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Purified Distillation: Bridging Domain Shift and Category Gap
in Incremental Object Detection

Anonymous Author(s)

ABSTRACT
Incremental Object Detection (IOD) simulates the dynamic data
flow in real-world applications, which require detectors to learn new
classes or adapt to domain shifts while retaining knowledge from
previous tasks. Most existing IOD methods focus only on class in-
cremental learning, assuming all data comes from the same domain.
However, this is hardly achievable in practical applications, as im-
ages collected under different conditions often exhibit completely
different characteristics, such as lighting, weather, style, etc. Class
IOD methods suffer from severe performance degradation in these
scenarios with domain shifts. To bridge domain shifts and category
gaps in IOD, we propose Purified Distillation (PD), where we use
a set of trainable queries to transfer the teacher’s attention on old
tasks to the student and adopt the gradient reversal layer to guide the
student to learn the teacher’s feature space structure from a micro
perspective. This strategy further explores the features extracted
by the teacher during incremental learning, which has not been
extensively studied in previous works. Meanwhile, PD combines
classification confidence with localization confidence to purify the
most meaningful output nodes, so that the student model inherits
a more comprehensive teacher knowledge. Extensive experiments
across various IOD settings on six widely used datasets show that
PD significantly outperforms state-of-the-art methods. Even after
five steps of incremental learning, our method can preserve 60.6%
mAP on the first task, while compared methods can only maintain
up to 55.9%.

CCS CONCEPTS
• Computing methodologies → Object detection.

KEYWORDS
Incremental Learning, Object Detection, Catastrophic Forgetting

1 INTRODUCTION
Benefiting from the development of deep learning, object detection
has achieved significant progress [10, 15, 37]. However, with the
constant expansion of datasets and increasing number of categories,
traditional training paradigms for object detection are facing new
challenges [21], primarily in adapting to new domains [25] and cate-
gories [5, 11]. The simplest solution is to collect new data and retrain
the model with both new and old data, but retraining a model from
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Task1: VOC
(20 classes)

Task2: KITTI
(3 classes)

Task3: Watercolor
(6 classes)

Task4: Comic
(6 classes)

Task5: Kitchen
(11 classes)

Task6: Parasites
(8 classes)

Figure 1: Illustration of incremental object detection with both
domain shifts and category gaps. At time 𝑇 , the incremental
learned model M𝑇 is expected to detect objects from any task 𝑡 ,
where 𝑡 ≤ 𝑇 .

scratch can be costly or impractical if the old data is no longer ac-
cessible. This necessitates engineers to finetune models exclusively
with new data, while maintaining the knowledge from previous data,
i.e., to avoid catastrophic forgetting [12].

Incremental Object Detection (IOD) [24, 26, 33] formalizes this
problem, where the model continually accumulates new knowledge
without forgetting previous knowledge. Existing works [5, 11, 13,
26, 27, 31] predominantly focused on class incremental learning,
assuming that data for both new and old tasks comes from the same
domain, and new categories are introduced in the new task. Nev-
ertheless, this assumption proves overly restrictive in real-world
applications, where models are commonly deployed across diverse
contexts [21]. This implies that data for both new and old tasks
often originates from different domains, thereby presenting a more
challenging and less explored problem, incremental object detection
with domain shift and category gap. As shown in Fig. 1, the detector
encounters a series of tasks, each with potentially different categories
and domains. After incremental learning, the detector should be able
to remember all previously seen classes and domains. Liu et al. [21]
initiated exploration into this problem and proposed Attentive Fea-
ture Distillation (AFD) as an attempt to alleviate forgetting. The
efficacy of AFD largely relies on exemplars preserved from old data,
but accessing old data can be impractical, and an excessive number
of exemplars increases training costs. Therefore, further exploring
the informative knowledge held by teacher models, we propose a
novel distillation approach that requires no exemplars from previous
tasks to bridge domain shifts and category gaps in IOD.

IOD methods typically utilize features and outputs distillation [26,
27] to prevent catastrophic forgetting, where the model trained on the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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old task serves as a teacher. Features extracted by the teacher prove
to focus on areas beneficial for old classes and domains, hence some
works [13, 21, 27] minimize the differences (𝐿2 or 𝐿1 loss) between
the teacher’s and student’s features to help preserve the student’s
perception of old tasks. However the teacher focuses exclusively on
the old task, the response to the new task is limited. Such feature
distillation approaches can confuse the student model during the
learning of new tasks. On the other hand, guiding the student model
using the teacher’s outputs is also a common practice [5, 27, 30]. The
outputs are often noisy and exhibit a significant imbalance between
positive and negative samples [5], so it is necessary to select the most
meaningful nodes to contribute distillation, typically based on a top-
𝑘 strategy [30] or by setting a threshold [5]. Nevertheless, we notice
that these selection strategies introduce some low-quality nodes,
such as those with high classification scores but low confidence in
bounding box positions, as detailed in the appendix.

To address the above issues, we delve into the analysis of features
and outputs extracted by the teacher model, proposing Purified Dis-
tillation (PD). PD employs three distillation strategies: Multi-scale
Cross Attention Distillation (MCAD), Feature Space Distillation
(FSD), and Entropy Guided Output Distillation (EGOD). MCAD:
We use trainable parameters as queries to transform the multi-scale
feature maps extracted from both the teacher and student into atten-
tion maps [35]. Subsequently, by minimizing differences between the
attention maps of the teacher and student, these queries adaptively
purify regions preserving previous knowledge, providing flexibil-
ity for balanced learning between current and previous tasks. FSD:
We notice that the trained model possesses a unique feature space,
which reflects the abstract characteristics of training data but has
been overlooked by previous methods. Based on this observation,
we propose to transfer the structural properties of the teacher’s fea-
ture space from a microscopic perspective. Specifically, we design a
multi-scale feature discriminator and adopt the Gradient Reversal
Layer (GRL) [6] to encourage the student to learn a feature space
that simultaneously exhibits characteristics of both new and old
tasks. In this way, the student’s feature space can be seen as an
approximation of full dataset training. EGOD: Inspired by mod-
eling a bounding box as a discrete distribution [16], we propose
entropy guided output distillation, which employs an entropy guided
selection strategy to choose the most important output nodes. This
strategy treats the entropy of the distribution as the location con-
fidence and integrates classification confidence to select the top-𝑘
bounding boxes to teach the student model. Extensive qualitative
and quantitative experiments demonstrate that PD can preserve more
knowledge of previous tasks and avoid catastrophic forgetting. Since
PD does not require any modifications to the detector’s structure, the
detector can still maintain its efficiency during inference.

In summary, our contributions are as follows:

• To our knowledge, the proposed purified distillation is the
first work to achieve incremental object detection with both
domain shift and category gap, and eliminates dependence on
exemplars from old tasks.

• By leveraging learnable parameters to query feature maps,
we propose multi-scale cross attention distillation to enable
the model to adaptively query information that is more mean-
ingful for old knowledge.

• We devise a multi-scale feature discriminator and utilize a
gradient reversal layer to distill the structure of feature space,
so that the student can learn feature characteristics of both
new and old tasks.

• We develop the entropy guided selection strategy to purify
more representative nodes from outputs, which considers both
the location confidence and classification scores to reduce
redundant information.

• We construct multiple incremental object detection scenarios
across five widely used datasets, and extensive experiments
demonstrated the advantages of our method in mitigating
catastrophic forgetting.

2 RELATED WORKS
2.1 Object Detection
Object detection has been extensively studied. Transformer-based
detectors [1, 14, 19, 37, 40] commonly train a set of queries to locate
objects within images, whereas suffering from significant compu-
tation. CNN-based detectors can be categorized into two-stage and
one-stage detectors. As the most classic two-stage detector, Faster
R-CNN [30] utilizes a region proposal network to generate pro-
posals, followed by separate branches for computing classification
scores and location offsets. Due to the complex forward procedure,
two-stage detectors are not applicable for real-time scenarios. While
one-stage detectors [20, 32, 38] directly feed multi-level feature
maps into detection heads to predict classification scores and loca-
tions. Furthermore, Li et al. [16] proposed Generalized Focal Loss
(GFL), modeling the location output in an integral form to reduce
model ambiguity and uncertainty. The latest work in the YOLO se-
ries [28, 29, 36], YOLOv8 [10], incorporates GFL and task-aligned
sample assigner [4], achieving state-of-the-art in both efficiency and
accuracy.

2.2 Incremental learning
Recently, incremental learning [24, 26, 33] has received much at-
tention, which requires the model trained on the new task to re-
tain knowledge from the old task. To avoid catastrophic forgetting,
knowledge distillation [17] is widely used to transfer the teacher’s
knowledge to the student. Shmelkov et al. [31] pioneered incre-
mental object detection by leveraging distillation losses, effectively
maintaining the memory of old tasks. Afterwards, Li et al. [13]
and Peng et al. [26] further proposed distillation methods for Reti-
naNet [18] and Faster R-CNN [30], respectively. SID [27] char-
acterized the relation between instances, proposing selective and
inter-related distillation for anchor-free detectors [32, 38]. While
Liu et al. [22] proposed CL-DETR, a transformer-based IOD, by
utilizing knowledge distillation and exemplar replay. Considering
the inadequacy of existing methods in exploring responses from de-
tection heads, Feng et al. [5] introduced elastic response distillation,
selectively distilling nodes from output responses.

Despite their success in class incremental object detection, the
problem with both domain shift and category gap has been over-
looked. Liu et al. [21] made the first work to explore this problem
and proposed Attentive Feature Distillation (AFD) composed of
top-down and bottom-up feature distillations. AFD relies heavily
on a set of exemplars from old tasks, but this could be impractical
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Figure 2: Overall structure of proposed Purified Distillation. The teacher model trained on the old task serves as a knowledge repository,
while the student model is trained on the new task, starting with the initial weights of the teacher. Knowledge from the old task is
imparted to the student model through multi-scale cross attention distillation, feature space distillation, and entropy guided output
distillation.

in real-world applications. Thus, we propose a more feasible and
realistic distillation method that does not require any exemplars,
alleviating catastrophic forgetting in incremental object detection
with both domain shift and category gap.

3 METHOD
3.1 Overall Structure
We construct PD on the single-stage detector which can be divided
into two key components: the backbone that extracts features, and
the detection head that predicts the category probability and location
offsets. Considering the two components, we propose multi-scale
cross attention distillation and feature space distillation to preserve
knowledge from old tasks in the latent space, and the entropy guided
selection strategy to transfer the classification and location informa-
tion of the valuable output nodes.

The architecture of our method is depicted in Fig. 2. The teacher
detector trained on the old task provides initial weights of the student
model, which will be incrementally trained on the new task. During
incremental training, the teacher is frozen, and only the student is
trainable. The backbones for the teacher and student, denoted as BT

and BS , extract multi-scale features F T and F S respectively. We
fuse the multi-scale feature maps, and construct trainable parameters
𝑄 to adaptively query features that are crucial for maintaining previ-
ous knowledge. Moreover, a feature discriminator is responsible for
distinguishing whether feature maps are extracted by the student. We
employ a gradient reversal layer to reverse the gradient backward
from the discriminator, ensuring the transfer of the structural char-
acteristic of feature space. Feature map F is subsequently passed
through the detection head H to predict classification scores F𝑐𝑙𝑠

and location offsets F𝑙𝑜𝑐 . To purify output nodes, we propose the En-
tropy Guided Selection (EGS) strategy, which selectively transfers
semantic and location knowledge from teacher to student.

Overall, the loss function of our incremental learning method is
as follows:

L = L𝑜𝑟𝑔 + 𝜆L𝑝𝑑 , (1)

where L𝑜𝑟𝑔 is the standard loss of the single-stage detector for
learning the new task, typically composed of classification and lo-
calization losses, and L𝑝𝑑 is the distillation loss of the proposed
PD. The parameter 𝜆 balances the distillation and standard training,
empirically set to 10.

3.2 Multi-scale Cross Attention Distillation
To transfer the knowledge to the student in the latent space and
avoid adversely affecting the current task, we utilize a group of
trainable parameters as queries to adaptively focus the feature most
crucial to the old task. The features F extracted by the backbone
include 𝐿 levels (𝐿 = 3 typically) of multi-scale features, and the
features at the 𝑙-th level can be denoted as F𝑙 ∈ R𝑤𝑙×ℎ𝑙×𝑑𝑙 , where
𝑤𝑙 , ℎ𝑙 , and 𝑑𝑙 are the width, height, and number of channels of
the feature map, respectively. The queries can be considered as a
matrix 𝑄 ∈ R𝑛𝑞×𝑑 , where 𝑛𝑞 and 𝑑 are the number of queries and
dimensions, respectively. Without loss of generality, we set 𝑑 to the
dimension of the feature map at the deepest level.

Taking into account that the channels of feature maps vary across
levels, and larger feature maps can lead to significant computational
costs, we devise Multi-scale Cross Attention (MCA) to query the
attention map by down-sampling and integrating feature maps at
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different levels. As illustrated in the right of Fig. 2, using channel-
wise average pooling, the MCA first aligns the channels of feature
maps to 𝑑 on each level. Then the features are concentrated along the
horizontal and vertical directions, so that the key and value matrices
are obtained by concatenating the pooled features:

F𝑝,𝑙 =𝐶𝑎𝑡 ( [P𝑥 (P𝑐 (F𝑙 )),P𝑦 (P𝑐 (F𝑙 ))]), (2)

𝐾 = 𝑉 =𝐶𝑎𝑡 ( [F𝑝,1, · · · , F𝑝,𝐿]) ∈ R𝑛𝑝×𝑑 , (3)

where P𝑐 , P𝑥 , and P𝑦 are the average pooling layer over the channel,
x-axis, and y-axis, respectively; 𝐶𝑎𝑡 is the concatenation operation;
and 𝑛𝑝 =

∑𝐿
𝑙=1𝑤𝑙 + ℎ𝑙 . Finally, given the softmax function 𝜏 , the

attention map is:

𝐴 = 𝜏

(
𝑄 × 𝐾⊤
√
𝑑

)
×𝑉 . (4)

As trainable parameters, queries 𝑄 have considerable flexibility
to adapt and learn the intricate dependencies among features, thus
the attention maps 𝐴 queried by 𝑄 can gradually capture knowledge
critical to old tasks during training. By compelling the student’s
attention map 𝐴S to mimic the teacher’s 𝐴T , the student can re-
tain memory about old tasks. Hence, the attention distillation loss
L𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is defined as follows:

L𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
1
𝐿

𝐿∑︁
𝑙=1

L𝑀𝑆𝐸
(
𝐴S
𝑙
, 𝐴T
𝑙

)
, (5)

where L𝑀𝑆𝐸 is the mean square error loss.

3.3 Feature Space Distillation
We observed that models trained on different datasets possess unique
feature spaces (detailed in Sec. 4.1), meaning that the feature vectors
extracted by a model are distributed in a specific region of the latent
space. Therefore, we argue that the teacher’s feature space can reflect
its knowledge about the abstract style of data in the old task, and
introduce Feature Space Distillation (FSD) to transfer this property
to the student model. Because of the challenge of quantitatively
representing the feature space, we investigate utilizing individual
feature maps to transfer the structure of the feature space. Directly
applying an 𝐿2 loss, however, would lead to conflicts between new
and old knowledge, thus we innovatively introduce a Gradient Rever-
sal Layer (GRL) [6] into incremental object detection to encourage
the student to extract more “old-task-style” feature maps, instead of
requiring strict consistency between student and teacher. By trying
to confuse the discriminator, the student model can learn a feature
space that can represent both new and old task characteristics, closer
to that of the full dataset training.

Existing discriminators are mostly based on the patch discrimi-
nator [39], which accepts a single image as input and outputs the
probability of whether each patch is synthesized, but is unsuitable
for evaluating multi-scale feature maps. Feature maps at different
scales represent objects and backgrounds from different perspectives,
and isolated processing of different scales of feature maps overlooks
their intrinsic connections. Therefore, we construct an efficient multi-
scale feature discriminator, which comprehensively leverages the
semantic information of feature maps at different levels, as depicted
in Fig. 3.

We use convolutional layers with different strides to align the
feature maps to the same dimension and fully connected layers to

P

C

P

P FC

C
B

L

Conv 3x3C =

P Avg. Pooling

Hadamard ProductAddition

LeakyReLUL =

BatchNormB = SigmoidS =

C Concatenate

C
B

L
C

B
L

C
B

L

C
B

S

Figure 3: The architecture of the multi-scale feature discrimi-
nator. The output is a logit matrix, representing whether each
patch is extracted by the student (S) or teacher (T ).

reweight feature maps at different scales. The reweighted feature
maps are then added together and fed into two convolutional layers
to predict the discrimination results. The output of the discriminator
is a logits matrix O𝑙 ∈ R𝑤𝑙×ℎ𝑙 , which determines whether a patch
belongs to the student or teacher. The teacher feature maps F T

𝑙
are

directly fed into the discriminator, while the student features F S
𝑙

require passing through the GRL before inputting the discriminator
D, detailed as follows:

OT
𝑙

=D
(
F T
𝑙

)
, (6)

OS
𝑙

=D
(
R
(
F S
𝑙

))
, (7)

where R is the GRL. During the forward propagation, R does not
modify its input, whereas during the backward propagation, it re-
verses the sign of the gradient. [𝑃𝑙 ]𝑖, 𝑗 represents the confidence
that the patch belongs to the student, and the corresponding target
is defined as [𝑌 S

𝑙
]𝑖, 𝑗 = 1 and [𝑌 T

𝑙
]𝑖, 𝑗 = 0, thus the feature space

distillation loss L𝑠𝑝𝑎𝑐𝑒 is defined as:

L𝑠𝑝𝑎𝑐𝑒 =
1
𝐿

𝐿∑︁
𝑙=1

L𝐵𝐶𝐸
(
OT
𝑙
, 𝑌 T
𝑙

)
+ L𝐵𝐶𝐸

(
OS
𝑙
, 𝑌 S
𝑙

)
, (8)

where L𝐵𝐶𝐸 is the binary cross entropy loss. As training progresses,
the discriminator tries to discern whether the input feature is ex-
tracted from the teacher or student model, while the student aims to
extract features that confuse the discriminator, aligning its features
more similar to those of the teacher.

3.4 Entropy Guided Output Distillation
The outputs from the detection head represent the semantic and loca-
tion knowledge held by the model but contain a considerable amount
of redundant information, therefore, we define the Entropy Guided
Selection (EGS) to transfer classification and location information
from the teacher to the student selectively. Specifically, the 𝑙-th de-
tection head H𝑙 takes the feature maps F𝑙 as inputs, and outputs
two sets of predictions: classification scores F𝑐𝑙𝑠,𝑙 ∈ R𝑤𝑙×ℎ𝑙×𝑛𝑐 and
location offsets F𝑙𝑜𝑐,𝑙 ∈ R𝑤𝑙×ℎ𝑙×4×𝑛𝑙𝑜𝑐 , where 𝑛𝑙𝑜𝑐 is the number
of sampling points for the distribution, typically set to 16; 𝑛𝑐 is the
number of classes, and 𝑛T𝑐 ≤ 𝑛S𝑐 .
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For the teacher’s classification scores F T
𝑐𝑙𝑠,𝑙

, we select the maxi-
mum over the class dimension to obtain the class selection scores
𝑆𝑐𝑙𝑠,𝑙 ∈ R𝑤𝑙×ℎ𝑙 :

[𝑆𝑐𝑙𝑠,𝑙 ]𝑖, 𝑗 = max
{
𝜎

( [
F T
𝑐𝑙𝑠,𝑙

]
𝑖, 𝑗,𝑘

)
|𝑘 = 1, 2, · · · , 𝑛T𝑐

}
, (9)

where 𝜎 is the sigmoid function.
For the teacher’s location offsets F T

𝑙𝑜𝑐,𝑙
, we first apply the soft-

max function to transform the location of any edge into a discrete
probability distribution. Then, we can calculate the entropy of each
edge to measure the detector’s location confidence as follows:

[𝐸𝑙 ]𝑖, 𝑗,𝑘 = −
𝑛𝑙𝑜𝑐∑︁
𝑥=1

[𝐶T
𝑙
]𝑖, 𝑗,𝑘,𝑥 log[𝐶T

𝑙
]𝑖, 𝑗,𝑘,𝑥 , (10)

where [𝐶T
𝑙
]𝑖, 𝑗,𝑘 ∈ R𝑛𝑙𝑜𝑐 and [𝐸T

𝑙
]𝑖, 𝑗,𝑘 ∈ R is the distribution and

the entropy of the 𝑘-th edge of bounding box (𝑖, 𝑗) respectively.
In a discrete probability distribution, the maximum entropy oc-

curs when all possible outcomes have equal probability, yielding an
entropy of log𝑛𝑙𝑜𝑐 ; the minimum entropy occurs when one outcome
has a probability of 1 while others are 0, resulting in zero entropy.
Thus we can normalize the entropy to the range of [0, 1]:

𝐸′
𝑙
=

log𝑛𝑙𝑜𝑐 − 𝐸𝑙
log𝑛𝑙𝑜𝑐

. (11)

A larger normalized entropy 𝐸′
𝑙

indicates the detector has higher
confidence in localizing that edge, and vice versa. For bounding box
(𝑖, 𝑗), we take the minimum normalized entropy of the four edges as
the location selection score [𝑆𝑙𝑜𝑐,𝑙 ]𝑖, 𝑗 :

[𝑆𝑙𝑜𝑐,𝑙 ]𝑖, 𝑗 = min{[𝐸′
𝑙
]𝑖, 𝑗,𝑘 |𝑘 = 1, 2, 3, 4}. (12)

By multiplying the class and location selection scores, we obtain the
selection score for the 𝑙-th level:

𝑆𝑙 = 𝑆𝑐𝑙𝑠,𝑙 ⊗ 𝑆𝑙𝑜𝑐,𝑙 , (13)

where ⊗ is the Hadamard product.
We select the top-𝑘 nodes with the highest selection scores, de-

noted as G𝑐𝑙𝑠,𝑙 and G𝑙𝑜𝑐,𝑙 . The output distillation loss L𝑜𝑢𝑡𝑝𝑢𝑡 is
defined as:

L𝑜𝑢𝑡𝑝𝑢𝑡 =
1
𝐿

𝐿∑︁
𝑙=1

L𝐾𝐿
(
𝜎

(
GS
𝑐𝑙𝑠,𝑙

/𝑡
)
, 𝜎

(
GT
𝑐𝑙𝑠,𝑙

/𝑡
))

+

L𝐾𝐿
(
𝜏

(
GS
𝑙𝑜𝑐,𝑙

/𝑡
)
, 𝜏

(
GT
𝑙𝑜𝑐,𝑙

/𝑡
))
, (14)

where L𝐾𝐿 is the KL divergence loss; 𝜎 and 𝜏 are sigmoid and
softmax function respectively; 𝑡 is the temperature, typically set to
2.

3.5 Total Distillation Loss
Given the attention distillation loss, the feature space distillation
loss, and the entropy guided output distillation loss, we formalize
the total distillation loss L𝑝𝑑 as follows:

L𝑝𝑑 = L𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + L𝑠𝑝𝑎𝑐𝑒 + L𝑜𝑢𝑡𝑝𝑢𝑡 . (15)

By purifying the teacher’s knowledge from various perspectives,
L𝑝𝑑 facilitates the transfer of the most meaningful knowledge from
the teacher to the student, and prevents interference from previous
knowledge during learning new tasks.

Table 1: Datasets and categories. The overlapping categories are
highlighted in the same colors.

Datasets Categories

VOC [3]
bicycle, car, person, bird, cat, dog, aeroplane, boat,
bottle, bus, chair, cow, horse, motorbike, train,
diningtable, pottedplant, sheep, sofa, tvmonitor

Comic [9] bicycle, car, person, bird, cat, dog
Watercolor [9] bicycle, car, person, bird, cat, dog

KITTI [7] bicycle, car, person

Kitchen [8]
coffee mate, cola, crisp, nut bar, oatmeal squares,
oats, popcorn, red bull, rice, sauce, dish soap

Parasites [2]
ancylostoma spp, taenia sp, trichuris trichiura,
ascaris lumbricoides, hymenolepis, schistosoma,
fasciola hepatica, enterobius vermicularis

4 EXPERIMENTS
Datasets and Metrics. To validate the generalizability of our

method, we employ six commonly used datasets: PASCAL VOC [3],
Watercolor [9], Comic [9], KITTI [7], Kitchen [8], and Parasites [2],
detailed in Tab. 1. To quantify the detection performance, we use
the mean Average Precision at the Intersection over Union (IoU)
threshold of 0.5 (mAP@0.5).

Implementation details. Based on YOLOv8, we implement our
PD and other methods, including vanilla finetuning, LwF [17], Faster
ILOD [26], SID [27], and ERD [5]. We train the model on the old
task from the official weights [10], subsequently, this model is treated
as the common teacher of different IOD methods. In each task, the
model is trained for 20 epochs with a batch size of 16, a learning
rate of 1e-4, and the AdamW optimizer [23], while other training
parameters are the same as the original YOLOv8. All experiments
are conducted on a single RTX 3090 GPU. For hyperparameters, we
set 𝑘 = 10% and 𝑛𝑞 = 512 whose sensitive analyses are detailed in
the appendix.

4.1 Visualization of the feature space
To visualize feature spaces, we train a model on each dataset, then
extract feature maps of samples from all six datasets and plot them
in Fig. 5a using t-SNE [34] for dimensionality reduction. We can
see that even samples not in the training dataset have feature maps
distributed near the training samples, forming a unique region. This
suggests that the structure of feature space represents the model’s
certain knowledge about the characteristics of the training dataset,
which has not been explored by existing methods. To verify whether
Feature Space Distillation (FSD) can transfer knowledge of feature
space structure, we remove FSD from our method and compare
it with different methods in the scenario (Kitchen → KITTI), as
shown in Fig. 5b. Compared to other methods (including PD without
FSD), PD has the highest overlap with joint training in feature space,
indicating that FSD effectively guides the student to extract features
that exhibit both new and old task characteristics.
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Figure 4: The qualitative results under three scenarios for different methods: (a) Vanilla Finetuning, (b) LwF [17], (c) Faster ILOD [26],
(d) SID [27], (e) ERD [5], and (f) Ours. We provide the predictions on old tasks after incremental learning on new tasks. We can see
that competitive methods exhibit significant catastrophic forgetting, manifested as the inability to detect objects from old tasks or
misclassification into other categories. In contrast, our method excels at preserving knowledge of old tasks.

Trained on:
               
               
               
               
               
               

Visualization of:
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(a) Different datasets

Methods:
Joint
ERD
Finetuning
LwF
Faster ILOD
SID
PD w/o FSD
PD w/ FSD

Methods:
Joint
ERD
Finetuning
LwF
Faster ILOD
SID
PD w/o FSD
PD w/ FSD

(b) Different IOD methods

Figure 5: The visualization of feature spaces. (a) Different
datasets: The models are trained on different datasets and vi-
sualize feature maps in all datasets. (b) Different IOD methods:
The models are incrementally learned with different methods
under the scenario (Kitchen → KITTI) and visualize feature
maps in all datasets. “Joint” is training with both new and old
datasets, and “PD w/o FSD” is our method without FSD.

4.2 One-step Incremental Object Detection
One-step incremental object detection can be categorized into three
scenarios: “Domain Shift”, “Category Gap”, and “Domain Shift +
Category Gap”. In detail, the dataset pairs (Kitchen, KITTI), (Comic,
Parasites), (Kitchen, Parasites), and (VOC, Comic) differ in both
domains and categories across old and new tasks; the dataset pair
(Watercolor, Comic) only differs in domains with the same cate-
gories; and the dataset pair (VOC[:10], VOC[10:]) only differs in
categories with the same domain, where VOC[:10] and VOC[10:]
denote the sub-dataset that contain the first and last ten classes of
VOC. Tab. 2, Tab. 3, and Tab. 4 illustrate the experimental results
of our method compared to others under scenarios with both cat-
egory gap and domain shift, only category gap, and only domain
shift, respectively. It can be observed that models finetuned achieve
high accuracy on new tasks but fail to retain the knowledge of old
tasks, resulting in catastrophic forgetting. Although LwF is a classic
method in incremental classification, it proves inadequate in IOD
and tends to forget old tasks. SID shows some improvement but
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Table 2: The incremental learning results (mAP@0.5) under scenarios with both category gap and domain shift. “Teacher” denotes
the model trained on the old task. The values in parentheses represent the accuracy loss on the old task after incremental learning,
providing a quantification of catastrophic forgetting.

Kitchen → KITTI KITTI → Kitchen Comic → Parasites Parasites → Comic
Methods

Old New Avg. Old New Avg. Old New Avg. Old New Avg.

Teacher 94.73 - - 74.83 - - 56.44 - - 81.89 - -
Finetuning 0.00 (-94.73) 72.08 36.04 0.00 (-74.83) 93.30 46.65 0.00 (-56.44) 80.20 40.10 0.00 (-81.89) 55.32 40.94
LwF [17] 60.52 (-34.21) 68.03 64.27 54.36 (-20.47) 87.22 70.79 18.95 (-37.49) 76.76 47.85 24.40 (-57.49) 42.08 33.24

Faster ILOD [26] 85.05 (- 9.68) 68.07 76.56 68.63 (- 6.20) 92.15 80.39 48.31 (- 8.13) 80.00 64.15 71.16 (-10.73) 54.91 63.03
SID [27] 78.58 (-16.15) 64.07 71.32 57.49 (-17.34) 88.29 72.89 32.57 (-23.87) 71.23 51.90 65.03 (-16.86) 48.69 56.86
ERD [5] 83.40 (-11.33) 70.51 76.95 64.23 (-10.60) 92.07 78.15 49.20 (- 7.24) 79.88 64.54 72.46 (- 9.43) 56.05 64.25

Ours 89.70 (- 5.03) 71.22 80.46 73.18 (- 1.65) 93.59 83.38 52.39 (- 4.05) 81.07 66.73 76.58 (- 5.31) 55.77 66.17

Kitchen → Parasites Parasites → Kitchen VOC → Comic Comic → VOC
Methods

Old New Avg. Old New Avg. Old New Avg. Old New Avg.

Teacher 94.73 - - 81.89 - - 87.76 - - 56.44 - -
Finetuning 0.00 (-94.73) 81.55 40.77 0.00 (-81.89) 95.01 47.50 59.06 (-28.70) 56.01 57.53 41.70 (-14.74) 88.39 65.04
LwF [17] 30.56 (-64.17) 71.10 50.83 49.96 (-31.93) 86.58 68.27 66.34 (-21.42) 55.35 60.84 43.69 (-12.75) 85.02 64.35

Faster ILOD [26] 87.80 (- 6.93) 78.05 82.92 76.38 (- 5.51) 92.06 84.22 80.09 (- 7.67) 54.23 67.16 53.38 (- 3.06) 85.29 69.33
SID [27] 68.56 (-26.17) 74.34 71.45 62.50 (-19.39) 88.20 75.35 70.18 (-17.58) 52.64 61.41 49.51 (- 6.93) 83.04 66.27
ERD [5] 85.01 (- 9.72) 78.49 81.75 75.04 (- 6.85) 91.65 83.34 76.71 (-11.05) 54.39 65.55 52.97 (- 3.47) 88.02 70.49

Ours 90.35 (- 4.38) 80.09 85.22 78.62 (- 3.27) 92.44 85.53 83.15 (- 4.61) 55.15 69.15 55.82 (- 0.62) 87.59 71.70

Table 3: The incremental learning results (mAP@0.5) under
scenarios with domain shift only.

Watercolor → Comic Comic → Watercolor
Method

Old New Avg. Old New Avg.

Teacher 64.24 - - 56.44 - -
Finetuning 61.83 (- 2.41) 56.51 59.17 53.79 (- 2.72) 65.61 59.70
LwF [17] 65.44 (+ 1.20) 55.49 60.46 57.72 (+ 1.28) 64.26 60.99

Faster ILOD [26] 65.81 (+ 1.57) 49.31 57.56 59.16 (+ 2.72) 64.04 61.60
SID [27] 66.78 (+ 2.54) 55.03 60.90 58.75 (+ 2.31) 65.33 62.04
ERD [5] 66.54 (+ 2.30) 51.56 59.05 58.88 (+ 2.44) 65.60 62.24

Ours 68.25 (+ 4.01) 56.60 62.42 61.03 (+ 4.59) 66.24 63.63

Table 4: The incremental learning results (mAP@0.5) under
scenarios with category gap only.

VOC[:10] → VOC[10:] VOC[10:] → VOC[:10]
Method

Old New Avg. Old New Avg.

Teacher 81.86 - - 86.14 - -
Finetuning 0.00 (-81.86) 78.88 39.44 0.00 (-86.14) 88.49 44.24
LwF [17] 53.93 (-27.93) 72.75 63.34 54.13 (-32.01) 88.34 71.23

Faster ILOD [26] 77.84 (- 4.02) 64.09 70.96 84.10 (- 2.04) 90.45 87.27
SID [27] 74.99 (- 6.87) 72.58 73.78 83.39 (- 2.75) 90.32 86.85
ERD [5] 80.13 (- 1.73) 73.44 76.78 84.66 (- 1.48) 90.00 87.33

Ours 79.88 (- 1.98) 74.00 76.94 85.28 (- 0.86) 90.41 87.84

maintaining memory of old tasks has caused significant interference
with learning new tasks. As the state-of-the-art method in class in-
cremental object detection, ERD outperforms other methods in the
“Category Gap” scenario but falls short in scenarios with domain

shift. We also notice that despite being a relatively outdated method,
Faster ILOD performs comparably to ERD in many scenarios, and
even surpasses ERD. In comparison, our PD achieves up to 4.65%
higher mAP compared to the state-of-the-art method in maintaining
knowledge of old tasks. Moreover, we visualize the qualitative re-
sults of incremental learning in different scenarios in Fig. 4. It can
be observed that even the most competitive method, ERD, inevitably
exhibits forgetting of old tasks, incorrectly identifying objects as
background or other categories, while our PD effectively detects
objects from both new and old tasks.

4.3 Multi-step Incremental Object Detection
In real-world applications, detectors are often expected to incre-
mentally learn multiple tasks. Therefore we construct a task se-
quence with six datasets (VOC → KITTI → Watercolor → Comic
→ Kitchen → Parasites), and report the detection performance on all
previously learned datasets after each incremental step. The results
of multi-step incremental object detection are visualized in mAP
matrices, as shown in Fig. 6. We can tell that PD effectively pre-
serves the knowledge of old tasks while adapting to new ones. After
five steps of incremental learning, our method retains 60.6% mAP
for the first task, whereas the least effective comparative method,
LwF, manages to preserve only 10.1%. Even the best-performing
comparative method, Faster ILOD, is only able to maintain 55.9%
detection performance for the first task.

4.4 Ablation Experiments
In this section, we select the two most challenging scenarios: (Kitchen
→ KITTI) and (Comic → Parasites), and conduct detailed abla-
tion experiments on three distillation losses. As shown in Tab. 5,
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Figure 6: The mAP matrices of different methods. The horizon-
tal axis represents the dataset sequence for incremental learning,
with a total of five incremental steps. After each incremental step,
we validate the model on all seen tasks and report the metrics
(mAP@0.5).

Table 5: Ablation experiments of proposed PD in three scenarios.
The symbol × indicates that we set the weight of this loss term
to 0, and ✓ indicates that we keep this loss.

Kitchen → KITTI Comic → Parasites
#Exp. L𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 L𝑠𝑝𝑎𝑐𝑒 L𝑜𝑢𝑡𝑝𝑢𝑡

Old New Avg. Old New Avg.

1 ✓ × × 9.66 (-85.07) 69.42 39.54 0.00 (-56.44) 81.45 40.72
2 × ✓ × 31.85 (-62.88) 69.53 50.69 17.36 (-39.08) 79.09 48.22
3 × × ✓ 76.47 (-18.26) 70.31 73.39 40.48 (-15.96) 79.54 60.01
4 ✓ ✓ × 28.29 (-66.44) 65.66 46.97 23.67 (-32.77) 71.16 47.41
5 ✓ × ✓ 87.23 (- 7.50) 71.09 79.16 47.88 (- 8.56) 80.68 64.28
6 × ✓ ✓ 84.10 (-10.63) 69.92 77.01 45.95 (-10.49) 79.33 62.64

7 ✓ ✓ ✓ 89.70 (- 5.03) 71.22 80.46 52.39 (- 4.05) 81.07 66.73

exclusive reliance on either attention distillation or feature space
distillation is insufficient to preserve comprehensive old knowledge.
Student models trained with these individual approaches tend to
overlook objects that appear only in old tasks, while the introduction
of output distillation can further mitigate catastrophic forgetting.
Achieving Pareto optimality for both new and old tasks is observed
when combining all three distillation losses.

4.5 Scalability
We have demonstrated that PD effectively preserves old task knowl-
edge on the one-stage detector YOLOv8 [10]. In this section, we

Table 6: Results of implementation on other detectors. To vali-
date the scalability of our method, we implement PD and com-
petitive methods on the two-stage detector (Faster R-CNN) and
the Transformer-based detector (DINO). Since CL-DETR is
designed specifically for DETR and is hard to apply to other
models, we only re-implemented it on DINO. Here CL-DETR*
denotes we maintain a reservoir of exemplars as the original
paper [22].

Kitchen → KITTI Comic → Parasites
Detectors Methods

Old New Avg. Old New Avg.

Teacher 82.97 - - 49.15 -
Finetuning 0.00 (-82.97) 68.26 34.13 0.00 (-49.15) 72.34 36.17

Faster ILOD [26] 78.55 (- 4.42) 66.70 72.62 44.56 (- 4.59) 72.76 58.66
ERD [5] 74.04 (- 8.93) 63.83 68.93 42.48 (- 6.67) 70.11 56.29

Faster R-CNN
(Two-stage model)

Ours 80.23 (- 2.74) 67.12 73.67 47.96 (- 1.19) 71.65 59.80

Teacher 95.72 - - 60.80 - -
Finetuning 0.00 (-95.72) 77.40 38.70 0.00 (-60.80) 89.95 44.97

Faster ILOD [26] 70.98 (-24.74) 74.29 72.63 44.83 (-15.97) 84.10 64.46
ERD [5] 75.32 (-20.40) 76.08 75.70 42.03 (-18.77) 87.77 64.90

CL-DETR [22] 12.04 (-83.68) 76.48 44.26 3.36 (-57.44) 90.03 46.69
CL-DETR* [22] 75.73 (-19.99) 78.15 76.94 38.95 (-21.85) 88.52 63.73

DINO
(Transformer)

Ours 78.30 (-17.42) 76.93 77.61 46.11 (-14.69) 88.16 67.13

aim to explore the scalability of PD when applied to other detectors,
the most classic two-stage detector Faster R-CNN [30] and a novel
transformer-based detector DINO [37]. After modifying the detec-
tion heads, we re-implemented our method and compared it with
Faster ILOD and ERD. For DINO, we additionally implemented the
latest incremental learning method for transformer detectors, CL-
DETR [22]. The results of incremental object detection are shown
in Tab. 6. It is evident that despite not being specifically tailored
for these models, PD also performs well on other types of detectors.
CL-DETR, however, shows significant performance degradation.
This occurs due to its use of pseudo-labeling on the current dataset
to avoid catastrophic forgetting, which is not suitable when there is
a significant disparity between the old and new datasets. We also
observed a more severe forgetting when applying these CNN-based
methods to DINO, with the drop of mAP on old tasks being nearly
eight times higher compared to Faster R-CNN. We speculate this
is due to the instability of the Hungarian matching [1] in the trans-
former detector, and we will focus on this issue in future work.

5 CONCLUSION
In this paper, we proposed Purified Distillation (PD) to mitigate cata-
strophic forgetting in incremental object detection with both domain
shift and category gap. PD leveraged multi-scale cross attention
distillation to adaptively focus on features relevant to old tasks and
employed feature space distillation to guide students in learning the
characteristics of both new and old tasks. Additionally, an entropy-
guided selection strategy is introduced, integrating classification
and location confidence to purify the most representative output
nodes for output distillation. We conducted experiments across mul-
tiple scenarios using six datasets to simulate the complex demands
of real-world applications. Extensive experiments underscored the
generalizability and robustness of PD.
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