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Abstract
Decelerations in preterm infant vital signs (heart rate and oxygen saturation) are1

critical biomarkers of adverse outcomes in the NICU. Synthesizing such events can2

address data scarcity and support counterfactual reasoning on their pathophysiolog-3

ical signatures. Although recent advances in time series editing allow fine-grained4

modification of time series toward target conditions while preserving others, exist-5

ing methods rely on rigid feature vectors and lack control over editing strength. We6

propose InstructTime, the first instruction-based time series editor, which specifies7

edits in natural language and enables controllable editing strength. Conditioning on8

free-form text enables incorporating nuanced clinical details such as demographics,9

comorbidities, interventions, and individualized information from medical free-text10

data. We evaluate InstructTime on editing decelerations in neonatal vital signs11

through four research questions: (1) performance comparison to state-of-the-art12

editors; (2) robustness under rare-event prevalence; (3) the effect of individualized13

clinical context on editing quality; and (4) exploratory insights from counterfactual14

edits. Our results show that InstructTime can synthesize realistic decelerations,15

maintain robust quality under data scarcity, and provide exploratory insights into16

these clinically significant deceleration events in neonatal vital signs.17

1 Introduction18

Bradycardia and oxygen desaturation are among the most clinically significant deceleration events19

in neonatal intensive care (NICU). Bradycardia is typically defined as heart rate below 100 bpm (or20

80 bpm for severe cases) in preterm infants [16, 31, 8], and oxygen desaturation is usually defined as21

peripheral oxygen saturation (SpO2) below 80–85% [9, 17]. Both events are critical biomarkers: their22

frequency, duration, and severity are strongly associated with poor neurodevelopmental outcomes23

and higher risk of morbidity and mobility in preterm infants [1, 12, 14, 21, 8, 18]. Continuously24

acquiring such deceleration events from an individual’s bedside monitor requires dedicated time and25

labor, yet understanding their pathophysiological signatures remains of high interest and importance.26

Recent work on time series generation has shown promise for synthesizing realistic data to support27

classification, forecasting, and counterfactual reasoning tasks [35, 28, 23, 30, 5, 25, 7, 2, 36, 13,28

33, 27, 6, 3, 15]. Time series editing (TSE) is a fine-grained extension, which modifies an existing29

series to satisfy new conditions while preserving its original characteristics [11, 19, 37]. For instance30

(Figure 1), given a normal infant heart rate, a clinician may ask: “What if the infant experienced31

bradycardia, with heart rate falling below 80 or 100 bpm?” An editor would then generate a plausible32

trajectory specifying where, how severely, and in what shape such events occur, while preserving other33

conditions. The ability to editing a time series towards specified conditions is especially important34

for addressing data scarcity and enabling pathological counterfactual reasoning in medical research.35

State-of-the-art diffusion-based TSE methods remain limited: they rely on handcrafted feature vectors36

as rigid condition format and overlook nuanced, individualized context in medical free-form data.37

They also yield all-or-nothing edits via sampling, whereas clinical settings may explore progressive38

edits—e.g., introducing deceleration events from mild to severe—for hypothesis generation.39

We introduce Instruction-based Time Series Editing, a new task where an editor takes a time series40

and a natural language instruction specifying target conditions, and generates a modified time series41

reflecting those conditions. Unlike prior approaches with predefined attributes, this setting conditions42
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Instruction-based Editing (Ours)

“The NICU heart rate shows moderate 
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Figure 1: Instruction-based time series editing modifies a given time series based on natural language instructions
with controllable editing strength. For example, medical researchers can use natural language to add abnormal
deceleration events (bradycardia) to a normal heart rate with increasing severity.

on free-form text, capturing nuanced context—such as patient demographics, comorbidities, and43

interventions—when paired with clinical time series. To address challenges such as mapping multi-44

condition instructions to multi-resolution time-series patterns and enabling fine-grained control over45

edit strength, we propose InstructTime, the first instruction-based editor, which aligns time-series and46

text embeddings via contrastive learning and decodes interpolated embeddings for controllable edits.47

In this paper, we focus on evaluating InstructTime on editing deceleration events in neonatal vital sign48

time series through the following research questions: (1) How does InstructTime perform compared49

to state-of-the-art methods? (2) How does real-world data scarcity, where deceleration events are rare,50

affect its editing quality? (3) Does adding individualized context in instructions enhance editing? (4)51

Can counterfactual edits offer deeper exploratory insights into decelerations in neonatal vital signs?52

2 InstructTime: Instruction-based Time Series Editor53

Let x ∈ RT be a time series with T timesteps, and let c = [c1, . . . , cL] be a natural language54

instruction of L tokens describing the target condition. The task of instruction-based time series55

editing is to learn a function fθ that generates an edited time series x̂ = fθ(x, c) such that x̂ reflects56

the condition expressed in c. We propose InstructTime, the first instruction-based time series editor,57

which leverages contrastive learning and an interpolated editing procedure for controllable strength.58

As shown in Figure 2, InstructTime consists of a multi-resolution time series encoder, an instruction59

encoder generalizable to diverse semantic expressions, and a conditional decoder that generates edited60

series by modeling intra- and inter-modality relationships with self-attention. Details of the model61

architecture and implementation are provided in the Appendix A.62

Training. InstructTime is trained on paired data {(xi, ci)}Ni=1 with a joint loss L = Lcontrast + α ·63

Lrecon, where Lcontrast is the symmetric InfoNCE loss [22] encouraging alignment between zx and64

zc in the unit-length hypersphere, and Lrecon is the mean squared error between x and x̂. Training65

proceeds in two stages: first optimizing Lcontrast to align encoders, then minimizing L to train both66

encoders and the decoder. The weight α balances reconstruction against alignment.67
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Figure 2: Model architecture of InstructTime. In training, time series–description pairs are mapped to a shared
hypersphere, then the decoder reconstructs the input series. In editing, interpolated embeddings of time series
and instruction are decoded to generate edits of varying strength.
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Interpolated Editing Procedure. To control editing strength, we interpolate between embeddings:68

zw = (1− w)zx + wzc, x̂w = Ψ(zw, zc), w ∈ [0, 1]. When w = 0, x̂w reconstructs the input,69

while w = 1 generates solely from the instruction. Increasing w blends stronger target conditions to70

the input time series, e.g., progressively intensifying bradycardia or SpO2 desaturation events.71

3 Synthesizing Deceleration Events in NICU Vital Signs72

Datasets. We use a published dataset of daily vital sign observations from 2,964 infants admitted to73

the University of Virginia NICU between 2012–2016 [10, 29], consisting of 10-minute HR and SpO274

segments (length 300, sampled every 2s). The processed HR dataset contains 36,679 series, including75

2,147 bradycardia events (prevalence 0.06), defined as HR <100 bpm up to 300s [1]. The processed76

SpO2 dataset contains 30,000 series, balanced to 15,000 desaturation events and 15,000 controls77

(due to high prevalence), where desaturation is defined as SpO2 <90% for 10–300s [34]. For both78

vital signs, a valid event requires a negative drop rate prior to onset and a positive recovery afterward.79

Each series is labeled as either “No events.” or “Desaturation/Bradycardia events happened.” All80

series are z-normalized and partitioned into training, validation, and held-out test sets (70–20–10).81

Compared methods. We compare InstructTime with two state-of-the-art editors: TimeWeaver [19]82

and TEdit [11], both implemented with the diffusion-based editing procedure from [11]. Since our83

formulation does not require original attributes as input, we adopt the denoising diffusion probabilistic84

model sampler from [11], which only conditions on target attributes.85

Evaluation metrics. We evaluate editing quality of adding or removing deceleration events in86

HR and SpO2 using three metrics: (1) Dynamic time warping [26] distance decrease, calculated as87

∆DTW= medianxc̃∈Dc̃
[DTW(x̂,xc̃)−DTW(x,xc̃)], measures how much closer the edited series88

x̂ is to real observations Dc̃ with target condition than the input x, where lower (more negative)89

values indicate better editing. (2) Longest common subsequence [4] similarity increase, calculated90

as ∆LCSS= medianxc̃∈Dc̃
[LCSS(x̂,xc̃) − LCSS(x,xc̃)], measures how much more similar x̂ is91

to Dc̃ than x, where higher values indicate better editing. (3) Log Ratio of Target-to-Source [11],92

calculated as RaTS= log
(

p(c̃|x̂)
p(c̃|x)

)
, where p(c̃ | x) is estimated by a multi-class classifier trained on93

a held-out dataset, measures the relative increase in likelihood of the target attribute c̃ in the edits.94

RQ1: Editing quality benchmark. We benchmark editors in both instruction-based and attribute-95

based settings. For instruction-based editing, we adapt prior methods by replacing categorical vectors96

with text instruction embeddings in their condition encoders. In the attribute-based setting, we input97

categorical attribute vectors directly into InstructTime’s instruction encoder to match prior methods.98

Table 1 shows that InstructTime is a state-of-the-art editor for synthesizing deceleration events in99

NICU vital signs under both settings. Examples of deceleration edits are shown in Figure 3.100

HR Bradycardia SpO2 Desaturation
∆DTW ↓ ∆LCSS ↑ RaTS ↑ ∆DTW ↓ ∆LCSS ↑ RaTS ↑

Time Weaver -2.66 0.02 0.01 -4.02 0.11 0.15
TEdit -5.34 0.13 0.02 -5.11 0.12 0.15
InstructTime -10.54 0.29 0.18 -8.20 0.16 0.34

(a) Instruction-based editing

HR Bradycardia SpO2 Desaturation
∆DTW ↓ ∆LCSS ↑ RaTS ↑ ∆DTW ↓ ∆LCSS ↑ RaTS ↑

Time Weaver -9.23 0.19 0.20 -6.32 0.14 0.28
TEdit -12.91 0.21 0.52 -5.83 0.13 0.28
InstructTime -11.18 0.24 0.72 -8.63 0.16 0.69

(b) Attribute-based editing
Table 1: Benchmark comparison of time series editors for editing decelerations in neonatal vital signs.

TEdit (previous)InstructTime (ours)

Figure 3: Examples of adding decelerations (bradycardia or desaturation) to normal HR or SpO2 from NICU.
InstructTime uses natural language instructions and controls deceleration severity via editing strength w, while
prior diffusion-based method TEdit rely on categorical attributes and generate diverse edits via sampling.
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Figure 4: Impact on InstructTime’s
editing quality (∆DTW↓ and ∆LCSS↑) by
two conditions: (A) rare prevalence
of deceleration at varying rates; and
(B) adding nuanced patient informa-
tion to deceleration description (decel)
in the instruction, including clinical
(death outcome, usage of supplemental oxygen)
and demographic (gestational age, Apgar
score, gender, race, ethnicity) information.

RQ2: Editing under data scarcity. To evaluate the real-world utility of InstructTime in medical101

research, we first assess the impact of rare-event prevalence on editing quality by downsampling the102

no-event HR series (or the event-group SpO2 series, due to high prevalence) to achieve deceleration103

rates of 0.5, 0.3, 0.1, 0.05, and 0.01. As shown in Figure 4(A), InstructTime maintained robust104

performance in adding or removing decelerations in neonatal vital signs.105

RQ3: Editing with nuanced clinical context. We also assess whether adding nuanced clinical106

context to the instruction, alongside the deceleration event description, improves InstructTime’s107

editing quality. As shown in Figure 4(B), adding clinical intervention (usage of supplemental oxygen)108

and clinical outcome (death in 7 days) yields similar editing performance to only describing the109

deceleration in the instruction. However, adding patient demographic information (gestational age,110

gender, race, ethnicity, and Apgar scores [20]) generally degrades editing quality. We speculate111

this may be because overly personalized instructions can reside out-of-distribution in the shared112

embedding space (e.g., decelerations may rarely happen to infants with larger gestational age or from113

certain demographic population). This result also suggests that adjusting current models to account114

for multi-level structure—where time series from the same patient share similar temporal patterns115

while those across patients are independent—warrants further investigation.116

RQ4: Inspecting diverse deceleration phases in counterfactual edits. Normal neonatal HR117

is 120–160 bpm with 5–25 bpm oscillations, and SpO2 is 90–100% with 2–3% fluctuations [1].118

To better understand how deceleration events would appear in normal HR or SpO2, we adopt a119

paired shapelet classification procedure (details in Appendix B) to detect discriminative 0.5-1 minute120

subsequences (shapelets) that represent decelerations in counterfactual series edited by InstructTime121

versus their inputs. For comparison, we applied the same shapelet detection to randomly sampled122

real deceleration time series versus normal ones. As shown in Figure 5, the top shapelets detected123

in observed HR converged to a unique pattern: a 1-minute sudden drop from around 150 bpm to124

below 80, followed by recovery. In contrast, in the edited series where InstructTime introduced125

bradycardia into normal HR, the discriminative subsequence varies with the baseline. With a high126

baseline (above 150 bpm), the editor produced a similar severe drop, while with a lower baseline127

(e.g., <120 bpm), it generated a global downward shift with shallower, multi-phasic events. This128

diversity of shapelets aligns with clinical empirical observations [8]. Similarly, in SpO2, the editor129

generally produced desaturation with a global baseline downshift around 90%. Counterfactual edits130

also suggested additional shapelets, including sharp drops from 90% to 80% and longer turbulent131

episodes below 90%, compared to the single uni-phase drop detected in empirical observations.132

4 Conclusion133

In summary, we propose InstructTime, the first instruction-based time series editor, enabling nat-134

ural language–driven synthesis of clinically significant decelerations in neonatal vital signs with135

controllable strength. It shows robust performance under rare-event scarcity, incorporates clinical136

context, and produces counterfactual edits that offer pathophysiological insights, with future work on137

multi-level modeling, uncertainty estimation, and broader medical applications.138
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Figure 5: For HR and SpO2, multi-phase discriminative subsequences (shapelets) of deceleration patterns appear
in counterfactual edits (left), whereas a uni-phase deceleration pattern is observed empirically (right).
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A InstructTime Architecture and Implementation256

Multi-resolution encoder Eϕ. The encoder Eϕ maps x into an embedding zx normalized on the257

unit hypersphere. To capture both global trends and local fluctuations, Eϕ uses k parallel 1D CNNs258

with kernel sizes proportional to T , each producing a d-dimensional representation. These are259

concatenated into zx ∈ RD, where D = k · d.260

Instruction encoder Eθ. The encoder Eθ maps c into zc, also normalized on the hypersphere. A261

pretrained text model (paraphrase-mpnet-base-v2 [24]) first transforms instructions into numeric262

features, which are then processed by k parallel MLPs to align with the resolutions of Eϕ. The263

concatenated embedding zc thus aligns condition semantics with temporal resolutions of zx.264

Conditional decoder Ψ. Given (zx, zc), the decoder Ψ generates x̂ = Ψ(zx, zc). Built on Trans-265

former self-attention [32], Ψ models dependencies within each modality and across modalities,266

mapping semantic conditions to appropriate time series patterns. The output state corresponding to267

the time series token is passed through a linear head to produce a new time series x̂ ∈ RT .268

Implementation details. For InstructTime, the time series encoder uses k = 8 parallel CNNs with269

kernel sizes proportional to the time series length T , using fractions 1, 2
3 ,

1
2 ,

1
3 ,

1
4 ,

1
6 ,

1
8 ,

1
10 . Larger270

fractions (1, 2
3 ,

1
2 ) are used to capture global properties such as trend and seasonality, while smaller271

fractions are intended to encode localized patterns such as abrupt shifts in mean and local variability.272

Text instructions are encoded using the pretrained SentenceTransformer model paraphrase-mpnet-273

base-v2 [24], which provides effective embedding of rich semantic meaning from multiple sentences274

and is efficient to compute. The resulting vectors are then processed by k = 8 parallel MLPs to275

generate instruction embeddings zc. The embeddings zx and zc have dimension D = 768. When276

training InstructTime, we jointly optimize a contrastive loss and a reconstruction loss, with their277

relative contributions to the total loss controlled by a balancing weight α. In our experiments, α278

is set so that the unit contribution of the reconstruction loss is 10−γ relative to the contrastive loss,279

with γ set to 1 by default. InstructTime is trained on all datasets using a single NVIDIA V100 GPU.280

Training completed within 1 hour for each dataset.281

B Interpreting Counterfactual Edits282

B.1 Paired Shapelet Classification283

To interpret how counterfactual edits differ from the original time series, we employ a paired shapelet284

classification approach. We consider aligned pairs of raw inputs Xraw ∈ Rn×T and their edited285

counterparts Xedit ∈ Rn×T , where (xi
raw, x

i
edit) denotes the raw–edited pair for sample i ∈ {1, . . . , n}.286

Candidate shapelets s ∈ Rℓ are extracted from the edited series, and their discriminative value is287

measured by comparing distances to both members of each pair. For sample i, the paired distance288

difference is defined as289

∆i
d = d(s, xi

raw)− d(s, xi
edit),

where d(s, x) denotes the minimum Euclidean distance between s and any subsequence of x of290

length ℓ. The discriminative strength of a shapelet is quantified by a one-direction signal-to-noise291

ratio (SNR):292

SNR(s) = max

(
0,

µ(∆d)√
σ2(∆d) + ϵ

)
,

where µ(∆d) and σ2(∆d) denote the mean and variance of the paired distance differences across293

samples. This formulation ensures that only shapelets with µ(∆d) > 0—that is, subsequences consis-294

tently closer to the edited time series than to the raw time series—receive a positive score. Shapelets295

with µ(∆d) ≤ 0 are discarded, as they do not represent patterns introduced by the editing process.296

This paired scoring directly highlights temporal discriminative subsequences that are introduced297

by the editor. Compared to traditional unpaired shapelet discovery, the paired formulation reduces298

variance and computing cost, removes the need for threshold tuning, and produces interpretable299

subsequences that reveal how counterfactual time series editing alters temporal structure.300

Furthermore, the reliability of a shapelet in distinguishing between raw and counterfactual time series301

can be evaluated using the SNR. A high SNR indicates that the shapelet consistently matches one302

side more closely across pairs, with a large average gap and little variability, making it a strong and303
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reliable discriminator. A low SNR, by contrast, reflects either a small average difference or high304

variability across pairs, suggesting that the shapelet provides weak or unstable discrimination.305

B.2 Implementation Details306

We use a sliding-window approach to detect discriminative subsequences (shapelets) that separate raw307

from edited time series. Candidate shapelets are extracted from the augmented series, each defined308

by a length of 30–60 time steps (corresponding to 1–2 minutes of HR and SpO2) and a stride of 5309

steps. For each candidate, we compute the minimum Euclidean distance to all series in both raw and310

augmented sets. Candidates are scored using a signal-to-noise ratio (SNR) that favors patterns closer311

to the augmented series than to the raw series. The top candidates with the highest positive scores are312

retained as representative patterns of the edited series.313
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