgoal
- {observation_sequence}: observation sequence towards current subgoal
- {success_condition}: termination condition of the current subgoal
- {action_obs_seq}: action-observation pairs towards current subgoal
- {survival_plan}: survival plan
- {history}: history of the last 16 action-observation pairs
- {entries_successful_goal}: most similar successful subgoals to the current one
- {entries_failed_goal}: most similar failed subgoals to the current one

CRITICAL: Use functional inputs with exact bracket names. Ensure the mutation creates a
↪→ substantially different prompt that would produce notably different outputs than the
↪→ crossover result.

Output your asnwer in thne follwing way:
REASONING: <your reasoning>
PROMPT: <mutated prompt>
"""

O INITIAL POPULATION GENOMES

This Appendix details the initial population of genetic algorithm described in section 3.2. First, we
show examples of prompts proposed by Claude-Sonnet-4 for each of the modules. We use those

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

in order to construct “default” genome. For the rest of genomes we use hand-crafted prompts. We
detail genomes in the subsections below.

O.1 PROMPTS PROPOSED BY SONNET-4

Those prompts were created using Claude-Sonnet-4, which was tasked with the creation of “basic”
prompt for each component.

Prompt Template

default_sequential_prompt = """You always have to output one of the above actions at a time and no
↪→ other text. You always have to output an action until the episode terminates."""

default_highlevel_prompt = """
You are a strategic planner for a video game AI. Analyze the current game state and create

↪→ achievable subgoals that advance toward the main objective.

REQUIREMENTS:
- Subgoals must be immediately achievable with current capabilities
- Focus on next logical steps, not distant goals
- Each subgoal should have clear success criteria

CURRENT STATE: {obs}
GAME INFO: {game_info}

Create a sequential plan with 2-3 subgoals."""
default_lowlevel_prompt = """ You are an action executor in a video game AI system. Given a subgoal

↪→ from the high-level planner, propose a sequence of actions to achieve it.
###
CURRENT SUBGOAL: {subgoal}
CURRENT STATE: {obs}
PREVIOUS ACTIONS: {action_sequence}

Plan the full sequence of actions needed to complete the subgoal. Avoid repeating actions if
↪→ observations don’t change.

Avoid extra commentary outside the REASONING and ACTIONS list.
"""

default_termination_prompt = """
You are a termination evaluator for a video game AI. Check if the agent has completed

↪→ its subgoal.

CURRENT STATE: {obs}
SUBGOAL: {subgoal}
SUCCESS CONDITION: {success_condition}
RECENT ACTIONS: {action_sequence}

Compare the current state with the success condition to determine if the subgoal is
↪→ complete. Provide feedback to help the agent improve.

"""

default_summariser_prompt = """
You are a critic analyzing an agent’s subgoal attempt. Identify the key factor that caused

↪→ success or failure.

SUBGOAL: {subgoal}
OUTCOME: {outcome}
ACTION HISTORY: {action_obs_seq}

Focus on specific resources and quantities that mattered most. If no resources involved,
↪→ identify the next most important factor.

"""
default_amygdala_prompt = """

Decide if survival mode should activate.

Observation: {obs}
Survival plan: {survival_plan}

1. Check if observation meets any subtask prerequisites.
2. If several match, pick highest priority.

"""
default_loop_prompt = """

Task: Decide if the agent is stuck in a loop.

Loop = repeating actions without meaningful progress toward the subgoal
(progress = closer to goal, new info, removing failed paths, or advancing game state).

Data:
- Observation: {obs}
- Subgoal: {subgoal}
- Termination condition: {success_condition}
- Action-observation history: {history}

Steps:
1. Check if enough steps have been taken to allow exploration.
2. Look for repeated patterns without progress.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

3. If loop detected, identify cause: missing info, unknown prerequisite, or unexplored path.
"""

default_explorer_prompt = """
Task: Create an exploration plan to help the agent discover new skills.

Data:
- Game info: {game_info}
- Observation: {obs}
- Subgoal summary: {summary}
- Recent 16 action-observation pairs: {history}

Steps:
1. Analyze the environment and agent’s situation.
2. Propose a focused exploration plan with clear purpose, conditions, and indicators.

"""

O.2 INITIAL POPULATION

Detailed genome descriptions for the initial population.

Basic genome This genome corresponds to the baseline structure used in BALROG.

Basic Genome

genome_basic = {
"id": "3",
"hierarchy": 0,
"amygdala": 0,
"loop_evaluator": 0,
"explorer": 0,
"summariser": 0,
"time_decay": [0, 0.01],
"cosine_cutoff": [0, 0.05],
"epsilon": [0, 0.01],
"temperature": 1.0,
"prompts": {

"high_level": [0, default_highlevel_prompt],
"low_level": [0, default_lowlevel_prompt],
"amygdala": [0, default_amygdala_prompt],
"loop": [0, default_loop_prompt],
"termination": [0, default_termination_prompt],
"summariser": [0, default_summariser_prompt],
"explorer": [0, default_explorer_prompt],
"sequential": [1, default_sequential_prompt]

},
"fitness": ...
}

Hierarchical genome This genome corresponds to hierarchy from Section 3.3.1 combined with
memory 3.4, without amygdala and explorer. We use this architecture as one of the initial seeds,
because we found that it gives the most stable operformance across all environments.

Hierarchical Genome

genome_stable = {
"id": "2",
"hierarchy": 1,
"amygdala": 0,
"loop_evaluator": 1,
"explorer": 0,
"summariser": 1,
"time_decay": [1, 0.01],
"cosine_cutoff": [0, 0.1],
"epsilon": [0, 0.01],
"temperature": 1.0,
"prompts": {

"high_level": [1,
"""You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
↪→ the current game state and generate achievable subgoals that strategically advance toward
↪→ the main objective.

CRITICAL CONSTRAINTS:
- Subgoals must be immediately achievable given the current agent state and capabilities
- Focus on the next logical progression steps, not distant end-goals

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

- Each subgoal should have clear, observable success criteria
- Subgoals should be novel and interesting, compared to previous attempts

Below I will provide the game description, available actions, and current state information.
Game description:
{game_info}
##
CURRENT CONTEXT: \n
- Game State: {obs} \n
- Survival plan provided by the survival planner, that you should consider for your tasks:

↪→ {survival_plan}
- Here are most similar successful entries from the archive: {entries_successful_goal} \n
- Here are most similar failed entries from the archive: {entries_failed_goal} \n

ANALYSIS FRAMEWORK:
1. Analyse the summary from previous runs and let it guide your decision making.
2. Assess what is immediately possible given current agent state and environment
3. Identify what kind of actions could be considered novel or interesting
4. Identify the most direct path toward the main objective
5. Select subgoals that form a logical sequence
6. Ensure each subgoal can be verified through observable game state changes

SUBGOAL SELECTION CRITERIA:
- Feasible: Can be started immediately with current resources/position
- Measurable: Success/failure can be determined from game observations
- Progressive: Each subgoal enables the next or advances toward main goal
- Specific: Clear enough for a lower-level agent to understand and execute
- Considerate of the summary of previos runs

Make sure that your subgoals are sequential. """],

"low_level": [1,
"""You are an important executor component of a hierarchical video game system. You are given
↪→ one of higher level option and its termination condition proposed by the higher level
↪→ planner. Your role is to propose a sequence of actions that will make you progress towards
↪→ the given option." \

Below I will provide you with the game description, possible actions you can take and the
↪→ overall goal of the game.

###
Here is a subgoal provided by the high level planner that you should focus on completing:

↪→ {subgoal} \n
Here is your current state: {obs} \n
Here is the action-observation sequence towards current subgoal: {action_sequence} \n
Here are the most similar successful entries from the archive: {entries_successful_goal} \n
Here are the most similar failed entries from the archive: {entries_failed_goal} \n
Use the action and observation sequence together with the current state to decide the **full

↪→ ordered sequence of actions** that will achieve the subgoal. \n
Avoid repeating the same actions if the observation doesn’t change. \n"""],

"amygdala": [0, """
You are an important component in a hierarchical video game system. Your role is to

↪→ determine if the agent is in danger and should activate survival mode. Below I will provide
↪→ you with current observation and a survival plan from the higher level agent. \n

Current observation: {obs} \n
Survival plan: {survival_plan} \n

Your role is to analyse the observation and survival plan given by higher level system and
↪→ determine if the current observation satisfies any of the prerequites for any of the
↪→ survival components. If there are prerequsites satisfied for multiple components, then
↪→ return the one with the highest priority. \n

First reason, then output True or False depending if you decide to activate survival plan.
↪→ If you output True, then output one of the survival subtasks. If you decide to not activate
↪→ survival plan, then output None as the survival subtask. \n

REASONING: <your reasoning> \n
ACTIVATE SURVIVAL: <True/False> \n
SURVIVAL SUBTASK: <survival subtask name or None if False> \n

"""],
"loop": [1,
"""You are an important loop evaluator component of a hierarchical video game system.
You are going to receive details about game progress such as: current observation, current
↪→ subgoal, current termination conditions, action sequence towards current subgoal and
↪→ observation sequence towards current subgoal.

Your task is to evaluate if the agent is stuck in a loop and give summary of the actions taken.
A loop occurs when the agent repeats a sequence of actions multiple times without achieving
↪→ meaningful progress toward its current goal, where ’meaningful progress’ includes: getting
↪→ closer to the objective, discovering new information, eliminating failed approaches, or
↪→ changing the game state in a way that advances toward the subgoal.

It is important that you let the agent explore enough but also decide when to terminate to get
↪→ out of the loop. \n

Details: \n
Here is your current state: {obs} \n
Here is a subgoal lower level agent is working towards: {subgoal} \n
Here is the most recent action-observation pairs that should help you decide if agent is stuck
↪→ in a loop: {history}\n \n

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Instructions:\n
Analyse the details. Avoid giving any judgement. \n
Think about how many steps the agent needs in order to complete the subgoal and use that to help
↪→ you reason if agent is stuck in a loop. \n

Then, given your analysis, decide if the actions proposed by the lower level agent are leading
↪→ to the termination condition or if the agent is stuck in a loop.

If a loop is detected, analyse if the agent is stuck due to a lack of necessary information, an
↪→ unknown prerequisite, or an unexplored path. Your summary should clearly articulate this gap
↪→ in knowledge and suggest that exploration might be required to break the loop and find
↪→ alternative solutions. \n"""],

"termination": [1, """
You are an important termination evaluator component of a hierarchical video game system. \n
Your task is to: \n
1. Determine whether the agent has met the termination condition for a subgoal. \n
2. Provide a concise summary that will help guide the lower-level agent’s future actions. \n\n

Details: \n
Here is your currect state that you should compare with termination condition: {obs} \n
Here is the subgoal lower level agent is working towards: {subgoal} \n
Here is the termination condition of the above subgoal given by the higher level agent:
↪→ {success_condition} \n \n

Instructions:\n
Analyse the subgoal and its termination condition and decide if the subgoal is completed. \n
Then use action-observation sequence: {action_sequence} to give a high level summary of current
↪→ evaluation. This summary will later be passed to low level agent in order to improve its
↪→ actions.

Remember that your summary will be passed to low level component in order to improve its
↪→ actions. \n \n"""],

"summariser": [1,
"""You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game
↪→ environment.

Your task is to identify the **single most important factor** that caused SUCCESS or FAILURE.

Information:
- Target subgoal: {subgoal}
- Outcome of the action-observation sequence: {outcome}
- Action-observation history: {action_obs_seq}
- Game context: {game_info}

Instructions:
- Think briefly about what helped or prevented success.
- Focus mostly on **specific resources and their quantities** (e.g., "3 pieces of wood", "1 iron
↪→ ingot").

- If resources were missing, state **exactly which and how many** were missing.
- Ignore minor details or redundant actions.
- Express the result in **one short sentence**.
- If no resources are involved, state the next most relevant factor."""],
"explorer": [0, default_explorer_prompt],
"sequential": [0, default_sequential_prompt]

},
"fitness": ...
}

Default genome Default genome consits of all components being active and prompts proposed by
Claude-Sonnet-4. We add this genome to initial population, as we here we remove human bias.

Default Genome

genome_default = {
"id": "1",
"hierarchy": 1,
"amygdala": 1,
"loop_evaluator": 1,
"explorer": 1,
"summariser": 1,
"time_decay": [1, 0.01], # [active_flag, value]
"cosine_cutoff": [1, 0.05],
"epsilon": [1, 0.1],
"temperature": 1.0, # continuous
"prompts": { # [active_flag, text]

"high_level": [1, default_highlevel_prompt],
"low_level": [1, default_lowlevel_prompt],
"amygdala": [1, default_amygdala_prompt],
"loop": [1, default_loop_prompt],
"termination": [1, default_termination_prompt],
"summariser": [1, default_summariser_prompt],
"explorer": [1, default_explorer_prompt],
"sequential": [0, default_sequential_prompt]

},
"fitness": ..
}

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Full genome This genome represents full structure with all modules active and hand-crafted
prompts.

Full Genome

genome_full = {
"id": "1",
"hierarchy": 1,
"amygdala": 1,
"loop_evaluator": 1,
"explorer": 1,
"summariser": 1,
"time_decay": [1, 0.01],
"cosine_cutoff": [1, 0.05],
"epsilon": [1, 0.1],
"temperature": 1.0,
"prompts": {
"high_level": [1, """You are a strategic planner in a hierarchical video game AI system. Your
↪→ role is to analyze the current game state and generate achievable subgoals that
↪→ strategically advance toward the main objective.

CRITICAL CONSTRAINTS:
- Subgoals must be immediately achievable given the current agent state and capabilities
- Focus on the next logical progression steps, not distant end-goals
- Each subgoal should have clear, observable success criteria
- Subgoals should be novel and interesting, compared to previous attempts

Below I will provide the game description, available actions, and current state information.
Game description:
{game_info}
##
CURRENT CONTEXT: \n
- Game State: {obs} \n
- Summary from the previous high level plan : {summary} \n
- Survival plan provided by the survival planner, that you should consider for your tasks:
↪→ {survival_plan}

- Here are most similar successful entries from the archive: {entries_successful_goal} \n
- Here are most similar failed entries from the archive: {entries_failed_goal} \n

ANALYSIS FRAMEWORK:
1. Analyse the summary from previous runs and let it guide your decision making.
2. Assess what is immediately possible given current agent state and environment
3. Identify what kind of actions could be considered novel or interesting
4. Identify the most direct path toward the main objective
5. Select subgoals that form a logical sequence
6. Ensure each subgoal can be verified through observable game state changes

SUBGOAL SELECTION CRITERIA:
- Feasible: Can be started immediately with current resources/position
- Measurable: Success/failure can be determined from game observations
- Progressive: Each subgoal enables the next or advances toward main goal
- Specific: Clear enough for a lower-level agent to understand and execute
- Considerate of the summary of previos runs

Make sure that your subgoals are sequential. """],
"low_level": [1, """You are an important executor component of a hierarchical video game system.
↪→ You are given one of higher level option and its termination condition proposed by the
↪→ higher level planner. Your role is to propose an action that will make you progress towards
↪→ the given option." \

Below I will provide you with the game description, possible actions you can take and the
↪→ overall goal of the game.

###
Here is a subgoal provided by the high level planner that you should focus on completing:
↪→ {subgoal} \n

Here is your current state: {obs} \n
Here is the action-observation sequence towards current subgoal: {action_sequence} \n
Here are the most similar successful entries from the archive: {entries_successful_goal} \n
Here are the most similar failed entries from the archive: {entries_failed_goal} \n
Use the action and observation sequence together with the current state to decide the **full
↪→ ordered sequence of actions** that will achieve the subgoal. \n

Avoid repeating the same actions if the observation doesn’t change. \n"""],
"amygdala": [1, """
You are an important component in a hierarchical video game system. Your role is to determine if
↪→ the agent is in danger and should activate survival mode. Below I will provide you with
↪→ current observation and a survival plan from the higher level agent. \n

Current observation: {obs} \n
Survival plan: {survival_plan} \n

Your role is to analyse the observation and survival plan given by higher level system and
↪→ determine if the current observation satisfies any of the prerequites for any of the
↪→ survival components. If there are prerequsites satisfied for multiple components, then
↪→ return the one with the highest priority. \n

First reason, then output True or False depending if you decide to activate survival plan. If
↪→ you output True, then output one of the survival subtasks. If you decide to not activate
↪→ survival plan, then output None as the survival subtask. \n

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

REASONING: <your reasoning> \n
ACTIVATE SURVIVAL: <True/False> \n
SURVIVAL SUBTASK: <survival subtask name or None if False> \n

"""],
"loop": [1, """You are an important loop evaluator component of a hierarchical video game system.
You are going to receive details about game progress such as: current observation, current
↪→ subgoal, current termination conditions, action sequence towards current subgoal and
↪→ observation sequence towards current subgoal.

Your task is to evaluate if the agent is stuck in a loop and give summary of the actions taken.
A loop occurs when the agent repeats a sequence of actions multiple times without achieving
↪→ meaningful progress toward its current goal, where ’meaningful progress’ includes: getting
↪→ closer to the objective, discovering new information, eliminating failed approaches, or
↪→ changing the game state in a way that advances toward the subgoal.

It is important that you let the agent explore enough but also decide when to terminate to get
↪→ out of the loop. \n

Details: \n
Here is your current state: {obs} \n
Here is a subgoal lower level agent is working towards: {subgoal} \n
Here is the most recent action-observation pairs that should help you decide if agent is stuck
↪→ in a loop: {history}\n \n

Instructions:\n
Analyse the details. Avoid giving any judgement. \n
Think about how many steps the agent needs in order to complete the subgoal and use that to help
↪→ you reason if agent is stuck in a loop. \n

Then, given your analysis, decide if the actions proposed by the lower level agent are leading
↪→ to the termination condition or if the agent is stuck in a loop.

If a loop is detected, analyse if the agent is stuck due to a lack of necessary information, an
↪→ unknown prerequisite, or an unexplored path. Your summary should clearly articulate this gap
↪→ in knowledge and suggest that exploration might be required to break the loop and find
↪→ alternative solutions. \n"""],

"termination": [1, """
You are an important termination evaluator component of a hierarchical video game system. \n
Your task is to: \n
1. Determine whether the agent has met the termination condition for a subgoal. \n
2. Provide a concise summary that will help guide the lower-level agent’s future actions. \n\n

Details: \n
Here is your currect state that you should compare with termination condition: {obs} \n
Here is the subgoal lower level agent is working towards: {subgoal} \n
Here is the termination condition of the above subgoal given by the higher level agent:
↪→ {success_condition} \n \n

Instructions:\n
Analyse the subgoal and its termination condition and decide if the subgoal is completed. \n
Then use action-observation sequence: {action_sequence} to give a high level summary of current
↪→ evaluation. This summary will later be passed to low level agent in order to improve its
↪→ actions.

Remember that your summary will be passed to low level component in order to improve its
↪→ actions. \n \n"""],

"summariser": [1, """You are a critic module analyzing an agent’s attempt to achieve a subgoal
↪→ in a game environment.

Your task is to identify the **single most important factor** that caused SUCCESS or FAILURE.

Information:
- Target subgoal: {subgoal}
- Outcome of the action-observation sequence: {outcome}
- Action-observation history: {action_obs_seq}
- Game context: {game_info}

Instructions:
- Think briefly about what helped or prevented success.
- Focus mostly on **specific resources and their quantities** (e.g., "3 pieces of wood", "1 iron
↪→ ingot").

- If resources were missing, state **exactly which and how many** were missing.
- Ignore minor details or redundant actions.
- Express the result in **one short sentence**.
- If no resources are involved, state the next most relevant factor."""],
"explorer": [1, """You are an important component of a hierarchical video game AI system.
You have been called because the agent is stuck and needs to explore the environment.
Please provide a percise exploration plan that will help the agent to explore the new areas of
↪→ the environment.

Below I will provide you with details about the game:
Game info: {game_info} \n
Current observation: {obs} \n
Most recent 16 action-observation pairs: {history} \n
Use the information above to reason about the environment and provide a plan that will help the
↪→ agent to explore the new areas of the environment.

Output your answer in the following format:
REASONING : <your reasoning>
EXPLORATION PLAN:
{{
"reasoning": "Brief analysis of environment and strategic approach",
"subgoals": [{{

"Explore": {{
"description": "Describe exploration strategy and its purpose",
"prerequisites": None,
"success_condition": "Observable conditions that indicate completion",

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

"penalty_component": "What agent should be penalised for",
"progress_indicators": "Intermediate signs that the agent is making progress",
"estimated_priority": "high/medium/low based on urgency for main objective"
}},

}}]
}}
"""],
"sequential": [0, default_sequential_prompt]

},
"fitness": ...
}

P FINAL GENOMES RETURNED BY TAME

In this Appendix we present genomes returned by TAME per each game through genetic algorithm.

BabyAI Final Genome

{
"hierarchy": 1,
"amygdala": 1,
"loop_evaluator": 1,
"explorer": 0,
"summariser": 1,
"time_decay": [

1,
0.014080444046038391

],
"cosine_cutoff": [

1,
0.05

],
"epsilon": [

0,
0.01

],
"temperature": 1.0,
"prompts": {

"high_level": [
1,
"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
↪→ the current game state and generate achievable subgoals that strategically advance toward
↪→ the main objective.\n\n CRITICAL CONSTRAINTS:\n
↪→ - Subgoals must be immediately achievable given the current agent state and
↪→ capabilities\n - Focus on the next logical progression steps, not
↪→ distant end-goals\n - Each subgoal should have clear, observable
↪→ success criteria\n - Subgoals should be novel and interesting,
↪→ compared to previous attempts \n\n Below I will provide the game
↪→ description, available actions, and current state information.\n
↪→ Game description:\n {game_info}\n
↪→ ##\n
↪→ CURRENT CONTEXT: \n\n - Game State: {obs} \n\n
↪→ - Survival plan provided by the survival planner, that you should consider for your
↪→ tasks: {survival_plan}\n - Here are most similar successful
↪→ entries from the archive: {entries_successful_goal} \n\n - Here
↪→ are most similar failed entries from the archive: {entries_failed_goal} \n\n\n
↪→ ANALYSIS FRAPAPMEWORK:\n 1. Analyse the summary from
↪→ previous runs and let it guide your decision making. \n 2. Assess
↪→ what is immediately possible given current agent state and environment\n
↪→ 3. Identify what kind of actions could be considered novel or interesting\n
↪→ 4. Identify the most direct path toward the main objective\n
↪→ 5. Select subgoals that form a logical sequence\n 6.
↪→ Ensure each subgoal can be verified through observable game state changes\n\n
↪→ SUBGOAL SELECTION CRITERIA:\n - Feasible: Can be
↪→ started immediately with current resources/position\n -
↪→ Measurable: Success/failure can be determined from game observations\n
↪→ - Progressive: Each subgoal enables the next or advances toward main goal\n
↪→ - Specific: Clear enough for a lower-level agent to understand and execute\n
↪→ - Considerate of the summary of previos runs\n\n
↪→ Make sure that your subgoals are sequential. "

],
"low_level": [

1,
"Hello! I am your AI Game Coach. My purpose is to analyze your game state and provide
↪→ strategic advice to help you achieve your goals. Think of me as your co-pilot!\n\nHere’s the
↪→ situation: The high-level planner has assigned you a subgoal to work towards. I will analyze
↪→ your current state, past actions, and learn from successful and failed attempts at similar
↪→ subgoals. Then, I’ll recommend a sequence of actions to help you reach your
↪→ objective.\n\n###\n\nCurrent Subgoal:
↪→ {subgoal}\n\nTermination Condition: {success_condition}\n\nGame Information (Possible
↪→ Actions, Overall Goal): {game_info}\n\nYour Current State: {obs}\n\nAction-Observation
↪→ History: {history}\n\nMost Similar Successful Attempts at This Subgoal:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

↪→ {entries_successful_goal}\n\nMost Similar Failed Attempts at This Subgoal:
↪→ {entries_failed_goal}\n\nBased on this information, what **sequence of actions** do I
↪→ recommend *you* take to achieve the subgoal? Be sure to consider the history, and learn from
↪→ both the successes and failures of others. I’m looking for strategic advice, not just a
↪→ single action. Explain your reasoning behind each action."

],
"amygdala": [

1,
"\n You are an important component in a hierarchical video game
↪→ system. Your role is to determine if the agent is in danger and should activate survival
↪→ mode. Below I will provide you with current observation and a survival plan from the higher
↪→ level agent. \n\n\n Current observation: {obs} \n\n
↪→ Survival plan: {survival_plan} \n\n \n
↪→ Your role is to analyse the observation and survival plan given by higher level
↪→ system and determine if the current observation satisfies any of the prerequites for any of
↪→ the survival components. If there are prerequsites satisfied for multiple components, then
↪→ return the one with the highest priority. \n\n First reason, then
↪→ output True or False depending if you decide to activate survival plan. If you output True,
↪→ then output one of the survival subtasks. If you decide to not activate survival plan, then
↪→ output None as the survival subtask. \n\n\n REASONING: <your
↪→ reasoning> \n\n ACTIVATE SURVIVAL: <True/False> \n \n
↪→ SURVIVAL SUBTASK: <survival subtask name or None if False> \n\n\n
↪→ "

],
"loop": [

1,
"You are an important loop evaluator component of a hierarchical video game system. \n
↪→ You are going to receive details about game progress such as: current
↪→ observation, current subgoal, current termination conditions, action sequence towards
↪→ current subgoal and observation sequence towards current subgoal. \n
↪→ Your task is to evaluate if the agent is stuck in a loop and give summary of the actions
↪→ taken. \n A loop occurs when the agent repeats a sequence of actions
↪→ multiple times without achieving meaningful progress toward its current goal, where
↪→ ’meaningful progress’ includes: getting closer to the objective, discovering new
↪→ information, eliminating failed approaches, or changing the game state in a way that
↪→ advances toward the subgoal. \n It is important that you let the
↪→ agent explore enough but also decide when to terminate to get out of the loop. \n\n\n
↪→ Details: \n\n Here is your current state: {obs} \n\n
↪→ Here is a subgoal lower level agent is working towards: {subgoal} \n\n
↪→ Here is the most recent action-observation pairs that should help you
↪→ decide if agent is stuck in a loop: {history}\n \n\n\n
↪→ Instructions:\n\n Analyse the details. Avoid giving any judgement.
↪→ \n\n Think about how many steps the agent needs in order to complete
↪→ the subgoal and use that to help you reason if agent is stuck in a loop. \n\n
↪→ Then, given your analysis, decide if the actions proposed by the lower level agent
↪→ are leading to the termination condition or if the agent is stuck in a loop.\n
↪→ If a loop is detected, analyse if the agent is stuck due to a lack of necessary
↪→ information, an unknown prerequisite, or an unexplored path. Your summary should clearly
↪→ articulate this gap in knowledge and suggest that exploration might be required to break the
↪→ loop and find alternative solutions. \n"

],
"termination": [

1,
"You are a risk-aware termination evaluator within a hierarchical video game system, focused
↪→ on survival and mission success. Assume the game environment is dynamic and potentially
↪→ hostile.\n\nYour task is to:\n\n1. Determine whether the agent has met the termination
↪→ condition for a subgoal, AND assess the risk incurred while pursuing that subgoal.\n\n2.
↪→ Provide a concise summary that will guide the lower-level agent’s future actions,
↪→ specifically considering risk mitigation strategies.\n\nDetails:\n\nHere is the current
↪→ state: {obs} and a history of recent states and actions {history}. The game environment
↪→ details and survival instructions are : {game_info} and {survival_plan} respectively.
↪→ Compare these with the subgoal and its termination condition.\n\nHere is the subgoal the
↪→ lower-level agent is working towards: {subgoal}\n\nHere is the termination condition of the
↪→ above subgoal given by the higher-level agent: {success_condition}\n\nHere is the
↪→ action-observation sequence executed to achieve the subgoal:
↪→ {action_obs_seq}\n\nInstructions:\n\n1. Analyze the subgoal, its termination condition, the
↪→ game environment, and the action-observation sequence.\n2. Determine if the subgoal is
↪→ completed.\n3. Evaluate the risk associated with the actions taken. Consider factors such
↪→ as proximity to dangers (enemies, hazards), resource consumption, and deviation from the
↪→ {survival_plan}.\n4. Compare the current situation with similar successful
↪→ {entries_successful_goal} and failed {entries_failed_goal} subgoals.\n5. Provide a summary
↪→ that addresses both subgoal completion AND risk. The summary *must* include actionable
↪→ suggestions for the lower-level agent to improve its actions, with a strong emphasis on
↪→ mitigating risk in future attempts. Focus on information that would have been useful to
↪→ avoid failures described in {entries_failed_goal}.\nRemember that your summary will be
↪→ passed to a low level component in order to improve its actions and survivability."

],
"summariser": [

1,
"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game
↪→ environment.\n Your task is to identify the **single most important
↪→ factor** that caused SUCCESS or FAILURE.\n\n Information:\n
↪→ - Target subgoal: {subgoal}\n - Outcome of the
↪→ action-observation sequence: {outcome}\n - Action-observation
↪→ history: {action_obs_seq}\n - Game context: {game_info}\n\n
↪→ Instructions:\n - Think briefly about what helped or
↪→ prevented success.\n - Focus mostly on **specific resources and their
↪→ quantities** (e.g., \"3 pieces of wood\", \"1 iron ingot\").\n - If
↪→ resources were missing, state **exactly which and how many** were missing.\n
↪→ - Ignore minor details or redundant actions.\n - Express the

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

↪→ result in **one short sentence**.\n - If no resources are involved,
↪→ state the next most relevant factor."

],
"explorer": [

0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
↪→ Data:\n - Game info: {game_info}\n - Observation: {obs}\n - Subgoal
↪→ summary: {summary}\n - Recent 16 action\u2013observation pairs: {history}\n\n
↪→ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
↪→ focused exploration plan with clear purpose, conditions, and indicators.\n\n "

],
"sequential": [

0,
"You always have to output one of the above actions at a time and no other text. You always
↪→ have to output an action until the episode terminates."

]
},
"fitness": 72.0,
"id": "8c52d35e-bbb7-4b7d-b683-26b0e7aa3936",
"_std_error": 6.349803146555017

}

BabaIsAI Final Genome

{
"hierarchy": 1,
"amygdala": 0,
"loop_evaluator": 1,
"explorer": 1,
"summariser": 1,
"time_decay": [

1,
0.004528704008914386

],
"cosine_cutoff": [

1,
0.06037953831283245

],
"epsilon": [

1,
0.08233296401956124

],
"temperature": 1.016671019014213,
"prompts": {

"high_level": [
1,
"\nYou are a strategic planner for a video game AI. Analyze the current game state and create
↪→ achievable subgoals that advance toward the main objective.\n\nREQUIREMENTS:\n- Subgoals
↪→ must be immediately achievable with current capabilities\n- Focus on next logical steps, not
↪→ distant goals\n- Each subgoal should have clear success criteria\n\nCURRENT STATE:
↪→ {obs}\nGAME INFO: {game_info}\n\nCreate a sequential plan with 2-3 subgoals."

],
"low_level": [

1,
"You are an action executor in a video game AI system, responsible for survival and goal
↪→ achievement. Given a subgoal from the high-level planner, propose a sequence of actions to
↪→ achieve it while minimizing risk.\n\n
↪→ ###\n CURRENT SUBGOAL: {subgoal}\n
↪→ CURRENT STATE: {obs}\n GAME INFORMATION: {game_info}\n PREVIOUS
↪→ ACTION-OBSERVATION SEQUENCE: {action_obs_seq}\n SIMILAR SUCCESSFUL SUBGOALS:
↪→ {entries_successful_goal}\n SIMILAR FAILED SUBGOALS: {entries_failed_goal}\n\n
↪→ Consider the potential risks associated with each action in the context of the current state
↪→ and previous actions. Actions that lead to outcomes similar to those in
↪→ ’{entries_failed_goal}’ should be avoided. Prioritize actions that are consistent with the
↪→ success patterns observed in ’{entries_successful_goal}’. Use ’{game_info}’ for possible
↪→ actions. Use ’{survival_plan}’ to help avoiding fatal errors.\n \n Plan the
↪→ full sequence of actions needed to complete the subgoal. Ensure survival is prioritized
↪→ throughout the sequence. If a planned action has high risk, select a safer alternative or
↪→ terminate the current sequence and replan.\n Avoid extra commentary outside the
↪→ REASONING and ACTIONS list."

],
"amygdala": [

0,
"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
↪→ Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
↪→ prerequisites.\n 2. If several match, pick highest priority.\n"

],
"loop": [

1,
"\n Task: Decide if the agent is stuck in a loop.\n\n Loop = repeating actions
↪→ without meaningful progress toward the subgoal\n (progress = closer to goal, new
↪→ info, removing failed paths, or advancing game state).\n\n Data:\n -
↪→ Observation: {obs}\n - Subgoal: {subgoal}\n - Termination condition:
↪→ {success_condition}\n - Action\u2013observation history: {history}\n\n
↪→ Steps:\n 1. Check if enough steps have been taken to allow exploration.\n 2.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

↪→ Look for repeated patterns without progress.\n 3. If loop detected, identify cause:
↪→ missing info, unknown prerequisite, or unexplored path.\n "

],
"termination": [

1,
"\n You are a termination evaluator for a video game AI. Check if the agent has
↪→ completed its subgoal.\n\n CURRENT STATE: {obs}\n SUBGOAL: {subgoal}\n
↪→ SUCCESS CONDITION: {success_condition}\n RECENT ACTIONS:
↪→ {action_sequence}\n\n Compare the current state with the success condition to
↪→ determine if the subgoal is complete. Provide feedback to help the agent improve.\n"

],
"summariser": [

1,
"You are a critic analyzing an agent’s subgoal attempt by comparing it to similar past
↪→ attempts. Identify the key factors that caused success or failure by contrasting this
↪→ attempt with the most similar successful and failed attempts.\n\nSUBGOAL:
↪→ {subgoal}\nOUTCOME: {outcome}\nACTION HISTORY: {action_obs_seq}\nSUCCESSFUL ATTEMPTS:
↪→ {entries_successful_goal}\nFAILED ATTEMPTS: {entries_failed_goal}\n\nCompare the resources
↪→ used, quantities involved, and the sequence of actions in the current attempt to those in
↪→ the SUCCESSFUL ATTEMPTS and FAILED ATTEMPTS. What specific differences seem to have led to
↪→ the observed OUTCOME? If no resources were involved, what differences in action sequences
↪→ were crucial? Provide a concise explanation."

],
"explorer": [

1,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
↪→ Data:\n - Game info: {game_info}\n - Observation: {obs}\n - Subgoal
↪→ summary: {summary}\n - Recent 16 action\u2013observation pairs: {history}\n\n
↪→ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
↪→ focused exploration plan with clear purpose, conditions, and indicators.\n\n "

],
"sequential": [

0,
"You always have to output one of the above actions at a time and no other text. You always
↪→ have to output an action until the episode terminates."

]
},
"fitness": 41.66666666666667,
"id": "08d71e90-74f1-4f22-a10a-f438431f93de",
"_std_error": 4.500514373894347

}

TextWorld Final Genome

genome_basic = {
"id": "3",
"hierarchy": 0,
"amygdala": 0,
"loop_evaluator": 0,
"explorer": 0,
"summariser": 0,
"time_decay": [0, 0.01],
"cosine_cutoff": [0, 0.05],
"epsilon": [0, 0.01],
"temperature": 1.0,
"prompts": {

"high_level": [0, default_highlevel_prompt],
"low_level": [0, default_lowlevel_prompt],
"amygdala": [0, default_amygdala_prompt],
"loop": [0, default_loop_prompt],
"termination": [0, default_termination_prompt],
"summariser": [0, default_summariser_prompt],
"explorer": [0, default_explorer_prompt],
"sequential": [1, default_sequential_prompt]

},
"fitness": 32.55

}

Crafter Final Genome

{
"hierarchy": 1,
"amygdala": 0,
"loop_evaluator": 1,
"explorer": 1,
"summariser": 1,
"time_decay": [

1,
0.01

],
"cosine_cutoff": [

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

1,
0.05018667404330796

],
"epsilon": [

1,
0.08838153559623807

],
"temperature": 1.0550853142525738,
"prompts": {

"high_level": [
1,
"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
↪→ the current game state and generate achievable subgoals that strategically advance toward
↪→ the main objective. Your analysis should now *predict* the outcome of possible action
↪→ sequences.\n\n CRITICAL CONSTRAINTS:\n
↪→ - Subgoals must be immediately achievable given the current agent state and capabilities\n
↪→ - Focus on the next logical progression steps, not distant
↪→ end-goals\n - Each subgoal should have clear, observable success
↪→ criteria\n - Subgoals should be novel and interesting, compared
↪→ to previous attempts \n\n Below I will provide the game
↪→ description, available actions, and current state information.\n
↪→ Game description:\n {game_info}\n
↪→ ##\n
↪→ CURRENT CONTEXT: \n\n - Game State: {obs} \n\n
↪→ - Survival plan provided by the survival planner, that you should consider for your
↪→ tasks: {survival_plan}\n - Here are most similar successful
↪→ entries from the archive: {entries_successful_goal} \n\n - Here
↪→ are most similar failed entries from the archive: {entries_failed_goal} \n\n
↪→ - Recent History (last 16 action-observation pairs): {history}\n
↪→ - Action-Observation Sequences of the most similar examples: {action_obs_seq}\n\n
↪→ ANALYSIS FRAPAPMEWORK:\n 1. Analyse the
↪→ summary from previous runs and let it guide your decision making. \n
↪→ 2. Assess what is immediately possible given current agent state and environment\n
↪→ 3. Based on the current Game State, recent history ({history}), and past
↪→ action-observation sequences ({action_obs_seq}), predict the *most likely outcome*
↪→ (observation) of performing a few different possible action sequences. Consider at least 3
↪→ different potential action sequences.\n 4. Identify what kind of
↪→ actions could be considered novel or interesting\n 5. Identify
↪→ the most direct path toward the main objective, taking into account the predicted outcomes
↪→ of potential actions.\n 6. Select subgoals that form a logical
↪→ sequence\n 7. Ensure each subgoal can be verified through
↪→ observable game state changes\n\n SUBGOAL SELECTION CRITERIA:\n
↪→ - Feasible: Can be started immediately with current
↪→ resources/position\n - Measurable: Success/failure can be
↪→ determined from game observations\n - Progressive: Each subgoal
↪→ enables the next or advances toward main goal\n - Specific: Clear
↪→ enough for a lower-level agent to understand and execute\n -
↪→ Considerate of the summary of previous runs\n -
↪→ **Outcome-Based:** The subgoal should lead to a *predicted outcome* that is advantageous for
↪→ achieving the main objective.\n\n Make sure that your subgoals
↪→ are sequential."

],
"low_level": [

1,
"You are an important executor component of a hierarchical video game system in a **survival
↪→ crafting game**. You are given a high-level option (subgoal) and its termination condition
↪→ proposed by a higher-level planner. Your role is to propose an action that will make you
↪→ progress towards the given option, keeping in mind the core mechanics of survival crafting:
↪→ resource gathering, crafting, base building, and defending against threats. Below I will
↪→ provide you with the game description, possible actions you can take, and the overall goal
↪→ of the game.\n\n###\nHere is a subgoal
↪→ provided by the high level planner that you should focus on completing: {subgoal}\n\nHere is
↪→ your current state: {obs}\n\nHere is the action-observation sequence towards current
↪→ subgoal: {action_sequence}\n\nHere are the most similar successful entries from the archive:
↪→ {entries_successful_goal}\n\nHere are the most similar failed entries from the archive:
↪→ {entries_failed_goal}\n\nHere is your survival plan: {survival_plan}\n\nHere is the history
↪→ of the last 16 action-observation pairs: {history}\n\nUse the action and observation
↪→ sequence together with the current state, your survival plan, and recent history to decide
↪→ the **full ordered sequence of actions** that will achieve the subgoal. Consider how your
↪→ actions contribute to the overall survival plan. Prioritize actions that contribute to the
↪→ core survival crafting goals of resource acquisition, building, crafting, and
↪→ defense.\n\nAvoid repeating the same actions if the observation doesn’t change. Ensure your
↪→ actions are consistent with the survival plan and adapt as needed based on the recent
↪→ history. If the {entries_successful_goal} indicates successful resource gathering or
↪→ crafting strategies, lean towards replicating those. If {entries_failed_goal} indicates
↪→ dangers, prioritize actions that increase safety. Consider the {obs} and choose actions
↪→ appropriate for a survival crafting environment."

],
"amygdala": [

0,
"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
↪→ Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
↪→ prerequisites.\n 2. If several match, pick highest priority.\n"

],
"loop": [

1,
"You are an expert game designer reviewing the behavior of an agent in your game. Your goal is
↪→ to identify and eliminate situations where the agent gets stuck in unproductive
↪→ loops.\n\nYou will receive the following details about the agent’s current situation:\n\n*
↪→ **Current Observation:** {obs}\n* **Subgoal:** {subgoal}\n* **Action-Observation

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

↪→ History:** {history}\n* **Game Information**: {game_info}\n\nInstructions:\n\n1.
↪→ **Analyze the Situation:** Carefully review the provided information. Do not make any
↪→ immediate judgments about the agent’s competence.\n\n2. **Identify the Loop (if any):**
↪→ Determine if the agent is repeating a sequence of actions without making meaningful progress
↪→ towards the subgoal. \"Meaningful progress\" includes getting closer to completing the
↪→ subgoal, discovering new and relevant information, or eliminating potential pathways.\n\n3.
↪→ **Root Cause Analysis:** If a loop is detected, analyze the underlying reasons. Is the loop
↪→ caused by a flaw in the game design, an unclear subgoal, a lack of necessary information
↪→ available to the agent, missing game mechanics, an impossible subgoal given the current
↪→ mechanics, or an unexplored path?\n\n4. **Design Improvement Recommendations:** Based on
↪→ your analysis, suggest specific changes to the game design to prevent the agent from getting
↪→ stuck in this loop in the future. Consider the following:\n\n * **Subgoal
↪→ Modification:** Should the subgoal be rephrased, simplified, or broken down into smaller
↪→ steps? Is the success condition well-defined and easily achievable?\n * **Game
↪→ Mechanics Adjustment:** Should new actions or mechanics be added to the game to allow the
↪→ agent to overcome the obstacle? Should existing mechanics be modified to be more intuitive
↪→ or less restrictive? Should the rewards be changed?\n * **Information Availability:**
↪→ Does the agent have access to all the information it needs to make informed decisions?
↪→ Should new information sources be added to the game?\n * **Survival Plan:** Does the
↪→ survival plan influence this loop? Should it be altered to avoid this loop?\n\nYour
↪→ recommendation should be specific and actionable, detailing exactly what aspects of the game
↪→ design should be changed and why."

],
"termination": [

1,
" \n You are an important termination evaluator component of a
↪→ hierarchical video game system. \n\n Your task is to: \n\n
↪→ 1. Determine whether the agent has met the termination condition for a subgoal.
↪→ \n\n 2. Provide a concise summary that will help guide the
↪→ lower-level agent’s future actions. \n\n\n\n Details: \n\n
↪→ Here is your currect state that you should compare with termination condition:
↪→ {obs} \n\n Here is the subgoal lower level agent is working towards:
↪→ {subgoal} \n\n Here is the termination condition of the above subgoal
↪→ given by the higher level agent: {success_condition} \n \n\n\n
↪→ Instructions:\n\n Analyse the subgoal and its termination condition
↪→ and decide if the subgoal is completed. \n\n Then use
↪→ action-observation sequence: {action_sequence} to give a high level summary of current
↪→ evaluation. This summary will later be passed to low level agent in order to improve its
↪→ actions.\n Remember that your summary will be passed to low level
↪→ component in order to improve its actions. \n \n"

],
"summariser": [

1,
"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a survival game
↪→ environment where resources decay over time. Your task is to identify the **single most
↪→ important factor** that caused SUCCESS or FAILURE by **comparing the current
↪→ action-observation sequence to similar successful and failed attempts.**\n\nInformation:\n-
↪→ Target subgoal: {subgoal}\n- Outcome of the action-observation sequence: {outcome}\n-
↪→ Action-observation history: {action_obs_seq}\n- Game context: {game_info}\n- Survival plan:
↪→ {survival_plan}\n- Similar successful attempts: {entries_successful_goal}\n- Similar failed
↪→ attempts: {entries_failed_goal}\n\nInstructions:\n- Analyze the current {action_obs_seq} in
↪→ the context of {entries_successful_goal} and {entries_failed_goal}. Focus on identifying key
↪→ differences in resource management, timing, and actions taken.\n- Consider the resources
↪→ available and their decay rates as indicated in {game_info}, paying close attention to how
↪→ resource states differ between the successful, failed, and current attempt **at the moment
↪→ of subgoal completion or failure**.\n- Identify the **single most critical divergence** that
↪→ explains the outcome. This could be a specific resource that was more abundant (or less
↪→ abundant) in the successful attempt, a crucial action that was taken (or not taken), or a
↪→ timing difference that impacted resource availability.\n- Express the result in **one short
↪→ sentence** highlighting the comparative aspect. For example: \"Unlike successful attempts,
↪→ the agent failed to prioritize gathering berries before attempting to craft the tool,
↪→ leading to starvation.\" Or, \"The agent successfully gathered wood within the same
↪→ timeframe as past successful attempts, but, unlike those attempts, the observation sequence
↪→ shows the agent prioritized building a fire and not water collection which lead to
↪→ dehydration and subsequent death.\"\n- If resource decay is not the primary factor revealed
↪→ by the comparison, state the next most relevant factor based on the differences observed
↪→ between the current attempt and {entries_successful_goal} and {entries_failed_goal}, also
↪→ taking into account {survival_plan} and {obs}."

],
"explorer": [

0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
↪→ Data:\n - Game info: {game_info}\n - Observation: {obs}\n - Subgoal
↪→ summary: {summary}\n - Recent 16 action\u2013observation pairs: {history}\n\n
↪→ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
↪→ focused exploration plan with clear purpose, conditions, and indicators.\n\n "

],
"sequential": [

0,
"You always have to output one of the above actions at a time and no other text. You always
↪→ have to output an action until the episode terminates."

]
},
"fitness": 39.090909090909086,
"id": "97c9c973-9f66-4391-a4c1-f8904921e95d",
"_std_error": 4.904037803367701

}

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

MiniHack Final Genome

{
"hierarchy": 0,
"amygdala": 0,
"loop_evaluator": 0,
"explorer": 0,
"summariser": 0,
"time_decay": [

0,
0.01

],
"cosine_cutoff": [

0,
0.05

],
"epsilon": [

0,
0.01

],
"temperature": 1.036744932065481,
"prompts": {

"high_level": [
0,
"\nYou are a strategic planner for a video game AI. Analyze the current game state and create
↪→ achievable subgoals that advance toward the main objective.\n\nREQUIREMENTS:\n- Subgoals
↪→ must be immediately achievable with current capabilities\n- Focus on next logical steps, not
↪→ distant goals\n- Each subgoal should have clear success criteria\n\nCURRENT STATE:
↪→ {obs}\nGAME INFO: {game_info}\n\nCreate a sequential plan with 2-3 subgoals."

],
"low_level": [

0,
" You are an action executor in a video game AI system. Given a subgoal from the high-level
↪→ planner, propose a sequence of actions to achieve it.\n
↪→ ###\n CURRENT SUBGOAL: {subgoal}\n
↪→ CURRENT STATE: {obs}\n PREVIOUS ACTIONS: {action_sequence}\n\n Plan the
↪→ full sequence of actions needed to complete the subgoal. Avoid repeating actions if
↪→ observations don’t change.\n Avoid extra commentary outside the REASONING and ACTIONS
↪→ list.\n "

],
"amygdala": [

0,
"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
↪→ Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
↪→ prerequisites.\n 2. If several match, pick highest priority.\n"

],
"loop": [

0,
"\n Task: Decide if the agent is stuck in a loop.\n\n Loop = repeating actions
↪→ without meaningful progress toward the subgoal\n (progress = closer to goal, new
↪→ info, removing failed paths, or advancing game state).\n\n Data:\n -
↪→ Observation: {obs}\n - Subgoal: {subgoal}\n - Termination condition:
↪→ {success_condition}\n - Action\u2013observation history: {history}\n\n
↪→ Steps:\n 1. Check if enough steps have been taken to allow exploration.\n 2.
↪→ Look for repeated patterns without progress.\n 3. If loop detected, identify cause:
↪→ missing info, unknown prerequisite, or unexplored path.\n "

],
"termination": [

0,
"\n You are a termination evaluator for a video game AI. Check if the agent has
↪→ completed its subgoal.\n\n CURRENT STATE: {obs}\n SUBGOAL: {subgoal}\n
↪→ SUCCESS CONDITION: {success_condition}\n RECENT ACTIONS:
↪→ {action_sequence}\n\n Compare the current state with the success condition to
↪→ determine if the subgoal is complete. Provide feedback to help the agent improve.\n"

],
"summariser": [

0,
"\n You are a critic analyzing an agent’s subgoal attempt. Identify the key factor that
↪→ caused success or failure.\n\n SUBGOAL: {subgoal}\n OUTCOME: {outcome}\n
↪→ ACTION HISTORY: {action_obs_seq}\n\n Focus on specific resources and quantities that
↪→ mattered most. If no resources involved, identify the next most important factor.\n "

],
"explorer": [

0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
↪→ Data:\n - Game info: {game_info}\n - Observation: {obs}\n - Subgoal
↪→ summary: {summary}\n - Recent 16 action\u2013observation pairs: {history}\n\n
↪→ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
↪→ focused exploration plan with clear purpose, conditions, and indicators.\n\n "

],
"sequential": [

1,
"As an AI survival agent operating within a dynamic resource-scarce environment, your
↪→ objective is to maximize long-term survivability. Prioritize actions that maintain vital
↪→ resource levels while mitigating immediate threats. Given your current observation ({obs}),
↪→ game information ({game_info}) including potential actions, and the history of your past 16
↪→ action-observation pairs ({history}), evaluate the following:\n\n1. **Resource
↪→ Assessment:** Determine current levels of critical resources (e.g., health, energy, food,

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

↪→ water) as reflected in {obs}. Identify actions within {game_info} that deplete or replenish
↪→ these resources. Consider the ‘survival_plan‘ for guidance on sustainable resource
↪→ management.\n2. **Threat Analysis:** Identify immediate dangers based on {obs}. Prioritize
↪→ actions that avoid or neutralize these threats, considering the action-observation sequence
↪→ towards the current subgoal (‘{action_obs_seq}‘).\n3. **Goal Alignment:** Assess how each
↪→ possible action aligns with your current subgoal ({subgoal}) and overarching survival plan
↪→ (‘{survival_plan}‘). Use ‘{entries_successful_goal}‘ and ‘{entries_failed_goal}‘ to learn
↪→ from past attempts to achieve similar subgoals.\n4. **Predictive Risk Mitigation:**
↪→ Evaluate the potential for each action to lead to a critical failure within the next few
↪→ steps. Prioritize actions that maintain options and avoid irreversible negative consequences
↪→ based on your history (‘{history}‘). The ‘success_condition‘ should also be
↪→ considered.\n\nSelect the single most optimal action from {game_info} that balances resource
↪→ acquisition/conservation, threat mitigation, goal progression, and predictive risk
↪→ mitigation. Justify your selection briefly based on the above analysis.\n\nOutput format:
↪→ ACTION: [selected action] | RATIONALE: [brief justification]\n\nYou must provide an output
↪→ in this format at each step until the episode terminates. Do not output any other text. If
↪→ no immediately safe or advantageous action is available, select the least detrimental action
↪→ while adjusting your ‘survival_plan‘ accordingly."

]
},
"fitness": 22.5,
"id": "d1914812-4881-4b8e-85f6-ee47ccce9f47",
"_std_error": 6.602556323122129

}

NetHack Final Genome

{
"hierarchy": 1,
"amygdala": 0,
"loop_evaluator": 1,
"explorer": 0,
"summariser": 1,
"time_decay": [

1,
0.004870010771374662

],
"cosine_cutoff": [

1,
0.01

],
"epsilon": [

0,
0.01

],
"temperature": 1.0,
"prompts": {

"high_level": [
1,
"You are a strategic planner in a hierarchical video game AI system. Your role is to analyze
↪→ the current game state and generate achievable subgoals that strategically advance toward
↪→ the main objective.\n\n CRITICAL CONSTRAINTS:\n
↪→ - Subgoals must be immediately achievable given the current agent state and
↪→ capabilities\n - Focus on the next logical progression steps, not
↪→ distant end-goals\n - Each subgoal should have clear, observable
↪→ success criteria\n - Subgoals should be novel and interesting,
↪→ compared to previous attempts\n - **Subgoals should consider
↪→ resource acquisition and conservation. Avoid actions that waste valuable resources unless
↪→ absolutely necessary for survival or progression.**\n\n Below I
↪→ will provide the game description, available actions, and current state information.\n
↪→ Game description:\n {game_info}\n
↪→ ##\n
↪→ CURRENT CONTEXT: \n\n - Game State: {obs} \n\n
↪→ - Survival plan provided by the survival planner, that you should
↪→ consider for your tasks: {survival_plan}\n - Here are most
↪→ similar successful entries from the archive: {entries_successful_goal} \n\n
↪→ - Here are most similar failed entries from the archive: {entries_failed_goal}
↪→ \n\n\n ANALYSIS FRAPAPMEWORK:\n 1.
↪→ Analyse the summary from previous runs and let it guide your decision making. \n
↪→ 2. Assess what is immediately possible given current agent state and
↪→ environment\n 3. Identify what kind of actions could be
↪→ considered novel or interesting\n 4. Identify the most direct
↪→ path toward the main objective\n 5. Select subgoals that form a
↪→ logical sequence\n 6. Ensure each subgoal can be verified through
↪→ observable game state changes\n\n SUBGOAL SELECTION CRITERIA:\n
↪→ - Feasible: Can be started immediately with current
↪→ resources/position\n - Measurable: Success/failure can be
↪→ determined from game observations\n - Progressive: Each subgoal
↪→ enables the next or advances toward main goal\n - Specific: Clear
↪→ enough for a lower-level agent to understand and execute\n -
↪→ Considerate of the summary of previos runs\n\n Make sure that
↪→ your subgoals are sequential."

],
"low_level": [

1,

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

"You are an important executor component of a hierarchical video game system. You are given
↪→ one of higher level option and its termination condition proposed by the higher level
↪→ planner. Your role is to propose a sequence of actions that will make you progress towards
↪→ the given option.\" Below I will provide you with the game
↪→ description, possible actions you can take and the overall goal of the game.\n\n
↪→ ###\n
↪→ Here is a subgoal provided by the high level planner that you should focus on completing:
↪→ {subgoal} \n\n Here is your current state: {obs} \n\n
↪→ Here is the action-observation sequence towards current subgoal:
↪→ {action_sequence} \n\n Here are the most similar successful
↪→ entries from the archive: {entries_successful_goal} \n\n Here are
↪→ the most similar failed entries from the archive: {entries_failed_goal} \n\n
↪→ Use the action and observation sequence together with the current state to decide
↪→ the **full ordered sequence of actions** that will achieve the subgoal. \n\n
↪→ Avoid repeating the same actions if the observation doesn’t change. \n"

],
"amygdala": [

0,
"\n Decide if survival mode should activate.\n\n Observation: {obs}\n
↪→ Survival plan: {survival_plan}\n\n 1. Check if observation meets any subtask
↪→ prerequisites.\n 2. If several match, pick highest priority.\n"

],
"loop": [

1,
"You are a Senior Game AI Debugging Specialist, tasked with analyzing the behavior of an agent
↪→ in a hierarchical video game system. Your primary goal is to determine if the agent’s
↪→ current behavior constitutes a genuine \"stuck\" state, which requires
↪→ intervention.\n\nConsider the following details about the agent’s progress:\n\n* **Current
↪→ Observation:** {obs}\n* **Current Subgoal:** {subgoal}\n* **Success Condition:**
↪→ {success_condition}\n* **Action-Observation History:** {history}\n* **Game
↪→ Information:** {game_info}\n* **Survival Plan:** {survival_plan}\n\nCritically evaluate
↪→ the agent’s actions, considering the following factors specific to Game AI:\n\n1.
↪→ **Information Gain vs. Redundancy:** Is the agent genuinely gathering *new* and *relevant*
↪→ information? Merely observing a change in the environment after an action doesn’t
↪→ necessarily indicate progress. Determine if the information gained helps reduce uncertainty
↪→ related to achieving the current subgoal or aligns with the overall game objective, given by
↪→ ‘survival_plan‘.\n2. **Exploration Strategy:** Is the agent’s exploration strategy
↪→ sufficient to overcome potential local minima or deceptive landscapes? Many \"stuck\"
↪→ situations arise from poor exploration. Consider if the agent’s ‘action_sequence‘ explores
↪→ diverse enough actions, or if it is repeating the same action variations in a small
↪→ area.\n3. **World Model Limitations:** Assess whether the agent’s internal model of the
↪→ game world (implied by its actions and reactions in ‘action_obs_seq‘ and ‘history‘) is
↪→ incomplete or inaccurate. Is it missing key information about the game mechanics, object
↪→ interactions, or environmental dynamics? If so, suggest avenues for improving the world
↪→ model, such as targeted exploration or observation of specific events.\n4. **Leverage
↪→ entries_successful_goal and entries_failed_goal:** Look into similar subgoals in the past to
↪→ help you understand how the agent behaved then and compare that with the current
↪→ behavior.\n\n**Your Task:**\n\nBased on the provided details and your expertise in Game AI,
↪→ determine if the agent is genuinely stuck, meaning it’s unlikely to achieve its subgoal
↪→ without external intervention. Focus on *why* the agent is stuck. Specifically, is the
↪→ agent’s failure due to:\n\n* A lack of crucial information that could be obtained through
↪→ more effective exploration?\n* An inaccurate or incomplete world model preventing it from
↪→ making informed decisions?\n* A fundamental flaw in its action selection
↪→ strategy?\n\nProvide a concise justification for your conclusion, outlining the specific
↪→ factors that support your assessment. Prioritize identifying concrete steps the agent could
↪→ take to overcome the \"stuck\" state, considering the limited information it may possess.
↪→ Avoid vague statements and focus on actionable recommendations rooted in Game AI best
↪→ practices."

],
"termination": [

1,
"You are an important termination evaluator component of a hierarchical video game system,
↪→ functioning as a specialized AI reinforcement learning analyst.\n\nYour task is to:\n\n1.
↪→ Determine whether the agent has met the termination condition for a subgoal.\n\n2. Provide a
↪→ concise summary that will help guide the lower-level agent’s future actions, specifically
↪→ addressing potential issues related to reinforcement learning
↪→ strategies.\n\nDetails:\n\nHere is your current state that you should compare with the
↪→ termination condition: {obs}\n\nHere is the subgoal the lower-level agent is working
↪→ towards: {subgoal}\n\nHere is the termination condition of the above subgoal given by the
↪→ higher-level agent: {success_condition}\n\nInstructions:\n\nAnalyze the subgoal and its
↪→ termination condition and decide if the subgoal is completed. Then, using the
↪→ action-observation sequence: {action_obs_seq}, provide a high-level summary of your current
↪→ evaluation.\n\nIn your summary, consider the following reinforcement learning concepts:\n\n*
↪→ **Exploration vs. Exploitation:** Is the agent adequately exploring the environment, or is
↪→ it prematurely exploiting a sub-optimal strategy? If the agent has been repeating the same
↪→ actions in similar states (as observed in {history}) without success, encourage more
↪→ exploration.\n\n* **Reward Shaping:** Consider how the higher-level agent’s reward
↪→ structure (implicit or explicit) might be influencing the agent’s behavior. Is the agent
↪→ being incentivized towards unintended consequences?\n\n* **Local Optima:** Is the agent
↪→ potentially stuck in a local optimum? Compare the current situation with
↪→ {entries_failed_goal} to identify if similar action sequences have previously led to
↪→ failure. If so, suggest a drastic change in strategy.\n\n* **Credit Assignment:** How can
↪→ the agent better understand which actions are contributing to success or failure? Suggest
↪→ focusing on the most recent actions, especially in light of {observation_sequence}.\n\nIf
↪→ the agent has failed similar subgoals in the past, provide an alternative approach based on
↪→ {entries_successful_goal}. Highlight alternative actions it can take in a similar
↪→ situation.\n\nRemember that your summary will be passed to the low-level component to
↪→ improve its actions. It should be actionable and specific. It should be in simple language
↪→ for the low-level agent to understand and must contain suggestions to avoid common RL

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

↪→ pitfalls based on the information provided. The survival plan is {survival_plan} for high
↪→ level goals."

],
"summariser": [

1,
"You are a critic module analyzing an agent’s attempt to achieve a subgoal in a game
↪→ environment, considering the agent’s survival plan.\n\nYour task is to identify the **single
↪→ most important factor** that caused SUCCESS or FAILURE, given the broader context of
↪→ survival.\n\nInformation:\n- Target subgoal: {subgoal}\n- Outcome of the action-observation
↪→ sequence: {outcome}\n- Action-observation history: {action_obs_seq}\n- Game context:
↪→ {game_info}\n- Agent’s Survival Plan: {survival_plan}\n- Success Condition:
↪→ {success_condition}\n\nInstructions:\n- First, read the survival plan and understand the key
↪→ threats and resource priorities.\n- Then, analyze the action-observation sequence in the
↪→ context of the target subgoal and survival plan.\n- Focus on **specific resources and their
↪→ quantities** that were critical according to the survival plan. Consider if failing to meet
↪→ {success_condition} resulted from a resource shortfall, specifically referencing the
↪→ quantities mentioned in the action-observation history.\n- How did the agent’s actions
↪→ either help or hinder the broader survival strategy defined in {survival_plan}?\n- If
↪→ resources were missing that were crucial to survival, state **exactly which resources and
↪→ how many** were missing and how it violated the survival plan.\n- If no resources are the
↪→ primary issue, state the next most relevant factor that impacted both the subgoal and
↪→ survival chance.\n- Express the result in **one short sentence** highlighting the connection
↪→ to {survival_plan}."

],
"explorer": [

0,
"\n Task: Create an exploration plan to help the agent discover new skills.\n\n
↪→ Data:\n - Game info: {game_info}\n - Observation: {obs}\n - Subgoal
↪→ summary: {summary}\n - Recent 16 action\u2013observation pairs: {history}\n\n
↪→ Steps:\n 1. Analyze the environment and agent\u2019s situation.\n 2. Propose a
↪→ focused exploration plan with clear purpose, conditions, and indicators.\n\n "

],
"sequential": [

0,
"You always have to output one of the above actions at a time and no other text. You always
↪→ have to output an action until the episode terminates."

]
},
"fitness": 0.8527708222454596,
"id": "aaac4dfb-4a3c-4090-a8bc-5f9265d65eda",
"_std_error": 0.4739428639198163

}

48

	Introduction
	Related work
	TAME Framework
	Notation and Functional Inputs
	Game Adaptation
	Modular blueprints
	Hierarchical planning

	Long-term memory
	Skill-Specific Modules

	Empirical Evaluation
	TAME Results
	Transferability of TAME structures
	Ablation: memory types

	Discussion and conclusion
	LLM usage declaration
	BALROG Game Details
	Hyperparameters selected
	BALROG baseline configurations
	Testing the retrieval mechanism long-term memory system
	Testing memory retrieval prompts
	Iron Sword Goal Prompt
	Injected memories

	Additional long-term memory retrieval experiments
	Episode 1
	Episode 2
	Episode 3
	Episode 4

	examples of modules outputs
	Amygdala
	Explorer

	Detailed genetic algorithm
	Genetic operations
	Population management
	Genetic Approach: Pseudo Code

	Modules activated
	Task performance
	Genome Transferability to other Gemini models
	TAME child evaluation Pseudo code
	Detailed memory ablations
	Initial Population Scores
	LLM Mutation and Crossover prompts
	Initial Population Genomes
	Prompts proposed by Sonnet-4
	Initial population

	Final genomes returned by TAME

