
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Effect of a slowdown correlated to the current state of
the environment on an asynchronous learning

architecture
Anonymous authors

Paper under double-blind review

Keywords: Deep reinforcement learning, Asynchronous architecture, Environment slowdown

Summary
In an industrial context, we apply deep reinforcement learning (DRL) to a simulator of

an unmanned underwater vehicle (UUV). This UUV is moving in a complex environment,
that needs to compute acoustic propopagation in very different scenarii. Consequently, the
simulation time per time step varies greatly due to the complexity of the acoustic situation
and the variation in the number of elements simulated. Therefore, we use an asynchronous
actor-learner parallelization scheme to avoid any loss of computational resource efficiency.
However, this variability in computation time is strongly correlated with the current state of the
environment. The classical benchmarks in the DRL are not representative of our environment
slowdowns, whether in magnitude nor in their correlation with the current observation. The aim
of this paper is therefore to investigate the possible existence of a bias that could be induced
by an observation-correlated slowdown in the case of a DRL algorithm using an asynchronous
architecture. Through numerous simulations, we provide empirical evidence of the existence
of such a bias on a modified version of the Cartpole environment. We then study the evolution
of this bias as a function of several parameters: the number of parallel environments, the
exploration and the positioning of slowdowns. Results show that the bias is highly dependant
on the capacity of the policy to find trajectories that avoid the slowdown areas.

Contribution(s)
1. We show that classical reinforcement learning benchmarks are not representative of our in-

dustrial environment in terms of the effects of slowdowns correlated with observation.
Context: We based our analysis on the two most used deep reinforcement learning bench-
marks : Mujoco (Todorov et al., 2012) and Atari (Bellemare et al., 2012) using the learning
framework TorchRL (Bou et al., 2024).

2. We provide empirical evidence on a modified version of the Cartpole environment that an
environment with observation-correlated slowdowns can induce a bias on the data generated
and the learned policy for an algorithm using an asynchronous architecture.
Context: We used the Dueling Double Deep Q-Learning (Wang et al., 2016) with the
actor-learner architecture described by Espeholt et al. (2018) which decouples threads when
generating transitions to reduce inter-processus synchronisation to achieve a greater scala-
bility.

3. We investigated bias changes as a function of the number of parallel actors, the exploration
and the positioning of the slowdown zone. Our results show that the bias is highly dependant
on the capacity of the policy to find trajectories that avoid the slowdown areas.
Context: None

Effect of a slowdown correlated to the observation on an asynchronous architecture

Effect of a slowdown correlated to the current state of
the environment on an asynchronous learning archi-
tecture

Anonymous authors
Paper under double-blind review

Abstract

In an industrial context, we apply deep reinforcement learning (DRL) to a simulator of1
an unmanned underwater vehicle (UUV). This UUV is moving in a complex environ-2
ment, that needs to compute acoustic propopagation in very different scenarii. Conse-3
quently, the simulation time per time step varies greatly due to the complexity of the4
acoustic situation and the variation in the number of elements simulated. Therefore, we5
use an asynchronous actor-learner parallelization scheme to avoid any loss of compu-6
tational resource efficiency. However, this variability in computation time is strongly7
correlated with the current state of the environment. The classical benchmarks in the8
DRL are not representative of our environment slowdowns, whether in magnitude nor in9
their correlation with the current observation. The aim of this paper is therefore to inves-10
tigate the possible existence of a bias that could be induced by an observation-correlated11
slowdown in the case of a DRL algorithm using an asynchronous architecture. Through12
numerous simulations, we provide empirical evidence of the existence of such a bias13
on a modified version of the Cartpole environment. We then study the evolution of this14
bias as a function of several parameters: the number of parallel environments, the explo-15
ration and the positioning of slowdowns. Results show that the bias is highly dependant16
on the capacity of the policy to find trajectories that avoid the slowdown areas.17

1 Introduction18

Reinforcement Learning (RL) is a machine learning approach which uses the actions of an agent19
in an environment to learn a behaviour which maximises a reward obtained during its interactions20
(Sutton & Barto, 2018). This approach, coupled with the ability of neural networks to approximate21
functions, has led to the emergence of Deep Reinforcement Learning (DRL), which is the basis of22
several advances in the field of sequential control (Mnih et al., 2015) (Silver et al., 2017).23

Its success has come in particular from Model-Free approaches, which do not require a transition24
model of the environment, but only a reward function. Using a reward function is an expressive25
method to define a problem (Silver et al., 2021), yet its design has a major impact on the algorithms’26
learning, making it complex to employ in practice (Gupta et al., 2022). This freedom also comes27
at the price of the need for a large number of interactions to obtain optimal behaviour, notably due28
to the exploration-exploitation dilemma (Sutton & Barto, 2018). Furthermore, some intrinsic neural29
network flaws result from this coupling of RL and Deep Learning, including explicability (Zahavy30
et al., 2016), training stability, and reproducibility (Henderson et al., 2018). Therefore, a number31
of critical aspects still need to be refined in order to enable DRL to be used for a greater range of32
situations (Dulac-Arnold et al., 2020).33

One of the main concerns of the DRL scientific community is to improve the speed and convergence34
capacity of algorithms. To achieve this, there are multiple algorithmic approaches to generate and35

1

Under review for RLC 2025, to be published in RLJ 2025

learn from the data of the environment to create a policy (Sutton & Barto, 2018). Among them, a36
number of studies have focused on the efficiency and scalability of these algorithms, enabling them37
to make the most of large-scale computing power, such as Gorila (Nair et al., 2015), A3C (Mnih38
et al., 2016), Ape-X (Horgan et al., 2018), IMPALA (Espeholt et al., 2018) and SEED (Espeholt39
et al., 2020). They take advantage of different concepts such as: making the different environments40
threads asynchronous, multiplying the number of processes updating the policy, vectorising infer-41
ences and minimising inter-process communications.42

In an industrial context, we apply DRL to a simulator of an UUV. This simulator models the kine-43
matics of several vehicles as well as the acoustic signal propagation. As a result, we observe highly44
variable computation times depending on the current position of the UUV in the environment and45
the scenario in progress. This naturally led us to use an asynchronous architecture for reasons of46
resource efficiency and scalability of the computing resources available. But we also questioned47
whether this may lead to an overrepresentation of trajectories with faster computation times. This48
article’s contributions are:49

• Evidence on the non-representativeness of the Atari and Mujoco benchmarks for problems related50
to a variable computation time as in the considered industrial environment.51

• Empirical evidences that a lag correlated with observation can generate bias in the data generated52
and in the policy learned.53

• The study of the influence of certain learning parameters and environmental slowdowns on this54
bias.55

First of all, we will define the concepts required for DRL, the parallelization architecture used and56
certain characteristics of our industrial environment (section 2). We then present the various tools57
used in this article (section 3) and the results obtained (section 4). Finally, we will discuss the58
limitations of our results (section 5) and conclude.59

2 Context60

2.1 Reinforcement learning61

RL is a field of machine learning in which an agent interacts with an environment through an action,62
which induces a change in the state of the environment. It then receives a reward in the form of a63
scalar that evaluates the transition made. The aim of RL is to learn, through interactions with the64
environment, the behaviour that maximises the reward obtained during these interactions.65

The mathematical formalism used to represent such a problem is the Markov Decision Process66
(MDP). It is defined by the tuple 〈S,A,T,R, ρ0〉 with S, the set of possible states, A, the set of67
actions available to the agent, T : S × A → S, a transition function which handles the evolution of68
the environment, R : S ×A×S → R, the reward function, and ρ0 which defines the distribution of69
the initial state over all the states. We define the sum of future discounted rewards as

∑
k γ

krt+k+170
, where rt denotes the reward received at time t. This allows us to estimate the reward acquired over71
a specific horizon length dependent on the discount factor γ ∈ [0, 1[. A policy function π : S → A72
represents a decision-making function which, on the basis of an observation, makes it possible to73
choose an action. The problem is to find π∗, the optimal policy which maximises the expected sum74
of future discounted rewards.75

The Dueling DDQN method, as proposed by Wang et al. (2016), serves as the foundation algorithm76
for the rest of this article. We used an asynchronous architecture similar to the single learner archi-77
tecture described in Espeholt et al. (2018). The implementations were made using ray (Moritz et al.,78
2017), PyTorch and more precisely, the framework TorchRL (Bou et al., 2024).79

In the remainder of this study, we did not use the Prioritized Experience Replay (PER) (Schaul80
et al., 2015), even though it greatly increases the training performances (Hessel et al., 2018). In fact,81
this modification involves changes to the transitions sampled from the replay buffer and updates the82

2

Effect of a slowdown correlated to the observation on an asynchronous architecture

network using importance sampling to not modify too much the distribution of the data provided to83
the policy. As the effect studied in this article is expected to directly affects the distribution of the84
data generated, it is therefore possible that the PER has an effect on the existence and magnitude of85
the studied bias, although it was not initially designed to do so. Hence, we preferred to remove it86
to not interfere with a potential bias linked to slowdowns correlated with observation (which is the87
topic of this paper).88

2.2 Industrial environment89

As part of our research work applied to an industrial context, we use an environment that allows90
us to run scenarii with diversified initial conditions and number of vehicles. Because it involves91
different vehicles which are not necessarily within detection range, the complexity of the acoustic92
environment depends on the current chosen scenario and state of the UUV during the simulation.93
This leads to highly variable computation times for each timestep (depending on both the scenario94
and the current state of the simulation). In the rest of this article, we refer to this phenomenon as95
slowdowns.96

In order to have metrics for comparison between the computation time distributions observed in the97
rest of the article, we defined inter quantile ratios at α% (IQRα%) as the ratio between the 100− α

2%98
quantile and the α

2% quantile. This metrics depict the slowdown order of magnitude on 100 − α%99
of the timesteps of an environment. Figure 1 shows an histogram of the computation times of the100
considered industrial environment with the quantiles used to compute the IQRα% in Figure 2. It101
shows a high variability between timesteps, with frequently several orders of magnitude between102
fast timesteps (e.g., lack of interaction between vehicles, and therefore reliance solely on kinematic103
models) and slower timesteps to simulate (e.g., presence of interactions between vehicles translated104
by calls to complex acoustic propagation models).105

Slowdowns correlated to the current environment state is a well-known phenomenon. It can be106
seen in simulators and video games with varying numbers of graphical and physical components.107
We measured the computation times for the Mujoco and Atari benchmarks using their gymnasium108
implementation (Brockman et al., 2016). In fact, as Figure 2 illustrates, the median IQR1% on Atari109
and Mujoco are more than one hundred time lower than on the considered industrial environment.110
Moreover, the frame skip mechanism (link) is responsible for the majority of the variability seen111
on Atari, but it is not linked to the current state of the environment. Therefore, even if there is a112
computation time correlated to the internal state of these environments, the slowdowns are several113
orders of magnitude lower than those we have on our industrial environment.114

Figure 1: Histogram 200,000 computation
time for a timestep in our industrial environ-
ment.

Figure 2: IQRα% values for Atari, Atari
without frame skip, Mujoco, Cartpole and
the considered industrial environment.

In addition, the Table 1 shows that, unlike our industrial environment, the computation times of115
the Atari and Mujoco environments are actually quite low compared to the policy inference and116

3

https://ale.farama.org/environments/

Under review for RLC 2025, to be published in RLJ 2025

observation processing times. Therefore, the potential effect induced by a slowdown correlated to117
the current state of the environment is even more negligible since this computation variability is118
absorbed by the other uncorrelated computation time.119

Table 1: Ratios between the median policy inference and observation processing time with the
median simulation time for one timestep on multiple environments. 1

Environment
Atari

(Median on
62 games)

Atari No
Skip (Median
on 62 games)

Mujoco
(Median on

11 envs)
Cartpole

Considered
industrial

environment
Policy inference to
environment time

ratio
3.36 8.17 4.66 6.62 1.91× 10−3

Observation
processing to

environment time
ratio

4.70 1.14× 101 5.81
6.72×
10−1 2.01× 10−2

2.3 Asynchronous architecture120

Usually, DRL algorithms architectures are employed with a synchronous parallelization scheme.121
As described in Figure 3, this leads to waiting times between the various threads (simulation, syn-122
chronisation, communication and learning). In our industrial setting, the phenomenon of waiting123
between simulation processes (i.e. synchronisation) is exacerbated because we use several hundred124
environments in parallel and have highly variable computation times. Under these circumstances,125
using a synchronous architecture reduces our computing resources’ efficiency to 9%.126

This is why we are using an asynchronous architecture. The core idea is to decouple the threads127
into the actors (which performs transitions with the environment), the learners (which performs the128
policy update) and a buffer (which agregates transitions and the current policy). As illustrated in129
Figure 4, asynchronous architecture avoids mutual waiting effects and is highly scalable to a large130
number of parallel environments (Espeholt et al., 2018).131

Figure 3: DRL algorithm using an syn-
chronous parallelization architecture. Figure 4: DRL algorithm using an asyn-

chronous parallelization architecture.

1All these measurements were carried out using the implementation and hyperparameters proposed by TorchRL (link),
using a single CPU core and a single environment. For the industrial environment, we used a neural network with two fully
connected hidden layers of 256 neurons.

4

Effect of a slowdown correlated to the observation on an asynchronous architecture

3 Tools132

3.1 Environment used133

The environment used is based on Cartpole (link). It’s a 1D toy environment where a cart has to134
balance a pole using two discrete actions: go left or go right. The use of a light and fast environment135
is motivated by the possibility of obtaining statistically significant results. Due to the extremely136
high stochasticity of the DRL, it is challenging to discern distinct patterns among several learnings137
(Agarwal et al., 2021). In addition, using an environment with simple and symmetrical dynamics138
simplifies the study of the existence of a potential bias. The simplicity to find an adequate policy139
also makes it possible to sweep across hyperparameters while still being able to converge.140

To study the potential effects of a bias produced by the effect of a slowdown correlated to the ob-141
servation, we created two symmetrical zones defined on the position of the cart. Figure 5 illustrates142
how the two zones are defined. As shown in Figure 2, there is little slowdown in this environment.143
We added artificial slowdowns that makes the process wait a multiple of the calculation time actually144
taken for the whole transition (environment transition, observation processing and inference). We145
define the slowdown coefficient of a zone as the value of this multiple when the cart is in this zone.146
Thus, it is feasible to observe a potential bias by comparing the policy behavior on the two different147
zones while maintaining different slowdown coefficient during training for both zones.148

Figure 5: Cartpole environment with the two symetric zones defined on x, the position of the cart,
such as the left zone (x ∈ [−∞;−xzone]) and the right zone (x ∈ [xzone; +∞]).

3.2 Update scheduler149

Figure 6 illustrates how adding artificial slowdown to all interactions with the environment on an150
asynchronous architecture causes the learning process to execute more update steps for the same151
number of timesteps generated. As shown in Figure 7, this leads to changes in learning perfor-152
mances. This effect is already known and does not affect the data generation. Hence, we created153
an update scheduler which performs learner update at fixed moment of the training based on the154
timesteps generated. This method eliminates the influence of slowdowns on the number of update155
performed and allows us to investigate only the influence on the distribution of the generated data.156
For the rest of the paper, we scheduled the updates according to a Cartpole learning without any157
artificial slowdowns.158

3.3 Simulated asynchronous architecture159

The use of the environment described in section 3.1 induced a non-representativeness of the com-160
munication and learning time ratios w.r.t. to the considered industrial case and limited values for161
the slowdown coefficient (artificial slowdown slows the training algorithm time). Therefore, we162
created a single-process version that uses an event-driven loop in simulated time to simulate an163
asynchronous architecture. Figures 8 and 9 illustrate how this version works. This enabled us to164
neglect the time for communication and learning and to use arbitrary values for slowdowns and the165

2Same captions as for the figures 3 and 4

5

Under review for RLC 2025, to be published in RLJ 2025

Figure 6: Asynchronous architecture with ar-
tificial slowdowns. 2

Figure 7: Learning performance with the
addition of slowdown coefficient of 10 on
all transitions and the addition of an update
scheduler averaged on 25 trainings.

number of actors while maintaining a constant calculation time. Moreover, this version is highly166
parallelizable.167

Figure 8: Simulated asynchronous architecture with artificial slowdowns.

Figure 9: Task management for the simulated asynchronous architecture shown in Figure 8.

4 Results168

The slowdown coefficients studied range from 100 to 104, which gives us a broad coverage of the169
distribution of slowdowns observed in the considered industrial environment. The hyperparameters170
correspond to those mentioned in the Appendix, unless their value are explicitly specified. Notably,171
as compared to a synchronous algorithm, the algorithm’s performance in terms of total timesteps172

6

Effect of a slowdown correlated to the observation on an asynchronous architecture

used is extremely poor. In fact, the environment is too simple and fast to take advantage of this173
architecture but this section only aim to study the existence of a bias induced by slowdon correlated174
to the observation.175

All trainings were carried out using the simulated asynchronous algorithm described in section 3.3.176
As the results in this paper are solely based on empirical evidence, it was necessary to refine the177
confidence intervals as much as possible, given the highly random nature of the DRL (Agarwal178
et al., 2021). Hence, each point on each curve presented in this section is the average result obtained179
over 1000 separated training sessions with the same set of hyperparameters with its 95% confidence180
interval. This equates to 197,000 trainings for all the results in this section, which is one of the181
reasons why we chose to carry out this study on CartPole.182

4.1 Bias induced on training data and policy by a slowdown zone183

In this subsection, we study the influence of the left zone slowdown coefficient on the data generated184
during training and on the final policy learned. The metric used is the average presence per episode185
for both zone. Since the environment and the zones are symmetrical, if no bias is induced by a186
slowdown, then the presence must be similar between the two zones. This is what we observe when187
there is no slowdown i.e., when the slowdown coefficient is 100 in figures 10 and 11.188

Figure 10: Average frequency of presence
per episode per zone during training as a
function of the slowdown coefficient in left
zone.

Figure 11: Average frequency of presence
per episode per zone over 100 episodes with
the final policy as a function of the slowdown
coefficient in left zone.

In Figure 10 we observe a bias in the proportion of data generated during training, which increases189
presence in the right zone and decreases presence in the left zone. Additionally, we can see that the190
effect increases with the slowdown coefficient up to around 500 and then seems to stabilise.191

Our understanding of the phenomenon is that during learning using an asynchronous architecture for192
interactions with the environment, a slowdown correlated with observation can lead to a bias in data193
generation. Actors taking trajectories involving a computational overhead will be under-represented194
because they will be in ’competition’ with other actors who have avoided these slowdown zones.195

Since the left zone (i.e., the zone with the modified slowdown coefficient) is discrete, there comes a196
point at which a single timestep in this zone causes the trajectory to have a computation time so high197
that it becomes extremely difficult to take as much computation time in the rest of the environment198
(i.e., the right zone and the central zone that do not have artificial slowdown). Hence the ordering199
of the actors becomes the number of timesteps spent in the left zone, regardless of the slowdown200
coefficient.201

Figure 11 demonstrates that the final policy retains a behaviour that is more present in the right202
zone. The learned behaviour is therefore biased. As a result, we conclude that when learning with203

7

Under review for RLC 2025, to be published in RLJ 2025

an asynchronous architecture, a slowdown correlated with observation can lead to a bias in the data204
generated and also induce a bias in the policy learned.205

4.2 Influence of parallel environments number206

This subsection aims to evaluate the influence of the number of parallel environments used on the207
presence bias towards the right zone. The first noticeable influence is that training is impacted by208
the number of actors. This is shown in Figure 12, in the absence of slowdown, there is a decrease209
in presence in both zones (e.g., the curves with bullets). Figure 14 also illustrates an impact from210
this parameter, since the learning curves are not identical with the same slowdown coefficients.211
Our explanation is the access to more independant data from multiple distinct environments and an212
overall higher value of ε (i.e., the exploration parameter used for ε−Greedy) since the annealation213
mechanism does not take into account the timesteps currently computed and not returned by the214
actors.215

Figure 12: Average frequency of presence
per episode per zone during training aver-
aged over 1000 training sessions with a 95%
confidence interval as a function of the num-
ber of parallel environments for different val-
ues of slowdown coefficients in the left zone.

Figure 13: Average right zone to left zone
presence ratio per episode during training as
a function of the number of parallel environ-
ments for different values of slowdown coef-
ficients in left zone.

(a) 1 environment. (b) 16 environments. (c) 64 environments. (d) 128 environments.

Figure 14: Average rewards during training for different slowdown values and number of parallel
environments.

Figure 13 shows the presence ratio between the zones in Figure 12. It shows that the number of216
parallel environments amplifies the bias induced by the slowdown in the left zone. Actually, it ap-217
pears impossible to identify any influence of the slowdowns for less than four parallel environments.218
Nonetheless, for all slowdown values, with more than four parallel environments, the more paral-219
lel environments there are, the more prevalent the right zone is in comparison to the left zone. In220
addition, we can see in figures 14c and 14d that the slowdown coefficient even seems to induce a221

8

Effect of a slowdown correlated to the observation on an asynchronous architecture

loss of learning performance in the cases using a bigger parallel environment number, in contrast to222
trainings using fewer (14a and 14b).223

We therefore conclude that the effect of the bias is amplified by the parallel environments number.224
Our explanation of this phenomenon is that it increases the number of actors in "competition" and225
therefore the chances that trajectories with a very low computation time will be discovered.226

4.3 Influence of the exploration227

This subsection studies the influence of increasing the exploratory behaviour on the bias magnitude.228
To do this, we have modified the final timestep for annealing ε.229

Similar to the section 4.2, Figure 15 demonstrates that, even in the absence of any slowdown, the230
parameter affects learning generally. However, figure 16 demonstrates that the bias increases when231
the final timestep for annealing ε is increased.232

Figure 15: Average frequency of presence
per episode per zone during training aver-
aged over 1000 training sessions with a 95%
confidence interval as a function of the last
timestep for annealing epsilon for different
values of slowdown coefficients in the left
zone.

Figure 16: Average right zone to left zone
presence ratio per episode during training as
a function of the last timestep for annealing
epsilon for different values of slowdown co-
efficients in left zone.

We conclude that the amount of exploration chosen also have an effect on the potential bias in-233
duced by a slowdown correlated to the observation. Our explanation to this trend are the increase234
in the probability of discovering trajectories that avoid the slowdown zone and the reduction in the235
proportion of actions driven by the reward signal.236

4.4 Influence of the zone position237

Figure 17: Average frequency of presence per episode per zone during training averaged over 1000
training sessions without slowdowns with a 95% confidence interval as a function of zone size.

9

Under review for RLC 2025, to be published in RLJ 2025

This subsection aims to evaluate the influence of the slowdown zone on the bias induced on the final238
policy. Figure 17 shows that the presence value per zone is strongly related to the size of the zone.239
In order to evaluate and compare the bias while varying the xzone value, we therefore varied xzone240
but measured presence in the fixed zones corresponding to xzone = 0.241

As seen in Figures 18 and 19, the impact of slowdowns is not directly proportional to the zone’s242
size. Indeed, we can observe that for slowdown zones representing a large part of the observation243
space (see Figure 17 between -0.1 and 0.1), there is in fact almost no bias on the policies learned.244
However, the bias worsens for values of xzone between 0.2 and 0.4, even though the slowed zone245
represents a smaller proportion of the data encountered during training. Then, the bias magnitude246
decreases as xzone diminishes.247

Figure 18: Average frequency of presence
per episode per zone over 100 episodes with
the final policy with a 95% confidence inter-
val as a function of the size of the slowdown
zone for different values of slowdown coeffi-
cients in the left zone.

Figure 19: Average right zone to left zone
presence ratio per episode during training as
a function of the size of the slowdown zone
for different values of slowdown coefficients
in the left zone.

Since the episodes are randomly initialized so that x ∈ [−0.05, 0.05], it is quite difficult to avoid248
a slowing zone that is too central from the perspective of environment dynamics. As a result, a249
slowdown zone that cannot be avoided has little or no influence. However, a slowdown in a lightly250
explored zone, where the policy is able to learn how to avoid it, can have an effect on the final policy.251
Finally, a slowdown in a zone which is almost never explored will not have any impact on the policy.252

We therefore conclude that the effect of the bias is closely linked to the internal dynamic of the253
environment and the positioning of the slowdown zone in the state space.254

5 Limitations255

The main limitation of this study lies in the scope of validity of the environment used. Since our256
aim was to study the potential existence of a bias induced by slowdowns correlated with the obser-257
vation, we chose a toy environment in order to obtain statistically significant results. Furthermore,258
the perfect symmetry of the dynamics and the reward function make it easier to exacerbate this phe-259
nomenon. It would therefore be interesting to study the feasibility of creating such a bias in a similar260
way in a more complex environment.261

Furthermore, the slowdown zone considered is oversimplified which does not accurately reflect262
our industrial context. Actually, the slowdown zone is discrete and purely geometrical, whereas263
industrially it comes from a coupling between the position of all the vehicles in the operational264
theatre.265

10

Effect of a slowdown correlated to the observation on an asynchronous architecture

Conclusion266

Our industrial research work is based on an environment characterised by a high variability in com-267
putation time between each timestep. Therefore, we believed that using an asynchronous architec-268
ture was necessary to avoid a significant decrease in computational efficiency. However, the orders269
of magnitude of the observed slowdown and their correlation with the current state of the environ-270
ment are not representative of conventional DRL benchmarks.271

In the first part of this paper, we investigated the potential existence of a bias induced by such272
slowdowns in a modified version of the CartPole environment. Our results show that while the273
environment’s dynamics and reward function are fully symmetrical, the final policy avoids the slow-274
down zone. This phenomenon is problematic, because it shows that the slowdowns have an effect on275
the distribution of the data generated by the environment, potentially inducing a bias in the learned276
policy.277

Next, we examined a number of algorithmic and slowdown zone parameters to determine how they278
affected the bias. These studies show that the bias is amplified by the number of parallel environ-279
ments and by the proportion of actions dedicated to exploration. Furthermore, the zone’s location is280
crucial because the bias only manifests when the zone is sufficiently eccentric. Our understanding is281
that the creation of a bias is strongly linked to the ability to find trajectories that avoid the slowdown282
zone.283

Studying the presence of this bias in our industrial environment will be the primary focus of our284
upcoming work. This study shows that the extent of the bias is strongly related to the policy’s ability285
to avoid slowdowns. If we do indeed observe a bias, we will then evaluate the pros and cons of using286
an asynchronous architecture and potentially study approaches to mitigate it.287

References288

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-289
mare. Deep reinforcement learning at the edge of the statistical precipice. In NeurIPS, pp. 29304–290
29320, 2021.291

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-292
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,293
Vol. 47:253–279, 2012.294

Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,295
Gianni De Fabritiis, and Vincent Moens. Torchrl: A data-driven decision-making library for296
pytorch. In ICLR, 2024.297

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and298
Wojciech Zaremba. Openai gym, 2016. URL http://arxiv.org/abs/1606.01540.299

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,300
and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learn-301
ing. CoRR, abs/2003.11881, 2020.302

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam303
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Im-304
pala: Scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,305
abs/1802.01561, 2018.306

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scal-307
able and efficient deep-rl with accelerated central inference. In ICLR, 2020.308

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham M. Kakade, and Sergey Levine. Unpacking309
reward shaping: Understanding the benefits of reward engineering on sample complexity. In310
NeurIPS, 2022.311

11

http://arxiv.org/abs/1606.01540

Under review for RLC 2025, to be published in RLJ 2025

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.312
Deep reinforcement learning that matters. In AAAI, 2018.313

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,314
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining315
improvements in deep reinforcement learning. In AAAI, pp. 3215–3222, 2018.316

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,317
and David Silver. Distributed prioritized experience replay. In ICLR, 2018.318

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-319
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,320
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-321
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.322
Nature, 518:529–533, 2015.323

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim324
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement325
learning. CoRR, abs/1602.01783, 2016.326

Philipp Moritz, , Robert Nishihara, , Stephanie Wang, , Alexey Tumanov, , Richard Liaw, , Eric327
Liang, , William Paul, , Michael I. Jordan, , and Ion Stoica. Ray: A distributed framework for328
emerging AI applications. CoRR, abs/1712.05889, 2017.329

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De330
Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane331
Legg, Volodymyr Mnih, Koray Kavukcuoglu, and David Silver. Massively parallel methods for332
deep reinforcement learning. CoRR, abs/1507.04296, 2015.333

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.334
CoRR, abs/1511.05952, 2015.335

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,336
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan337
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering338
the game of go without human knowledge. Nature, 550:354–, 2017.339

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. Artif. Intell.,340
299:103535, 2021.341

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,342
2018.343

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.344
In Intelligent Robots and Systems (IROS), pp. 5026–5033. IEEE, 2012.345

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.346
Dueling network architectures for deep reinforcement learning. In ICML, volume 48, pp. 1995–347
2003, 2016.348

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding dqns. In349
ICML, volume 48, pp. 1899–1908, 2016.350

12

Effect of a slowdown correlated to the observation on an asynchronous architecture

Appendix351

Parameter Value
Network architecture [64, 64, 32]

Learning rate 0.001
Optimizer Adam

Total timestep 200000
Parallel actors 16

Parallel learners 1
Transition per task for actor 200
Update per task for learner 32

Timestep per update for learner 1024
γ 0.99

n-step 5
Initial ε value 1
End ε value 0.005

Last timestep for annealing ε 50000
Initial random step 10000
Replay buffer size 50000

xzone 0.3
Right zone slowdown coefficient 1
Left zone slowdown coefficient 1

Table 2: Default hyperparameters value used

13

