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ABSTRACT

Mounting concerns about neural networks’ safety and robustness call for a deeper
understanding of models’ vulnerability and research in adversarial attacks. Moti-
vated by this, we propose a novel universal attack that is highly efficient in terms
of transferability. In contrast to the existing (p, q)-singular vectors approach, we
focus on finding sparse singular vectors of Jacobian matrices of the hidden lay-
ers by employing the truncated power iteration method. We discovered that using
resulting vectors as adversarial perturbations can effectively attack the original
model and models with entirely different architectures, highlighting the impor-
tance of sparsity constraint for attack transferability. Moreover, we achieve results
comparable to dense baselines while damaging less than 1% of pixels and utilizing
only 256 samples for perturbation fitting. Our algorithm also admits higher attack
magnitude without affecting the human ability to solve the task, and damaging 5%
of pixels attains more than a 50% fooling rate on average across models. Finally,
our findings demonstrate the vulnerability of state-of-the-art models to universal
sparse attacks and highlight the importance of developing robust machine learning
systems.

1 INTRODUCTION

In recent years, deep learning approaches have become increasingly popular in many areas and ap-
plications, starting from computer vision Dosovitskiy et al. (2021b) and natural language processing
Touvron et al. (2023); Chung et al. (2022) to robotics Roy et al. (2021) and speech recognition
Baevski et al. (2020). The success and availability of pre-trained neural networks have also made it
easier for researchers and developers to use these models for their applications. Despite tremendous
advances, many studies discover that deep learning models are vulnerable to small imperceptible
perturbations of input data called adversarial attacks that mislead models and cause incorrect predic-
tions Szegedy et al. (2014); Goodfellow et al. (2014); Moosavi-Dezfooli et al. (2017). Adversarial
attacks as a phenomenon first appeared in the field of computer vision and have raised concerns
about the reliability of safety-critical machine learning applications.

Initially, adversarial examples were constructed for each input Szegedy et al. (2014), making it chal-
lenging to scale attacking methods to large datasets. In Moosavi-Dezfooli et al. (2017), the authors
show the existence of universal adversarial perturbations (UAPs) that result in the model’s misclassi-
fication for most of the inputs. Such attacks are crucial for adversarial machine learning research, as
they are easier to deploy in real-world applications and raise questions about the safety and robust-
ness of state-of-the-art architectures. However, the proposed optimization algorithm requires vast
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Figure 1: Demonstration of the proposed TPower Attack method. Starting with an attack training
set and a source pretrained victim model, the universal perturbation is iteratively refined using the
(p, q) Truncated Power Iteration algorithm. Here, Ji(x) denotes i’s hidden layer Jacobian matrix,
and X is an attack training set. This process generates a sparse attack vector, applied to previously
unseen test images, a set significantly larger than the initial attack training set. The addition of this
perturbation to the test images leads to incorrect predictions for the majority of the samples.

data, making it complicated to fool real-world systems. In contrast, Khrulkov & Oseledets (2018)
proposes a sample-efficient method to construct perturbation using leading (p, q)-singular vectors
Boyd (1974) of the Jacobian of the hidden layers. However, computing the Jacobian is infeasible
due to memory limitations. The authors address this issue using the generalized power method for
the attack computation.

The abovementioned approaches formalize imperceptibility using straightforward vector norm con-
straints in the underlying optimization problem. However, in general, an attack can alter the image
significantly, leaving human-evaluated label unchanged Song et al. (2018); Brown et al. (2018). One
can step beyond the small-norm imperceptibility definition and perform a patch attack in the form
of a physical sticker on an object in real-time conditions Hu & Shi (2022); Li et al. (2019); Pautov
et al. (2019); Kaziakhmedov et al. (2019).

This paper focuses on l0-bounded attacks, motivated by the following two key considerations. First,
dense attacks are significantly constrained in the amplitude of adversarial perturbations; beyond a
certain threshold, these perturbations render the image unrecognizable. In contrast, sparse attacks do
not face this limitation, allowing for more effective adversarial perturbations. Furthermore, we find
that altering a small number of pixels through sparse attacks has no impact on the human label. This
crucially preserves the human ability to interpret and solve the given task accurately, a significant
practical implication of our research.

There are quite a lot of methods to compute sparse adversaries Croce & Hein (2019); Modas et al.
(2019); Yuan et al. (2021); Dong et al. (2020), most of them are based on adding l0 constraints.
However, the transferability of such attacks is low Papernot et al. (2016a; 2017); Liu et al. (2016).
In other words, these methods may perform poorly in grey-box settings (when a surrogate model is
attacked instead of the initial model). However, we should highlight that only a few works aim to
incorporate sparsity constraints into universal attack setup Croce et al. (2022). It aligns differently
from our approach for several reasons. It only proposes a single patch targeted attack in the universal
setup, while we consider a general sparsity pattern. More than that, an auxiliary generative model is
usually used to construct such transferable sparse attacks He et al. (2022); Hayes & Danezis (2018);
Mopuri et al. (2018).

The main focus of this paper is to investigate computer vision models’ robustness to sparse universal
adversarial examples. Summing up, our main contribution is as follows:

• We propose a new approach to construct sparse UAPs on hidden layers subject to predefined
sparsity patterns (see Figure 1, Algorithm 1).

• We assess our method on the ImageNet benchmark dataset Deng et al. (2009a) and evaluate
it on various deep learning models. We compare it against existing universal approaches
regarding the fooling rate and the transferability between models.
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• Our experimental study shows that the proposed method produces highly transferable per-
turbations. Our approach is essential because it is efficient concerning sample size – a
moderate sample size of 256 images to construct an attack on is enough for a reasonable
attack fooling rate, while fooling inceptive layers is more beneficial.

2 FRAMEWORK

In this paper, we focus on the problem of untargeted universal perturbations for image classification.
The problem of universal adversarial attacks can be framed as finding a perturbation ε that, when
added to most input images x, causes the classifier to predict a different class than it would for the
original images. Let f : X → Y be a classification model defined for the dataset D = {xi, yi}Ni=1,
where xi is an input and yi is a corresponding label, then, according to Moosavi-Dezfooli et al.
(2016), UAP is a perturbation ε such that

Px∼µ[f(x+ ε) ̸= f(x)] ≥ 1− δ, ∥ε∥ ≤ ξ,

where µ denotes a distribution of input data, 1 − δ is the minimal Fooling Rate (FR) and ξ is the
attack magnitude. It should be highlighted that this perturbation must not change human prediction,
meaning that the true class of the attacked image remains unchanged, but a small norm constraint
could be omitted Song et al. (2018); Brown et al. (2018).

Adversarial perturbations are often obtained via optimization problem solution. The most straight-
forward approach is to maximize expected cross-entropy loss L(x + ε, y). It was shown Khrulkov
& Oseledets (2018) that instead of attacking the model output, one can attack hidden layers of a
model. The error produced in this way will propagate to the last network layer, resulting in a change
in model prediction. Given the i-th layer l, the optimization problem can be obtained via Taylor
expansion:

l(x+ ε)− l(x) ≈ Ji(x)ε

Ex∼µ∥l(x+ ε)− l(x)∥qq → max
∥ε∥p≤ξ

, (1)

where Ji(x) is the i-th layer Jacobian operator and Ji(x)ε is Jacobian action on ε. Finally, equation 1
is equivalent to the following problem.

Ex∼µ∥Ji(x)ε∥qq → max
∥ε∥p=1

. (2)

The solution to equation 2 can be referred to as Jacobian (p, q)-singular vector and defined up to
the signed scale factor, here p, q are the hyperparameters to be tuned, and expectation is relaxed via
averaging over a batch.

Our approach. In this paper, we incorporate the universal layerwise approach from above with
sparsity or, formally speaking, additional non-convex l0 constraint. Relaxing the expectation in
equation 2 with an average over attack training set X , we have:∑

x∈X
∥Ji(x)ε∥qq → max,

s.t. ∥ε∥p = 1, ∥ε∥0 ≤ k.

(3)

When p = q = 2, the problem above leads to the famous problem of finding sparse eigenvalues.
However, for an arbitrary pair (p, q), it is a non-convex and NP-hard problem. One way to obtain
an approximate solution is to use the truncated power iteration method (TPower, Yuan & Zhang
(2013)). Despite efficiency and simplicity, the major TPower drawback is the theoretical guarantee
with a narrow convergency region. One way to reduce the effect of this issue is to reduce the number
of nonzero entries iteratively. In this paper, we introduce an algorithm that adopts TPower for the
case of arbitrary p, q and effectively solves the problem of universal perturbation finding.

Let us rewrite equation 3 using the dual norm definition, then we obtain

y⊤Jiε→ max,

s.t. ε ∈ Bp(1), y ∈ Bq∗(1), ∥ε∥0 ≤ k, (4)
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Algorithm 1: TPower Attack
Require: the number of TPower iterarions n steps, initial ratio of damages pixels

init truncation ∈ (0, 1), the set of attack training images X = {xj}Nj=1, image size n,
number of channels c, j ∈ 1, N , norm hyperparameters q and p, target cardinality top k,
patch size, number of iteration between truncation update reduction steps.

1: k = init truncation · (n//patch size)2 · c.
2: k = max(k, top k).
3: ε = random tensor of batch size.
4: for s from 1 to n steps do

5: εs+1 = Tp∗,k

[ ∑
x∈X

J⊤
i (x)ψq(Ji(x)ε

s)

]
, equation 10

6: εs+1 =
ψp∗ (ε

s+1)

∥ψp∗ (εs+1)∥p
, equation 11

7: if s mod reduction steps = 0 then
8: kreduction = pow( k

top k ,
reduction steps

n steps )

9: k = max(k/kreduction, top k)
10: end if
11: end for
Ensure: ε

where q∗ and q are Hölder conjugate, i.e. (q∗)
−1

+ q−1 = 1, Bp(1) = {x ∈ Rn| ∥x∥p = 1}
and Ji = [Ji(x1))

⊤, . . . , Ji(xN ))⊤]⊤, xj ∈ X . The solution could be found via Alternating
Maximization (AM) Method.

For any fixed perturbation vector ε, the inner problem is linear and admits a closed-form solution :

y =
ψq(Jiε)

∥ψq(Jiε)∥q∗
, ψq(y) = sign(y)|y|q−1. (5)

Changing the order of maximizations in equation 4, the subproblem for ε remains the same except
l0 constraint, which could be replaced by additional binary variable t maximization. Thus, denoting
d = J⊤

i y and (·) as a Hadamard product, we have:

(t · d)⊤ε→ max,

s.t. ε ∈ Bp(1),
∑
j

tj ≤ k, tj ∈ {0, 1}, ∀j. (6)

For a fixed t, the problem is reduced to the previous case, and hence

ε =
ψp∗(t · d)

∥ψp∗(t · d)∥p
, (7)

The problem equation 6 is equivalent to the following:

argmax
t

∥d · t∥p∗ , s.t.
∑
j

tj ≤ k, tj ∈ {0, 1}, ∀j (8)

and thus maximization by t is simply a selection of the greatest components of vector d in ∥ · ∥p∗
value computed over the predefined sparsity pattern. Truncation operator could do this:

Tp∗,k(d) =

{
di, i ∈ ArgTopk{∥di∥p∗},
0, otherwise,

(9)

here ArgTopk denotes operator which returns indices of k largest elements of an input vector.

Finally, putting it together, we derive the following alternating maximization update at the step s for
attack training:

εs+1 = Tp∗,k

[ ∑
x∈X

J⊤
i (x)ψq(Ji(x)ε

s)

]
, (10)
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εs+1 =
ψp∗(ε

s+1)

∥ψp∗(εs+1)∥p
. (11)

The overall algorithm is presented in Algorithm 1, where we gradually decrease the cardinality
through the iterations to enhance convergency Yuan & Zhang (2013).

3 EXPERIMENTS

This section presents the experiments to analyze the effectiveness of sparse UAPs described above.
The experiments were implemented using PyTorch, and the code will be made publicly available on
Github upon publication.

3.1 EXPERIMENTS SETUP

Datasets. In this work, following Khrulkov & Oseledets (2018), to evaluate the performance
of the proposed sparse attack, we used the validation subset of the ImageNet benchmark dataset
(ILSVRC2012, Deng et al. (2009b), available for non-commercial research and educational pur-
poses), which contains 50,000 images belonging to 1,000 object categories. We randomly sample
256 images from the ImageNet validation subset for attack training. We used 5000 images for vali-
dation but later recalculated them with a smaller validation size. For those on which FR changes, it
changes slightly with the change of the optimal layer.

Models. During the empirical analyses, we restrict ourselves to the following models to be ex-
amined: DenseNet161 (Huang et al. (2017)), EffecientNetB0, EffecientNetB3 (Tan & Le (2019)),
InceptionV3 (Szegedy et al. (2015)), ResNet101, ResNet152 (He et al. (2016)), Wide ResNet101
(Zagoruyko & Komodakis (2016)), DEIT base (Touvron et al. (2021)), ViT base (Dosovitskiy et al.
(2021a)). For each model, we use corresponding ImageNet pre-trained checkpoints from Pytorch
(Ansel et al. (2024), Apache License 2.0) for Convolutional Neural Networks (CNNs) and Trans-
formers for Transformer models (Wolf et al. (2020), BSD-3).

Hyperparameters. In our experiments, to estimate attack performance, we vary the following
hyperparameters: model, layer to be attacked, patch size ∈ {1, 4, 8} and objective norm parameter
q ∈ {1, 2, 3, 5, 7, 10} while keeping p fixed, in particular, p = ∞, which is motivated by the previous
study (Moosavi-Dezfooli et al. (2017); Khrulkov & Oseledets (2018); Naseer et al. (2020)). The
number of non-zero patches top k is also fixed in accordance with the image and patch sizes and
selected so that the fraction of damaged pixels is equal to 5%, which further allows us to increase
the attack magnitude up to 1 (see Table 4). We gradually went through all semantic blocks to study
the performance dependence on the layer to be attacked (see Appendix A.1 for more details).

Evaluation metrics. For evaluation, we report Fooling Rate (FR) equation 12 for the best perturba-
tion obtained on the 256 training samples. It also means that we find ourselves in an unsupervised
setting and do not need access to the ground truth labels.

FR =
1

N

∑
x∈D

[f(x) ̸= f(x+ ε)] (12)

3.2 MAIN RESULTS

We train our attack on nine different models and compare it to the stochastic gradient descent (SGD)
attack Shafahi et al. (2020) and the dense analog of our approach proposed by Khrulkov & Oseledets
(2018), here and below, we refer the last approach as singular vectors (SV) attack. We also consider
transferability setup and investigate the FR dependence on q. We also compare with SGD layer max-
imization attack (LMax) Co et al. (2021), essentially an unlinearized version of the SV algorithm.
Attack samples are presented in Figure 7.

Following previous research, which relies on the small norm assumption, the magnitude was de-
creased to 10/255 for dense baselines. Poor results in the SGD can be explained by the fact that
a relatively large train set size is required to obtain an efficient attack, e.i. the number of samples
should exceed the number of classes Shafahi et al. (2020), while for our proposed approach, 256
images are enough.

5



Published as a conference paper at ICOMP 2024

The grid search results are presented in Table 4, where we report optimal hyperparameters for each
model with respect to validation FR. For this setting, the comparison with the baselines is provided
in Table 1, where for SV and SGD attacks, we additionally perform a similar grid search on hy-
perparameters 6. Our TPower attack approach outperforms baselines for almost all models except
EfficientNets and demonstrates diverse attack patterns.

From Table 1, one can conclude that EfficientNet is the most robust architecture. EfficientNet ex-
hibits unique robustness properties that have garnered attention in our study and other recent stud-
ies Peng et al. (2023); Lukasik et al. (2023). Some architectural choices, like compound scaling,
limit the gradient flow during backpropagation. This fact makes it more challenging for attackers
to generate efficient adversarial perturbations. For more details and possible explanations of such
phenomenon, see Appendix A.2.

Model TPower TPower Avg SV SGD LMax

DenseNet161 89.11 58.97 34.25 15.9 23
EffecientNetB0 37.09 31.34 34.44 17.31 19.12
EffecientNetB3 15.22 14.62 13.49 8.4 11.21
InceptionV3 85.04 75.61 27.88 13.6 24.64
ResNet101 94.57 82.09 50.05 17.38 46.95
ResNet152 94.84 83.15 35.93 15.43 22.49
WideResNet101 94.36 84.05 36.35 15.71 28.42
DEIT base 43.37 26.16 31.1 29.93 23.55
ViT base 52.5 29.97 26.01 18.11 28.09

Table 1: Test FR for TPower, SV, SGD, and LMax adver-
sarial perturbations. For the TPower and SV attack, we
report test FR for optimal hyperparameters after the grid
search. The best result is in bold, and the second best one is
underlined. For Tpower attack, we also report the average
FR of the 50% first layers while the rest of the parameters
were chosen to be well-performed on average across models
(See Table 4).

Additionally, for the ViT model, Fig-
ure 9 demonstrates a highly inter-
pretable pattern. Formally speak-
ing, during ViT preprocessing, the
image is cut into fixed-size patches,
which are further flattened and com-
bined with positional encoding Wu
et al. (2020). Indeed, perturbation
forms a quasi-regular grid repeat-
ing the locations of the patch junc-
tions. Moreover, attacking lower,
more sensitive to preprocessing by
construction layers causes the high-
est model vulnerability (Figure 5).

Dependence on patch size. Our em-
pirical study shows that, in general,
lower patch size values are more ben-
eficial in terms of FR (see Table 4).
One can see that pixel-wise attack

mode is more efficient regarding the fooling rate. This might be related to the fact that uniform
square greed is not an optimal sparsity pattern. However, for most models, the decrease in per-
formance is not dramatic, except for the transformers one. For those models where the optimal
patch size option is 4, FR does not decrease significantly compared to the single pixel patch attack,
namely, only approximately 5% for ResNet101 (from 94.57% to 89.85%, 2). Finally, the small size
of patches with a fixed proportion of damaged pixels allows patches to scatter more across the whole
picture, resulting in more uniform perturbation of model filters’ receptive fields.

Model / Patch size 1 4 8

DenseNet161 89.11 78.52 64.82
EffecientNetB0 37.09 29.95 22.87
EffecientNetB3 15.22 13.11 13.28
InceptionV3 85.04 22.36 77.66
ResNet101 89.85 94.57 83.48
ResNet152 89.53 94.84 76.78
WideResNet101 93.97 94.36 84.1
DEIT base 43.37 22.37 15.59
ViT base 52.5 15.44 14.54

Table 2: Tpower attack FR dependence
on patch size on test.

Dependence on q. In Khrulkov & Oseledets (2018), on
the example of VGG19, authors demonstrate that model
vulnerability increases with q and saturates when q = 5.
The last is explained by the fact that q = 5 is enough to
smooth the approximation of q = ∞. On the contrary,
for the majority of models, we obtained almost opposite
results: higher q values in the SV attack of Khrulkov
& Oseledets (2018) are less efficient in terms of FR for
both methods, TPower and the SV attack (see Figure 2).
However, for the sparse attack setting, the dependence of
all models becomes unambiguous, even for the VGG19
model. In addition, with q = 1, patches are arranged
more evenly across the perturbation image than for larger
values of q, depicted in Figure 3.

Dependence on layer number. To investigate whether attack performance is layer-dependent, we
introduce layer ratio: the layer number normalized to the model depth. Figure 5 shows that lower
layers are more effective as victims, empirically confirming the hypothesis of perturbation propa-
gation through the network and repeating the SV attack property. Additionally, Table 1 shows that
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(a) SV Attack. (b) SV Attack. (c) TPower Attack. (d) TPower Attack.

Figure 2: Dependence of FR on q for TPower Attack. For sparse attacks, optimal parameters from
gridsearch were frozen except for q (see Table 4) and reused for the dense one.

(a) q = 1
TPower Attack

(b) q = 5
TPower Attack

(c) q = 10
TPower Attack

(d) q = 1
SV Attack

(e) q = 5
SV Attack

(f) q = 10
SV Attack

Figure 3: Universal adversarial perturbations constructed for the VGG19 model.

even if we do not choose a layer but take them from the first half, then on average, our attack is still
better than the baseline for almost all models (see TPower Avg column).

Cardinality experiments. We analyzed one of the critical hyperparameters — the number of ad-
versarial patches denoted top k. This hyperparameter plays a pivotal role in determining the ratio
of damaged pixels of the attack, as well as the overall performance of the attack. In the initial
experiments, we selected the top k parameter following the 5% rate of affected pixels, producing
promising results on our dataset. We conducted an additional experiment to determine how many
sparse adversarial patches are enough to obtain the same fooling rate as for the dense attack. We
manually chose this parameter to make FR metrics the same as for the SV attack. Figure 4 illustrates
the resulting images for four models. As anticipated, the choice of top k significantly affects the
attack performance. However, one can conclude that less than 1% of pixels is enough to obtain an
equally efficient attack with SV one.

(a) DenseNet161, 0.5% (b) InceptionV3, 0.56% (c) ResNet101, 0.37% (d) ResNet152, 0.27%

Figure 4: Attacked images and corresponding percentage of damaged pixels obtained using TPower
approach. The top k parameter was manually selected such that sparse UAPs reach approximately
the same fooling rate as SV attack (see Table 1). as SV attacks.

Transferability experiments. Following the above setup, in the transferability task, for each model
we only consider the optimal perturbations in terms of FR obtained during the gridsearch. The rest of
the evaluations are done on the test subset. In contrast to the direct task setting, when the adversarial
perturbation is applied to the same model on which it was obtained, the attack should be adjusted to
the input size of the victim model. In particular, we preprocess adversaries either centre-cropping
or zero-padding them to fulfill the victim model input size restriction. Even though this affects
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the attack transferability performance, from Table 7, Table 3 and Table 8, one can observe higher
transferability of Tpower attack across different models in the majority of cases. Winning rates
were calculated as a ratio of cases where TPower outperforms SV Attack. For instance, ResNets are
the most vulnerable to the TPower Attack, achieving a winning rate of 1 even in a transferability
setup. Notably, EfficientNets are the most effective architectures in a gray-box setting. For more
details, see Table 8, Table 9, and Table 7. TPower attack achieves an average improvement of 32%
in transferability, with an average winning rate of 85%. Such high transferability is explained by
superior performance in the initial setting (see Table 2)

From/To DN ENB0 ENB3 IncV3 RN101 RN152 WRN101 DEIT VIT

DenseNet161 (DN) - 15.29 8.88 55.31 83.9 68.93 92.98 16.66 17.29
EfficientNetB0 (ENB0) 78.51 - 9.41 41.58 88.44 77.42 78.67 23.03 27.78
EfficientNetB3 (ENB3) 75.82 28.2 - 41.02 76.74 66.03 71.45 24.61 29.81
InceptionV3 (IncV3) 93.94 35.9 14.65 - 98.01 95.92 96.62 31.18 58.31
ResNet101 (RN101) 90.09 18.52 9.65 60.67 - 88.08 96.48 17.42 23.12
ResNet152 (RN152) 84.39 22.05 10.21 60.41 96.98 - 94.94 21.11 29.61
Wide ResNet101 (WRN101) 86.55 16.68 8.64 56.43 90.7 79.34 - 17.45 21.12
DEIT 75.36 40.64 10.64 51.32 75.97 71.12 80.2 - 31.2
ViT 77.27 22.12 10.19 63.72 98.28 97.19 94.85 32.79 -

Table 3: Transferability results for proposed TPower attack in terms of the fooling rate. Rows refer
to the model adversarial perturbation was computed on, while columns —to the victim one on which
the attack was tested.

Table 3 demonstrates that the most transferable attacks in terms of the fooling rate are the ones
trained on transformers and EffecientNets. Moreover, EffecientNets are the most robust among the
examined models. Furthermore, the transferability of attacks among different architectures, as ob-
served in the rest of the surrogate models, is a noteworthy finding. The attacks are transferred almost
equally well, indicating a potential vulnerability across these architectures. This behavior could be
explained by EfficientNet’s significant differences from all other models, as this architecture was
not developed manually but using the AutoML MNAS framework. Nevertheless, attacks trained on
EfficientNets have a sufficient transferability fooling rate of at least 24%, preserving the attacked
picture’s good quality (see Figure 9) and outperforming the results for dense perturbations. It is
worth mentioning that such attacks perform better in the transferability setting than in the direct
one.

To sum up, the transferability of the proposed TPower approach makes it promising for a grey-box
setting, where an attack is trained on one model and applied to an unknown one.

This, in turn, leads us to the universalization of adversarial attacks and their application for task-
agnostic and dataset-agnostic setups.

4 RELATED WORK

In recent years, there has been significant progress in adversarial attacks, particularly in deep neural
networks (DNNs). These attacks, first introduced by Szegedy et al. in Szegedy et al. (2014), have
profoundly impacted various domains, highlighting the importance of understanding model robust-
ness through vulnerability to adversarial examples. The initial approach by Szegedy et al. utilized
the L-BFGS algorithm, albeit with a high computational cost for large sample sizes. Subsequent
efforts have aimed to enhance efficiency in both computational complexity and attack performance
under specific constraints Goodfellow et al. (2015); Moosavi-Dezfooli et al. (2016); Carlini & Wag-
ner (2017); Madry et al. (2017). New gradient-based attacks have since emerged, such as those em-
ploying flexible perturbation sets Wong et al. (2019); Wong & Kolter (2020), attacks relying solely
on classifier output scores Guo et al. (2019b); Cheng et al. (2018); Wang et al. (2020); Guo et al.
(2019a); Andriushchenko et al. (2020), and decision-based attacks with access only to predicted
labels Chen et al. (2020).

While many approaches focus on perturbing all pixels, others advocate for sparsity constraints, such
as using l0 or l1 measures Papernot et al. (2016b); Su et al. (2019); Chen et al. (2018); Modas et al.
(2019). Techniques like group sparsity introduced by Xu et al. Xu et al. (2019) and generative
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architectures explored in works like Dong et al. (2020); He et al. (2022) have further refined imper-
ceptibility constraints. Recent efforts, such as the smooth relaxation proposed in Zhu et al. (2021),
continue to explore sparsity enhancements.

Despite advancements, many existing methods rely on sample-dependent perturbations, rendering
them computationally impractical for large datasets. Universal Adversarial Perturbations (UAPs) of-
fer a promising alternative, aiming to deceive models regardless of input specifics. Early works like
Moosavi-Dezfooli et al. (2017) introduced UAPs, but scalability remains a challenge. Contrastingly,
approaches like that proposed by Khrulkov et al. Khrulkov & Oseledets (2018) achieve universality
with significantly fewer training samples. This concept has also been extended beyond computer
vision, as seen in recent adaptations for NLP tasks Tsymboi et al. (2023).

Additionally, attacks leveraging generative models Mopuri et al. (2018); Hayes & Danezis (2018);
Poursaeed et al. (2018); Chen et al. (2023) have gained traction due to their ability to capture entire
perturbation distributions, offering a broader scope compared to non-generative methods. Inspired
by the progress of multimodal architectures, GAN-based universal downstream-agnostic attacks
Zhou et al. (2023b;a) and attacks on pretrained models Ban & Dong (2022) were proposed.

An emerging topic is the interpretability of adversarial attacks. Recent trends, such as representing
universal attacks as semantic features Zhang et al. (2020) and bridging universal and non-universal
settings Li et al. (2022), indicate ongoing exploration in this field.

5 LIMITATIONS

One of the restrictions of the proposed approach is the fixed predefined attack cardinality, and due
to the lack of convergence, heuristic reduction to this value should be made. One way to overcome
this issue is to replace the truncation operator with adaptive threshold shrinkage obtained via the
Alternating Direction Method of Multipliers (ADMM, Boyd et al. (2011)), which is planned to be
done in future work.

Another weakness is that for sparse attacks to be efficient, we need to use higher magnitudes while
keeping the percentage of damaged pixels low. As a result, adversarial perturbation could be con-
sidered an outlier with simple defense via weights clipping at each neural network layer or median
filtration. However, clipping ranges for this case must be well-estimated, as well as window size for
median filtration, as shown in our experiments (see Appendix A.2). One needs to tune these param-
eters, e.g., estimate them based on statistics of layers outputs, which is infeasible in the grey-box
setting when the perturbation is transferred between models.

Investigating the reasons behind EfficientNets’ remarkable robustness is a promising direction for
future research. While we present some discussion in Appendix A.2, a comprehensive exploration
of this topic is beyond the scope of our paper.

Finally, it would be interesting to investigate the sparse attack transferability in more realistic settings
when both model and dataset are unknown to study task-independent adversarial perturbations.

6 CONCLUSION

This paper presents a new approach for sparse universal adversarial attack generation. Following
Khrulkov & Oseledets (2018), we assume that the perturbation of an intermediate layer propagates
further through the network. The primary outcome of the paper is that by using only an additional
truncation operator, we can construct the perturbation that will alter at most 5% of input image
pixels without a decrease in fooling rate compared to the dense algorithm version (SV Attack) but
with a significant increase. Moreover, our attack is still efficient regarding the sample size used for
perturbation training. In particular, utilizing 256 samples is enough to achieve at least a 50% fooling
rate for most of the models, with a maximum of 94%. We comprehensively study 10 architectures,
revealing their vulnerability to sparse universal attacks. We also show that found attack vectors are
highly transferable, revealing an extremely high vulnerability of ResNets. TPower attack achieves
an average improvement of 32% in transferability, with an average winning rate of 85%, comparing
to SV attack. Furthermore, our attack can be well generalized across different networks without a
decrease in the fooling rate.
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A APPENDIX

A.1 IMPLEMENTAION DETAILS

We performed the computation on four GPU’s NVIDIA A100 of 80GB. The full grid search for
TPower Attack took 765 GPU hours for nine models (6 values for q, 10 values for α, and 3 patch
sizes). The total size of the hyperparameter set was 6×10×3×9 = 1620, which means that 65 GPU
seconds are needed for pure attack training and approximately 2 minutes for one hyperparameter set
testing, which is relatively fast.

Image preprocessing. The preprocessing stage is a crucial step in computer vision tasks that in-
volves cleaning, standardizing, and enhancing the input data to improve model performance. In the
context of these experiments, the preprocessing pipeline for the ImageNet ILSVRC2012 dataset will
be discussed.

At first, we divided the ImageNet dataset between a training subset with 256 images, a validation
subset of 5000 images and the rest for the test subset. The second step in the preprocessing pipeline
involves resizing the input images to a fixed resolution. This is necessary to ensure that all images
have the same dimensions and to reduce the computational overhead of training the models. The
images will be resized to a resolution of crop sizes corresponding to the used models. After that, our
actions for the subsets are different. We compute the attack tensor on the normalized train subset.
We apply an attack on validation and test subsets.

Overall, the preprocessing pipeline for the ImageNet ILSVRC2012 dataset for our experiments con-
sists of the train-validation-test split, resizing/cropping, attack applying, clipping to [0, 1] (for vali-
dation and test subset) and normalization.

Layer selection. We gradually went through all semantic blocks to study the performance depen-
dence on the layer to be attacked:

• DenseNet161: dense layers and transition blocks,

• EffecientNetB0 and EffecientNetB3: bottleneck MBConv blocks,

• InceptionV3: max poolings and mixed blocks,

• ResNet101, ResNet152 and WideResNet101:
residual blocks,

• Vit and DEIT: encoder layers.

A.2 EXPERIMENTS

Along with fooling rate, we focus our consideration on Attack Success Rate (ASR), namely the
portion of misclassified samples after the attack performance filtered subject to the initial model’s
correct predictions:

ASR =

∑
x∈D

[f(x) ̸= f(x+ ε)][f(x) = y]∑
x,y∈D

[f(x) = y]
(13)

Grid search results for TPower attack. Optimal hyperparameters with corresponding fooling and
attack success rates are presented in Table 4.

Grid search results for SV attack. Optimal hyperparameters with corresponding fooling and attack
success rates are presented in Table 6. Figures 6, 7 and 8 present examples of dense adversarial
perturbations. For optimal layers regarding the fooling rate, the dependence on q is ambiguous,
while on average, the hypothesis that the greater q is, the better attack performance isKhrulkov &
Oseledets (2018) not approved.

Grid search results for SGD attack. Optimal hyperparameters with corresponding fooling and
attack success rates are presented in Table 5.

Dependence on patch size. In general, from Table 2, one can see that pixel-wise attack mode is
more efficient regarding the fooling rate. This might be related to the fact that uniform square greed
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Model Top k Patch Size q Attacked Layer Test ASR Test FR

DenseNet161 2509 1 1 features.denseblock2.denselayer6 87.61 89.11
EffecientNetB0 2509 1 1 features.2.1.block 29.66 37.09
EffecientNetB3 4500 1 1 features.1.0.block 9.66 15.22
InceptionV3 4471 1 1 maxpool2 82.83 85.04
ResNet101 157 4 1 layer2.3 93.8 94.57
ResNet152 157 4 1 layer2.3 94.24 94.84
WideResNet101 157 4 1 layer3.1 93.71 94.36
DEIT base 2509 1 1 vit.encoder.layer.0 36.12 43.37
ViT base 2509 1 1 vit.encoder.layer.0 46.76 52.5

Table 4: Metrics and hyperparameters for the best-performed sparse UAPs for each model.

Model β Step decay Test FR

DenseNet161 5 1 15.9
EffecientNetB0 9 0.3 17.31
EffecientNetB3 10 0.2 8.4
InceptionV3 12 1 13.6
ResNet101 15 1 17.38
ResNet152 15 1 15.43
WideResNet101 7 1 15.71
DEIT base 6 0.6 29.93
ViT base 10 0.5 18.11

Table 5: Metrics and hyperparameters for the best-performed SGD attacks for each model. The
attack magnitude was fixed at α = 10

255 , β is clamping value.

Model q Attacked Layer Test ASR Test FR

DenseNet161 3 features.denseblock2.denselayer10 26.49 34.25
EffecientNetB0 5 features.2.1.block 26.58 34.44
EffecientNetB3 2 features.1.0.block 8.3 13.49
InceptionV3 2 Mixed 5b 19.64 27.88
ResNet101 5 layer1.0 43.54 50.05
ResNet152 5 layer1.0 28.58 35.93
WideResNet101 1 layer3.1 29.24 36.35
DEIT base 3 vit.encoder.layer.1 23.23 31.1
ViT base 5 vit.encoder.layer.0 18.75 26.01

Table 6: Metrics and hyperparameters for the best-performed SV attacks for each model. The attack
magnitude was fixed at α = 10

255 .

From/To DN ENB0 ENB3 IncV3 RN101 RN152 WRN101 DEIT VIT

DenseNet161 (DN) - 23.89 7.68 90.09 17.31 30.76 24.59 26.76 26.29
EfficientNetB0 (ENB0) 27.72 - 9.74 24.45 28.72 25.34 27.28 19.7 17.22
EfficientNetB3 (ENB3) 12.24 12.46 - 9.82 14.34 14.46 12.98 10.9 8.56
InceptionV3 (IncV3) 30.78 28.92 11.64 - 27.28 24.88 25.63 26.8 18.95
ResNet101 (RN101) 21.08 21.02 8.93 11.45 - 26.53 24.58 19.61 10.22
ResNet152 (RN152) 28.04 35.17 9.83 88.11 23.06 - 29.52 18.53 9.9
Wide ResNet101 (WRN101) 24.36 23.3 7.77 15.57 32.95 28.84 - 17.17 20.63
DEIT 17.82 17.24 7.31 9.65 25.57 18.88 20.33 - 9.8
ViT 23.87 23.13 8.5 14.28 28.29 21.06 20.96 13.64 -

Table 7: Transferability results for SV attack in terms of the fooling rate. Rows refer to the model
adversarial perturbation was computed on, while columns —to the victim one on which the attack
was tested.
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From/To DN ENB0 ENB3 IncV3 RN101 RN152 WRN101 DEIT VIT

DenseNet161 (DN) - -8.6 1.2 -34.78 66.59 38.17 68.39 -10.1 -9.0
EfficientNetB0 (ENB0) 50.79 - -0.33 17.13 59.72 52.08 51.39 3.33 10.56
EfficientNetB3 (ENB3) 63.58 15.74 - 31.2 62.4 51.57 58.47 13.71 21.25
InceptionV3 (IncV3) 63.16 6.98 3.01 - 70.73 71.04 70.99 4.38 39.36
ResNet101 (RN101) 69.01 -2.5 0.72 49.22 - 61.55 71.9 -2.19 12.9
ResNet152 (RN152) 56.35 -13.12 0.38 -27.7 73.92 - 65.42 2.58 19.71
Wide ResNet101 (WRN101) 62.19 -6.62 0.87 40.86 57.75 50.5 - 0.28 0.49
DEIT 57.54 23.4 3.33 41.67 50.4 52.24 59.87 - 21.4
ViT 53.4 -1.01 1.69 49.44 69.99 76.13 73.89 19.15 -

Table 8: Difference of FR between TPower and SV attacks.

Metrics DN ENB0 ENB3 IncV3 RN101 RN152 WRN101 DEIT VIT

AD on sources for target 13.98 30.58 39.74 41.21 32.58 22.19 25.79 38.73 42.835
WR averaged on sources for target 50.0 87.5 100. 100. 75.0 75.0 87.5 100. 87.5
AD on targets for source 59.50 1.78 1.36 20.88 63.94 56.66 65.04 3.89 14.58
WR averaged on targets for source 100. 37.5 87.5 75.0 100. 100. 100. 75.0 87.5

Table 9: Average differences (AD) and winning rates (WR) between TPower and SV fooling rates.
WRs were calculated as a ratio of cases where TPower outperforms SV Attack.

is not an optimal sparsity pattern. However, for most models, the decrease in performance is not
dramatic, except for the transformers one.

SGD with layer maximization. We also conducted additional experiments and decided to compare
with SGD layer maximization attack Co et al. (2021), essentially an unlinearized version of our
algorithm. Attack samples are presented in Figure 7. As we can observe, layer maximization signif-
icantly boosts classic stochastic gradient descent, but the attack still does not reach the performance
of our attack or SV attack.

Median filtration. As mentioned above, the constructed perturbations consist of full-magnitude
damaged patches scattered uniformly on the image. Due to the small patch size, one can propose
median filtration of the vanilla method to mitigate such attack influence. Consequently, we have
conducted experiments on the median filtration of attacked images with different window sizes.
From Table 10, we observe a decrease in FR, e.g., for EfficientNetB3 and 3× 3 filter, we get a 1/3
decrease for FR from the initial one; for some models like DenseNet161, the FR decreases to only
79%. However, as a hyperparameter, the filter size should be selected for each model and balance
between efficient filtration and over-blurring.

To conclude, the median filter can make the attack harder to fool the victim model but does not
protect from it entirely. More reliable way to protect models is to use attack detectors or/and robust
normalizations inside the models; this requires additional training for each attack type which is
impractical.

Model 3x3 5x5 7x7 11x11 15x15

DN 95.32 97.03 94.97 79.66 88.25
ENB0 17.31 29.27 40.99 66.95 82.34
ENB3 9.13 16.54 24.07 41.70 59.33

Table 10: Fooling Rate after the median filtration results for three models: EfficientNetB0 (ENB0),
EfficientNetB3 (ENB3) and DenseNet161 (DN). We see that median filtration helps to eliminate
attacks, but the optimal window size is not the same for all models and should be tuned. Moreover,
exceeding the optimal threshold results in over-blurring and a decrease in the performance of the
model, not due to the attack but because of the bad quality of the images themselves.

EfficientNet robustness. EfficientNet exhibits unique robustness properties that have garnered at-
tention in recent studies. In one paper Peng et al. (2023), using EfficientNet as a surrogate in a
gray-box setting demonstrated its robustness against BIM and CW attacks, using ResNet-50 as a
victim. Similarly, in another study Zhang et al. (2023), EfficientNet emerged as the most robust
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architecture, even when considering Filter Frequency Regularization. However, in our experiments,
we observed that for dense attacks, the Fooling Rate, such as in the SV attack, did not significantly
differ from our attack’s Fooling Rate. Additionally, recent research Devaguptapu et al. (2021) sug-
gests that hand-crafted models may exhibit greater robustness on complex datasets like ImageNet,
whereas NAS architectures like EfficientNets may fight better against weaker attacks like FGSM.
Our findings present some ambiguity, as sparse attacks with such ablations have yet to be extensively
studied. This warrants further investigation as an intriguing avenue for future research, although it
falls outside the scope of our current paper. Nevertheless, we propose some intriguing hypothe-
ses. One such assumption revolves around EfficientNet’s compound scaling, a unique characteristic
where depth, width, and resolution are scaled proportionally. Some studies suggest that unquestion-
ingly increasing only width may degrade robustness Wu et al. (2021), while others demonstrate how
depth may impact robustness differently based on initialization methods Zhu et al. (2022). More-
over, theoretical research Huang et al. (2021) suggests that increasing model depth exponentially
raises the upper bound of Lipschitz constant, potentially compromising robustness. EfficientNet’s
unique feature lies in its balanced increase of width, depth, and resolution, maintaining proportional
scaling. This approach may indirectly align with theoretical bounds on model capacity, but further
investigation is needed to elucidate this relationship.

(a) (b) (c)

Figure 5: 5(a) and 5(b): FR dependence on layer ratio for examined models. 5(c): The example
of fooling rate saturation depending on training set size for optimal hyperparameters; here, one can
observe that 256 is the worst case amount among most vulnerable models.

(a) DenseNet161 (b) EfficientNetB3 (c) InceptionV3 (d) ViT Base

(e) EfficientNetB0 (f) ResNet101 (g) ResNet152 (h) DEIT Base

Figure 6: UAPs obtained using SGD attack algorithm Shafahi et al. (2020).
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(a) DenseNet161 (b) EfficientNetB3 (c) InceptionV3 (d) ViT Base

(e) EfficientNetB0 (f) ResNet101 (g) ResNet152 (h) DEIT Base

Figure 7: UAPs obtained using SGD with layer maximization attack algorithm Co et al. (2021).
Selected layers are the same as optimal in TPower attack.

(a) VGG19, q = 1 (b) ResNet101, q = 1 (c) WideResNet101, q =
1

(d) DEIT Base, q = 1

(e) VGG19, q = 5 (f) ResNet101, q = 5 (g) WideResNet101, q =
1

(h) DEIT Base, q = 3

Figure 8: UAPs using SV attack algorithm Khrulkov & Oseledets (2018). The first row refers to the
fixed parameter value q = 1, while the second depicts best-performed perturbations.
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(a) (b) (c) (d)

(e) DenseNet161 (f) EfficientNetB3 (g) InceptionV3 (h) ViT Base

(i) (j) (k) (l)

(m) Wide ResNet101 (n) ResNet101 (o) ResNet152 (p) DEIT Base

Figure 9: UAPs and corresponding attacked images obtained using our TPower approach. Perturba-
tions were computed using the best-performed layers on gridsearch.
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