
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RELIC: A RECIPE FOR 64K STEPS OF IN-CONTEXT
REINFORCEMENT LEARNING FOR EMBODIED AI

Anonymous authors
Paper under double-blind review

ABSTRACT

Intelligent embodied agents need to quickly adapt to new scenarios by integrating
long histories of experience into decision-making. For instance, a robot in an
unfamiliar house initially wouldn’t know the locations of objects needed for tasks
and might perform inefficiently. However, as it gathers more experience, it should
learn the layout of its environment and remember where objects are, allowing it to
complete new tasks more efficiently. To enable such rapid adaptation to new tasks,
we present ReLIC, a new approach for in-context reinforcement learning (RL) for
embodied agents. With ReLIC, agents are capable of adapting to new environments
using 64,000 steps of in-context experience with full attention while being trained
through self-generated experience via RL. We achieve this by proposing a novel pol-
icy update scheme for on-policy RL called “partial updates” as well as a Sink-KV
mechanism that enables effective utilization of a long observation history for em-
bodied agents. Our method outperforms a variety of meta-RL baselines in adapting
to unseen houses in an embodied multi-object navigation task. In addition, we find
that ReLIC is capable of few-shot imitation learning despite never being trained
with expert demonstrations. We also provide a comprehensive analysis of ReLIC,
highlighting that the combination of large-scale RL training, the proposed partial
updates scheme, and the Sink-KV are essential for effective in-context learning.

1 INTRODUCTION

A desired capability of intelligent embodied agents is to rapidly adapt to new scenarios through
experience. An essential requirement for this capability is integrating a long history of experience
into decision-making to enable an agent to accumulate knowledge about the new scenario that it is
encountering. For example, a robot placed in an unseen house initially has no knowledge of the home
layout and where to find objects. The robot should leverage its history of experiences of completing
tasks in this new home to learn the home layout details, where to find objects, and how to act to
complete tasks successfully.

To achieve adaptation of decision-making to new tasks, prior work has leveraged a technique called
in-context reinforcement learning (RL) where an agent is trained with RL to utilize past experience
in an environment (Wang et al., 2016; Team et al., 2023; Duan et al., 2016; Grigsby et al., 2023;
Melo, 2022). By using sequence models over a history of interactions in an environment, these
methods adapt to new scenarios by conditioning policy actions on this context of interaction history
without updating the policy parameters. While in-context RL has demonstrated the ability to scale to
a context length of a few thousand agent steps (Team et al., 2023; Grigsby et al., 2023), this falls short
of the needs of embodied AI where single tasks by themselves can span thousands of steps (Szot
et al., 2021). As a result, the agent cannot learn from multiple task examples because the context
required for multiple tasks cannot be accommodated within the policy context. Furthermore, prior
work typically focuses on non-visual tasks (Grigsby et al., 2023; Melo, 2022; Ni et al., 2023), where
larger histories are easier to incorporate due to the compact state representation.

In this work, we propose a new algorithm for in-context RL, which enables effectively utilizing and
scaling to 64,000 steps of in-context experience in partially observable, visual navigation tasks. Our
proposed method called Reinforcement Learning In Context (ReLIC), achieves this by leveraging
a novel update and data collection technique for training with long training contexts in on-policy
RL. Using a long context for existing RL algorithms is prohibitively sample inefficient, as the agent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ReLIC: trained with reinforcement learning to in context adapt to new tasks

In-context adapt

New Robot Start
New Target Object

64,000 observations
of context

Episode 1 Episode T

Mobile Robot

Episode 1:
Inefficient path
to object

Episode : After
adapting to new
house, efficient
path to object

T

Target Object
to Find

Unseen House
not in Training

Figure 1: Overview of the ReLIC approach and problem setup. ReLIC learns a “pixels-to-actions"
policy from reward alone via reinforcement learning capable of in-context adapting to new tasks at
test time. The figure shows the trained ReLIC policy finding objects in an unseen house. In earlier
episodes, the agent randomly explores to find the small target object since the scene is new. But after
64k steps of visual observations, ReLIC efficiently navigates to new target objects.

must collect an entire long context of experience before updating the policy. In addition, the agent
struggles to utilize the experience from long context windows due to the challenge of learning long-
horizon credit assignment and high-dimensional visual observations. To address this problem, we
introduce “partial updates" where the policy is updated multiple times within a long context rollout
over increasing context window lengths. We also introduce Sink-KV to further increase context
utilization by enabling more flexible attention over long sequences by adding learnable sink key and
value vectors to each attention layer. These learned vectors are prepended to the input’s keys and
values in the attention operation. Sink-KV stabilizes training by enabling the agent to not attend to
low information observation sequences.

We test ReLIC in a challenging indoor navigation task where an agent in an unseen house operating
only from egocentric RGB perception must navigate to up to 80 small objects in a row, which spans
tens of thousands steps of interactions. ReLIC is able to rapidly in-context learn to improve with
subsequent experience, whereas state-of-the-art in-context RL baselines struggle to perform any
in-context adaptation. We empirically demonstrate that partial updates and Sink-KV are necessary
components of ReLIC. We also show it is possible to train ReLIC with 64k context length. Surpris-
ingly, we show ReLIC exhibits emergent few-shot imitation learning and can learn to complete new
tasks from several expert demonstrations, despite only being trained with RL and never seeing expert
demonstrations (which vary in distribution from self-generated experiences) during training. We
find that ReLIC can use only a few demonstrations to outperform self-directed exploration alone. In
summary, our contributions are:

1. We propose ReLIC for scaling in-context learning for online RL, which adds two novel components
of partial updates and Sink-KV. We empirically demonstrate that this enables in-context adaptation
of over 64k steps of experience in visual, partially observable embodied AI problems, whereas
baselines do not improve with more experience.

2. We demonstrate ReLIC is capable of few-shot imitation learning despite only being trained with
self-generated experience from RL.

3. We empirically analyze which aspects of ReLIC are important for in-context learning and find that
sufficient RL training scale, partial updates, and the Sink-KV modification are all critical.

2 RELATED WORK

Meta RL. Prior work has explored how agents can learn to quickly adapt to new scenarios through
experience. Meta-RL deals with how agents can learn via RL to quickly adapt to new scenarios such
as new environment dynamics, layouts, or task specifications. Since Meta-RL is a large space, we only

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

focus on the most relevant Meta-RL variants and refer the readers to Beck et al. (2023) for a complete
survey of Meta-RL. Some Meta-RL works explicitly condition the policy on a representation of
the task and adapt by inferring this representation in the new setting (Zhao et al., 2020; Yu et al.,
2020; Rakelly et al., 2019). Our work falls under the “in-context RL” Meta-RL paradigm where the
policies implicitly infer the context by taking an entire history of interactions as input. RL2 Duan
et al. (2016) trains an RNN that operates over a sequence of episodes with RL and the agent implicitly
learns to adapt based on the RNN hidden state. Other works leverage transformers for this in-context
adaptation (Team et al., 2023; Melo, 2022; Laskin et al., 2022). Raparthy et al. (2023); Lee et al.
(2023) also address in-context learning for decision making, but do so via supervised learning
from expert demonstrations, whereas our work only requires reward. Most similar to our work is
AMAGO (Grigsby et al., 2023), an algorithm for in-context learning through off-policy RL. AMAGO
modifies a standard transformer with off-policy loss to make it better suited for long-context learning,
with changes consisting of: a shared actor and critic network, using Leaky ReLU activations, and
learning over multiple discount factors. Our work does not require these modifications, instead
leveraging standard transformer architectures, and proposes a novel update scheme and Sink-KV for
scaling the context length with on-policy RL. Empirically, we demonstrate our method scaling to 8×
longer context length and on visual tasks, whereas AMAGO focuses primarily on state-based tasks.

Scaling context length. Another related area of research scaling the context length of transformers.
Prior work extend the context length using a compressed representation of the old context, either as
a recurrent memory or a specialized token (Dai et al., 2019; Munkhdalai et al., 2024; Zhang et al.,
2024). Other work address the memory and computational inefficiencies of the attention method by
approximating it (Beltagy et al., 2020; Wang et al., 2020a) or by doing system-level optimization
(Dao, 2023). Another direction is context extrapolation at inference time either by changing the
position encoding (Su et al., 2023; Press et al., 2022) or by introducing attention sink (Xiao et al.,
2023). Our work utilizes the system-level optimized attention (Dao, 2023) and extends attention
sinks for on-policy RL in Embodied AI.

Embodied AI. Prior work in Embodied AI has primarily concentrated on the single episode evaluation
setting, where an agent is randomly initialized in the environment at the beginning of each episode and
is tasked with taking the shortest exploratory path to a single goal specified in every episode (Wijmans
et al., 2019; Yadav et al., 2022). In contrast, Wani et al. (2020) introduced the multi-ON benchmark,
which extends the complexity of the original task by requiring the agent to navigate to a series of
goal objects in a specified order within a single episode. Here, the agent must utilize information
acquired during its journey to previous goals to navigate more efficiently to subsequent locations. Go
to anything (GOAT) (Chang et al., 2023), extended this to the multi-modal goal setting, providing
a mix of image, language, or category goals as input. In comparison, we consider a multi-episodic
setting where the agent is randomly instantiated in the environment after a successful or failed trial
but has access to the prior episode history.

3 METHOD

We introduce Reinforcement Learning In Context (ReLIC) which enables agents to in-context adapt
to new episodes without any re-training. ReLIC is built using a transformer policy architecture that
operates over a long sequence of multi-episode observations and is trained with online RL. The
novelty of ReLIC is changing the base RL algorithm to more frequently update the policy with
increasingly longer contexts within a policy rollout and adding Sink-KV to give the model the ability
to avoid attending to low-information context. Section 3.1 provides the general problem setting
of adapting to new episodes. Section 3.2 details the transformer policy architecture. Section 3.3
describes the novel update scheme of ReLIC. Finally, Section 3.4 goes over implementation details.

3.1 PROBLEM SETTING

We study the problem of adaptation to new scenarios in the formalism of meta-RL (Beck et al.,
2023). We have a distribution of training POMDPsMi ∼ p(M), where eachMi is defined by tuple(
Si,S0i ,Oi,A, T , γ,Ri

)
for observations Oi, states Si which are not revealed to the agent, starting

state distribution S0i , action space A, transition function T , discount factor γ, and rewardRi. In our
setting, the states, observations, and reward vary per POMDP, while the action space, discount factor,
and transition function is shared between all POMDPs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

From a starting state s0 ∼ S0i , a policy π, mapping observations to a distribution over actions, is
rolled out for an episode which is a sequence of interactions until a maximum number of timesteps,
or a stopping criteria. We refer to a trial as a sequence of episodes within a particularMi. The
objective is to learn a policy π that maximizes the expected return of an episode. At test-time the
agent is evaluated on a set of holdout POMDPs.

3.2 RELIC POLICY ARCHITECTURE

Similar to prior work (Grigsby et al., 2023; Team et al., 2023), ReLIC implements in-context RL via
a transformer sequence model that operates over a history of interactions spanning multiple episodes.
At step t within a trial, ReLIC predicts current action at based on the entire sequence of previous
observations o1, . . . , ot which may span multiple episodes. In the embodied AI settings we study,
the observation ot consists of an egocentric RGB observation from the robot’s head camera along
with proprioceptive information and a specification of the current goal. Each of these observation
components are encoded using a separate observation encoding network, and the embeddings are
concatenated to form a single observation embedding et. A causal transformer network (Vaswani
et al., 2023) hθ inputs the sequence of embeddings hθ(e1, . . . , et). From the transformer output, a
linear layer then predicts the actions.

The transformer model hθ thus bears the responsibility of in-context learning by leveraging associ-
ations between observations within a trial. This burden especially poses a challenge in our setting
of embodied AI since the transformer must attend over a history of thousands of egocentric visual
observations. Subsequent visual observations are highly correlated, as the agent only takes one action
between observations. Knowing which observations are relevant to attend to in deciding the current
action is thus a challenging problem. In this work, we build our architecture around full attention
transformers using the same architecture as the LLaMA language model (Touvron et al., 2023), but
modify the number of layers and hidden dimension size to appropriately reduce the parameter count
for our setting.

We also introduce an architectural modification to the transformer called Sink-KV to improve the
transformer’s ability to attend over a long history of visual experience from an embodied agent.
Building off the intuition that learning to attend over a long sequence of visual observations is
challenging, we introduce additional flexibility into the core attention operation by prepending the key
and value vectors with a per-layer learnable sequence of sink KV vectors. Specifically, recall that for
an input sequence X ∈ Rn×d of n inputs of embedding dimension d, the attention operator projects
X to keys, queries and values notated as K,Q, V respectively and all elements of Rn×d where
we assume all hidden dimensions are d for simplicity. The standard attention operation computes
softmax

(
QK⊤
√
d

)
V . We modify calculating the attention scores by introducing learnable vectors

Ks, Vs ∈ Rs×d where s is the specified number of “sinks”. We then prepend Ks, Vs to the K,V of
the input sequence before calculating the attention. Note that the output of the attention operation
is still n × d, as in the regular attention operation, as the query vector has no added component.
We repeat this process for each attention layer of the transformer, introducing a new Ks, Vs in each
attention operation. Sink-KV only results in nlayers × s× d more parameters, which is 0.046% of
the 4.5M parameter policy used in this work.

Sink-KV gives the sequence model more flexibility on how to attend over the input. Prior works
observe that due to the softmax in the attention, the model is forced to attend to at least one token from
the input (Miller, 2023; Xiao et al., 2023). Sink-KV removes this requirement by adding learnable
vectors to the key and value. In sequences of embodied visual experiences, this is important as
attention heads can avoid attending over any inputs when there is no new visual information in the
current observations. This flexibility helps the agent operate over longer sequence lengths.

The calculation of the attentions scores S using the Softmax forces the tokens to attend to values V ,
even if all available values do not hold any useful information, since the sum of the scores is 1 (Miller,
2023). This is especially harmful in cases where the task requires exploration. As the agent explores
more, a more useful information may appear in the sequence. If the agent is forced to attend to low
information tokens at the beginning of the exploration, it will introduce noise to the attention layers.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Partial Update Pseudocode
1 Define number of steps in trial T , number of partial updates K, step rollout storage Xrollout.;
2 while true do
3 Clear the rollout storage;
4 Reset the environment workers;
5 Set i← 0;
6 while i < K do
7 Collect T/K environment steps per environment worker and add to Xrollout;
8 if rollout storage is full then
9 PPOUpdate(Xrollout)

10 end
11 else
12 PPOUpdate(Xrollout[: i · T/K]) ;
13 Update KV cache;
14 Shuffle old episodes;
15 end
16 i← i+ 1;
17 end
18 end

3.3 RELIC LEARNING

ReLIC is updated through online RL, namely PPO (Schulman et al., 2017). However, for the agent to
be able to leverage a long context window for in-context RL, it must also be trained with this long
context window. PPO collects a batch of data for learning by “rolling out” the current policy for a
sequence of T interactions in an environment. To operate on a long context window spanning an
entire trial, the agent must collect a rollout of data that consists of this entire trial. This is challenging
because, in the embodied tasks we consider, we seek to train agents on trials lasting over 64k steps,
which consists of at least 130 episodes. As typical with PPO, to speed up data collection and increase
the update batch size we use multiple environment workers each running a simulation instance that
the policy interacts with in parallel. With 32 environment workers, this corresponds to ≈ 130k
environment steps between every policy update. PPO policies trained in common embodied AI tasks,
such as OBJECTNAV, have only 128 steps between updates and require ≈ 50k updates to converge
(for 32 environment workers, 128 steps per worker between updates and 200M environment steps
required for convergence) (Yadav et al., 2022). Executing a similar number of updates would require
ReLIC to collect ≈ 6 billion environment interactions.

ReLIC addresses this problem of sample inefficiency by introducing a partial update scheme where
the policy is updated multiple times throughout a rollout. First, at the start of a rollout of length T , all
environment workers are reset to the start of a new episode. Define the number of partial updates as
K. At step i ∈ [0, T] in the rollout, the policy is operating with a context length of i− 1 previous
observations to determine the action at step i. Every T/K samples in the rollout, we update the
policy. Therefore, at update N within the rollout, the agent has collected NT/K of the T samples
in the rollout. The agent is updated using a context window of size NT/K, however, the PPO loss
is only applied to the final T/K outputs. The policy is changing every T/K samples in the rollout,
so the policy forward pass must be recalculated for the entire NT/K window rather than caching
the previous (N − 1)T/K activations. In the last update in the rollout, after collecting the last T/K
steps, we update the policy with the loss applied on all steps in the rollout. We refer to this step as
full update. At the start of a new rollout, the context window is cleared and the environment workers
again reset to new episodes.

3.4 IMPLEMENTATION DETAILS

The transformer is modeled after the LLaMA transformer architecture (Touvron et al., 2023) initialized
from scratch. Our policy uses a pretrained visual encoder which is frozen during training. A MLP
projects the output of the visual encoder into the transformer. We only update the parameters of the
transformer and projection layers while freezing the visual encoder since prior work shows this is an

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14
of In-context Episodes

0.1

0.2

0.3

0.4

Su
cc

es
s r

at
e

RL-ICL
RL-ICL-No-IEA
Transformer-SE
Transformer-XL
RL2

(a) Success Rate

0 2 4 6 8 10 12 14
of In-context Episodes

0.05

0.10

0.15

0.20

SP
L

RL-ICL
RL-ICL-No-IEA
Transformer-SE
Transformer-XL
RL2

(b) Efficiency

Figure 2: Comparing the in-context learning capability of ReLIC and baselines on EXTOBJNAV.
The number of episodes in the trial is displayed on the x-axis. The y-axis displays the success or
efficiency at that episode count. Agents capable of in-context learning will increase in success and
efficiency when encountering more episodes. Each method is run for 3 random seeds and evaluated
on 10k distinct sequences. Error bars are standard deviations over trial outcomes between the 3 seeds.

effective strategy for embodied AI (Khandelwal et al., 2022; Majumdar et al., 2023). For faster policy
data collection, we store the transformer KV cache between rollout steps. To fit long context during
the training in limited size memory, we used low-precision rollout storage, gradient accumulation
(Huang et al., 2019) and flash-attention (Dao, 2023). After each policy update, we shuffle the older
episodes in the each sequence and update the KV-cache. Shuffling the episode serves as regularization
technique since the agent sees the same task for a long time. It also reflects the lack of assumptions
about the order of episodes, an episode should provide the same information regardless of whether
the agent experiences it at the beginning or at the end of the trial.

We use the VC-1 visual encoder and with the ViT-B size (Majumdar et al., 2023). We found the
starting VC-1 weights performed poorly at detecting small objects, which is needed for the embodied
AI tasks we consider. We therefore finetuned VC-1 on a small objects classification task. All
baselines use this finetuned version of VC-1. We provide more details about this VC-1 finetuning in
Appendix D and details about all hyperparameters in Appendix B.2.

4 EXPERIMENTS

We first introduce the Extended Object Navigation (EXTOBJNAV) task we use to study in-context
learning for embodied navigation. Next, we analyze how ReLIC enables in-context learning on this
task and outperforms prior work and baselines. We then analyze ablations of ReLIC and analyze its
behaviors. We also show ReLIC is capable of few-shot imitation learning. Finally, we show that
ReLIC outperforms the methods in Lee et al. (2023) on the existing Darkroom and Miniworld tasks.

4.1 EXTOBJNAV: EXTENDED OBJECT NAVIGATION

To evaluate ICL capabilities for embodied agents, we introduce EXTOBJNAV, an extension of the
existing Object Navigation (OBJECTNAV) benchmark. EXTOBJNAV assesses an agent’s ability to
find a sequence of objects in a house while operating from egocentric visual perception. For each
object, the agent is randomly placed in a house and must locate and navigate to a specified object
category. The agent used is a Fetch robot equipped with a 256× 256 RGB head camera. Additionally,
the agent possesses an odometry sensor to measure its relative displacement from the start of the
episode. Navigation within the environment is executed through discrete actions: move forward 0.25
meters, turn left or right by 30 degrees, and tilt the camera up and down by 30 degrees. The agent
also has a stop action, which ends the episode.

EXTOBJNAV uses scenes from the Habitat Synthetic Scenes Dataset (HSSD) (Khanna et al., 2023)
along with a subset of the YCB object dataset (Calli et al., 2015) containing 20 objects types. Note
that EXTOBJNAV requires navigating to small objects unlike other OBJECTNAV variants that use

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 5 10 15
of In-context Episodes

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s r

at
e

52M
157M
262M
367M
472M
576M
681M
786M
891M
996M

(a) Learning vs. ICL

0 10 20 30
of In-context Episodes

0.4

0.6

0.8

Su
cc

es
s r

at
e

With partial updates
Without partial updates

(b) Update Scheme Ablation

0 1 2 3
Steps 1e8

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

No sink
Sink Token
Sink K0V0
Sink KV

(c) Attention Sink Ablation

Figure 3: Analyzing ReLIC ICL capabilities. Fig. 3a shows increased RL training results in agents
that have a higher base success and stronger ICL capabilities with error bars giving standard error
on the evaluation episodes. Fig. 3b shows the partial updates are important in ReLIC. Fig. 3c shows
Sink-KV is important for learning speed and stability. The results in Fig.3b,3c use the smaller
ReplicaCAD scenes for easier analysis and thus have higher overall success rates. These results
performed on the easier ReplicaCAD scenes to save compute, so the numbers are higher overall.

large receptacles as goals (Team, 2021). This allows us to increase the dataset diversity by sampling
objects randomly in the environment, unlike OBJECTNAV, where the receptacles are fixed parts of
the scanned meshes. The random sampling also precludes the agent from using priors over object
placements in scenes, forcing it to rely on the experience in its context.

EXTOBJNAV defines a trial as a sequence of episodes within a fixed home layout, where a home
layout is defined by a combination of a floorplan, a furniture layout and set of object placements. A
home layout contains on an average 22 objects where multiple object instances may be of the target
category. Within an episode in the trial, a target object category is randomly selected and the agent is
randomly placed in the house. The episode is successful if the agent calls the stop action within 2
meters of the object, with at least 10 pixels of the object in the current view. If the object is not found
within 500 steps the episode counts as a failure.

We evaluate the agents on unseen scenes from HSSD and report the success rate (SR) and Success-
weighted by Path Length (SPL) metrics (Anderson et al., 2018). Specifically, we look at the SR and
SPL of an agent as it accumulates more episodes in-context. Ideally, with more in-context episodes
within a home layout, it should be more adept at finding objects and its SR and SPL should improve.
See Appendix A for further details on the EXTOBJNAV.

4.2 IN-CONTEXT LEARNING ON EXTOBJNAV

In this section, we compare the ability of ReLIC and baselines to in-context learn in a new home
layout. We compare ReLIC to the following baselines:

• RL2 Duan et al. (2016): Use an LSTM and keep the hidden state between trial episodes.
• Transformer-XL (TrXL) Dai et al. (2019): Use Transformer-XL and updates the constant-

size memory recurrently. This is the model used in Team et al. (2023) trained in our setting.
Following Team et al. (2023) we use PreNorm (Parisotto et al., 2019) and gating in the feedforward
layers (Shazeer, 2020).

• ReLIC-No-IEA: ReLIC without Inter-Episode Attention (IEA). Everything else, including the
update scheme is the same as ReLIC.

• Transformer-SE: A transformer-based policy operating over only a single episode (SE) and
without the update schemes from ReLIC.

All baselines are trained for 500M steps using a distributed version of PPO (Wijmans et al., 2019).
Methods that utilize multi-episode context are trained with a context length of 4k, and use 8k context
length during inference (unless mentioned otherwise, e.g. in our long-context experiments). The
results in Figure 2 demonstrate ReLIC achieves better performance than baselines on 8k steps of
ICL, achieving 43% success rate v.s. 22% success rate achieved by the closest performing baseline
(Transformer-SE).

Additionally, ReLIC is able to effectively adapt to new home layouts throughout the course of the trial.
In the first episode of the trial, transformer-based baseline methods attain a similar base performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of around 20% success rate. However, as more episodes arrive, the performance of ReLIC increases.
The recurrent models, Transformer-XL and RL2, have lower base performance at 10% success rate
and show no in-context learning. The performance of RL2 degrades with more in-context episodes,
which is aligned with the inability of the LSTM to model long sequences.

After 15 episodes of in-context experience, the success rate of ReLIC increases from 23% to 43%. The
baselines do not possess this same ICL ability and maintain constant performance with subsequent
in-context episodes. ReLIC also in-context learns to navigate faster to objects, as measured by the
gap in SPL. As the trial progresses, the agent is able to more efficiently navigate to objects in the
house with the SPL of ReLIC increasing from 0.07 to 0.188. The baselines are unable to improve
efficiency in-context and maintain a SPL of 0.025 to 0.075 throughout the entire trial.

4.3 RELIC ABLATIONS AND ANALYSIS

We demonstrate that the partial updates in ReLIC and Sink-KV are crucial to learning with RL
over long context windows and acquiring ICL capabilities. We run these ablations in the smaller
ReplicaCAD (Szot et al., 2021) scenes to make methods faster to train, but other details of the task
remain the same. We then show that ICL emerges later in the training and the context length in ReLIC
can be even further increased.

No Partial Updates. Firstly, we remove the partial updates in ReLIC and find that it performs poorly
(Figure 3b), achieving 40% lesser SR at the first episode. This model also shows little ICL abilities
with the SR only increasing 5% by the end of the trial versus a 25% increase when using partial
updates.

Sink-KV. Next, we demonstrate that using Sink-KV is necessary for sample-efficient in-context RL
learning. We trained the model on ReplicaCAD with and without attention sinks. The learning curves
in Figure 3c shows that learning is more stable and faster with Sink-KV which achieves 90% success
rate at 200M steps. It also shows that Sink-KV performs similar to Softmax One (Miller, 2023),
referred to as Sink K0V0. Without attention sink mechanisms, learning is slow and achieves less than
40% success rate after 200M steps and reaching 64% at 300M steps. Using sink token (Xiao et al.,
2023), the training becomes unstable, achieving 40% success rate at 200M steps training and reaching
80% success rate at 300M steps. The details of the different sink attentions, their implementations
and how the attention heads use the Sink-KV can be found in Appendix E.

Training Steps v.s. ICL Abilities. We find that ReLIC only acquires ICL capabilities after sufficient
RL training. As demonstrated in Figure 3a, the agent is only capable of ICL after 157M steps
of training. Models trained for 52M and 157M remain at constant success with more in-context
experience. Further training does more than just increase the base agent performance in the first
episode of the trial. From 262M steps to 367M steps, the agent base performance increases by 2%, yet
the performance after 15 episodes of ICL performance increases 10%. This demonstrates that further
training is not only improving the base capabilities of the agent to find objects, but also improving
the agent’s ability to utilize its context across long trials spanning many episodes.

Context length generalization. Next, we push the abilities of ReLIC to in-context learn over contexts
much larger than what is seen during training. In this experiment, we evaluate ReLIC model, trained
with 4k context length, on 32k steps of experience, which is enough to fit 80 episode trials in context.
Assuming that the simulator is operating at 10Hz, this is almost 1 hour of agent experience within
the context window. Note that for this experiment, we use our best checkpoint, which is trained
for 1B steps. The results demonstrate that ReLIC can generalize to contexts 8× larger at inference.
Figure 4a shows ReLIC is able to further increase the success rate to over 55% after 80 in context
episodes and consistently maintains performance above 50% after 20 in-context episodes.

64k steps trials. Finally, we investigate scaling training ReLIC with 64k context length. We use the
same hyperparameters as Section 4.2, but increase the number of partial updates per rollout such that
the policy is updated every 256 steps, the same number of steps used in ReLIC. Fig. 4b shows that
the model can in-context learn over 175 episode and continue to improve success rate. More details
are available at Appendix C.5.

In Appendix C.1 we analyze the performance of ReLIC per object type. In Appendix C.2 we qualita-
tively analyze what the agent attends to in successful and failure episodes. Finally, in Appendix C.3,
we show that not shuffling episodes in the context during training leads to worse performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80
of In-context Episodes

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

(a) Context length generalization

0 50 100 150
of In-context Episodes

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

(b) 64k Train Context Length

0 5 10 15
of In-context Episodes

0.3

0.4

0.5

Su
cc

es
s r

at
e

Agent-generated Episodes
Shortest Path Demos

(c) Few-Shot Imitation Learning

Figure 4: (a) ReLIC trained with context length 4k generalizes to operating at 32k steps of in context
experience in a new home layout. (b) ReLIC trained at 64k context length shows ICL abilities over
175 episodes. (c) ReLIC can do few-shot imitation learning despite not training for it. The error bars
represent the standard error.

0 10 20 30 40
of In-context Episodes

0

20

40

60

80

Re
tu

rn
s

DPT
AD
PPO
RL2
ReLIC (ours)

(a) Darkroom result

0 5 10 15 20 25 30 35 40
of In-context Episodes

0

10

20

30

40

Re
tu

rn
s

DPT
AD
PPO

RL2
ReLIC (ours)

(b) Miniworld result

Figure 5: ICL comparison of ReLIC and baselines in the Darkroom and Miniworld tasks. ReLIC has
a higher base performance and adapts to new tasks with less experience. The baselines numbers are
obtained from Figures 4b,d of Lee et al. (2023). Error bars are the standard error of the evaluation
results computed over 2k sequences.

4.4 EMERGENT FEW-SHOT IMITATION LEARNING
In addition to learning in-context from self-generated experience in an environment, ReLIC can also
use its context to learn from demonstrations provided by an external agent or expert, despite never
being trained on demonstrations and only learning from self-generated experience. We consider the
setting of few-shot imitation learning (Duan et al., 2017; Wang et al., 2020b) where an agent is given
a set of trajectories {τ1, . . . , τN} demonstrating behavior reaching desired goals {g1, . . . , gN}. The
agent must then achieve a new gN+1 in new environment configurations using these demonstrations.
ReLIC is able to few-shot imitation learn by taking the expert demonstration as input via the context.
Specifically, we generate N expert shortest path trajectories navigating to random objects from
random start positions in an unseen home layout. The success rate of these demos is around 80%
due to object occlusions hindering the shortest path agent from viewing the target object which is
required for success. These N trajectories are inserted into the context of ReLIC and the agent is
instructed to navigate to a new object in the environment.

In Figure 4c we show that ReLIC can utilize these expert demonstrations despite never seeing such
shortest paths during training. Figure 4c shows the success rate of ReLIC in a single episode after
conditioning on some number of shortest path demonstrations. More demonstrations cover more of
the house and the agent is able to improve navigation success. We also compare to the success rate of
an agent that has N episodes of experience in the house as opposed to N demonstrations. Using the
demonstrations results in better performance with 5% higher success rate for N = 16.

4.5 DARKROOM AND MINIWORLD

In this section, we evaluate ReLIC on the Darkroom (Zintgraf et al., 2020) and Miniworld (Chevalier-
Boisvert, 2018) environments and compare to the results from Lee et al. (2023) to provide a com-
parison with existing baselines on these simpler benchmarks. We directly take the numbers from
Lee et al. (2023) which include Decision-Pretrained Transformer (DPT), a supervised pretraining
method for in-context meta-RL, Algorithm Distillation (AD) (Laskin et al., 2022), Proximal Policy
Optimization (PPO) and RL2. ReLIC is trained with context length 512, which fits 10 Miniworld and
5 Darkroom episodes. Policies are evaluated with 40 in-context episodes. Note that DPT is trained

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

with actions from an optimal policy in these environments while ReLIC is not. Full details are in
Appendix B.3.

Darkroom. Figure 5a shows that ReLIC outperforms all previous methods in the Darkroom task.
Specifically, ReLIC achieves base performance of 32 while the other methods have base performance
lower than 2 returns. ReLIC reaches 89 returns after 10 in-context episodes which is higher than 75
achieved by DPT after 39 in-context episodes.

Miniworld. ReLIC has a higher base performance of 30 episode return compared to the best base
performance of 10 as shown in Figure 5b. It quickly reaches 42 returns after just 2 in-context episodes
while DPT reaches the same result after 14 in-context episodes. ReLIC also shows stable performance
as the number of episodes increase compared to DPT which shows oscillation in the performance. In
Appendix C.4, we also show the importance of Sink-KV and partial updates in both tasks.

5 CONCLUSION AND LIMITATIONS

The ability of an agent to rapidly adapt to new environments is crucial for successful Embodied
AI tasks. We introduced ReLIC, an in-context RL method that enables the agent to adapt to new
environments by in-context learning with up to 64k environment interactions and visual observations.
We studied the two main components of ReLIC: partial updates and the Sink-KV and showed both
are necessary for achieving such in-context learning. We showed that ReLIC results in significantly
better performance on a challenging long-sequence visual task compared to the baselines.

Limitations of the approach are that we found for ICL to emerge, it requires a diverse training dataset
on which the model can not overfit. There is no incentive for the model to learn to use the context if
it can overfit the task. We were able to address that in the dataset generation by creating different
object arrangements for each scene which made it challenging for the model to memorize the objects
arrangements. Another is that our study only focuses on several environments. Future work can
explore this same study in more varied environments such as a mobile manipulation task where an
agent needs to rearrange objects throughout the scene. Finally, ReLIC requires large amounts of
RL training to obtain in-context learning capabilities. The success of ReLIC in ExtObjNav is also
relative low for practical applications. One path to improving this performance is to scale training
with more RL training and in-context learning. Figure 4b shows the performance is still improving
after 64k steps of in-context experience. Figure 16 also shows that ReLIC is still improving after 1
billion RL steps. Another path is to improve ability to generalize to new scenes by increasing the
number of training scenes from the 37 in the HSSD dataset used in ExtObjNav through procedurally
generated scenes.

REFERENCES

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On evaluation of
embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020.

Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar.
The ycb object and model set: Towards common benchmarks for manipulation research. In 2015
international conference on advanced robotics (ICAR), pp. 510–517. IEEE, 2015.

Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv Shah, So Yeon Min,
Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra, et al. Goat: Go to any thing. arXiv preprint
arXiv:2311.06430, 2023.

Maxime Chevalier-Boisvert. Miniworld: Minimalistic 3d environment for rl & robotics research.
https://github.com/maximecb/gym-miniworld, 2018.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context, 2019.

10

https://github.com/maximecb/gym-miniworld

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in neural
information processing systems, 30, 2017.

Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scalable in-context reinforcement learning for
adaptive agents. arXiv preprint arXiv:2310.09971, 2023.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with
stochastic depth, 2016.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism, 2019.

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but effective:
Clip embeddings for embodied ai. CVPR, 2022.

Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Schacklett, Dhruv Batra,
Alexander Clegg, Eric Undersander, Angel X Chang, and Manolis Savva. Habitat synthetic scenes
dataset (hssd-200): An analysis of 3d scene scale and realism tradeoffs for objectgoal navigation.
arXiv preprint arXiv:2306.11290, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Jonathan N. Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and
Emma Brunskill. Supervised pretraining can learn in-context reinforcement learning, 2023. URL
https://arxiv.org/abs/2306.14892.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen, Sneha Silwal,
Aryan Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra Malik, Dhruv Batra, Yixin Lin, Olek-
sandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we in the search for an
artificial visual cortex for embodied intelligence? arXiv preprint arXiv:2303.18240, 2023.

Luckeciano C Melo. Transformers are meta-reinforcement learners. In International Conference on
Machine Learning, pp. 15340–15359. PMLR, 2022.

Evan Miller. Attention Is Off By One. https://www.evanmiller.org/
attention-is-off-by-one.html, 2023. [Online; accessed 11-May-2024].

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention, 2024.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine in
rl? decoupling memory from credit assignment. arXiv preprint arXiv:2307.03864, 2023.

Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant M.
Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M.
Botvinick, Nicolas Heess, and Raia Hadsell. Stabilizing transformers for reinforcement learning,
2019.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022.

11

https://arxiv.org/abs/2306.14892
https://www.evanmiller.org/attention-is-off-by-one.html
https://www.evanmiller.org/attention-is-off-by-one.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Ruslan Partsey, Jimmy Yang, Ruta
Desai, Alexander William Clegg, Michal Hlavac, Tiffany Min, Theo Gervet, Vladimir Vondrus,
Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakrishnan,
Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and Roozbeh
Mottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots, 2023.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu.
Generalization to new sequential decision making tasks with in-context learning, 2023. URL
https://arxiv.org/abs/2312.03801.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noam Shazeer. Glu variants improve transformer, 2020.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023.

Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M. Jorge Cardoso. Gener-
alised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations,
pp. 240–248. Springer International Publishing, 2017. ISBN 9783319675589. doi: 10.1007/
978-3-319-67558-9_28. URL http://dx.doi.org/10.1007/978-3-319-67558-9_
28.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. Advances in Neural Information Processing
Systems, 34, 2021.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608, 2023.

Habitat Team. Habitat CVPR challenge, 2021. URL https://aihabitat.org/challenge/
2021/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020a.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020b.

Saim Wani, Shivansh Patel, Unnat Jain, Angel Chang, and Manolis Savva. Multion: Benchmarking
semantic map memory using multi-object navigation. NeurIPS, 2020.

12

https://arxiv.org/abs/2312.03801
http://dx.doi.org/10.1007/978-3-319-67558-9_28
http://dx.doi.org/10.1007/978-3-319-67558-9_28
https://aihabitat.org/challenge/2021/
https://aihabitat.org/challenge/2021/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames.
arXiv preprint arXiv:1911.00357, 2019.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar, Vincent-Pierre Berges, Sachit Kuhar, Dhruv
Batra, Alexei Baevski, and Oleksandr Maksymets. Offline visual representation learning for
embodied navigation. arXiv preprint arXiv:2204.13226, 2022.

Sriram Yenamandra, Arun Ramachandran, Karmesh Yadav, Austin Wang, Mukul Khanna, Theophile
Gervet, Tsung-Yen Yang, Vidhi Jain, Alexander William Clegg, John Turner, et al. Homerobot:
Open-vocabulary mobile manipulation. arXiv preprint arXiv:2306.11565, 2023.

Wenhao Yu, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. Learning fast adaptation with
meta strategy optimization. IEEE Robotics and Automation Letters, 5(2):2950–2957, 2020.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from 4k
to 400k: Extending llm’s context with activation beacon. arXiv preprint arXiv:2401.03462, 2024.

Tony Z Zhao, Anusha Nagabandi, Kate Rakelly, Chelsea Finn, and Sergey Levine. Meld: Meta-
reinforcement learning from images via latent state models. arXiv preprint arXiv:2010.13957,
2020.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning,
2020. URL https://arxiv.org/abs/1910.08348.

13

https://arxiv.org/abs/1910.08348

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

15 20 25 30
Objects Per Episode

0

10

20

30

40

50

Ep

iso
de

s

(a) # Objects Per Episode

2 4 6
Objects Per Object Type

0

1000

2000

3000

Ep

iso
de

s

(b) # Objects Per Object Type

10.0 12.5 15.0 17.5
Object Types Per Episode

0

20

40

60

80

Ep

iso
de

s

(c) # Object Types Per Episode

Figure 6: The distribution of the objects and object types in the data.

A ADDITIONAL EXTOBJNAV DETAILS

The EXTOBJNAV is a small object navigation task. We use the same training (37) and validation
(12) scenes as Yenamandra et al. (2023). The data is generated by randomly placing objects from
the 20 object types, a subset of the YCB Calli et al. (2015) dataset, on random receptacles. The data
is generated by sampling between 30 to 40 object instances and placing them on receptacles, and
subsequent filtering of the objects that are not reachable by the agent. The filtering is done by placing
the agent in front of the object and evaluating whether the agent can meet the success criteria. If the
agent can meet the critera, we retain the object. Otherwise, we discard the object. The distribution of
the objects and object types are in Figure 6.

The reward function is defined as follows:

• Change in geodesic distance to the closest object rd = −∆d where d is the geodesic distance to
the closest object. The closest object can change across the episode.

• Slack reward of −0.001.
• Succes reward of 2.

The episode is considered a success if the agent selects the Stop action while it is within 2 meters of
an instance of the target type and has 10 pixels of this instance in the view.

B ADDITIONAL METHOD DETAILS

B.1 MODEL TRAINING

In this section, we discuss the training setup for ReLIC experiment.

The workers and the batch size. We use 20 environment workers per GPU. Since we use 4 GPUs in
parallel, there are 80 environment workers in total. The micro batch size is 1 and we accumulate the
gradient for 10 micro batches on the 4 GPUs which makes the effective batch size 40.

RL algorithm. We use PPO Schulman et al. (2017) to train the model with γ = 0.99, τ = 0.95,
entropy coefficient of 0.1 and value loss coefficient of 0.5.

Optimizer. We use Adam Kingma & Ba (2014) optimizer to learn the parameters.

Learning rate schedule. We use learning rate warm up in the first 100,000 environment interactions.
The learning rate starts with LR0 = 2e − 7 and reaches LR = 2e − 4 at the end of the warm up.
Cosine decay Loshchilov & Hutter (2017) is used after the warm-up to decay the learning rate to 0
after 1B environment interactions.

Precision. We use FP16 precision for the visual encoder and keep the other components of the model
as FP32.

Rollout Storage. The rollout storage size is 4096. We store the observations and the visual
embeddings in rollout in low-precision storage, specifically in FP16 precision.

Regularization. We follow Reed et al. (2022) in using depth dropout Huang et al. (2016) with value
0.1 as regularization technique. We also shuffle the in-context episodes after each partial updates.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hardware Resources and Training Time. The model is trained for 1B steps on 4x Nvida A40 for
12 days.

B.2 HYPERPARAMETERS

We list the hyperparameters for the different experiments discussed in section Section 4.2.

ReLIC: The hyperparameters used in ReLIC can be found in Table 1 and the hyperparameters of the
transformer model used in the training can be found in Table 1.

RL2: For implementing RL2, we build on the default PPO-GRU baseline parameters in Habitat 3.0
Puig et al. (2023). We set the number of PPO update steps to 256, and the hidden size of the GRU to
512. The scene is changed every 4096 steps during training, and the hidden state is reset to zeros
after every scene change.

ReLIC-No-IEA: We use the same model and hyperparameters as ReLIC. The only difference is that
we set the attention mask to restrict the token to only access other tokens within the same episode.

Transformer-SE: We use the same model and hyperparameters as ReLIC. However, we limit the
training sequence to a fixed size 385 old observations + 256 new observations. The choice of the old
number of observations is made such that we never truncate an episode which is at most 500 steps.
The attention mask is set to restrict the tokens to only access other tokens in the same episode.

Transformer-XL (TrXL) Dai et al. (2019): Use Transformer-XL and update the constant-size
memory recurrently. We follow Team et al. (2023) in that we use PreNorm Parisotto et al. (2019) and
use gating in the feedforward layers Shazeer (2020). We experiment with two values for the memory
size, 256 and 1024, using TrXL without gating and found that the model is able to learn with 256
memory but is unstable with 1024 memory. We use 256 memory size which gives the agent context
of size L×Nm = 4× 256 = 1024 where L is the number of layers. Except for the memory, we use
the same number of layers and heads and the same hidden dimensions as ReLIC.

Hyperparameter Value

Layers 4
Heads 8
Hidden dimensions 256
MLP Hidden dimensions 1024
Sink-KV 1
Attention sink Sink KV0

Episode index encoding RoPE Su et al. (2023)
Within-episode position encoding Learnable
Activation GeLU Shazeer (2020)
Rollout size 4096
total # updates per rollout 16
partial updates 15
full updates 1

Table 1: ReLIC and baseline hyperparameters

B.3 DARKROOM AND MINIWORLD HYPERPARAMETERS

We use smaller transformer for these two tasks described in Table 2. The ReLIC hyperparameters are
provided in Table 2. For the visual encoder, we use the CNN model used in Lee et al. (2023) and
train it from scratch. The other hyperparameters are the same as described in Appendix B.2.

C MORE EXPERIMENTS

The result in Figure 7 shows that the model is able to learn and generalize on 64k sequence length.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hyperparameter Value

Layers 2
Heads 8
Hidden dimensions 64
MLP Hidden dimensions 256
Sink-KV 1
Attention sink Sink K0V0

Episode index encoding RoPE Su et al. (2023)
Within-episode position encoding Learnable
Activation GeLU Shazeer (2020)
Rollout size 512
updates per rollout 4 (Darkroom), 2 (Miniworld)
partial updates 3 (Darkroom), 1 (Miniworld)
full updates 1

Table 2: Hyperparameters for ReLIC and baselines in Miniworld and Darkroom.

0 50 100 150
of In-context Episodes

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

(a) Success Rate

0 50 100 150
of In-context Episodes

0.20

0.25

0.30

0.35

0.40

So
ftS

PL

(b) Efficiency

Figure 7: The success and efficiency of training and evaluating ReLIC with 64k context length.

C.1 RELIC PER OBJECT TYPE

In Figure 8a, we analyze the ICL performance of ReLIC per object type. Specifically, we specify the
same object type target for the agent repeatedly for 19 episodes. Similar to the main experiments,
the agent is randomly spawned in the house. As Figure 8a illustrates, ReLIC becomes more capable
at navigating to all object types in subsequent episodes. The agent is good at adapting to finding
some objects such as bowls, cracker box, and apples. Other objects, such as strawberry and tuna fish
can, remain difficult. In Figure 8b, we show that with 19 episodes of ICL, the agent is can reliably
navigate to any object type in the house despite having different object types as target in the context.
This demonstrates the agent is able to utilize information about other object targets from the context.

C.2 ANALYZING ATTENTION SCORES

In this section, we show that the agent is able to utilize the in-context information by inspecting the
attention scores patterns in the attention heads. We generate the data by letting the agent interact with
an unseen environment for 19 episodes which produced a sequence of 2455 steps. A random object
type is selected as a target in each episode. By inspecting the attention scores of the attention heads,
we found 4 patterns shown in Figure 9.

• Intra-episode attention: In this pattern, the agent attends only to the running episode, Figure 9a.
• Inter-episodes attention: Inter-episodes attention is where the agent accesses the information

from previous episodes, Figure 9b.
• Episode-invariant attention: The agent is able to attend to certain tokens which do not change on

changing the episode, Figure 9c.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

of In-context Episodes

Master chef can
Cracker box

Sugar box
Tomato soup can

Tuna fish can
Pudding box
Gelatin box

Potted meat can
Banana

Strawberry
Apple

Lemon
Peach

pear
Orange

Plum
bleach cleanser

Bowl
Mug

Sponge
0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

(a) Fixed Object Type Per Trial

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

of In-context Episodes

Master chef can
Cracker box

Sugar box
Tomato soup can

Tuna fish can
Pudding box
Gelatin box

Potted meat can
Banana

Strawberry
Apple

Lemon
Peach

pear
Orange

Plum
bleach cleanser

Bowl
Mug

Sponge 0.25

0.30

0.35

0.40

0.45

0.50

0.55

Su
cc

es
s R

at
e

(b) ReLIC per Object Type

Figure 8: Analysis of how ReLIC learns to navigate to particular object types through ICL. (a)
compares the number of consecutive episodes within a trial an object appears v.s. the success rate.
The agent becomes more capable at navigating to that object type for subsequent episodes. (b) shows
the episode index within the trial that the object first appears v.s. the average success rate for different
objects. As the agent acquires more experience in-context, it can proficiently navigate to any object
type.

(a) Intra-episode attn (b) Inter-episodes attn (c) Episode-invariant attn (d) Zero attn

Figure 9: Attention scores patterns of a sequence with 1024 steps. We found 4 attention patterns in
the heads of a trained policy: (a) Intra-episode attention where the attention head assigns high score
to the running episode, (b) Inter-episode attention pattern where the attention head assigns high score
to the context, without being constrained to the running episode, (c) the episode-invariant pattern
where the attention head attends to the same tokens regardless of the episode structure in the context,
and (d) the zero attention pattern where the attention head assign all attention scores to the Sink-KV.

• Zero attention: Some heads have 0 attention scores for all tokens which would not be possible
with the vanilla attention.

We further analyze the attention pattern between successful and failure episodes. We collect 2455
steps in a trial and then probe the agent’s attention scores by querying each object type by adding a
new observation with the desired object type at the final step. Figure 14 shows that the agent is able
to recall multiple instances of the target object types in its history.

Figure 15 shows the attention scores for all 20 object types when selected in the 1st step of a new
episode after 19 episodes.

C.3 IMPACT OF EPISODE SHUFFLING

We ran ReLIC on ReplicaCAD with and without in-context episodes shuffling. Figure 10 shows that
ReLIC marginally suffers at in-context learning (ICL) when not shuffling episodes in the context
during training. Specifically, the final ICL performance has a 3% lower success rate and the ICL
is less efficient. We believe that shuffling the episodes in the context during the training acts as
regularization since it creates diverse contexts.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 10: The effect of shuffling in-context episodes during the training

0 10 20 30 40
of In-context Episodes

40

60

80

Re
tu

rn
s

ReLIC
ReLIC wo Sink-KV
ReLIC wo Partial Updates

(a) Darkroom

0 10 20 30 40
of In-context Episodes

30

35

40

Re
tu

rn
s

ReLIC
ReLIC wo Sink-KV
ReLIC wo Partial Updates

(b) Miniworld

Figure 11: Ablating ReLIC components on Darkroom and Miniworld.

C.4 ABLATIONS IN MINIWORLD AND DARKROOM

In this section, we run the partial udpate and Sink-KV ablations from Section 4.3 on the Darkroom
and Miniworld tasks from Section 4.5. The result shows that different components in ReLIC is crucial
for different tasks while using ReLIC is as good as or better than ReLIC without its components. The
ablation shows that Partial Updates is crucial for long horizon tasks like Darkroom and EXTOBJNAV
as shown in Figs. 3b and 11a, which have horizon of 100 and 500 steps respectively, but not important
for short horizon tasks like Miniworld, which is 50 steps, as shown in Fig. 11b. It also shows that
Sink-KV is important for tasks with rich observations like Miniworld and EXTOBJNAV, which are
visual tasks, compared to the Darkroom, which is a grid world task.

C.5 TRAINING WITH 64K CONTEXT LENGTH

In the main experiment, we showed that we can train on 4k steps and inference for 32k steps. In this
experiment, we show that our method ReLIC is able to train with 64k sequence length. We used the
same hyperparameters in the main experiment, except the training sequence length which we set to
64k and the number of updates per rollout is increased so that we do updates every 256 steps, same
as the main experiment.

D VISUAL ENCODER FINETUNING

We finetuned the visual encoder on a generated supervised task before freezing it to be used in our
experiments. Each sample, Figure 12, in the data is generated by placing the agent in front of a
random object then the RGB sensor data is used as input X . The output y is a binary vector of size
20, the number of available object types, where each element represents whether the corresponding

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

X =

y =

M
as

te
r C

he
f C

an
Cr

ac
ke

r B
ox

Su
ga

r B
ox

To
m

at
o

So
up

 C
an

Tu
na

 Fi
sh

 C
an

Pu
dd

in
g

Bo
x

Ge
la

tin
 B

ox
Po

tte
d

M
ea

t C
an

Ba
na

na
St

ra
wb

er
ry

Ap
pl

e
Le

m
on

Pe
ac

h
Pe

ar
Or

an
ge

Pl
um

Bl
ea

ch
 C

le
an

se
r

Bo
wl

M
ug

Sp
on

ge

0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

Figure 12: Sample of the finetuning data

object type is in the image or not. The object type is considered in the image if there is an instance of
this object in the image with more than 10 pixels. 21k samples are generated from the training scenes
and object arrangements. The 21k samples are then split to training and validation data with ratios
90% to 10%.

The VC-1 model is finetuned using the Dice loss Sudre et al. (2017) by adding a classification head
to the output of ‘[CLS]’ token using the generated data. The classification head is first finetuned for 5
epochs with LR = 0.001 while the remaining of the model is frozen. Then the model is unfrozen
and finetuned for 15 epochs with LR = 0.00002.

E SINK KV

We introduce Sink KV , a modification to the attention calculation in the attention layers. We first
describe the vanilla attention Vaswani et al. (2023), the issue and the motivation to find a solution.
Then we discuss the proposed solutions and introduce the Sink-KV technique. Finally, we anlayze
different variants of Sink-KV.

0

1

Si
nk

 K
V

sc
or

e

0

1

Si
nk

 K
V

sc
or

e

0 500 1000
Steps

0
1

Ep
iso

de
do

ne

0 500 1000
Steps

(a) Different patterns of Sink KV scores for 1k
input tokens.

0 1 2 3
Steps 1e8

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

Sink K0V0
Sink K0V
Sink KV0
Sink KV

(b) The learning curve for the Sink KV variants.

Figure 13: Sink KV analysis.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E.1 MOTIVATION

The vanilla attention is the component responsible for the interaction between the tokens in the
sequence. The output for each token is calculated by weighting the value of all tokens. The input to
the attention layer is the embeddings of the input tokens E ∈ Rn×d where n is the number of input
tokens and d is the dimension of the embeddings.

First the embeddings E are linearly projected to the Key K, Value V and Query Q. Then the attention
scores are calculated using S = Softmax(QKT /

√
dk) where dk is the dimensions of the keys. The

output A is calculated as a weighted sum of the values V , A = SV .

The calculation of the attentions scores S using the Softmax forces the tokens to attend to values V ,
even if all available values do not hold any useful information, since the sum of the scores is 1 (Miller,
2023). This is especially harmful in cases where the task requires exploration. As the agent explores
more, a more useful information may appear in the sequence. If the agent is forced to attend to low
information tokens at the beginning of the exploration, it will introduce noise to the attention layers.

E.2 SOLUTIONS

Softmax One from Miller (2023) addresses this issue by adding 1 to the denominator of the Softmax,
Softmax1(xi) := exp(xi)/(1 +

∑
j exp(xj)), which is equivalent to having a token with k = 0 and

v = 0. This gives the model the ability to have 0 attention score to all tokens, we refer to Softmax
One as Sink K0V0.

Sink tokens from Xiao et al. (2023) are another approach to address the same issue by prepending
learnable tokens to the input tokens E = [Es ◦Einput] where E is the input embedding to the model
and [A ◦B] indicates concatenation along the sequence dimension of the A and B matrices .

Sink-KV is a generalization of both approaches. It modifies the attention layer by adding a learnable
Key Ks ∈ Rn×dk and values Vs ∈ Rn×d. In each attention layer, we simply prepend the learnable
Ks and Vs to the vanilla keys Kv and values Vv to get the K = [Ks ◦Kv] and V = [Vs ◦ Vv] used to
calculate the attention scores then the attention output.

In the case Ks = 0 and Vs = 0, Sink-KV becomes equivalent to Softmax One. It can also learn the
same Ks and V s corresponding to the Sink Token since our model is casual and the processing of the
Sink Token is not affected by the remaining sequence.

E.3 SINK-KV VARIANTS

We tried a variant of Sink-KV where the either the Value or the Key is set to 0, referred to as Sink
KV0 and Sink K0V respectively. All variants perform similarly in terms of the success rate as shown
in Figure 13b.

Figure 13a shows different patterns the model uses the Sink KV0. The model can assign all attention
scores to the Sink KV0, which yields a zero output for the attention head, or assign variable scores
at different time in the generation. For example, one the attention heads is turned off during the
1st episode of the trial by assigning all attention score to the Sink KV0 then eventually move the
attention to the input tokens in the new episodes. The model is also able to ignore the Sink KV0 by
assigning it 0 attention scores as shown in the figure.

F INFERENCE TIMES

In this section, we compare the the inference speeds of ReLIC, Transformer-XL, and RL2 listed
in Table 3. All numbers were obtained with batch size 20 on a single A40 GPU. The models are
all about 5.5M parameters in size. Despite all methods operating with the same 8k context length,
they all have similar inference speeds with RL2 being faster due to its LSTM rather than transformer
based architecture.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

ReLIC Transformer-XL RL2

Actions per Second 732.14 777.25 893.73

Table 3: Comparison of Actions per Second across ReLIC, Transformer-XL, and RL2.

Hi
gh

es
t a

tte
nt

io
n

 sc
or

e
ob

se
rv

at
io

n

Banana (Success) Pear (Success) Strawberry (Failure)
Object instance
Agent position
Top 5 attentions

Figure 14: Visualization of an inter-episode attention head, see Appendix C.2. The colored curves
are the trajectories of previous episodes. The blue circle is the agent’s position. The green Xs are the
instances of the target object type. The black lines represent the agent’s attention when the target
is the object type mentioned above the image. The lines connect the agent with the point in history
that it attends to, the opacity of the line represents the attention score. The overlaid image is visual
observation with the highest attention score.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Master chef can Cracker box Sugar box Tomato soup can

Tuna fish can Pudding box Gelatin box Potted meat can

Banana Strawberry Apple Lemon

Peach Pear Orange Plum

bleach cleanser Bowl Mug Sponge

Figure 15: Attention scores of the object detection head described in Appendix C.2. The colored
curves are the trajectories of previous episodes. The blue circle is the agent’s position. The black
lines represent the agent’s attention when the target is the type in above the image. The lines connect
the agent with the point in history that it attends to, the opacity of the line represents the attention
score. The two images with highest attention score are shown in the 3rd row.

22

