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Abstract

Decelerations in preterm infant vital signs (heart rate and oxygen saturation) are
critical biomarkers of adverse outcomes in the NICU. Synthesizing such events can
address data scarcity and support counterfactual reasoning on their pathophysiolog-
ical signatures. Although recent advances in time series editing allow fine-grained
modification of time series toward target conditions while preserving others, exist-
ing methods rely on rigid feature vectors and lack control over editing strength. We
propose InstructTime, the first instruction-based time series editor, which specifies
edits in natural language and enables controllable editing strength. Conditioning on
free-form text enables incorporating nuanced clinical details such as demographics,
comorbidities, interventions, and individualized information from medical free-text
data. We evaluate InstructTime on editing decelerations in neonatal vital signs
through four research questions: (1) performance comparison to state-of-the-art
editors; (2) robustness under rare-event prevalence; (3) the effect of individualized
clinical context on editing quality; and (4) exploratory insights from counterfactual
edits. Our results show that InstructTime can synthesize realistic decelerations,
maintain robust quality under data scarcity, and provide exploratory insights into
these clinically significant deceleration events in neonatal vital signs.

1 Introduction

Bradycardia and oxygen desaturation are among the most clinically significant deceleration events
in neonatal intensive care (NICU). Bradycardia is typically defined as heart rate below 100 bpm (or
80 bpm for severe cases) in preterm infants [[16,[31} 8], and oxygen desaturation is usually defined as
peripheral oxygen saturation (SpOs) below 80-85% [9}17]. Both events are critical biomarkers: their
frequency, duration, and severity are strongly associated with poor neurodevelopmental outcomes
and higher risk of morbidity and mobility in preterm infants [1} 12, 14, 21} 8| [18]. Continuously
acquiring such deceleration events from an individual’s bedside monitor requires dedicated time and
labor, yet understanding their pathophysiological signatures remains of high interest and importance.

Recent work on time series generation has shown promise for synthesizing realistic data to support
classification, forecasting, and counterfactual reasoning tasks [35} 28| [23| [30L 5 25} [7}, 2} 1361 [13}
331127416, 13, [15]. Time series editing (TSE) is a fine-grained extension, which modifies an existing
series to satisfy new conditions while preserving its original characteristics [11}[19}37]]. For instance
(Figure[I), given a normal infant heart rate, a clinician may ask: “What if the infant experienced
bradycardia, with heart rate falling below 80 or 100 bpm?” An editor would then generate a plausible
trajectory specifying where, how severely, and in what shape such events occur, while preserving other
conditions. The ability to editing a time series towards specified conditions is especially important
for addressing data scarcity and enabling pathological counterfactual reasoning in medical research.

State-of-the-art diffusion-based TSE methods remain limited: they rely on handcrafted feature vectors
as rigid condition format and overlook nuanced, individualized context in medical free-form data.
They also yield all-or-nothing edits via sampling, whereas clinical settings may explore progressive
edits—e.g., introducing deceleration events from mild to severe—for hypothesis generation.

We introduce Instruction-based Time Series Editing, a new task where an editor takes a time series
and a natural language instruction specifying target conditions, and generates a modified time series
reflecting those conditions. Unlike prior approaches with predefined attributes, this setting conditions

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



43
44
45
46
47

48
49
50
51
52

53

54
55
56
57
58
59
60
61
62

63
64
65
66
67

oo A bradycardia eventisan | | “The NICU heart rate shows moderate
12| WA W abnormal heart rate falling | | variability. Bradycardia events occur.

Instruction \[smw 100 or below 80. 1|
3| w

! “What if bradycardia events ‘ : Ve g W W\\A
; e happened to this infant?” o (“onth able
; e Editing Strength

Heart rate (bpm)

Instruction-based Editing (Ours) ?

Increased Editing Strength

' e ® ¢ )e L
i <. T i v
| : | 1 i Variability Bradycardia 3
i :
1 Embecding Space v \/ ! 3 High | Low | Moderate | Yes | No 3
"o Avnomal _ 150 i 0o | o Jwnseen | 1 | 0 i
i E i :
. W gt W,VM A’\"Mx\ rf"\'\/’\f\'\’ S12s i y !
. ) i i
! 200 A U [ g W 4% a
© HE !
i S : . i
' ! Sampling-based '
£
1 § 75 U b Generation i
: b '

* Time ,; ‘ Attribute-based Editing (Prior)

Flgure 1: Instruction-based time series editing modifies a given time series based on natural language 1nstruct10ns
with controllable editing strength. For example, medical researchers can use natural language to add abnormal
deceleration events (bradycardia) to a normal heart rate with increasing severity.

on free-form text, capturing nuanced context—such as patient demographics, comorbidities, and
interventions—when paired with clinical time series. To address challenges such as mapping multi-
condition instructions to multi-resolution time-series patterns and enabling fine-grained control over
edit strength, we propose InstructTime, the first instruction-based editor, which aligns time-series and
text embeddings via contrastive learning and decodes interpolated embeddings for controllable edits.

In this paper, we focus on evaluating InstructTime on editing deceleration events in neonatal vital sign
time series through the following research questions: (1) How does InstructTime perform compared
to state-of-the-art methods? (2) How does real-world data scarcity, where deceleration events are rare,
affect its editing quality? (3) Does adding individualized context in instructions enhance editing? (4)
Can counterfactual edits offer deeper exploratory insights into decelerations in neonatal vital signs?

2 InstructTime: Instruction-based Time Series Editor

Let x € RT be a time series with T timesteps, and let ¢ = [c1,...,cy] be a natural language
instruction of L tokens describing the target condition. The task of instruction-based time series
editing is to learn a function f, that generates an edited time series X = fy(x, ¢) such that x reflects
the condition expressed in c. We propose InstructTime, the first instruction-based time series editor,
which leverages contrastive learning and an interpolated editing procedure for controllable strength.
As shown in Figurem InstructTime consists of a multi-resolution time series encoder, an instruction
encoder generalizable to diverse semantic expressions, and a conditional decoder that generates edited
series by modeling intra- and inter-modality relationships with self-attention. Details of the model
architecture and implementation are provided in the Appendix [A]

Training. InstructTime is trained on paired data {(x;, ¢;)} Y, with a joint loss £ = Leopgrast + ¢ -
Liecons Where Leonase 1S the symmetric InfoNCE loss [22] encouraging alignment between z, and
Z. in the unit-length hypersphere, and Lyecon is the mean squared error between x and x. Training
proceeds in two stages: first optimizing Lconiast to align encoders, then minimizing £ to train both
encoders and the decoder. The weight « balances reconstruction against alignment.
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Figure 2: Model architecture of InstructTime. In training, time series—description pairs are mapped to a shared
hypersphere, then the decoder reconstructs the input series. In editing, interpolated embeddings of time series
and instruction are decoded to generate edits of varying strength.
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Interpolated Editing Procedure. To control editing strength, we interpolate between embeddings:
Zyw = (1 —w)2y + w2, Xy = V(Zw,2:), w € [0,1]. When w = 0, X,, reconstructs the input,
while w = 1 generates solely from the instruction. Increasing w blends stronger target conditions to
the input time series, e.g., progressively intensifying bradycardia or SpO, desaturation events.

3 Synthesizing Deceleration Events in NICU Vital Signs

Datasets. We use a published dataset of daily vital sign observations from 2,964 infants admitted to
the University of Virginia NICU between 2012-2016 [10} 29], consisting of 10-minute HR and SpO-
segments (length 300, sampled every 2s). The processed HR dataset contains 36,679 series, including
2,147 bradycardia events (prevalence 0.06), defined as HR <100 bpm up to 300s [[1]]. The processed
SpO-, dataset contains 30,000 series, balanced to 15,000 desaturation events and 15,000 controls
(due to high prevalence), where desaturation is defined as SpO2 <90% for 10-300s [34]. For both
vital signs, a valid event requires a negative drop rate prior to onset and a positive recovery afterward.
Each series is labeled as either “No events.” or “Desaturation/Bradycardia events happened.” All
series are z-normalized and partitioned into training, validation, and held-out test sets (70-20-10).

Compared methods. We compare InstructTime with two state-of-the-art editors: TimeWeaver [19]
and TEdit [[L1], both implemented with the diffusion-based editing procedure from [[11]. Since our
formulation does not require original attributes as input, we adopt the denoising diffusion probabilistic
model sampler from [11]], which only conditions on target attributes.

Evaluation metrics. We evaluate editing quality of adding or removing deceleration events in
HR and SpO,, using three metrics: (1) Dynamic time warping [26]] distance decrease, calculated as
ADTW= mediany, cp, [DTW (X, x:) — DTW(x, Xz )|, measures how much closer the edited series
X is to real observations Dg with target condition than the input x, where lower (more negative)
values indicate better editing. (2) Longest common subsequence [4] similarity increase, calculated
as ALCSS= mediany,cp, [LCSS(X, xz) — LCSS(x, xz)], measures how much more similar X is
to D¢ than x, where higher values indicate better editing. (3) Log Ratio of Target-to-Source [11]],

calculated as RaTS= log ( g ESK; ) where p(€ | x) is estimated by a multi-class classifier trained on

a held-out dataset, measures the relative increase in likelihood of the target attribute ¢ in the edits.

RQ1: Editing quality benchmark. We benchmark editors in both instruction-based and attribute-
based settings. For instruction-based editing, we adapt prior methods by replacing categorical vectors
with text instruction embeddings in their condition encoders. In the attribute-based setting, we input
categorical attribute vectors directly into InstructTime’s instruction encoder to match prior methods.
Table [T] shows that InstructTime is a state-of-the-art editor for synthesizing deceleration events in
NICU vital signs under both settings. Examples of deceleration edits are shown in Figure 3]

HR Bradycardia SpO; Desaturation HR Bradycardia SpO; Desaturation
ADTW | ALCSSt RaTSt ADTW | ALCSSt RaTST ADTW | ALCSSt RaTSt ADTW | ALCSSt RaTS*t
Time Weaver ~ -2.66 0.02 0.01 -4.02 0.11 0.15 Time Weaver ~ -9.23 0.19 0.20 -6.32 0.14 0.28
TEdit -5.34 0.13 0.02 -5.11 0.12 0.15 TEdit -12.91 0.21 0.52 -5.83 0.13 0.28
InstructTime ~ -10.54 0.29 0.18 -8.20 0.16 0.34 InstructTime ~ -11.18 0.24 0.72 -8.63 0.16 0.69
(a) Instruction-based editing (b) Attribute-based editing

Table 1: Benchmark comparison of time series editors for editing decelerations in neonatal vital signs.

InstructTime (ours)
Instructions: "Bradycardia events happened.”

TEdit (previous)
Bradycardia = Yes
samples
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Figure 3: Examples of adding decelerations (bradycardia or desaturation) to normal HR or SpO» from NICU.
InstructTime uses natural language instructions and controls deceleration severity via editing strength w, while
prior diffusion-based method TEdit rely on categorical attributes and generate diverse edits via sampling.
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Figure 4: Impact on InstructTime’s
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RQ2: Editing under data scarcity. To evaluate the real-world utility of InstructTime in medical
research, we first assess the impact of rare-event prevalence on editing quality by downsampling the
no-event HR series (or the event-group SpO; series, due to high prevalence) to achieve deceleration
rates of 0.5, 0.3, 0.1, 0.05, and 0.01. As shown in Figure EKA), InstructTime maintained robust
performance in adding or removing decelerations in neonatal vital signs.

RQ3: Editing with nuanced clinical context. We also assess whether adding nuanced clinical
context to the instruction, alongside the deceleration event description, improves InstructTime’s
editing quality. As shown in Figure f{B), adding clinical intervention (usage of supplemental oxygen)
and clinical outcome (death in 7 days) yields similar editing performance to only describing the
deceleration in the instruction. However, adding patient demographic information (gestational age,
gender, race, ethnicity, and Apgar scores [20]) generally degrades editing quality. We speculate
this may be because overly personalized instructions can reside out-of-distribution in the shared
embedding space (e.g., decelerations may rarely happen to infants with larger gestational age or from
certain demographic population). This result also suggests that adjusting current models to account
for multi-level structure—where time series from the same patient share similar temporal patterns
while those across patients are independent—warrants further investigation.

RQ4: Inspecting diverse deceleration phases in counterfactual edits. Normal neonatal HR
is 120-160 bpm with 5-25 bpm oscillations, and SpOs is 90-100% with 2—-3% fluctuations [1]].
To better understand how deceleration events would appear in normal HR or SpO., we adopt a
paired shapelet classification procedure (details in Appendix [B)) to detect discriminative 0.5-1 minute
subsequences (shapelets) that represent decelerations in counterfactual series edited by InstructTime
versus their inputs. For comparison, we applied the same shapelet detection to randomly sampled
real deceleration time series versus normal ones. As shown in Figure[5] the top shapelets detected
in observed HR converged to a unique pattern: a 1-minute sudden drop from around 150 bpm to
below 80, followed by recovery. In contrast, in the edited series where InstructTime introduced
bradycardia into normal HR, the discriminative subsequence varies with the baseline. With a high
baseline (above 150 bpm), the editor produced a similar severe drop, while with a lower baseline
(e.g., <120 bpm), it generated a global downward shift with shallower, multi-phasic events. This
diversity of shapelets aligns with clinical empirical observations [8]. Similarly, in SpOs, the editor
generally produced desaturation with a global baseline downshift around 90%. Counterfactual edits
also suggested additional shapelets, including sharp drops from 90% to 80% and longer turbulent
episodes below 90%, compared to the single uni-phase drop detected in empirical observations.

4 Conclusion

In summary, we propose InstructTime, the first instruction-based time series editor, enabling nat-
ural language—driven synthesis of clinically significant decelerations in neonatal vital signs with
controllable strength. It shows robust performance under rare-event scarcity, incorporates clinical
context, and produces counterfactual edits that offer pathophysiological insights, with future work on
multi-level modeling, uncertainty estimation, and broader medical applications.

Shapelets From Counterfactual Deceleration Edits H Shapelets From Observed

s B E

SpO2 (%)  Heart Rate (bpm)

Figure 5: For HR and SpO», multi-phase discriminative subsequences (shapelets) of deceleration patterns appear
in counterfactual edits (left), whereas a uni-phase deceleration pattern is observed empirically (right).
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A InstructTime Architecture and Implementation

Multi-resolution encoder £4. The encoder £, maps x into an embedding z, normalized on the
unit hypersphere. To capture both global trends and local fluctuations, £4 uses k parallel 1D CNNs
with kernel sizes proportional to 7', each producing a d-dimensional representation. These are
concatenated into z, € RP, where D = k - d.

Instruction encoder £. The encoder £ maps c into z., also normalized on the hypersphere. A
pretrained text model (paraphrase-mpnet-base-v2 [24l)) first transforms instructions into numeric
features, which are then processed by k parallel MLPs to align with the resolutions of £4. The
concatenated embedding z. thus aligns condition semantics with temporal resolutions of z,,.

Conditional decoder V. Given (z,, z.), the decoder ¥ generates X = ¥(z,, z.). Built on Trans-
former self-attention [32], ¥ models dependencies within each modality and across modalities,
mapping semantic conditions to appropriate time series patterns. The output state corresponding to
the time series token is passed through a linear head to produce a new time series x € R”".

Implementation details. For InstructTime, the time series encoder uses & = 8 parallel CNNs with

kernel sizes proportional to the time series length 7', using fractions 1,2, 2 1 1 L 1 1 T am0er

fractions (1, %, %) are used to capture global properties such as trend and seasonality, while smaller
fractions are intended to encode localized patterns such as abrupt shifts in mean and local variability.
Text instructions are encoded using the pretrained SentenceTransformer model paraphrase-mpnet-
base-v2 [24]], which provides effective embedding of rich semantic meaning from multiple sentences
and is efficient to compute. The resulting vectors are then processed by k£ = 8 parallel MLPs to
generate instruction embeddings z.. The embeddings z, and z. have dimension D = 768. When
training InstructTime, we jointly optimize a contrastive loss and a reconstruction loss, with their
relative contributions to the total loss controlled by a balancing weight «.. In our experiments, o
is set so that the unit contribution of the reconstruction loss is 10~ relative to the contrastive loss,
with y set to 1 by default. InstructTime is trained on all datasets using a single NVIDIA V100 GPU.
Training completed within 1 hour for each dataset.

B Interpreting Counterfactual Edits

B.1 Paired Shapelet Classification

To interpret how counterfactual edits differ from the original time series, we employ a paired shapelet
classification approach. We consider aligned pairs of raw inputs X,y € R™*7 and their edited
counterparts Xegie € R"*T, where (2, ¥%4,) denotes the raw—edited pair for sample i € {1,...,n}.
Candidate shapelets s € R? are extracted from the edited series, and their discriminative value is
measured by comparing distances to both members of each pair. For sample i, the paired distance
difference is defined as

él = d(S,xi ) - d(sﬂxédi[)v

raw

where d(s,x) denotes the minimum Euclidean distance between s and any subsequence of x of
length ¢. The discriminative strength of a shapelet is quantified by a one-direction signal-to-noise

ratio (SNR):
SNR(s) =max| 0, ECT ,
o2(Ag) + €

where 1(Ag) and 02(A4) denote the mean and variance of the paired distance differences across
samples. This formulation ensures that only shapelets with (A4) > O—that is, subsequences consis-
tently closer to the edited time series than to the raw time series—receive a positive score. Shapelets
with ;1(Ag) < 0 are discarded, as they do not represent patterns introduced by the editing process.
This paired scoring directly highlights temporal discriminative subsequences that are introduced
by the editor. Compared to traditional unpaired shapelet discovery, the paired formulation reduces
variance and computing cost, removes the need for threshold tuning, and produces interpretable
subsequences that reveal how counterfactual time series editing alters temporal structure.

Furthermore, the reliability of a shapelet in distinguishing between raw and counterfactual time series
can be evaluated using the SNR. A high SNR indicates that the shapelet consistently matches one
side more closely across pairs, with a large average gap and little variability, making it a strong and
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reliable discriminator. A low SNR, by contrast, reflects either a small average difference or high
variability across pairs, suggesting that the shapelet provides weak or unstable discrimination.

B.2 Implementation Details

We use a sliding-window approach to detect discriminative subsequences (shapelets) that separate raw
from edited time series. Candidate shapelets are extracted from the augmented series, each defined
by a length of 30-60 time steps (corresponding to 1-2 minutes of HR and SpOs) and a stride of 5
steps. For each candidate, we compute the minimum Euclidean distance to all series in both raw and
augmented sets. Candidates are scored using a signal-to-noise ratio (SNR) that favors patterns closer
to the augmented series than to the raw series. The top candidates with the highest positive scores are
retained as representative patterns of the edited series.
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