
TableRAG: A Retrieval Augmented Generation Framework for
Heterogeneous Document Reasoning

Anonymous ACL submission

Abstract001

Retrieval-Augmented Generation (RAG) has002
demonstrated considerable effectiveness in003
open-domain question answering. However,004
when applied to heterogeneous documents,005
comprising both textual and tabular compo-006
nents, existing RAG approaches exhibit critical007
limitations. The prevailing practice of flatten-008
ing tables and chunking strategies disrupts the009
intrinsic tabular structure, leads to information010
loss, and undermines the reasoning capabilities011
of LLMs in multi-hop, global queries. To ad-012
dress these challenges, we propose TableRAG,013
an SQL-based framework that unifies textual014
understanding and complex manipulations over015
tabular data. TableRAG iteratively operates in016
four steps: context-sensitive query decomposi-017
tion, text retrieval, SQL programming and exe-018
cution, and compositional intermediate answer019
generation. We also develop HeteQA, a novel020
benchmark designed to evaluate the multi-hop021
heterogeneous reasoning capabilities. Experi-022
mental results demonstrate that TableRAG con-023
sistently outperforms existing baselines on both024
public datasets and our HeteQA, establishing025
a new state-of-the-art for heterogeneous docu-026
ment question answering. We will release our027
code and data upon acceptance.028

1 Introduction029

Heterogeneous document-based question answer-030

ing (Chen et al., 2020), which necessitates reason-031

ing over both unstructured text and structured tabu-032

lar data, presents substantial challenges. Tables are033

characterized by interdependent rows and columns,034

while natural language texts are sequential. Bridg-035

ing this divergence within a unified QA system036

remains a non-trivial task.037

The prevailing approach extends the retrieval-038

augmented generation (RAG) paradigm, in which039

the tables are linearized into textual representations040

(e.g., Markdown) (Gao et al., 2023; Jin and Lu,041

2023; Ye et al., 2023b). Typically, chunking strate-042

gies are employed (Finardi et al., 2024), wherein043

Huawei Proprietary - Restricted Distribution1

Title Release date … Publisher LIVE Games on
Demand

007 : Quantum
of Solace

2008-11-04 ... Activision Y N

(Abbreviated Table content…..)

Lego Batman :
The Videogame

2008-09-23 Warner Bros. Interactive
Entertainment

N Y

What percentage of games published by Activision in 2008 are still live
(have ‘Y’ in the live column) compared to all live games in the List of
Games for Windows titles?

2008_in_video_gaming: 2008 has seen many sequels and prequels in video games . New intellectual properties
include Army of Two , Dead Space , Left 4 Dead , LittleBigPlanet , Mirror 's Edge , Race Driver : Grid , Grand
Theft Auto IV and Spore……

Top N relevant chunks

RAG Paradigm

50% of games published by
Activision in 2008 are still
live compared to all live
games.

TableRAG

20% of the games published
by Activision in 2008 are still
live compared to all live
games.

Figure 1: An example of the heterogeneous document
based question answering task.

flattened tables are segmented and merged with ad- 044

jacent text spans. During inference, the LLMs gen- 045

erate answers based on the top-N retrieved chunks. 046

However, these methodologies are predominantly 047

tailored to scenarios that require only surface-level 048

comprehension of tables, such as direct answer 049

extraction (Pasupat and Liang, 2015a; Zhu et al., 050

2021). When applied to extensive documents that 051

interleave textual and tabular elements, existing 052

RAG methodologies exhibit critical limitations: 053

• Structural Information Loss: The tabular struc- 054

ture integrity is compromised, leading to infor- 055

mation loss or irrelevant context that impedes 056

downstream LLMs performance. 057

• Lack of Global View: Due to document fragmen- 058

tation, the RAG system struggles with multi-hop 059

global queries (Edge et al., 2024), such as ag- 060

gregation, mathematical computations, and other 061

reasoning tasks that require a holistic understand- 062

ing across entire tables. 063

As illustrated in Figure 1, the RAG approach com- 064

putes percentage over the top-N most relevant 065

1

chunks rather than the full table, and thus results in066

an incorrect answer.067

To address these limitations of existing RAG068

systems, we propose TableRAG, an SQL-based069

framework that dynamic transitions between tex-070

tual understanding and complex manipulations over071

tabular data. TableRAG interacts with tables by072

leveraging SQL as an interface. Concretely, the073

framework operates via a two-stage process: an074

offline database construction phase and an online075

inference phase of iterative reasoning. The itera-076

tive reasoning procedure comprises four core oper-077

ations: (i) context-sensitive query decomposition,078

(ii) text retrieval, (iii) SQL programming and ex-079

ecution, and (iv) intermediate answer generation.080

The utilization of SQL enables precise symbolic081

execution by treating table-related queries as in-082

divisible reasoning units, thereby enhancing both083

computational efficiency and reasoning fidelity. To084

facilitate rigorous evaluation of multi-hop reason-085

ing over heterogeneous documents, we introduce086

HeteQA, a novel benchmark consisting of 304 ex-087

amples across nine diverse domains. Each example088

contains a composition across five distinct tabu-089

lar operations. We evaluate TableRAG on both090

established public benchmarks and our HeteQA091

dataset against strong baselines, including generic092

RAG and program-aided approaches. Experimen-093

tal results demonstrate that TableRAG consistently094

achieves state-of-the-art performance. Overall, our095

contributions are summarized as follows:096

• We identify two key limitations of existing RAG097

approaches in the context of heterogeneous docu-098

ment question answering: structural information099

loss and lack of global view.100

• We propose TableRAG, an SQL-based frame-101

work that unifies textual understanding and com-102

plex manipulations over tabular data. TableRAG103

comprises an offline database construction phase104

and a four-step online iterative reasoning process.105

• We develop HeteQA, a benchmark for evaluating106

multi-hop heterogeneous reasoning capabilities.107

Experimental results show that TableRAG out-108

performs RAG and programmatic approaches on109

HeteQA and public benchmarks, establishing a110

state-of-the-art solution.111

2 Task Formulation112

In the context of the heterogeneous document ques-113

tion answering task, we define the task input as114

extensive documents, denoted as (T ,D) where T 115

denotes the textual contents and D refers to the 116

tabular components. Given a user question q, the 117

objective of this task is to optimize a function F 118

that, given the combined textual and tabular con- 119

text, can produce the correct answer A: 120

F(D, T , q) → A. (1) 121

3 TableRAG Framework 122

3.1 Overview and Design Principles 123

We propose TableRAG, an SQL-based framework 124

designed to preserve table structural integrity and 125

facilitate heterogeneous reasoning. As depicted 126

in Figure 2, TableRAG consists of offline and on- 127

line workflows. The offline phase is tasked with 128

database construction, while the online phase fa- 129

cilitates iterative reasoning. The reasoning proce- 130

dure unfolds in a four-stage process: (i) Context- 131

sensitive query decomposition, which identifies the 132

respective roles of textual and tabular modalities 133

within the query. (ii) Text retrieval. (iii) SQL pro- 134

gramming and execution, which is selectively in- 135

voked for subqueries requiring tabular data reason- 136

ing. (iv) Compositional intermediate answer gen- 137

eration. The preferential use of SQL is motivated 138

by its capacity to leverage the expressive strength 139

of symbolic execution over structured data, thereby 140

enabling tabular components within user queries 141

to be treated as monolithic reasoning units. In con- 142

trast, other languages like Python incur substantial 143

computational overhead when dealing with large- 144

scale data or complex workloads (Shahrokhi et al., 145

2024). 146

3.2 Database Construction 147

In the offline stage, we first extract structured com- 148

ponents from heterogeneous documents, yielding a 149

set of tables D = {D1, . . . ,DM}. To enable infor- 150

mation retrieval, we construct two parallel corpora: 151

a textual knowledge base and a tabular schema 152

database. The textual knowledge base comprises 153

both the raw texts T and the Markdown-rendered 154

form of each table, denoted as D̂. Both D̂ and T 155

are segmented into chunks, which are then embed- 156

ded into dense vector representations using a pre- 157

trained language model (Chen et al., 2024a). For 158

tabular schema database construction, we represent 159

each table Di by a standardized schema description 160

S(Di), derived via a template as follows: 161

2

Document

chunking

Document-oriented

Database

Table Schema

Extraction

Relational

Database

Table Parsing

Retrival

Results

Table Schema

{

 "table_name": "<Table Name>",

 "columns": [

 ["<ColName>", "<Type>", "<Examples>"],

 ...

]

}

Any table chunks in

TopN results?

Sub Query

+

Table Schema

Extract SQL

and

Get excution result

NL2SQL

Please answer the question {question}

based on the following materials：

##

{SQL excution results}

…

{Doc retrieval results}

Ingestion

Trigger the workflow

of fetching results from DB

Table Content

Offline Phase: Database construction

Online Phase: Interative reasoning

Document

chunk Retrival

Text Retrival

User

Final Answer

Generation

SQL programing and execution

chunk

Mapping

Sub Query

Query

Decompision

Table Schema

Table Component

Text Component

Heterogeneous

Documents (word,

pdf, csv, execl

.etc)

Original

Query

Yes

Summarize
reference materials
from both source

Figure 2: The overall architecture of TableRAG.

Table Schema Template

{
"table_name": "<Table Name>",
"columns": [

["<ColName>", "<Type>", "<Examples>"],
...

]
}

162

Then, we define a mapping from each flattened163

table chunk to its originating table schema:164

f : D̂i,j → S(Di) (2)165

where D̂i,j denotes the j-th chunk derived from166

table D̂i. This mapping ensures that local segments167

remain contextually anchored to the table structure168

from which they are derived.169

The tables are also ingested in a relational170

database (e.g., MySQL1), supporting symbolic171

query execution in the subsequent online reasoning.172

3.3 Iterative Reasoning173

To address multi-hop, global queries that require174

compositional reasoning over texts and tables, we175

1https://github.com/mysql

introduce an iterative inference process aligned 176

with F in Equation 1. This process comprises 177

four core operations: (i) context-sensitive query 178

decomposition, (ii) text retrieval, (iii) program and 179

execute SQL, and (iv) compositional intermediate 180

answer generation. Through repeated cycles of de- 181

composition and resolution, a solution to the query 182

is progressively constructed. Detailed prompt tem- 183

plates are provided in Appendix F. 184

Context-Sensitive Query Decomposition We 185

explicitly delineate the respective roles of textual 186

and tabular modalities during the reasoning pro- 187

cess. While a table-related query may involve 188

multiple semantic reasoning steps, its tabular res- 189

olution can collapse to a single executable oper- 190

ation. Consequently, an effective decomposition 191

of global queries demands more than mere syntac- 192

tic segmentation, but also structural awareness of 193

the underlying data sources. To this end, we first 194

retrieve the most relevant table content from the 195

textual database and link it to its corresponding 196

table schema description S(Dt) via the mapping 197

function f . Based on this, we formulate a subquery 198

qt at the t-th iteration. 199

3

https://github.com/mysql

Text Retrieval We deploy a retrieval module that200

operates in two successive stages: vector-based201

recall followed by semantic reranking. Given an202

incoming query qt, it is encoded into a shared dense203

embedding space alongside document chunks. We204

then select the top-N candidates with the highest205

cosine similarity to the query embedding:206

T̂ qt
recall = top-N

(
arg max

T̂i∈{D̂,T }
cos(vT̂i ,vqt)

)
,

(3)207

In the subsequent reranking stage, the recalled can-208

didate chunks are re-evaluated by a more expressive209

relevance model, yielding the final top-k selections,210

denoted by T̂ qt
rerank.211

SQL Programming and Execution To support212

accurate reasoning over tabular data, we incorpo-213

rate a "program-and-execute" mechanism that is214

selectively invoked only when subquery reasoning215

involves tables. Specifically, we inspect whether216

any content originates from tabular sources in the217

retrieved results. For each chunk in the top-ranked218

set T̂ qt
rerank, we apply the mapping function (in219

Equation 2) to extract its associated schema, yield-220

ing a table schema set:221

St = {f(T̂i) | T̂i ∈ T̂ qt
rerank}. (4)222

If the set St is empty, this module is passed. Other-223

wise, we derive an accurate answer with the current224

subquery qt and the corresponding schema con-225

text as inputs. To achieve this, we leverage struc-226

tured query execution over relational data and use227

SQL as the intermediate formal language. A ded-228

icated tool fSQL with LLM as backend generates229

executable SQL programs and applies them to the230

pre-constructed MySQL database, formalized as231

follows:232

et = fSQL(S
t, qt). (5)233

Intermediate Answer Generation For the sub-234

query qt, TableRAG can benefit from two heteroge-235

neous information sources: the execution result et236

over SQL database and text retrieval result T̂ qt
rerank237

from the document database. Both of the data238

sources provide partial or complete evidence. They239

introduce distinct failure modes: SQL execution240

may produce incorrect results or execution errors,241

while text retrieval may yield incomplete or mis-242

leading context. Consequently, the results from243

these sources may either reinforce each other or244

present contradictions. To address this, we adopt 245

a compositional reasoning mechanism. The exe- 246

cution result et and the retrieved textual chunks 247

T̂ qt
rerank are cross-examined to validate consistency 248

and guide answer selection. The final answer to 249

each subquery is derived by adaptively weighting 250

the reliability of each source based on its evidential 251

utility, at = F(et, T̂ qt
rerank). 252

Once the query decomposition module deter- 253

mines that no further subqueries are necessary, 254

TableRAG terminates the iterative reasoning pro- 255

cess, yielding the final answer A = aT , where T 256

denotes the total number of iterations performed. 257

4 Benchmark Construction 258

In this section, we present HeteQA, a novel bench- 259

mark for assessing multi-hop reasoning across het- 260

erogeneous documents. 261

4.1 Data Collection 262

HeteQA necessitates advanced operations, such as 263

arithmetic computation, nested logic, etc. To bal- 264

ance annotation fidelity with scalability, we adopt 265

a human-in-the-loop collaborative strategy that in- 266

tegrates LLMs with human verification. The con- 267

struction pipeline proceeds in three stages: 268

Query Generation We curate tabular sources 269

from the Wikipedia dataset (Chen et al., 2020). 270

To facilitate analytical depth, we restrict our se- 271

lection to tables with a minimum of 20 rows and 272

7 columns, and apply structural deduplication to 273

eliminate redundancy across similar schemas. For 274

each retained table, we define a suite of advanced 275

operations, e.g., conditional filtering, and statistical 276

aggregation. These operations serve as primitives 277

for constructing complex queries. Leveraging the 278

Claude-3.7-sonnet 2, we prompt for query synthesis 279

as compositions over these primitives. Each gener- 280

ated query is paired with executable code in both 281

SQL and Python. We execute the associated code 282

and obtain the answer. A final deduplication pass is 283

applied over both queries and answers, promoting 284

diversity in the dataset. Full implementation details 285

are provided in Appendix A. 286

Answer Verification To ensure correctness and 287

reliability, each instance is subjected to manual 288

inspection by human annotators. Their task is to 289

verify that the execution outcome is accurate for the 290

corresponding query. In cases where discrepancies 291

2https://www.anthropic.com/claude/sonnet

4

https://www.anthropic.com/claude/sonnet

40.4%

5.9% 13.2%

3.7%

8.1%

11.0%

11.8%

5.9%
Domain

Sports

Transportation

Culture / Literature

Military

Geography

Entertainment

Society

Technology

26.2%

18.8%

26.6%

19.2%

9.2%

Domain

Filtering

Grouping

Aggregation

Calculation

Sorting

Figure 3: Domain distribution and tabular operation
distribution of HeteQA.

are found, they are responsible for correcting both292

the underlying code and the resulting answer.293

Document Reference To support queries that in-294

tegrate both tabular and textual information, we295

augment the instance by leveraging the associated296

Wikipedia document. Specifically, certain entities297

within the query are replaced with reference-based298

formulations by the human annotators. For exam-299

ple, the query "Which driver . . ." can be rephrased300

as "What is the nationality of the driver . . .". This301

entity substitution can either modify the subject of302

the question and its corresponding answer or alter303

the query phrasing while preserving the original304

answer. The annotation guidelines and annotator305

profiles are detailed in Appendix B.306

4.2 Discussion307

Each data instance in HeteQA is composed of a308

query, its corresponding answer, the executable309

SQL sentence, and the execution-derived answer.310

Through our data collection pipeline, we construct311

304 high-quality examples whose answers are312

grounded in both single-source (82%) and multi-313

source (18%). The resulting benchmark spans 136314

distinct tables and 5314 wiki knowledge entities.315

To characterize the dataset, we analyze its semantic316

domains and the types of tabular reasoning opera-317

tions. As illustrated in Figure 3, HeteQA covers 9318

semantically diverse domains and encompasses 5319

principal categories of tabular operations. Together,320

HeteQA constitutes a structurally diverse and se-321

mantically broad resource for advancing question322

answering over heterogeneous documents.323

5 Experiments324

5.1 Experimental Settings325

5.1.1 Datasets.326

We assess the performance of TableRAG on our327

curated HeteQA, as well as multiple established328

benchmarks spanning two settings:329

HybridQA (Chen et al., 2020) A multi-hop QA 330

dataset involving both tabular and textual informa- 331

tion. For our evaluation, we only retain data cases 332

with tables containing more than 100 cells. 333

WikiTableQuestion (Pasupat and Liang, 2015b) 334

A TableQA dataset spanning diverse domains. The 335

queries necessitate a range of data manipulation 336

operations, including comparison, aggregation, etc. 337

5.1.2 Implementation Details 338

In the text retrieval process, we employ the BGE- 339

M3 series models (Chen et al., 2024a,b). During 340

recall, we retain the top 30 candidates, from which 341

the top 3 are subsequently selected via reranking. 342

To manage large inputs, the text is chunked into 343

segments of 1000 tokens, with a 200-token overlap 344

between consecutive chunks. The iterative loop is 345

bounded by a maximum of 5 iterations. For back- 346

bone LLMs, we utilize Claude-3.5-Sonnet as a rep- 347

resentative closed-source LLM, while Deepseek- 348

V3, Deepseek-R1 (Guo et al., 2025), and Qwen-2.5- 349

72B (Yang et al., 2024) serve as the open-source 350

counterparts. A consistent backend is maintained 351

for all modules in the online iterative reasoning 352

process. We use accuracy as the evaluation metric, 353

assessed by Qwen-2.5-72B, which yields a binary 354

score of 0 or 1. The prompt is shown in Appendix 355

F. 356

5.1.3 Baselines 357

We evaluate the performance of TableRAG by 358

benchmarking it against three distinct baseline 359

methodologies: (1) Direct answer generation with 360

LLMs. (2) NaiveRAG, which processes tabular 361

data as linearized Markdown formatted texts and 362

subsequently applies a standard RAG pipeline. (3) 363

React (Yao et al., 2023), a prompt based paradigm 364

to synergize reasoning and acting in LLMs with 365

external knowledge sources. (4) TableGPT2 (Su 366

et al., 2024) employs a Python-based execution 367

module to generate code (e.g., Pandas) for answer 368

derivation within a simulated environment. The 369

detailed implementation of these baseline methods 370

is provided in Appendix C. 371

5.2 Main Result 372

The main results across different LLMs backbones 373

are presented in Table 1. Several key observa- 374

tions emerge: (1) The ReAct framework demon- 375

strates advantages over naive RAG on multi-source 376

data, but exhibits degraded performance on single- 377

source data that requires tabular reasoning. This 378

5

Method Backbone HybridQA WikiTQ HeteQA

- - Single-Source Multi-Source Overall

Direct Claude-3.5 9.84 6.21 10.68 8.65 10.00
DeepSeek-R1 24.42 12.20 3.40 13.46 6.77
DeepSeek-V3 14.75 10.39 6.80 28.85 14.19
Qwen-2.5-72b 11.47 7.37 4.85 12.50 7.42

NaiveRAG Claude-3.5 20.28 82.60 33.20 40.35 34.54
DeepSeek-V3 26.56 75.40 33.60 45.61 35.85
Qwen-2.5-72b 22.62 66.33 23.07 36.84 25.66

ReAct Claude-3.5 43.38 69.81 26.40 44.44 29.60
DeepSeek-V3 38.36 63.40 21.14 47.39 26.07
Qwen-2.5-72b 37.38 53.80 16.94 35.71 20.47

TableGPT2 9.51 63.40 35.60 16.67 32.24

TableRAG Claude-3.5 47.87 84.62 44.94 40.74 44.19
DeepSeek-V3 47.87 80.40 43.32 51.85 44.85
Qwen-2.5-72b 48.52 78.00 37.65 43.96 38.82

Table 1: Performance of TableRAG compared to baseline models across multiple benchmarks, measured by accuracy.
"Multi-Source" indicates questions requiring both tabular and textual information, while “Single-Source” refers to
questions relying on only one source type.

can be attributed to context insensitivity during379

multi-turn reasoning. Queries decomposed into380

multiple sub-tasks, such as filtering or aggrega-381

tion, suffering from information incompleteness or382

error propagation. (2) TableGPT2 yields accept-383

able results solely on single-source queries, such384

as WikiTQ, underscoring its limited capacity for385

handling multi-source queries. This reflects a lack386

of generalizability in heterogeneous information387

environments. (3) TableRAG surpasses all base-388

lines, achieving at least a 10% improvement over389

the strongest alternative. Notably, it performs ro-390

bustly across both single-source and multi-source391

data. This performance gain is attributed to the in-392

corporation of symbolic reasoning, which enables393

effective adaptation to heterogeneous documents.394

Moreover, the consistency in performance across395

different LLM backbones underscores TableRAG’s396

architectural generality and compatibility with a397

broad range of backbones.398

5.3 Ablation Study399

To elucidate the relative importance of each compo-400

nent within the TableRAG framework, we evaluate401

the full architecture against three ablated variants:402

(1) w/o Context-Sensitive Query Decomposition,403

where query decomposition is performed without404

1.4 1.6 1.8 2.0 2.25

10

15

20

25

30

35

40

45

50

LL
M

 e
va

l s
co

re

Ablation Study of TableRAG on HybridQA
TableRAG
w/o Context aware Decomposition
w/o SQL Execution
w/o Document Retrieval

1.4 1.6 1.8 2.0 2.25

10

15

20

25

30

35

40

45

50

LL
M

 e
va

l s
co

re

Ablation Study of TableRAG on HeteQA
TableRAG
w/o Context aware Decomposition
w/o SQL Execution
w/o Document Retrieval

Figure 4: Ablation study on HybridQA and HeteQA
benchmarks based on DeepSeek-V3 backbone.

conditioning on retrieved table schema. (2) w/o 405

SQL Execution, which replaces the SQL program- 406

ming and execution module with the markdown 407

table format. (3) w/o Textual Retrieval, which 408

operates solely through table-based SQL execu- 409

tion, without leveraging textual resources such as 410

Wikipedia documents. The results are summarized 411

in Figure 4. All the modules contribute to the over- 412

all performance of TableRAG, though their relative 413

impact varies across benchmarks. On HybridQA, 414

document retrieval proves particularly critical, due 415

to its emphasis on the extraction of entity-centric 416

or numerical cues. Conversely, for HeteQA, SQL 417

execution proves more influential, as the queries 418

involve nested operations that benefit from SQL- 419

6

0 20 40 60 80 100
Percentage

TableRAG

ReACT

TableGPT2

Execution Iterations Comparison on HeteQA

less than 3 steps 3 steps 4 steps 5 steps more than 5 steps

Figure 5: Comparison of the execution iterations on
HeteQA between TableRAG, ReAct and TableGPT2.

based symbolic reasoning. These findings highlight420

the complementary design of TableRAG’s textual421

retrieval and program-executed reasoning compo-422

nents.423

6 Efficiency424

We evaluate the efficiency of TableRAG by exam-425

ining the distribution of its execution iterations,426

as illustrated in Figure 5. Execution lengths are427

grouped into four categories: fewer than 3 steps,428

3–5 steps, exactly 5 steps, and more than 5 steps.429

Among the evaluated methods, TableGPT2 demon-430

strates the highest average number of execution431

steps, with a modal value centered around five.432

In contrast, TableRAG consistently requires fewer433

steps, resolving approximately 63.55% of instances434

in fewer than five steps and an additional 30.00%435

precisely within five, with only a marginal propor-436

tion of cases remaining unsolved under the given437

iteration constraints. While ReAct exhibits a com-438

parable distribution in execution steps, its overall439

performance remains markedly inferior to that of440

TableRAG. These results suggest that TableRAG441

achieves both superior efficiency in execution and442

outstanding reasoning accuracy. It is attributed to443

the incorporation of SQL-based tabular reasoning.444

7 Analysis445

We provide a comprehensive analysis of TableRAG446

in this section, with additional results presented in447

Appendix D.448

7.1 Error Analysis449

In addition to evaluating the overall performance450

of TableRAG against established baselines, we per-451

formed a detailed error analysis to characterize the452

nature of prediction failures. Broadly, the incorrect453

outputs fall into two primary categories: (1) reason-454

ing failures, attributable to errors in SQL execution455

0 50 100 150 200 250 300
Percentage (%)

TableRAG (DeepSeek-V3)

TableRAG (Qwen-72b)

ReAct (DeepSeek-V3)

ReAct (Qwen-72b)

TableGPT2

Error Distribution

Correct Reasoning Error Refusal or Exceeding Max Iteration

Figure 6: Error analysis of TableRAG, TableGPT2 and
ReAct with DeepSeek-V3 and Qwen-2.5-72b as back-
bones on HeteQA.

or flawed intermediate query decomposition, and 456

(2) task incompletion, typically manifesting as re- 457

fusals to answer or termination upon exceeding the 458

maximum iteration limit. The prediction distribu- 459

tion is shown in Figure 6. Notably, TableGPT2 ex- 460

hibits the highest frequency of such failures, largely 461

due to its limited capacity to integrate contextual 462

cues from the wiki documents. This constraint 463

frequently results in the model either explicitly re- 464

fusing to respond or acknowledging its inability 465

to do so. In contrast, ReAct, which lacks mecha- 466

nisms for context-aware query decomposition and 467

code execution simulation, often engages in un- 468

necessarily elaborate reasoning steps for problems 469

that could be addressed via a single structured in- 470

quiry. TableRAG demonstrates the lowest failure 471

rate among the methodologies assessed. Its con- 472

sistent ability to yield valid responses within five 473

iterations highlights the efficacy of its design — 474

particularly its use of context-aware query decom- 475

position and selective SQL-based execution plan- 476

ning. 477

7.2 Prediction across Domains 478

Figure 7 presents a comparative evaluation of 479

TableRAG, instantiated with various backbone 480

LLMs, against the ReAct framework across var- 481

ious domains. The results reveal that TableRAG 482

consistently outperforms ReAct in the majority of 483

domains, demonstrating its effectiveness in het- 484

erogeneous document question answering. Only 485

certain domains, such as Culture, exhibit compar- 486

atively weaker performance on TableRAG with 487

Qwen backbone. A closer inspection of the data 488

distribution suggests that this degradation may stem 489

from the sparsity of domain-specific instances. 490

7

Sports

Transportation

Culture / Literature

Military

Geography

Entertainment

Society

Technology

10
20

30
40

50
60

70

TableRAG DeepSeek-V3
ReAct DeepSeek V3

TableRAG Qwen
ReAct Qwen

Figure 7: Performance distribution of TableRAG and
ReAct across different domains.

8 Related Work491

8.1 Retrieval Augmented Generation492

Retrieval-Augmented Generation (RAG) has493

emerged as a robust paradigm for mitigating hallu-494

cination (Zhang et al., 2023a) and enhancing the495

reliability of Large Language Models (LLMs) gen-496

erated responses (Lewis et al., 2020; Guu et al.,497

2020). The RAG approaches retrieve from the498

knowledge base, and the most relevant document499

chunks are subsequently incorporated into the gen-500

eration process (Gao et al., 2023; Zhu et al., 2024;501

Borgeaud et al., 2022). However, this straightfor-502

ward retrieval process often yields noisy chunks503

that may lack critical details, thereby diminishing504

the quality of the subsequent generation. Recent505

advancements have thus focused on task-adaptive506

retrieval mechanisms. Notable frameworks in this507

regard include Self-RAG (Asai et al., 2023), RQ-508

RAG (Chan et al., 2024), etc. Despite these inno-509

vations, RAG still faces challenges when dealing510

with heterogeneous contexts (Satpute et al., 2024).511

8.2 Table Reasoning via Large Language512

Models513

Table reasoning refers to the development of a sys-514

tem that provides responses to user queries based515

on tabular data (Lu et al., 2025). The mainstream516

approaches to table reasoning can be broadly clas-517

sified into two categories. The first category re-518

volves around leveraging LLMs through prompt519

engineering. For instance, Tab-CoT (Jin and Lu,520

2023) applies chain-of-thought (CoT) reasoning521

to establish a tabular structured reasoning process.522

Similarly, Chain-of-Table (Wang et al., 2024) ex-523

tends the CoT methodology to the tabular setting,524

enabling a multi-step reasoning process for more525

complex table-based queries. The second category526

involves utilizing programs to process tabular data. 527

Tabsqlify (Nahid and Rafiei, 2024) employs a text- 528

to-SQL approach to decompose tables into smaller, 529

contextually relevant sub-tables. DATER (Ye et al., 530

2023a) adopts a few-shot prompting strategy to 531

reduce large tables into more manageable sub- 532

tables, using a parsing-execution-filling technique 533

that generates intermediate SQL queries. BINDER 534

(Cheng et al., 2022; Zhang et al., 2023b) integrates 535

both Python and SQL code to derive answers from 536

tables. InfiAgent-DABench (Hu et al., 2024) uti- 537

lizes an LLM-based agent that plans, writes code, 538

interacts with a Python sandbox, and synthesizes 539

results to solve table-based questions. 540

9 Conclusion 541

We address the limitations of existing RAG ap- 542

proaches in handling heterogeneous documents 543

that combine textual and tabular data. Current ap- 544

proaches compromise the structural integrity of ta- 545

bles, resulting in information loss and degraded per- 546

formance in global, multi-hop reasoning tasks. To 547

overcome these issues, we introduce TableRAG, an 548

SQL-driven framework that integrates textual un- 549

derstanding with precise tabular manipulation. To 550

rigorously assess the capabilities of our approach, 551

we also present a new benchmark HeteQA. Ex- 552

perimental evaluations across public datasets and 553

HeteQA reveal that TableRAG significantly outper- 554

forms existing baseline approaches. 555

Limitations 556

While TableRAG demonstrates strong performance, 557

several limitations merit consideration: 1. The ef- 558

fectiveness of TableRAG is closely tied to the capa- 559

bilities of the underlying LLMs. Our implementa- 560

tion leverages high-capacity models such as Claude, 561

DeepSeek-v3, and Qwen-72B-Instruct, which pos- 562

sess strong generalization abilities. Smaller models 563

that lack specialized instruction tuning may ex- 564

hibit a marked degradation in performance. This 565

suggests that achieving competitive results may ne- 566

cessitate substantial computational resources. 2. 567

The HeteQA benchmark is restricted to English. 568

This limitation arises from the difficulty in curating 569

high-quality heterogeneous sources across multiple 570

languages. As a result, cross-lingual generalization 571

remains unexplored. In future work, we aim to 572

extend HeteQA to a multilingual setting, thereby 573

broadening the applicability and robustness of our 574

evaluation framework. 575

8

References576

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and577
Hannaneh Hajishirzi. 2023. Self-rag: Learning to578
retrieve, generate, and critique through self-reflection.579
arXiv preprint arXiv:2310.11511.580

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-581
mann, Trevor Cai, Eliza Rutherford, Katie Milli-582
can, George Bm Van Den Driessche, Jean-Baptiste583
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.584
Improving language models by retrieving from tril-585
lions of tokens. In International conference on ma-586
chine learning, pages 2206–2240. PMLR.587

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,588
Wei Xue, Yike Guo, and Jie Fu. 2024. Rq-rag: Learn-589
ing to refine queries for retrieval augmented genera-590
tion. arXiv preprint arXiv:2404.00610.591

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu592
Lian, and Zheng Liu. 2024a. Bge m3-embedding:593
Multi-lingual, multi-functionality, multi-granularity594
text embeddings through self-knowledge distillation.595
arXiv preprint arXiv:2402.03216.596

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu597
Lian, and Zheng Liu. 2024b. Bge m3-embedding:598
Multi-lingual, multi-functionality, multi-granularity599
text embeddings through self-knowledge distillation.600
Preprint, arXiv:2402.03216.601

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,602
Hong Wang, and William Yang Wang. 2020. Hy-603
bridQA: A dataset of multi-hop question answering604
over tabular and textual data. In Findings of the Asso-605
ciation for Computational Linguistics: EMNLP 2020,606
pages 1026–1036, Online. Association for Computa-607
tional Linguistics.608

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu609
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,610
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,611
et al. 2022. Binding language models in symbolic612
languages. arXiv preprint arXiv:2210.02875.613

Darren Edge, Ha Trinh, Newman Cheng, Joshua614
Bradley, Alex Chao, Apurva Mody, Steven Truitt,615
Dasha Metropolitansky, Robert Osazuwa Ness, and616
Jonathan Larson. 2024. From local to global: A617
graph rag approach to query-focused summarization.618
arXiv preprint arXiv:2404.16130.619

Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pe-620
dro Gengo, Celio Larcher, Marcos Piau, Pablo Costa,621
and Vinicius Caridá. 2024. The chronicles of rag:622
The retriever, the chunk and the generator. arXiv623
preprint arXiv:2401.07883.624

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,625
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen626
Wang. 2023. Retrieval-augmented generation for627
large language models: A survey. arXiv preprint628
arXiv:2312.10997.629

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 630
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 631
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 632
centivizing reasoning capability in llms via reinforce- 633
ment learning. arXiv preprint arXiv:2501.12948. 634

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu- 635
pat, and Mingwei Chang. 2020. Retrieval augmented 636
language model pre-training. In International confer- 637
ence on machine learning, pages 3929–3938. PMLR. 638

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli 639
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing 640
Xu, Ming Zhu, et al. 2024. Infiagent-dabench: Eval- 641
uating agents on data analysis tasks. arXiv preprint 642
arXiv:2401.05507. 643

Ziqi Jin and Wei Lu. 2023. Tab-cot: Zero-shot tabular 644
chain of thought. arXiv preprint arXiv:2305.17812. 645

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 646
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 647
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 648
täschel, et al. 2020. Retrieval-augmented generation 649
for knowledge-intensive nlp tasks. Advances in Neu- 650
ral Information Processing Systems, 33:9459–9474. 651

Weizheng Lu, Jing Zhang, Ju Fan, Zihao Fu, Yueguo 652
Chen, and Xiaoyong Du. 2025. Large language 653
model for table processing: A survey. Frontiers of 654
Computer Science, 19(2):192350. 655

Md Mahadi Hasan Nahid and Davood Rafiei. 2024. 656
Tabsqlify: Enhancing reasoning capabilities of 657
llms through table decomposition. arXiv preprint 658
arXiv:2404.10150. 659

Panupong Pasupat and Percy Liang. 2015a. Compo- 660
sitional semantic parsing on semi-structured tables. 661
arXiv preprint arXiv:1508.00305. 662

Panupong Pasupat and Percy Liang. 2015b. Compo- 663
sitional semantic parsing on semi-structured tables. 664
arXiv preprint arXiv:1508.00305. 665

Ankit Satpute, Noah Gießing, André Greiner-Petter, 666
Moritz Schubotz, Olaf Teschke, Akiko Aizawa, and 667
Bela Gipp. 2024. Can llms master math? investigat- 668
ing large language models on math stack exchange. 669
In Proceedings of the 47th international ACM SIGIR 670
conference on research and development in informa- 671
tion retrieval, pages 2316–2320. 672

Hesam Shahrokhi, Amirali Kaboli, Mahdi Ghorbani, 673
and Amir Shaikhha. 2024. Pytond: Efficient python 674
data science on the shoulders of databases. In 2024 675
IEEE 40th International Conference on Data Engi- 676
neering (ICDE), pages 423–435. IEEE. 677

Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou, 678
Ga Zhang, Gang Chen, Guangcheng Zhu, Haobo 679
Wang, Haokai Xu, Hao Chen, et al. 2024. Tablegpt2: 680
A large multimodal model with tabular data integra- 681
tion. arXiv preprint arXiv:2411.02059. 682

9

https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-683
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly684
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu685
Lee, et al. 2024. Chain-of-table: Evolving tables in686
the reasoning chain for table understanding. arXiv687
preprint arXiv:2401.04398.688

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,689
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,690
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-691
nical report. arXiv preprint arXiv:2412.15115.692

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak693
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.694
React: Synergizing reasoning and acting in language695
models. In International Conference on Learning696
Representations (ICLR).697

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei698
Huang, and Yongbin Li. 2023a. Large language699
models are versatile decomposers: Decompose evi-700
dence and questions for table-based reasoning. arXiv701
preprint arXiv:2301.13808.702

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei703
Huang, and Yongbin Li. 2023b. Large language704
models are versatile decomposers: Decomposing ev-705
idence and questions for table-based reasoning. In706
Proceedings of the 46th International ACM SIGIR707
Conference on Research and Development in Infor-708
mation Retrieval, SIGIR ’23, page 174–184, New709
York, NY, USA. Association for Computing Machin-710
ery.711

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,712
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,713
Yulong Chen, et al. 2023a. Siren’s song in the ai714
ocean: a survey on hallucination in large language715
models. arXiv preprint arXiv:2309.01219.716

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce717
Cahoon, Shaleen Deep, and Jignesh M Patel. 2023b.718
Reactable: Enhancing react for table question answer-719
ing. arXiv preprint arXiv:2310.00815.720

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao721
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and722
Tat-Seng Chua. 2021. Tat-qa: A question answering723
benchmark on a hybrid of tabular and textual content724
in finance. arXiv preprint arXiv:2105.07624.725

Yinghao Zhu, Changyu Ren, Shiyun Xie, Shukai Liu,726
Hangyuan Ji, Zixiang Wang, Tao Sun, Long He,727
Zhoujun Li, Xi Zhu, et al. 2024. Realm: Rag-driven728
enhancement of multimodal electronic health records729
analysis via large language models. arXiv preprint730
arXiv:2402.07016.731

A HeteQA732

A.1 Prompt Design733

The templates employed for HeteQA benchmark734

construction are presented in Table ??.735

Figure 8: The dataset construction pipeline of HeteQA.

A.2 Table Collection 736

To enable complex reasoning over tabular struc- 737

tures, we curate a subset of extensive tables from 738

the Wikipedia-based corpus. Specifically, we retain 739

only tables containing more than 20 rows and at 740

least 7 columns. This filtering process reduced the 741

initial collection from 15,314 tables to 1,345 candi- 742

dates that meet the criteria for structural richness. 743

To further enhance query diversity and reduce re- 744

dundancy in the dataset, we apply a deduplication 745

step based on schema similarity. In cases where 746

multiple tables share identical column structures — 747

for example, the entries for 1947 BAA draft and 748

1949 BAA draft — only a single representative 749

instance is preserved. This procedure yielded a 750

final dataset comprising 155 unique tables. 751

A.3 Data Collection 752

As illustrated in Figure 8, each data instance is con- 753

structed through a three-stage pipeline, facilitated 754

via the Claude 3.7 Sonnet API3. 755

To construct the dataset, we prompt the LLM 756

to generate SQL or pandas code associated with 757

queries conditioned on a provided table schema. 758

The generated code is then executed against the 759

table to obtain the corresponding answer. Instances 760

that fail to produce an executable result are dis- 761

carded. To promote diversity within the dataset 762

and avoid redundancy, we eliminate any instances 763

exhibiting duplicate queries or identical answers. 764

This filtering is performed using regular expres- 765

sions to detect lexical or semantic repetition. Ad- 766

ditionally, we discard cases where the execution 767

result is ambiguous, such as queries seeking the top- 768

ranked entity when multiple candidates are tied. 769

Following automated filtering, all remaining in- 770

stances undergo a manual verification process. Two 771

human annotators independently assess each query, 772

the corresponding code, and the resulting answer. 773

In cases of inconsistency or error, annotators revise 774

the SQL or Python code and correct the associated 775

answer to ensure accuracy and coherence. 776

3https://www.anthropic.com/claude/sonnet

10

https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://www.anthropic.com/claude/sonnet

B Guidelines for HeteQA Annotations777

B.1 Annotator Profiles778

The two annotators are volunteers whose native lan-779

guage is Chinese and who possess fluent English780

proficiency. Both annotators are professional soft-781

ware engineers with substantial experience in SQL782

and Python programming.783

B.2 Guidelines for Answer Verification784

Objective785

Your task is to verify whether the provided answer786

correctly and completely addresses the natural787

language query, based on the associated code and788

table. You will also identify and handle ambiguous789

or non-unique cases.790

791

Annotation Steps792

1. Verify the Answer793

Read the natural language query and examine the794

accompanying Excel table, SQL statements, and795

Python (pandas) code. Verify whether the output796

aligns with the semantics of the original query and797

the underlying data. To this end, you are permit-798

ted to execute multiple operations on the provided799

Excel files.800

2. Correction Tasks (if necessary)801

If the answer is incorrect, modify both the code and802

the answer so that they correctly fulfill the query.803

Ensure the modified code is minimal, clean, and804

logically sound.805

3. Ambiguity and Tie Cases806

In instances where the query yields no unique reso-807

lution - whether due to tied outcomes, under spec-808

ified conditions, or semantic ambiguity in the for-809

mulation - you can employ principled strategies to810

ensure meaningful processing:811

- Option A: Modify the query to resolve the ambi-812

guity (e.g., make clarification).813

- Option B: If the ambiguity is irreparable or the an-814

swer depends on arbitrary choices, discard the case.815

816

Additional Guidelines817

Maintain consistency between the query, code, and818

answer. Ensure your corrections do not introduce819

new ambiguities or assumptions not grounded in820

the table or query.821

B.3 Guidelines for Document Reference822

Objective823

Your task is to add an additional reasoning hop to824

the original query using the provided Wikipedia825

entities and content. This will help transform the 826

original query into a more complex, multi-hop 827

question that requires deeper reasoning. 828

829

Input Data 830

Each data case consists of: 831

• Original Query 832

• Answer 833

• A set of Wikipedia entities relevant to the query 834

or the answer 835

• Corresponding Wikipedia content for each entity 836

Task Overview 837

For each data case, check if the original answer is 838

mentioned in the provided Wiki entities: 839

- If not mentioned or ambiguous (e.g., "Jordan" 840

for both basketball star and sports brand), do not 841

change the query and answer. Just mark the case 842

as “No modification needed”. 843

- If the answer entity exists in the Wikipedia content, 844

perform the following steps: 845

1. Identify key factual descriptions about the 846

answer entity from its Wiki content. 847

2. Add a reasoning hop to the original query that 848

leads to the answer via this key fact. 849

3. Generate two candidate (Query, Answer) 850

pairs by rewriting the query to incorporate this 851

extra reasoning step and updating the answer 852

accordingly. 853

854

Example 855

Original Query: Which album takes first place on 856

the Billboard leaderboard in 2013? 857

Original Answer: ArtPop 858

Wiki Entity: ArtPop (album) 859

A key description: It was released on November 6, 860

2013, by Streamline and Interscope Records. 861

Modified Query Candidates: 862

Who released the album that takes the first place 863

on the Billboard leaderboard in 2013? → Answer: 864

Streamline and Interscope Records 865

C Implementation Details of Baselines 866

This section provides a detailed account of the im- 867

plementation procedures for the baseline method- 868

ologies to ensure a fair and reproducible evaluation. 869

11

C.1 ReAct870

For the ReAct framework, we preprocess tabular871

data by converting it into markdown-formatted872

plain text. To ensure consistency in experimen-873

tal conditions, we adopt the same chunking and874

retrieval configurations as those employed in our875

TableRAG model. We build upon the publicly876

available ReAct implementation4. The framework877

addresses user queries through an iterative rea-878

soning loop consisting of Thought, Action, and879

Observation steps, culminating in a final answer880

via the Finish operation. The max iteration is set881

to 5, the same as TableRAG.882

C.2 TableGPT2883

We evaluate TableGPT2 using its officially released884

TableGPT Agent implementation 5. As specified885

in its API documentation, we provide both the doc-886

ument content and the tabular data as inputs to887

the HumanMessage class, ensuring adherence to the888

intended usage of the model:889

1 from typing import TypedDict890
2 from langchain_core.messages import891

HumanMessage892
3893
4 class Attachment(TypedDict):894
5 """ Contains at least one dictionary895

with the key filename."""896
6 filename: str897
7898
8 attachment_msg = HumanMessage(899
9 content="",900

10 # Please make sure your iPython901
kernel can access your filename.902

11 additional_kwargs ={"attachments": [903
Attachment(filename="titanic.csv")904
]},905

12)906

D Analysis907

We present a series of auxiliary analyses conducted908

on both our proposed benchmark, HETEQA, and909

the publicly available HYBRIDQA dataset. These910

analyses offer further insight into the behavior and911

limitations of TableRAG beyond the primary eval-912

uation metrics.913

D.1 Analysis on HybridQA914

We extend our investigation to the HYBRIDQA915

dataset by examining the performance distribution916

on data domains and conducting a detailed error917

analysis, using DEEPSEEK-V3 as the backbone918

model. The results, summarized in Figures 10919

4https://github.com/ysymyth/ReAct
5https://github.com/tablegpt/tablegpt-agent

0 50 100 150 200 250 300
Percentage (%)

TableRAG (DeepSeek-V3)

TableRAG (Qwen-72b)

ReAct (DeepSeek-V3)

ReAct (Qwen-72b)

TableGPT2

Prediction Distribution

Correct Reasoning Error Refusal or Exceeding Max Iteration

Figure 9: Prediction distribution of TableRAG,
TableGPT2 and ReAct on HybridQA.

Sports

Transportation

Culture / Literature

Military

Geography

Entertainment

Society

Technology

30

40

50

TableRAG DeepSeek-V3
ReAct DeepSeek V3

TableRAG Qwen
ReAct Qwen

Figure 10: Model performance of different domains on
HybridQA.

and 9, reveal patterns consistent with those ob- 920

served on HETEQA. This parallel further validates 921

the generality of our observations across HeteQA 922

settings. 923

D.2 HyperParameter Analysis 924

To elucidate the influence of the top-k retrieval 925

parameter on the performance of TableRAG, we 926

undertook a systematic sensitivity analysis. While 927

our main experimental setup fixed k = 3, we ex- 928

panded our investigation on the HeteQA dataset, 929

utilizing DeepSeek-V3 as the retrieval backbone, 930

and varied k across the set 1, 3, 5. The resulting 931

1 3 5
Top-k

35

40

45

50

Ac
cu

ra
cy

 (%
)

Top-k vs HybridQA and HeteQA
HybridQA
HeteQA

Figure 11: Hyperparameter top-k analysis of TableRAG
on HeteQA.

12

https://github.com/ysymyth/ReAct
https://github.com/tablegpt/tablegpt-agent

table List_of_Australian_films_of_2012_0

query Who wrote and starred the comedy film released in the second half of 2012 (July-December)
that had the highest number of cast members in the List of Australian films of 2012?

sql_query Which comedy film released in the second half of 2012 (July-December) had the highest
number of cast members in the List of Australian films of 2012?

sql
1 SELECT
2 title ,
3 LENGTH(cast_subject_of_documentary) - LENGTH(
4 REPLACE(
5 cast_subject_of_documentary , ’,’,
6 ’’
7)
8) + 1 AS cast_count
9 FROM

10 ‘list_of_australian_films_of_2012_0_sheet1 ‘
11 WHERE
12 genre LIKE ’%Comedy%’
13 AND (
14 release_date LIKE ’%July%’
15 OR release_date LIKE ’%August%’
16 OR release_date LIKE ’%September%’
17 OR release_date LIKE ’%October%’
18 OR release_date LIKE ’%November%’
19 OR release_date LIKE ’\ufffdcember%’
20)
21 ORDER BY
22 cast_count DESC
23 LIMIT
24 1;

sql_ans Kath & Kimderella

answer Riley, Turner, and Magda Szubanski

Table 2: An example of HeteQA.

13

performance metrics are illustrated in Figure 11.932

Our observations reveal distinct behaviors across933

benchmarks with respect to the choice of k. No-934

tably, HybridQA exhibits superior performance935

at higher k values. This effect is plausibly at-936

tributable to the lack of deduplication within its937

tables, whereby overlapping or similar information938

from multiple tables or Wikipedia documents con-939

tributes constructively during retrieval. In aggre-940

gate, setting k = 3 strikes an effective balance,941

yielding robust performance across both bench-942

marks while maintaining computational efficiency.943

This efficiency gain arises from the direct relation-944

ship between the top-k retrieval size and the subse-945

quent LLM context length, underscoring the practi-946

cal importance of this hyperparameter in optimiz-947

ing the trade-off between accuracy and resource948

consumption.949

E Check List950

Harmful information And Privacy We propose951

a new RAG solution to address multi-hop problems952

related to heterogeneous data, without involving953

any harmful information or privacy. In addition,954

we provide a heterogeneous benchmark containing955

tables and texts sourced from Wikipedia. All of956

the data is publicly available, contains no personal957

information, and involves no harmful content.958

License and Intend We provide the license we959

used here:960

- Claude 3.5 Sonnet (https://www.anthropic.961

com/legal/aup)962

- Qwen2.5-72B-Instruct (https://huggingface.963

co/Qwen/Qwen2.5-72B-Instruct/blob/964

main/LICENSE)965

- DeepSeek-V3 (https://huggingface.co/966

deepseek-ai/DeepSeek-V3/blob/main/967

LICENSE-MODEL)968

- TableGPT Agent (Apache License 2.0) and969

TableGPT2-7B (https://huggingface.970

co/tablegpt/TableGPT2-7B/blob/main/971

LICENSE)972

Our use of these existing artifacts was consistent973

with their intended use.974

Documentation of the artifacts We propose975

a novel Retrieval-Augmented Generation (RAG)976

framework that integrates traditional document re- 977

trieval with structured data querying via SQL, aim- 978

ing to enhance performance in table-related ques- 979

tion answering tasks. The framework comprises 980

two fundamental stages: offline database construc- 981

tion and online interactive reasoning. Compared to 982

conventional document-centric RAG approaches, 983

our architecture offers additional reliable SQL exe- 984

cution results—when table fragments are involved 985

in the retrieval process. This supplementary source 986

mitigates the limitations of generative models in 987

handling structured tabular data. 988

To facilitate a more comprehensive evaluation 989

of our framework, we further construct a heteroge- 990

neous benchmark named HeteQA. This benchmark 991

aims to evaluate the capability to handle multi-hop 992

reasoning tasks across heterogeneous documents. 993

The benchmark instances are initially generated 994

by LLMs, and then rigorously validated by experi- 995

enced programmers and database administrators to 996

ensure correctness and realism. 997

14

https://www.anthropic.com/legal/aup
https://www.anthropic.com/legal/aup
https://www.anthropic.com/legal/aup
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE

F Prompts998

The prompts for TableRAG are presented in this999

section.1000

Prompt Template for SQL generation

Multi-Hop Table Reasoning Query Generator

Task
Generate a genuine multi-hop reasoning query based on the provided markdown table, along with SQL and pandas
solutions in a structured JSON format.

Input
A markdown formatted table schema.

Output Requirements
Provide exactly ONE multi-hop reasoning query that:
- Requires sequential analytical operations where each step depends on the previous result
- Cannot be broken down into separate independent questions
- Is solvable using both SQL and pandas
- Is relevant to the data domain in the table
- Mention the table name in query to indicate the source table file

Operations to Consider in Your Sequential Reasoning Chain
- Group or Aggregate
- Filtering subsets
- Calculating percentages or ratios between groups
- Comparing specific subgroups
- Rank or order
- Finding extremes (max/min) of aggregated values
- Computing difference or sum
- Finding correlations

Example Operations Combinations
- Filter → Group → Rank in groups
- Group → Sum → Compare
- Filter → Calculate percentage → Rank
- Group → Aggregate → Filter on aggregate

Guidance for True Multi-Hop Queries
A proper multi-hop query requires sequential operations where each step builds on the result of the previous step. For
example:

GOOD (True multi-hop): "What was the average lap time among the top 5 ranked drivers in the team which had the
best average lap time?"
- This requires first finding the team with best average lap time
- Then identifying the top 5 drivers in that specific team
- Finally calculating the average lap time of just those drivers

BAD (Separable questions): "Which team had the best average lap time, and what was that average among the top 5
ranked drivers?"
- This could be answered as two separate questions

Format your response as a single JSON object with this structure:
{
"query": "Clear natural language question requiring true multi-hop reasoning",
"operations_used": ["List operations used, such as: filtering, aggregation, grouping, sorting, etc."],
"sql_solution": "Complete executable SQL query that solves the question",
"pandas_solution": "Complete executable pandas code that solves the question",
"result_type: "The type of the result, must be either number or entity."
}
Ensure your query truly requires chained reasoning where later steps must use results from earlier steps and generates
one answer.

1001

. 1002

15

Prompt Template for Query Decomposition

1 tools = [{
2 "type": "function",
3 "function": {
4 "name": "solve_subquery",
5 "description": "Return answer for the decomposed subquery",
6 "parameters": {
7 "type": "object",
8 "properties": {
9 "subquery": {

10 "type": "string",
11 "description": "The subquery to be solved"
12 }
13 },
14 "required": [
15 "subquery"
16],
17 "additionalProperties": False
18 },
19 "strict": True
20 }
21 }]

Next, You will complete a table-related question answering task. Based on the provided materials
such as the table content (in Markdown format), you need to analyze the Question. And try to
decide whether the Question should be broken down into subquerys. After you have collected
sufficient information, you need to generate comprehensive answers.
You have a "solve_subquery" tool that can execute SQL-like operations on the table data. It
accepts natural language questions as input.

Instructions:
1. Carefully analyze the user query through step-by-step reasoning.
2. If the query requires multiple pieces of information, more than the given table content:
- Decompose the query into subqueries
- Process one subquery at a time
- Use "solve_subquery" tool to retrieve answers for each subquery
3. If a query can be answered by table content, do not decompose it. And directly put the origin
query into the "solve_subquery" tool.
The "solve_subquery" tool can solve complex subquery on table via one tool call.
4. Generate exactly ONE subquery at a time.
5. Write out all terms completely - avoid using abbreviations.
6. When you have sufficient information, provide the final answer in this format:
<Answer>: [your complete response]

Table Content: {table_content}
Question: {query}
Please start!

1003

??? 1004

16

Prompt Template for Intermediate Answer Reasoning

You are about to complete a table-based question answering task using the following two types of
reference materials:

Content 1: Original content (table content is provided in Markdown format)
{docs}

Content 2: NL2SQL related information and SQL execution results in the database
the user given table schema
{schema}

SQL generated based on the schema and the user question:
{nl2sql_model_response}

SQL execution results
{sql_execute_result}

Please answer the user’s question based on the materials above.
User question: {query}

Note:
1. The markdown table content in Content 1 may be not complete.
2. You should cross-validate the given two materials:
- if the answers are same, you may directly output the answer.
- If the SQL shows error, such as "SQL execution results", try to answer solely based on Content 1.
- If the two material shows conflict, carefully evaluate both sources, explain the discrepancy, and
provide your best assessment.

1005

. 1006

17

Prompt Template for Answer Evaluation

We would like to request your feedback on the performance of the AI assistant in response to
the user question displayed above according to the gold answer. Please use the following listed
aspects and their descriptions as evaluation criteria:
- Accuracy and Hallucinations: The assistant’s answer is semantically consistent with the gold
answer; The numerical value and order need to be accurate, and there should be no hallucinations.
- Completeness: Referring to the reference answers, the assistant’s answer should contain all the
key points needed to answer the user’s question; further elaboration on these key points can be
omitted.
Please rate whether this answer is suitable for the question. Please note that the gold answer can
be considered as a correct answer to the question.

The assistant receives an overall score on a scale of 0 OR 1, where 0 means wrong and 1 means
correct.
Dirctly output a line indicating the score of the Assistant.

PLEASE OUTPUT WITH THE FOLLOWING FORMAT, WHERE THE SCORE IS 0 OR 1 BY
STRICTLY FOLLOWING THIS FORMAT: "[[score]]", FOR EXAMPLE "Rating: [[1]]":
<start output>
Rating: [[score]]
<end output>

[Question]
question

[Gold Answer]
golden

[The Start of Assistant’s Predicted Answer]
{gen}

1007

18

	Introduction
	Task Formulation
	TableRAG Framework
	Overview and Design Principles
	Database Construction
	Iterative Reasoning

	Benchmark Construction
	Data Collection
	Discussion

	Experiments
	Experimental Settings
	Datasets.
	Implementation Details
	Baselines

	Main Result
	Ablation Study

	Efficiency
	Analysis
	Error Analysis
	Prediction across Domains

	Related Work
	Retrieval Augmented Generation
	Table Reasoning via Large Language Models

	Conclusion
	HeteQA
	Prompt Design
	Table Collection
	Data Collection

	Guidelines for HeteQA Annotations
	Annotator Profiles
	Guidelines for Answer Verification
	Guidelines for Document Reference

	Implementation Details of Baselines
	ReAct
	TableGPT2

	Analysis
	Analysis on HybridQA
	HyperParameter Analysis

	Check List
	Prompts

