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ABSTRACT

Intelligent embodied agents need to quickly adapt to new scenarios by integrating
long histories of experience into decision-making. For instance, a robot in an
unfamiliar house initially wouldn’t know the locations of objects needed for tasks
and might perform inefficiently. However, as it gathers more experience, it should
learn the layout of its environment and remember where objects are, allowing it to
complete new tasks more efficiently. To enable such rapid adaptation to new tasks,
we present ReLIC, a new approach for in-context reinforcement learning (RL) for
embodied agents. With ReLIC, agents are capable of adapting to new environments
using 64,000 steps of in-context experience with full attention while being trained
through self-generated experience via RL. We achieve this by proposing a novel pol-
icy update scheme for on-policy RL called “partial updates” as well as a Sink-KV
mechanism that enables effective utilization of a long observation history for em-
bodied agents. Our method outperforms a variety of meta-RL baselines in adapting
to unseen houses in an embodied multi-object navigation task. In addition, we find
that ReLIC is capable of few-shot imitation learning despite never being trained
with expert demonstrations. We also provide a comprehensive analysis of ReLIC,
highlighting that the combination of large-scale RL training, the proposed partial
updates scheme, and the Sink-KV are essential for effective in-context learning.

1 INTRODUCTION

A desired capability of intelligent embodied agents is to rapidly adapt to new scenarios through
experience. An essential requirement for this capability is integrating a long history of experience
into decision-making to enable an agent to accumulate knowledge about the new scenario that it is
encountering. For example, a robot placed in an unseen house initially has no knowledge of the home
layout and where to find objects. The robot should leverage its history of experiences of completing
tasks in this new home to learn the home layout details, where to find objects, and how to act to
complete tasks successfully.

To achieve adaptation of decision-making to new tasks, prior work has leveraged a technique called
in-context reinforcement learning (RL) where an agent is trained with RL to utilize past experience
in an environment (Wang et al., 2016; Team et al., 2023; Duan et al., 2016; Grigsby et al., 2023;
Melo, 2022). By using sequence models over a history of interactions in an environment, these
methods adapt to new scenarios by conditioning policy actions on this context of interaction history
without updating the policy parameters. While in-context RL has demonstrated the ability to scale to
a context length of a few thousand agent steps (Team et al., 2023; Grigsby et al., 2023), this falls short
of the needs of embodied AI where single tasks by themselves can span thousands of steps (Szot
et al., 2021). As a result, the agent cannot learn from multiple task examples because the context
required for multiple tasks cannot be accommodated within the policy context. Furthermore, prior
work typically focuses on non-visual tasks (Grigsby et al., 2023; Melo, 2022; Ni et al., 2023), where
larger histories are easier to incorporate due to the compact state representation.

In this work, we propose a new algorithm for in-context RL, which enables effectively utilizing and
scaling to 64,000 steps of in-context experience in partially observable, visual navigation tasks. Our
proposed method called Reinforcement Learning In Context (ReLIC), achieves this by leveraging
a novel update and data collection technique for training with long training contexts in on-policy
RL. Using a long context for existing RL algorithms is prohibitively sample inefficient, as the agent
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ReLIC: trained with reinforcement learning to in context adapt to new tasks

In-context adapt
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Figure 1: Overview of the ReLIC approach and problem setup. ReLIC learns a “pixels-to-actions"
policy from reward alone via reinforcement learning capable of in-context adapting to new tasks at
test time. The figure shows the trained ReLIC policy finding objects in an unseen house. In earlier
episodes, the agent randomly explores to find the small target object since the scene is new. But after
64k steps of visual observations, ReLIC efficiently navigates to new target objects.

must collect an entire long context of experience before updating the policy. In addition, the agent
struggles to utilize the experience from long context windows due to the challenge of learning long-
horizon credit assignment and high-dimensional visual observations. To address this problem, we
introduce “partial updates" where the policy is updated multiple times within a long context rollout
over increasing context window lengths. We also introduce Sink-KV to further increase context
utilization by enabling more flexible attention over long sequences by adding learnable sink key and
value vectors to each attention layer. These learned vectors are prepended to the input’s keys and
values in the attention operation. Sink-KV stabilizes training by enabling the agent to not attend to
low information observation sequences.

We test ReLIC in a challenging indoor navigation task where an agent in an unseen house operating
only from egocentric RGB perception must navigate to up to 80 small objects in a row, which spans
tens of thousands steps of interactions. ReLIC is able to rapidly in-context learn to improve with
subsequent experience, whereas state-of-the-art in-context RL baselines struggle to perform any
in-context adaptation. We empirically demonstrate that partial updates and Sink-KV are necessary
components of ReLIC. We also show it is possible to train ReLIC with 64k context length. Surpris-
ingly, we show ReLIC exhibits emergent few-shot imitation learning and can learn to complete new
tasks from several expert demonstrations, despite only being trained with RL and never seeing expert
demonstrations (which vary in distribution from self-generated experiences) during training. We
find that ReLIC can use only a few demonstrations to outperform self-directed exploration alone. In
summary, our contributions are:

1. We propose ReLIC for scaling in-context learning for online RL, which adds two novel components
of partial updates and Sink-KV. We empirically demonstrate that this enables in-context adaptation
of over 64k steps of experience in visual, partially observable embodied AI problems, whereas
baselines do not improve with more experience.

2. We demonstrate ReLIC is capable of few-shot imitation learning despite only being trained with
self-generated experience from RL.

3. We empirically analyze which aspects of ReLIC are important for in-context learning and find that
sufficient RL training scale, partial updates, and the Sink-KV modification are all critical.

2 RELATED WORK

Meta RL. Prior work has explored how agents can learn to quickly adapt to new scenarios through
experience. Meta-RL deals with how agents can learn via RL to quickly adapt to new scenarios such
as new environment dynamics, layouts, or task specifications. Since Meta-RL is a large space, we only
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focus on the most relevant Meta-RL variants and refer the readers to Beck et al. (2023) for a complete
survey of Meta-RL. Some Meta-RL works explicitly condition the policy on a representation of
the task and adapt by inferring this representation in the new setting (Zhao et al., 2020; Yu et al.,
2020; Rakelly et al., 2019). Our work falls under the “in-context RL” Meta-RL paradigm where the
policies implicitly infer the context by taking an entire history of interactions as input. RL2 Duan
et al. (2016) trains an RNN that operates over a sequence of episodes with RL and the agent implicitly
learns to adapt based on the RNN hidden state. Other works leverage transformers for this in-context
adaptation (Team et al., 2023; Melo, 2022; Laskin et al., 2022). Raparthy et al. (2023); Lee et al.
(2023) also address in-context learning for decision making, but do so via supervised learning
from expert demonstrations, whereas our work only requires reward. Most similar to our work is
AMAGO (Grigsby et al., 2023), an algorithm for in-context learning through off-policy RL. AMAGO
modifies a standard transformer with off-policy loss to make it better suited for long-context learning,
with changes consisting of: a shared actor and critic network, using Leaky ReLU activations, and
learning over multiple discount factors. Our work does not require these modifications, instead
leveraging standard transformer architectures, and proposes a novel update scheme and Sink-KV for
scaling the context length with on-policy RL. Empirically, we demonstrate our method scaling to 8×
longer context length and on visual tasks, whereas AMAGO focuses primarily on state-based tasks.

Scaling context length. Another related area of research scaling the context length of transformers.
Prior work extend the context length using a compressed representation of the old context, either as
a recurrent memory or a specialized token (Dai et al., 2019; Munkhdalai et al., 2024; Zhang et al.,
2024). Other work address the memory and computational inefficiencies of the attention method by
approximating it (Beltagy et al., 2020; Wang et al., 2020a) or by doing system-level optimization
(Dao, 2023). Another direction is context extrapolation at inference time either by changing the
position encoding (Su et al., 2023; Press et al., 2022) or by introducing attention sink (Xiao et al.,
2023). Our work utilizes the system-level optimized attention (Dao, 2023) and extends attention
sinks for on-policy RL in Embodied AI.

Embodied AI. Prior work in Embodied AI has primarily concentrated on the single episode evaluation
setting, where an agent is randomly initialized in the environment at the beginning of each episode and
is tasked with taking the shortest exploratory path to a single goal specified in every episode (Wijmans
et al., 2019; Yadav et al., 2022). In contrast, Wani et al. (2020) introduced the multi-ON benchmark,
which extends the complexity of the original task by requiring the agent to navigate to a series of
goal objects in a specified order within a single episode. Here, the agent must utilize information
acquired during its journey to previous goals to navigate more efficiently to subsequent locations. Go
to anything (GOAT) (Chang et al., 2023), extended this to the multi-modal goal setting, providing
a mix of image, language, or category goals as input. In comparison, we consider a multi-episodic
setting where the agent is randomly instantiated in the environment after a successful or failed trial
but has access to the prior episode history.

3 METHOD

We introduce Reinforcement Learning In Context (ReLIC) which enables agents to in-context adapt
to new episodes without any re-training. ReLIC is built using a transformer policy architecture that
operates over a long sequence of multi-episode observations and is trained with online RL. The
novelty of ReLIC is changing the base RL algorithm to more frequently update the policy with
increasingly longer contexts within a policy rollout and adding Sink-KV to give the model the ability
to avoid attending to low-information context. Section 3.1 provides the general problem setting
of adapting to new episodes. Section 3.2 details the transformer policy architecture. Section 3.3
describes the novel update scheme of ReLIC. Finally, Section 3.4 goes over implementation details.

3.1 PROBLEM SETTING

We study the problem of adaptation to new scenarios in the formalism of meta-RL (Beck et al.,
2023). We have a distribution of training POMDPsMi ∼ p(M), where eachMi is defined by tuple(
Si,S0i ,Oi,A, T , γ,Ri

)
for observations Oi, states Si which are not revealed to the agent, starting

state distribution S0i , action space A, transition function T , discount factor γ, and rewardRi. In our
setting, the states, observations, and reward vary per POMDP, while the action space, discount factor,
and transition function is shared between all POMDPs.
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From a starting state s0 ∼ S0i , a policy π, mapping observations to a distribution over actions, is
rolled out for an episode which is a sequence of interactions until a maximum number of timesteps,
or a stopping criteria. We refer to a trial as a sequence of episodes within a particularMi. The
objective is to learn a policy π that maximizes the expected return of an episode. At test-time the
agent is evaluated on a set of holdout POMDPs.

3.2 RELIC POLICY ARCHITECTURE

Similar to prior work (Grigsby et al., 2023; Team et al., 2023), ReLIC implements in-context RL via
a transformer sequence model that operates over a history of interactions spanning multiple episodes.
At step t within a trial, ReLIC predicts current action at based on the entire sequence of previous
observations o1, . . . , ot which may span multiple episodes. In the embodied AI settings we study,
the observation ot consists of an egocentric RGB observation from the robot’s head camera along
with proprioceptive information and a specification of the current goal. Each of these observation
components are encoded using a separate observation encoding network, and the embeddings are
concatenated to form a single observation embedding et. A causal transformer network (Vaswani
et al., 2023) hθ inputs the sequence of embeddings hθ(e1, . . . , et). From the transformer output, a
linear layer then predicts the actions.

The transformer model hθ thus bears the responsibility of in-context learning by leveraging associ-
ations between observations within a trial. This burden especially poses a challenge in our setting
of embodied AI since the transformer must attend over a history of thousands of egocentric visual
observations. Subsequent visual observations are highly correlated, as the agent only takes one action
between observations. Knowing which observations are relevant to attend to in deciding the current
action is thus a challenging problem. In this work, we build our architecture around full attention
transformers using the same architecture as the LLaMA language model (Touvron et al., 2023), but
modify the number of layers and hidden dimension size to appropriately reduce the parameter count
for our setting.

We also introduce an architectural modification to the transformer called Sink-KV to improve the
transformer’s ability to attend over a long history of visual experience from an embodied agent.
Building off the intuition that learning to attend over a long sequence of visual observations is
challenging, we introduce additional flexibility into the core attention operation by prepending the key
and value vectors with a per-layer learnable sequence of sink KV vectors. Specifically, recall that for
an input sequence X ∈ Rn×d of n inputs of embedding dimension d, the attention operator projects
X to keys, queries and values notated as K,Q, V respectively and all elements of Rn×d where
we assume all hidden dimensions are d for simplicity. The standard attention operation computes
softmax

(
QK⊤
√
d

)
V . We modify calculating the attention scores by introducing learnable vectors

Ks, Vs ∈ Rs×d where s is the specified number of “sinks”. We then prepend Ks, Vs to the K,V of
the input sequence before calculating the attention. Note that the output of the attention operation
is still n × d, as in the regular attention operation, as the query vector has no added component.
We repeat this process for each attention layer of the transformer, introducing a new Ks, Vs in each
attention operation. Sink-KV only results in nlayers × s× d more parameters, which is 0.046% of
the 4.5M parameter policy used in this work.

Sink-KV gives the sequence model more flexibility on how to attend over the input. Prior works
observe that due to the softmax in the attention, the model is forced to attend to at least one token from
the input (Miller, 2023; Xiao et al., 2023). Sink-KV removes this requirement by adding learnable
vectors to the key and value. In sequences of embodied visual experiences, this is important as
attention heads can avoid attending over any inputs when there is no new visual information in the
current observations. This flexibility helps the agent operate over longer sequence lengths.

The calculation of the attentions scores S using the Softmax forces the tokens to attend to values V ,
even if all available values do not hold any useful information, since the sum of the scores is 1 (Miller,
2023). This is especially harmful in cases where the task requires exploration. As the agent explores
more, a more useful information may appear in the sequence. If the agent is forced to attend to low
information tokens at the beginning of the exploration, it will introduce noise to the attention layers.
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Algorithm 1: Partial Update Pseudocode
1 Define number of steps in trial T , number of partial updates K, step rollout storage Xrollout.;
2 while true do
3 Clear the rollout storage;
4 Reset the environment workers;
5 Set i← 0;
6 while i < K do
7 Collect T/K environment steps per environment worker and add to Xrollout;
8 if rollout storage is full then
9 PPOUpdate(Xrollout)

10 end
11 else
12 PPOUpdate(Xrollout[: i · T/K]) ;
13 Update KV cache;
14 Shuffle old episodes;
15 end
16 i← i+ 1;
17 end
18 end

3.3 RELIC LEARNING

ReLIC is updated through online RL, namely PPO (Schulman et al., 2017). However, for the agent to
be able to leverage a long context window for in-context RL, it must also be trained with this long
context window. PPO collects a batch of data for learning by “rolling out” the current policy for a
sequence of T interactions in an environment. To operate on a long context window spanning an
entire trial, the agent must collect a rollout of data that consists of this entire trial. This is challenging
because, in the embodied tasks we consider, we seek to train agents on trials lasting over 64k steps,
which consists of at least 130 episodes. As typical with PPO, to speed up data collection and increase
the update batch size we use multiple environment workers each running a simulation instance that
the policy interacts with in parallel. With 32 environment workers, this corresponds to ≈ 130k
environment steps between every policy update. PPO policies trained in common embodied AI tasks,
such as OBJECTNAV, have only 128 steps between updates and require ≈ 50k updates to converge
(for 32 environment workers, 128 steps per worker between updates and 200M environment steps
required for convergence) (Yadav et al., 2022). Executing a similar number of updates would require
ReLIC to collect ≈ 6 billion environment interactions.

ReLIC addresses this problem of sample inefficiency by introducing a partial update scheme where
the policy is updated multiple times throughout a rollout. First, at the start of a rollout of length T , all
environment workers are reset to the start of a new episode. Define the number of partial updates as
K. At step i ∈ [0, T ] in the rollout, the policy is operating with a context length of i− 1 previous
observations to determine the action at step i. Every T/K samples in the rollout, we update the
policy. Therefore, at update N within the rollout, the agent has collected NT/K of the T samples
in the rollout. The agent is updated using a context window of size NT/K, however, the PPO loss
is only applied to the final T/K outputs. The policy is changing every T/K samples in the rollout,
so the policy forward pass must be recalculated for the entire NT/K window rather than caching
the previous (N − 1)T/K activations. In the last update in the rollout, after collecting the last T/K
steps, we update the policy with the loss applied on all steps in the rollout. We refer to this step as
full update. At the start of a new rollout, the context window is cleared and the environment workers
again reset to new episodes.

3.4 IMPLEMENTATION DETAILS

The transformer is modeled after the LLaMA transformer architecture (Touvron et al., 2023) initialized
from scratch. Our policy uses a pretrained visual encoder which is frozen during training. A MLP
projects the output of the visual encoder into the transformer. We only update the parameters of the
transformer and projection layers while freezing the visual encoder since prior work shows this is an

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14
# of In-context Episodes

0.1

0.2

0.3

0.4

Su
cc

es
s r

at
e

RL-ICL
RL-ICL-No-IEA
Transformer-SE
Transformer-XL
RL2

(a) Success Rate

0 2 4 6 8 10 12 14
# of In-context Episodes

0.05

0.10

0.15

0.20

SP
L

RL-ICL
RL-ICL-No-IEA
Transformer-SE
Transformer-XL
RL2

(b) Efficiency

Figure 2: Comparing the in-context learning capability of ReLIC and baselines on EXTOBJNAV.
The number of episodes in the trial is displayed on the x-axis. The y-axis displays the success or
efficiency at that episode count. Agents capable of in-context learning will increase in success and
efficiency when encountering more episodes. Each method is run for 3 random seeds and evaluated
on 10k distinct sequences. Error bars are standard deviations over trial outcomes between the 3 seeds.

effective strategy for embodied AI (Khandelwal et al., 2022; Majumdar et al., 2023). For faster policy
data collection, we store the transformer KV cache between rollout steps. To fit long context during
the training in limited size memory, we used low-precision rollout storage, gradient accumulation
(Huang et al., 2019) and flash-attention (Dao, 2023). After each policy update, we shuffle the older
episodes in the each sequence and update the KV-cache. Shuffling the episode serves as regularization
technique since the agent sees the same task for a long time. It also reflects the lack of assumptions
about the order of episodes, an episode should provide the same information regardless of whether
the agent experiences it at the beginning or at the end of the trial.

We use the VC-1 visual encoder and with the ViT-B size (Majumdar et al., 2023). We found the
starting VC-1 weights performed poorly at detecting small objects, which is needed for the embodied
AI tasks we consider. We therefore finetuned VC-1 on a small objects classification task. All
baselines use this finetuned version of VC-1. We provide more details about this VC-1 finetuning in
Appendix D and details about all hyperparameters in Appendix B.2.

4 EXPERIMENTS

We first introduce the Extended Object Navigation (EXTOBJNAV) task we use to study in-context
learning for embodied navigation. Next, we analyze how ReLIC enables in-context learning on this
task and outperforms prior work and baselines. We then analyze ablations of ReLIC and analyze its
behaviors. We also show ReLIC is capable of few-shot imitation learning. Finally, we show that
ReLIC outperforms the methods in Lee et al. (2023) on the existing Darkroom and Miniworld tasks.

4.1 EXTOBJNAV: EXTENDED OBJECT NAVIGATION

To evaluate ICL capabilities for embodied agents, we introduce EXTOBJNAV, an extension of the
existing Object Navigation (OBJECTNAV) benchmark. EXTOBJNAV assesses an agent’s ability to
find a sequence of objects in a house while operating from egocentric visual perception. For each
object, the agent is randomly placed in a house and must locate and navigate to a specified object
category. The agent used is a Fetch robot equipped with a 256× 256 RGB head camera. Additionally,
the agent possesses an odometry sensor to measure its relative displacement from the start of the
episode. Navigation within the environment is executed through discrete actions: move forward 0.25
meters, turn left or right by 30 degrees, and tilt the camera up and down by 30 degrees. The agent
also has a stop action, which ends the episode.

EXTOBJNAV uses scenes from the Habitat Synthetic Scenes Dataset (HSSD) (Khanna et al., 2023)
along with a subset of the YCB object dataset (Calli et al., 2015) containing 20 objects types. Note
that EXTOBJNAV requires navigating to small objects unlike other OBJECTNAV variants that use
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Figure 3: Analyzing ReLIC ICL capabilities. Fig. 3a shows increased RL training results in agents
that have a higher base success and stronger ICL capabilities with error bars giving standard error
on the evaluation episodes. Fig. 3b shows the partial updates are important in ReLIC. Fig. 3c shows
Sink-KV is important for learning speed and stability. The results in Fig.3b,3c use the smaller
ReplicaCAD scenes for easier analysis and thus have higher overall success rates. These results
performed on the easier ReplicaCAD scenes to save compute, so the numbers are higher overall.

large receptacles as goals (Team, 2021). This allows us to increase the dataset diversity by sampling
objects randomly in the environment, unlike OBJECTNAV, where the receptacles are fixed parts of
the scanned meshes. The random sampling also precludes the agent from using priors over object
placements in scenes, forcing it to rely on the experience in its context.

EXTOBJNAV defines a trial as a sequence of episodes within a fixed home layout, where a home
layout is defined by a combination of a floorplan, a furniture layout and set of object placements. A
home layout contains on an average 22 objects where multiple object instances may be of the target
category. Within an episode in the trial, a target object category is randomly selected and the agent is
randomly placed in the house. The episode is successful if the agent calls the stop action within 2
meters of the object, with at least 10 pixels of the object in the current view. If the object is not found
within 500 steps the episode counts as a failure.

We evaluate the agents on unseen scenes from HSSD and report the success rate (SR) and Success-
weighted by Path Length (SPL) metrics (Anderson et al., 2018). Specifically, we look at the SR and
SPL of an agent as it accumulates more episodes in-context. Ideally, with more in-context episodes
within a home layout, it should be more adept at finding objects and its SR and SPL should improve.
See Appendix A for further details on the EXTOBJNAV.

4.2 IN-CONTEXT LEARNING ON EXTOBJNAV

In this section, we compare the ability of ReLIC and baselines to in-context learn in a new home
layout. We compare ReLIC to the following baselines:

• RL2 Duan et al. (2016): Use an LSTM and keep the hidden state between trial episodes.
• Transformer-XL (TrXL) Dai et al. (2019): Use Transformer-XL and updates the constant-

size memory recurrently. This is the model used in Team et al. (2023) trained in our setting.
Following Team et al. (2023) we use PreNorm (Parisotto et al., 2019) and gating in the feedforward
layers (Shazeer, 2020).

• ReLIC-No-IEA: ReLIC without Inter-Episode Attention (IEA). Everything else, including the
update scheme is the same as ReLIC.

• Transformer-SE: A transformer-based policy operating over only a single episode (SE) and
without the update schemes from ReLIC.

All baselines are trained for 500M steps using a distributed version of PPO (Wijmans et al., 2019).
Methods that utilize multi-episode context are trained with a context length of 4k, and use 8k context
length during inference (unless mentioned otherwise, e.g. in our long-context experiments). The
results in Figure 2 demonstrate ReLIC achieves better performance than baselines on 8k steps of
ICL, achieving 43% success rate v.s. 22% success rate achieved by the closest performing baseline
(Transformer-SE).

Additionally, ReLIC is able to effectively adapt to new home layouts throughout the course of the trial.
In the first episode of the trial, transformer-based baseline methods attain a similar base performance
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of around 20% success rate. However, as more episodes arrive, the performance of ReLIC increases.
The recurrent models, Transformer-XL and RL2, have lower base performance at 10% success rate
and show no in-context learning. The performance of RL2 degrades with more in-context episodes,
which is aligned with the inability of the LSTM to model long sequences.

After 15 episodes of in-context experience, the success rate of ReLIC increases from 23% to 43%. The
baselines do not possess this same ICL ability and maintain constant performance with subsequent
in-context episodes. ReLIC also in-context learns to navigate faster to objects, as measured by the
gap in SPL. As the trial progresses, the agent is able to more efficiently navigate to objects in the
house with the SPL of ReLIC increasing from 0.07 to 0.188. The baselines are unable to improve
efficiency in-context and maintain a SPL of 0.025 to 0.075 throughout the entire trial.

4.3 RELIC ABLATIONS AND ANALYSIS

We demonstrate that the partial updates in ReLIC and Sink-KV are crucial to learning with RL
over long context windows and acquiring ICL capabilities. We run these ablations in the smaller
ReplicaCAD (Szot et al., 2021) scenes to make methods faster to train, but other details of the task
remain the same. We then show that ICL emerges later in the training and the context length in ReLIC
can be even further increased.

No Partial Updates. Firstly, we remove the partial updates in ReLIC and find that it performs poorly
(Figure 3b), achieving 40% lesser SR at the first episode. This model also shows little ICL abilities
with the SR only increasing 5% by the end of the trial versus a 25% increase when using partial
updates.

Sink-KV. Next, we demonstrate that using Sink-KV is necessary for sample-efficient in-context RL
learning. We trained the model on ReplicaCAD with and without attention sinks. The learning curves
in Figure 3c shows that learning is more stable and faster with Sink-KV which achieves 90% success
rate at 200M steps. It also shows that Sink-KV performs similar to Softmax One (Miller, 2023),
referred to as Sink K0V0. Without attention sink mechanisms, learning is slow and achieves less than
40% success rate after 200M steps and reaching 64% at 300M steps. Using sink token (Xiao et al.,
2023), the training becomes unstable, achieving 40% success rate at 200M steps training and reaching
80% success rate at 300M steps. The details of the different sink attentions, their implementations
and how the attention heads use the Sink-KV can be found in Appendix E.

Training Steps v.s. ICL Abilities. We find that ReLIC only acquires ICL capabilities after sufficient
RL training. As demonstrated in Figure 3a, the agent is only capable of ICL after 157M steps
of training. Models trained for 52M and 157M remain at constant success with more in-context
experience. Further training does more than just increase the base agent performance in the first
episode of the trial. From 262M steps to 367M steps, the agent base performance increases by 2%, yet
the performance after 15 episodes of ICL performance increases 10%. This demonstrates that further
training is not only improving the base capabilities of the agent to find objects, but also improving
the agent’s ability to utilize its context across long trials spanning many episodes.

Context length generalization. Next, we push the abilities of ReLIC to in-context learn over contexts
much larger than what is seen during training. In this experiment, we evaluate ReLIC model, trained
with 4k context length, on 32k steps of experience, which is enough to fit 80 episode trials in context.
Assuming that the simulator is operating at 10Hz, this is almost 1 hour of agent experience within
the context window. Note that for this experiment, we use our best checkpoint, which is trained
for 1B steps. The results demonstrate that ReLIC can generalize to contexts 8× larger at inference.
Figure 4a shows ReLIC is able to further increase the success rate to over 55% after 80 in context
episodes and consistently maintains performance above 50% after 20 in-context episodes.

64k steps trials. Finally, we investigate scaling training ReLIC with 64k context length. We use the
same hyperparameters as Section 4.2, but increase the number of partial updates per rollout such that
the policy is updated every 256 steps, the same number of steps used in ReLIC. Fig. 4b shows that
the model can in-context learn over 175 episode and continue to improve success rate. More details
are available at Appendix C.5.

In Appendix C.1 we analyze the performance of ReLIC per object type. In Appendix C.2 we qualita-
tively analyze what the agent attends to in successful and failure episodes. Finally, in Appendix C.3,
we show that not shuffling episodes in the context during training leads to worse performance.
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Figure 4: (a) ReLIC trained with context length 4k generalizes to operating at 32k steps of in context
experience in a new home layout. (b) ReLIC trained at 64k context length shows ICL abilities over
175 episodes. (c) ReLIC can do few-shot imitation learning despite not training for it. The error bars
represent the standard error.
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(b) Miniworld result

Figure 5: ICL comparison of ReLIC and baselines in the Darkroom and Miniworld tasks. ReLIC has
a higher base performance and adapts to new tasks with less experience. The baselines numbers are
obtained from Figures 4b,d of Lee et al. (2023). Error bars are the standard error of the evaluation
results computed over 2k sequences.

4.4 EMERGENT FEW-SHOT IMITATION LEARNING
In addition to learning in-context from self-generated experience in an environment, ReLIC can also
use its context to learn from demonstrations provided by an external agent or expert, despite never
being trained on demonstrations and only learning from self-generated experience. We consider the
setting of few-shot imitation learning (Duan et al., 2017; Wang et al., 2020b) where an agent is given
a set of trajectories {τ1, . . . , τN} demonstrating behavior reaching desired goals {g1, . . . , gN}. The
agent must then achieve a new gN+1 in new environment configurations using these demonstrations.
ReLIC is able to few-shot imitation learn by taking the expert demonstration as input via the context.
Specifically, we generate N expert shortest path trajectories navigating to random objects from
random start positions in an unseen home layout. The success rate of these demos is around 80%
due to object occlusions hindering the shortest path agent from viewing the target object which is
required for success. These N trajectories are inserted into the context of ReLIC and the agent is
instructed to navigate to a new object in the environment.

In Figure 4c we show that ReLIC can utilize these expert demonstrations despite never seeing such
shortest paths during training. Figure 4c shows the success rate of ReLIC in a single episode after
conditioning on some number of shortest path demonstrations. More demonstrations cover more of
the house and the agent is able to improve navigation success. We also compare to the success rate of
an agent that has N episodes of experience in the house as opposed to N demonstrations. Using the
demonstrations results in better performance with 5% higher success rate for N = 16.

4.5 DARKROOM AND MINIWORLD

In this section, we evaluate ReLIC on the Darkroom (Zintgraf et al., 2020) and Miniworld (Chevalier-
Boisvert, 2018) environments and compare to the results from Lee et al. (2023) to provide a com-
parison with existing baselines on these simpler benchmarks. We directly take the numbers from
Lee et al. (2023) which include Decision-Pretrained Transformer (DPT), a supervised pretraining
method for in-context meta-RL, Algorithm Distillation (AD) (Laskin et al., 2022), Proximal Policy
Optimization (PPO) and RL2. ReLIC is trained with context length 512, which fits 10 Miniworld and
5 Darkroom episodes. Policies are evaluated with 40 in-context episodes. Note that DPT is trained
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with actions from an optimal policy in these environments while ReLIC is not. Full details are in
Appendix B.3.

Darkroom. Figure 5a shows that ReLIC outperforms all previous methods in the Darkroom task.
Specifically, ReLIC achieves base performance of 32 while the other methods have base performance
lower than 2 returns. ReLIC reaches 89 returns after 10 in-context episodes which is higher than 75
achieved by DPT after 39 in-context episodes.

Miniworld. ReLIC has a higher base performance of 30 episode return compared to the best base
performance of 10 as shown in Figure 5b. It quickly reaches 42 returns after just 2 in-context episodes
while DPT reaches the same result after 14 in-context episodes. ReLIC also shows stable performance
as the number of episodes increase compared to DPT which shows oscillation in the performance. In
Appendix C.4, we also show the importance of Sink-KV and partial updates in both tasks.

5 CONCLUSION AND LIMITATIONS

The ability of an agent to rapidly adapt to new environments is crucial for successful Embodied
AI tasks. We introduced ReLIC, an in-context RL method that enables the agent to adapt to new
environments by in-context learning with up to 64k environment interactions and visual observations.
We studied the two main components of ReLIC: partial updates and the Sink-KV and showed both
are necessary for achieving such in-context learning. We showed that ReLIC results in significantly
better performance on a challenging long-sequence visual task compared to the baselines.

Limitations of the approach are that we found for ICL to emerge, it requires a diverse training dataset
on which the model can not overfit. There is no incentive for the model to learn to use the context if
it can overfit the task. We were able to address that in the dataset generation by creating different
object arrangements for each scene which made it challenging for the model to memorize the objects
arrangements. Another is that our study only focuses on several environments. Future work can
explore this same study in more varied environments such as a mobile manipulation task where an
agent needs to rearrange objects throughout the scene. Finally, ReLIC requires large amounts of
RL training to obtain in-context learning capabilities. The success of ReLIC in ExtObjNav is also
relative low for practical applications. One path to improving this performance is to scale training
with more RL training and in-context learning. Figure 4b shows the performance is still improving
after 64k steps of in-context experience. Figure 16 also shows that ReLIC is still improving after 1
billion RL steps. Another path is to improve ability to generalize to new scenes by increasing the
number of training scenes from the 37 in the HSSD dataset used in ExtObjNav through procedurally
generated scenes.
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Figure 6: The distribution of the objects and object types in the data.

A ADDITIONAL EXTOBJNAV DETAILS

The EXTOBJNAV is a small object navigation task. We use the same training (37) and validation
(12) scenes as Yenamandra et al. (2023). The data is generated by randomly placing objects from
the 20 object types, a subset of the YCB Calli et al. (2015) dataset, on random receptacles. The data
is generated by sampling between 30 to 40 object instances and placing them on receptacles, and
subsequent filtering of the objects that are not reachable by the agent. The filtering is done by placing
the agent in front of the object and evaluating whether the agent can meet the success criteria. If the
agent can meet the critera, we retain the object. Otherwise, we discard the object. The distribution of
the objects and object types are in Figure 6.

The reward function is defined as follows:

• Change in geodesic distance to the closest object rd = −∆d where d is the geodesic distance to
the closest object. The closest object can change across the episode.

• Slack reward of −0.001.
• Succes reward of 2.

The episode is considered a success if the agent selects the Stop action while it is within 2 meters of
an instance of the target type and has 10 pixels of this instance in the view.

B ADDITIONAL METHOD DETAILS

B.1 MODEL TRAINING

In this section, we discuss the training setup for ReLIC experiment.

The workers and the batch size. We use 20 environment workers per GPU. Since we use 4 GPUs in
parallel, there are 80 environment workers in total. The micro batch size is 1 and we accumulate the
gradient for 10 micro batches on the 4 GPUs which makes the effective batch size 40.

RL algorithm. We use PPO Schulman et al. (2017) to train the model with γ = 0.99, τ = 0.95,
entropy coefficient of 0.1 and value loss coefficient of 0.5.

Optimizer. We use Adam Kingma & Ba (2014) optimizer to learn the parameters.

Learning rate schedule. We use learning rate warm up in the first 100,000 environment interactions.
The learning rate starts with LR0 = 2e − 7 and reaches LR = 2e − 4 at the end of the warm up.
Cosine decay Loshchilov & Hutter (2017) is used after the warm-up to decay the learning rate to 0
after 1B environment interactions.

Precision. We use FP16 precision for the visual encoder and keep the other components of the model
as FP32.

Rollout Storage. The rollout storage size is 4096. We store the observations and the visual
embeddings in rollout in low-precision storage, specifically in FP16 precision.

Regularization. We follow Reed et al. (2022) in using depth dropout Huang et al. (2016) with value
0.1 as regularization technique. We also shuffle the in-context episodes after each partial updates.
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Hardware Resources and Training Time. The model is trained for 1B steps on 4x Nvida A40 for
12 days.

B.2 HYPERPARAMETERS

We list the hyperparameters for the different experiments discussed in section Section 4.2.

ReLIC: The hyperparameters used in ReLIC can be found in Table 1 and the hyperparameters of the
transformer model used in the training can be found in Table 1.

RL2: For implementing RL2, we build on the default PPO-GRU baseline parameters in Habitat 3.0
Puig et al. (2023). We set the number of PPO update steps to 256, and the hidden size of the GRU to
512. The scene is changed every 4096 steps during training, and the hidden state is reset to zeros
after every scene change.

ReLIC-No-IEA: We use the same model and hyperparameters as ReLIC. The only difference is that
we set the attention mask to restrict the token to only access other tokens within the same episode.

Transformer-SE: We use the same model and hyperparameters as ReLIC. However, we limit the
training sequence to a fixed size 385 old observations + 256 new observations. The choice of the old
number of observations is made such that we never truncate an episode which is at most 500 steps.
The attention mask is set to restrict the tokens to only access other tokens in the same episode.

Transformer-XL (TrXL) Dai et al. (2019): Use Transformer-XL and update the constant-size
memory recurrently. We follow Team et al. (2023) in that we use PreNorm Parisotto et al. (2019) and
use gating in the feedforward layers Shazeer (2020). We experiment with two values for the memory
size, 256 and 1024, using TrXL without gating and found that the model is able to learn with 256
memory but is unstable with 1024 memory. We use 256 memory size which gives the agent context
of size L×Nm = 4× 256 = 1024 where L is the number of layers. Except for the memory, we use
the same number of layers and heads and the same hidden dimensions as ReLIC.

Hyperparameter Value

# Layers 4
# Heads 8
Hidden dimensions 256
MLP Hidden dimensions 1024
# Sink-KV 1
Attention sink Sink KV0

Episode index encoding RoPE Su et al. (2023)
Within-episode position encoding Learnable
Activation GeLU Shazeer (2020)
Rollout size 4096
total # updates per rollout 16
# partial updates 15
# full updates 1

Table 1: ReLIC and baseline hyperparameters

B.3 DARKROOM AND MINIWORLD HYPERPARAMETERS

We use smaller transformer for these two tasks described in Table 2. The ReLIC hyperparameters are
provided in Table 2. For the visual encoder, we use the CNN model used in Lee et al. (2023) and
train it from scratch. The other hyperparameters are the same as described in Appendix B.2.

C MORE EXPERIMENTS

The result in Figure 7 shows that the model is able to learn and generalize on 64k sequence length.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hyperparameter Value

# Layers 2
# Heads 8
Hidden dimensions 64
MLP Hidden dimensions 256
# Sink-KV 1
Attention sink Sink K0V0

Episode index encoding RoPE Su et al. (2023)
Within-episode position encoding Learnable
Activation GeLU Shazeer (2020)
Rollout size 512
# updates per rollout 4 (Darkroom), 2 (Miniworld)
# partial updates 3 (Darkroom), 1 (Miniworld)
# full updates 1

Table 2: Hyperparameters for ReLIC and baselines in Miniworld and Darkroom.

0 50 100 150
# of In-context Episodes

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

(a) Success Rate

0 50 100 150
# of In-context Episodes

0.20

0.25

0.30

0.35

0.40

So
ftS

PL

(b) Efficiency

Figure 7: The success and efficiency of training and evaluating ReLIC with 64k context length.

C.1 RELIC PER OBJECT TYPE

In Figure 8a, we analyze the ICL performance of ReLIC per object type. Specifically, we specify the
same object type target for the agent repeatedly for 19 episodes. Similar to the main experiments,
the agent is randomly spawned in the house. As Figure 8a illustrates, ReLIC becomes more capable
at navigating to all object types in subsequent episodes. The agent is good at adapting to finding
some objects such as bowls, cracker box, and apples. Other objects, such as strawberry and tuna fish
can, remain difficult. In Figure 8b, we show that with 19 episodes of ICL, the agent is can reliably
navigate to any object type in the house despite having different object types as target in the context.
This demonstrates the agent is able to utilize information about other object targets from the context.

C.2 ANALYZING ATTENTION SCORES

In this section, we show that the agent is able to utilize the in-context information by inspecting the
attention scores patterns in the attention heads. We generate the data by letting the agent interact with
an unseen environment for 19 episodes which produced a sequence of 2455 steps. A random object
type is selected as a target in each episode. By inspecting the attention scores of the attention heads,
we found 4 patterns shown in Figure 9.

• Intra-episode attention: In this pattern, the agent attends only to the running episode, Figure 9a.
• Inter-episodes attention: Inter-episodes attention is where the agent accesses the information

from previous episodes, Figure 9b.
• Episode-invariant attention: The agent is able to attend to certain tokens which do not change on

changing the episode, Figure 9c.
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Figure 8: Analysis of how ReLIC learns to navigate to particular object types through ICL. (a)
compares the number of consecutive episodes within a trial an object appears v.s. the success rate.
The agent becomes more capable at navigating to that object type for subsequent episodes. (b) shows
the episode index within the trial that the object first appears v.s. the average success rate for different
objects. As the agent acquires more experience in-context, it can proficiently navigate to any object
type.

(a) Intra-episode attn (b) Inter-episodes attn (c) Episode-invariant attn (d) Zero attn

Figure 9: Attention scores patterns of a sequence with 1024 steps. We found 4 attention patterns in
the heads of a trained policy: (a) Intra-episode attention where the attention head assigns high score
to the running episode, (b) Inter-episode attention pattern where the attention head assigns high score
to the context, without being constrained to the running episode, (c) the episode-invariant pattern
where the attention head attends to the same tokens regardless of the episode structure in the context,
and (d) the zero attention pattern where the attention head assign all attention scores to the Sink-KV.

• Zero attention: Some heads have 0 attention scores for all tokens which would not be possible
with the vanilla attention.

We further analyze the attention pattern between successful and failure episodes. We collect 2455
steps in a trial and then probe the agent’s attention scores by querying each object type by adding a
new observation with the desired object type at the final step. Figure 14 shows that the agent is able
to recall multiple instances of the target object types in its history.

Figure 15 shows the attention scores for all 20 object types when selected in the 1st step of a new
episode after 19 episodes.

C.3 IMPACT OF EPISODE SHUFFLING

We ran ReLIC on ReplicaCAD with and without in-context episodes shuffling. Figure 10 shows that
ReLIC marginally suffers at in-context learning (ICL) when not shuffling episodes in the context
during training. Specifically, the final ICL performance has a 3% lower success rate and the ICL
is less efficient. We believe that shuffling the episodes in the context during the training acts as
regularization since it creates diverse contexts.
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Figure 10: The effect of shuffling in-context episodes during the training
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Figure 11: Ablating ReLIC components on Darkroom and Miniworld.

C.4 ABLATIONS IN MINIWORLD AND DARKROOM

In this section, we run the partial udpate and Sink-KV ablations from Section 4.3 on the Darkroom
and Miniworld tasks from Section 4.5. The result shows that different components in ReLIC is crucial
for different tasks while using ReLIC is as good as or better than ReLIC without its components. The
ablation shows that Partial Updates is crucial for long horizon tasks like Darkroom and EXTOBJNAV
as shown in Figs. 3b and 11a, which have horizon of 100 and 500 steps respectively, but not important
for short horizon tasks like Miniworld, which is 50 steps, as shown in Fig. 11b. It also shows that
Sink-KV is important for tasks with rich observations like Miniworld and EXTOBJNAV, which are
visual tasks, compared to the Darkroom, which is a grid world task.

C.5 TRAINING WITH 64K CONTEXT LENGTH

In the main experiment, we showed that we can train on 4k steps and inference for 32k steps. In this
experiment, we show that our method ReLIC is able to train with 64k sequence length. We used the
same hyperparameters in the main experiment, except the training sequence length which we set to
64k and the number of updates per rollout is increased so that we do updates every 256 steps, same
as the main experiment.

D VISUAL ENCODER FINETUNING

We finetuned the visual encoder on a generated supervised task before freezing it to be used in our
experiments. Each sample, Figure 12, in the data is generated by placing the agent in front of a
random object then the RGB sensor data is used as input X . The output y is a binary vector of size
20, the number of available object types, where each element represents whether the corresponding
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Figure 12: Sample of the finetuning data

object type is in the image or not. The object type is considered in the image if there is an instance of
this object in the image with more than 10 pixels. 21k samples are generated from the training scenes
and object arrangements. The 21k samples are then split to training and validation data with ratios
90% to 10%.

The VC-1 model is finetuned using the Dice loss Sudre et al. (2017) by adding a classification head
to the output of ‘[CLS]’ token using the generated data. The classification head is first finetuned for 5
epochs with LR = 0.001 while the remaining of the model is frozen. Then the model is unfrozen
and finetuned for 15 epochs with LR = 0.00002.

E SINK KV

We introduce Sink KV , a modification to the attention calculation in the attention layers. We first
describe the vanilla attention Vaswani et al. (2023), the issue and the motivation to find a solution.
Then we discuss the proposed solutions and introduce the Sink-KV technique. Finally, we anlayze
different variants of Sink-KV.
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Figure 13: Sink KV analysis.
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E.1 MOTIVATION

The vanilla attention is the component responsible for the interaction between the tokens in the
sequence. The output for each token is calculated by weighting the value of all tokens. The input to
the attention layer is the embeddings of the input tokens E ∈ Rn×d where n is the number of input
tokens and d is the dimension of the embeddings.

First the embeddings E are linearly projected to the Key K, Value V and Query Q. Then the attention
scores are calculated using S = Softmax(QKT /

√
dk) where dk is the dimensions of the keys. The

output A is calculated as a weighted sum of the values V , A = SV .

The calculation of the attentions scores S using the Softmax forces the tokens to attend to values V ,
even if all available values do not hold any useful information, since the sum of the scores is 1 (Miller,
2023). This is especially harmful in cases where the task requires exploration. As the agent explores
more, a more useful information may appear in the sequence. If the agent is forced to attend to low
information tokens at the beginning of the exploration, it will introduce noise to the attention layers.

E.2 SOLUTIONS

Softmax One from Miller (2023) addresses this issue by adding 1 to the denominator of the Softmax,
Softmax1(xi) := exp(xi)/(1 +

∑
j exp(xj)), which is equivalent to having a token with k = 0 and

v = 0. This gives the model the ability to have 0 attention score to all tokens, we refer to Softmax
One as Sink K0V0.

Sink tokens from Xiao et al. (2023) are another approach to address the same issue by prepending
learnable tokens to the input tokens E = [Es ◦Einput] where E is the input embedding to the model
and [A ◦B] indicates concatenation along the sequence dimension of the A and B matrices .

Sink-KV is a generalization of both approaches. It modifies the attention layer by adding a learnable
Key Ks ∈ Rn×dk and values Vs ∈ Rn×d. In each attention layer, we simply prepend the learnable
Ks and Vs to the vanilla keys Kv and values Vv to get the K = [Ks ◦Kv] and V = [Vs ◦ Vv] used to
calculate the attention scores then the attention output.

In the case Ks = 0 and Vs = 0, Sink-KV becomes equivalent to Softmax One. It can also learn the
same Ks and V s corresponding to the Sink Token since our model is casual and the processing of the
Sink Token is not affected by the remaining sequence.

E.3 SINK-KV VARIANTS

We tried a variant of Sink-KV where the either the Value or the Key is set to 0, referred to as Sink
KV0 and Sink K0V respectively. All variants perform similarly in terms of the success rate as shown
in Figure 13b.

Figure 13a shows different patterns the model uses the Sink KV0. The model can assign all attention
scores to the Sink KV0, which yields a zero output for the attention head, or assign variable scores
at different time in the generation. For example, one the attention heads is turned off during the
1st episode of the trial by assigning all attention score to the Sink KV0 then eventually move the
attention to the input tokens in the new episodes. The model is also able to ignore the Sink KV0 by
assigning it 0 attention scores as shown in the figure.

F INFERENCE TIMES

In this section, we compare the the inference speeds of ReLIC, Transformer-XL, and RL2 listed
in Table 3. All numbers were obtained with batch size 20 on a single A40 GPU. The models are
all about 5.5M parameters in size. Despite all methods operating with the same 8k context length,
they all have similar inference speeds with RL2 being faster due to its LSTM rather than transformer
based architecture.
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ReLIC Transformer-XL RL2

Actions per Second 732.14 777.25 893.73

Table 3: Comparison of Actions per Second across ReLIC, Transformer-XL, and RL2.
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Figure 14: Visualization of an inter-episode attention head, see Appendix C.2. The colored curves
are the trajectories of previous episodes. The blue circle is the agent’s position. The green Xs are the
instances of the target object type. The black lines represent the agent’s attention when the target
is the object type mentioned above the image. The lines connect the agent with the point in history
that it attends to, the opacity of the line represents the attention score. The overlaid image is visual
observation with the highest attention score.
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Figure 15: Attention scores of the object detection head described in Appendix C.2. The colored
curves are the trajectories of previous episodes. The blue circle is the agent’s position. The black
lines represent the agent’s attention when the target is the type in above the image. The lines connect
the agent with the point in history that it attends to, the opacity of the line represents the attention
score. The two images with highest attention score are shown in the 3rd row.
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