TableRAG: A Retrieval Augmented Generation Framework for
Heterogeneous Document Reasoning

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) has
demonstrated considerable effectiveness in
open-domain question answering. However,
when applied to heterogeneous documents,
comprising both textual and tabular compo-
nents, existing RAG approaches exhibit critical
limitations. The prevailing practice of flatten-
ing tables and chunking strategies disrupts the
intrinsic tabular structure, leads to information
loss, and undermines the reasoning capabilities
of LLMs in multi-hop, global queries. To ad-
dress these challenges, we propose TableRAG,
an SQL-based framework that unifies textual
understanding and complex manipulations over
tabular data. TableRAG iteratively operates in
four steps: context-sensitive query decomposi-
tion, text retrieval, SQL programming and exe-
cution, and compositional intermediate answer
generation. We also develop HeteQA, a novel
benchmark designed to evaluate the multi-hop
heterogeneous reasoning capabilities. Experi-
mental results demonstrate that TableRAG con-
sistently outperforms existing baselines on both
public datasets and our HeteQA, establishing
a new state-of-the-art for heterogeneous docu-
ment question answering. We will release our
code and data upon acceptance.

1 Introduction

Heterogeneous document-based question answer-
ing (Chen et al., 2020), which necessitates reason-
ing over both unstructured text and structured tabu-
lar data, presents substantial challenges. Tables are
characterized by interdependent rows and columns,
while natural language texts are sequential. Bridg-
ing this divergence within a unified QA system
remains a non-trivial task.

The prevailing approach extends the retrieval-
augmented generation (RAG) paradigm, in which
the tables are linearized into textual representations
(e.g., Markdown) (Gao et al., 2023; Jin and Lu,
2023; Ye et al., 2023b). Typically, chunking strate-
gies are employed (Finardi et al., 2024), wherein

What percentage of games published by Activision in 2008 are still live
(have ‘Y’ in the live column) compared to all live games in the List of
Games for Windows titles?

include Army of Two , Dead Space , Left 4 Dead, LittleBigPlanet , Mirror 's Edge , Race Driver : Grid , Grand
|| Theft Auto v and spore.

Release date Publisher LIVE Games on

Demand

[Title

\ l 007 : Quantum
Ll of Solace.
\

2008-11-04 Activision Y N
Y [(Abbreviated|Table content.....)

\
\‘ Lego Batman : 2008-09-23 Warner Bros. Interactive N Y
\\l The Videogame Entertainment

RAG Paradigm

@ ' Top N relevant chunks

50% of games published by
Activision in 2008 are still
live compared to all live
games.

¥\

TableRAG

2 + &Y

20% of the games published
by Activision in 2008 are still
live compared to all live

games.

Figure 1: An example of the heterogeneous document
based question answering task.

flattened tables are segmented and merged with ad-
jacent text spans. During inference, the LLMs gen-
erate answers based on the top-N retrieved chunks.
However, these methodologies are predominantly
tailored to scenarios that require only surface-level
comprehension of tables, such as direct answer
extraction (Pasupat and Liang, 2015a; Zhu et al.,
2021). When applied to extensive documents that
interleave textual and tabular elements, existing
RAG methodologies exhibit critical limitations:

e Structural Information Loss: The tabular struc-
ture integrity is compromised, leading to infor-
mation loss or irrelevant context that impedes
downstream LLMs performance.

* Lack of Global View: Due to document fragmen-
tation, the RAG system struggles with multi-hop
global queries (Edge et al., 2024), such as ag-
gregation, mathematical computations, and other
reasoning tasks that require a holistic understand-
ing across entire tables.

As illustrated in Figure 1, the RAG approach com-
putes percentage over the top-N most relevant

chunks rather than the full table, and thus results in
an incorrect answer.

To address these limitations of existing RAG
systems, we propose TableRAG, an SQL-based
framework that dynamic transitions between tex-
tual understanding and complex manipulations over
tabular data. TableRAG interacts with tables by
leveraging SQL as an interface. Concretely, the
framework operates via a two-stage process: an
offline database construction phase and an online
inference phase of iterative reasoning. The itera-
tive reasoning procedure comprises four core oper-
ations: (i) context-sensitive query decomposition,
(i) text retrieval, (iii) SQL programming and ex-
ecution, and (iv) intermediate answer generation.
The utilization of SQL enables precise symbolic
execution by treating table-related queries as in-
divisible reasoning units, thereby enhancing both
computational efficiency and reasoning fidelity. To
facilitate rigorous evaluation of multi-hop reason-
ing over heterogeneous documents, we introduce
HeteQA, a novel benchmark consisting of 304 ex-
amples across nine diverse domains. Each example
contains a composition across five distinct tabu-
lar operations. We evaluate TableRAG on both
established public benchmarks and our HeteQA
dataset against strong baselines, including generic
RAG and program-aided approaches. Experimen-
tal results demonstrate that TableRAG consistently
achieves state-of-the-art performance. Overall, our
contributions are summarized as follows:

* We identify two key limitations of existing RAG
approaches in the context of heterogeneous docu-
ment question answering: structural information
loss and lack of global view.

* We propose TableRAG, an SQL-based frame-
work that unifies textual understanding and com-
plex manipulations over tabular data. TableRAG
comprises an offline database construction phase
and a four-step online iterative reasoning process.

* We develop HeteQA, a benchmark for evaluating
multi-hop heterogeneous reasoning capabilities.
Experimental results show that TableRAG out-
performs RAG and programmatic approaches on
HeteQA and public benchmarks, establishing a
state-of-the-art solution.

2 Task Formulation

In the context of the heterogeneous document ques-
tion answering task, we define the task input as

extensive documents, denoted as (7, D) where T
denotes the textual contents and D refers to the
tabular components. Given a user question g, the
objective of this task is to optimize a function F
that, given the combined textual and tabular con-
text, can produce the correct answer .A:

F(D,T,q) — A (1)

3 TableRAG Framework

3.1 Overview and Design Principles

We propose TableRAG, an SQL-based framework
designed to preserve table structural integrity and
facilitate heterogeneous reasoning. As depicted
in Figure 2, TableRAG consists of offline and on-
line workflows. The offline phase is tasked with
database construction, while the online phase fa-
cilitates iterative reasoning. The reasoning proce-
dure unfolds in a four-stage process: (i) Context-
sensitive query decomposition, which identifies the
respective roles of textual and tabular modalities
within the query. (ii) Text retrieval. (iii) SQL pro-
gramming and execution, which is selectively in-
voked for subqueries requiring tabular data reason-
ing. (iv) Compositional intermediate answer gen-
eration. The preferential use of SQL is motivated
by its capacity to leverage the expressive strength
of symbolic execution over structured data, thereby
enabling tabular components within user queries
to be treated as monolithic reasoning units. In con-
trast, other languages like Python incur substantial
computational overhead when dealing with large-
scale data or complex workloads (Shahrokhi et al.,
2024).

3.2 Database Construction

In the offline stage, we first extract structured com-
ponents from heterogeneous documents, yielding a
set of tables D = {Dy, ..., Dys}. To enable infor-
mation retrieval, we construct two parallel corpora:
a textual knowledge base and a tabular schema
database. The textual knowledge base comprises
both the raw texts 7 and the Markdown-rendered
form of each table, denoted as D. Both D and T
are segmented into chunks, which are then embed-
ded into dense vector representations using a pre-
trained language model (Chen et al., 2024a). For
tabular schema database construction, we represent
each table D; by a standardized schema description
S(D;), derived via a template as follows:

Offline Phase: Database construction

Table Content

-

[1

|
|

|
|

|
} |

|
} D J Table Parsing I
| =D |
I B Table Schema }
‘ — Extraction |
I Table Component |
} E Ingestion = |
‘ e D bocument Table Schema }
\ Z o chunkin {
| Heterogeneous T 9 “table_name": " <Table Name>", |
| Documents (word, "columns": [|
| pdf, csv, execl il T ["<ColName>", "<Type>", " <Examples>"], I
| .etc) _— |
‘ : Relational |

. chunk } elationa

‘ ediconpenens Document-oriented = ——» Datab \
| Mapping atabase
| Database }
|

|

T [o
. a o t i i
| Online Phase: Interative reasoning \ S SQL programing and execution \ }
| | |
\ \ \ ‘
| User | | SubQuery Extract SQL | I
| Original) | + ———> NL2SQL —> and | I
Text Retrival .
I @ Query } Table Schema Get excution result } }
| L
|
| e o
\ Trigger theworkflow |~~~ [T T T }
} of fetching results from DB |
Query
} Decompision Any table chunks in }
| TopN results? |
| Please answer the question {question} |
| i based on the following materials: |
| ## Final Answer |
| Sub Quer Document {SQL excution results} Generation |
| y chunk Retrival Retrival }
} Results L {Doc retrieval results} |
\ ' !
)

Figure 2: The overall architecture of TableRAG.

{
"table_name”: "<Table Name>",
"columns": [
["<ColName>", "<Type>", "<Examples>"],
]
3

Then, we define a mapping from each flattened

table chunk to its originating table schema:

f:Dij— S(D;) 2)

where 25” denotes the j-th chunk derived from

table D;. This mapping ensures that local segments

remain contextually anchored to the table structure
from which they are derived.

The tables are also ingested in a relational
database (e.g., MySQL"), supporting symbolic

query execution in the subsequent online reasoning.

3.3 Iterative Reasoning

To address multi-hop, global queries that require
compositional reasoning over texts and tables, we

Thttps://github.com/mysql

introduce an iterative inference process aligned
with F in Equation 1. This process comprises
four core operations: (i) context-sensitive query
decomposition, (ii) text retrieval, (iii) program and
execute SQL, and (iv) compositional intermediate
answer generation. Through repeated cycles of de-
composition and resolution, a solution to the query
is progressively constructed. Detailed prompt tem-
plates are provided in Appendix F.

Context-Sensitive Query Decomposition We
explicitly delineate the respective roles of textual
and tabular modalities during the reasoning pro-
cess. While a table-related query may involve
multiple semantic reasoning steps, its tabular res-
olution can collapse to a single executable oper-
ation. Consequently, an effective decomposition
of global queries demands more than mere syntac-
tic segmentation, but also structural awareness of
the underlying data sources. To this end, we first
retrieve the most relevant table content from the
textual database and link it to its corresponding
table schema description S(D!) via the mapping
function f. Based on this, we formulate a subquery
q: at the t-th iteration.

https://github.com/mysql

Text Retrieval We deploy a retrieval module that
operates in two successive stages: vector-based
recall followed by semantic reranking. Given an
incoming query ¢, it is encoded into a shared dense
embedding space alongside document chunks. We
then select the top-N candidates with the highest
cosine similarity to the query embedding:

ar

recall — = top- N arg 1max COS(VT’ VQt) ,

Tie{D,T}
3)

In the subsequent reranking stage, the recalled can-
didate chunks are re-evaluated by a more expressive
relevance model, yielding the final top-k selections,
denoted by 7%

rerank’

SQL Programming and Execution To support
accurate reasoning over tabular data, we incorpo-
rate a "program-and-execute" mechanism that is
selectively invoked only when subquery reasoning
involves tables. Specifically, we inspect whether
any content originates from tabular sources in the
retrieved results. For each chunk in the top-ranked
set 7 ...» we apply the mapping function (in
Equation 2) to extract its associated schema, yield-
ing a table schema set:

{ (7;) ’ T € rer(znk} (4)

If the set S? is empty, this module is passed. Other-
wise, we derive an accurate answer with the current
subquery ¢; and the corresponding schema con-
text as inputs. To achieve this, we leverage struc-
tured query execution over relational data and use
SQL as the intermediate formal language. A ded-
icated tool fsqgr, with LLM as backend generates
executable SQL programs and applies them to the
pre-constructed MySQL database, formalized as
follows:

er = fsor(S', q). &)

Intermediate Answer Generation For the sub-
query q;, TableRAG can benefit from two heteroge-
neous information sources: the execution result e;
over SQL database and text retrieval result 7;emn i
from the document database. Both of the data
sources provide partial or complete evidence. They
introduce distinct failure modes: SQL execution
may produce incorrect results or execution errors,
while text retrieval may yield incomplete or mis-
leading context. Consequently, the results from
these sources may either reinforce each other or

present contradictions. To address this, we adopt
a compositional reasoning mechanism. The exe-
cution result e; and the retrieved textual chunks
ﬁ%tmnk are cross-examined to validate consistency
and guide answer selection. The final answer to
each subquery is derived by adaptively weighting
the reliability of each source based on its evidential
utility, a; = F(er, T2).

Once the query decomposition module deter-
mines that no further subqueries are necessary,
TableRAG terminates the iterative reasoning pro-
cess, yielding the final answer A = ap, where T’

denotes the total number of iterations performed.

4 Benchmark Construction

In this section, we present HeteQA, a novel bench-
mark for assessing multi-hop reasoning across het-
erogeneous documents.

4.1 Data Collection

HeteQA necessitates advanced operations, such as
arithmetic computation, nested logic, etc. To bal-
ance annotation fidelity with scalability, we adopt
a human-in-the-loop collaborative strategy that in-
tegrates LLMs with human verification. The con-
struction pipeline proceeds in three stages:

Query Generation We curate tabular sources
from the Wikipedia dataset (Chen et al., 2020).
To facilitate analytical depth, we restrict our se-
lection to tables with a minimum of 20 rows and
7 columns, and apply structural deduplication to
eliminate redundancy across similar schemas. For
each retained table, we define a suite of advanced
operations, e.g., conditional filtering, and statistical
aggregation. These operations serve as primitives
for constructing complex queries. Leveraging the
Claude-3.7-sonnet 2, we prompt for query synthesis
as compositions over these primitives. Each gener-
ated query is paired with executable code in both
SQL and Python. We execute the associated code
and obtain the answer. A final deduplication pass is
applied over both queries and answers, promoting
diversity in the dataset. Full implementation details
are provided in Appendix A.

Answer Verification To ensure correctness and
reliability, each instance is subjected to manual
inspection by human annotators. Their task is to
verify that the execution outcome is accurate for the
corresponding query. In cases where discrepancies

Zhttps://www.anthropic.com/claude/sonnet

https://www.anthropic.com/claude/sonnet

Figure 3: Domain distribution and tabular operation
distribution of HeteQA.

are found, they are responsible for correcting both
the underlying code and the resulting answer.

Document Reference To support queries that in-
tegrate both tabular and textual information, we
augment the instance by leveraging the associated
Wikipedia document. Specifically, certain entities
within the query are replaced with reference-based
formulations by the human annotators. For exam-
ple, the query "Which driver ..." can be rephrased
as "What is the nationality of the driver ...". This
entity substitution can either modify the subject of
the question and its corresponding answer or alter
the query phrasing while preserving the original
answer. The annotation guidelines and annotator
profiles are detailed in Appendix B.

4.2 Discussion

Each data instance in HeteQA is composed of a
query, its corresponding answer, the executable
SQL sentence, and the execution-derived answer.
Through our data collection pipeline, we construct
304 high-quality examples whose answers are
grounded in both single-source (82%) and multi-
source (18%). The resulting benchmark spans 136
distinct tables and 5314 wiki knowledge entities.
To characterize the dataset, we analyze its semantic
domains and the types of tabular reasoning opera-
tions. As illustrated in Figure 3, HeteQA covers 9
semantically diverse domains and encompasses 5
principal categories of tabular operations. Together,
HeteQA constitutes a structurally diverse and se-
mantically broad resource for advancing question
answering over heterogeneous documents.

5 Experiments

5.1 Experimental Settings
5.1.1 Datasets.

We assess the performance of TableRAG on our
curated HeteQA, as well as multiple established
benchmarks spanning two settings:

HybridQA (Chen et al., 2020) A multi-hop QA
dataset involving both tabular and textual informa-
tion. For our evaluation, we only retain data cases
with tables containing more than 100 cells.

WikiTableQuestion (Pasupat and Liang, 2015b)
A TableQA dataset spanning diverse domains. The
queries necessitate a range of data manipulation
operations, including comparison, aggregation, etc.

5.1.2 Implementation Details

In the text retrieval process, we employ the BGE-
M3 series models (Chen et al., 2024a,b). During
recall, we retain the top 30 candidates, from which
the top 3 are subsequently selected via reranking.
To manage large inputs, the text is chunked into
segments of 1000 tokens, with a 200-token overlap
between consecutive chunks. The iterative loop is
bounded by a maximum of 5 iterations. For back-
bone LLMs, we utilize Claude-3.5-Sonnet as a rep-
resentative closed-source LLM, while Deepseek-
V3, Deepseek-R1 (Guo et al., 2025), and Qwen-2.5-
72B (Yang et al., 2024) serve as the open-source
counterparts. A consistent backend is maintained
for all modules in the online iterative reasoning
process. We use accuracy as the evaluation metric,
assessed by Qwen-2.5-72B, which yields a binary
score of 0 or 1. The prompt is shown in Appendix
F.

5.1.3 Baselines

We evaluate the performance of TableRAG by
benchmarking it against three distinct baseline
methodologies: (1) Direct answer generation with
LLMs. (2) NaiveRAG, which processes tabular
data as linearized Markdown formatted texts and
subsequently applies a standard RAG pipeline. (3)
React (Yao et al., 2023), a prompt based paradigm
to synergize reasoning and acting in LLMs with
external knowledge sources. (4) TableGPT2 (Su
et al., 2024) employs a Python-based execution
module to generate code (e.g., Pandas) for answer
derivation within a simulated environment. The
detailed implementation of these baseline methods
is provided in Appendix C.

5.2 Main Result

The main results across different LLMs backbones
are presented in Table 1. Several key observa-
tions emerge: (1) The ReAct framework demon-
strates advantages over naive RAG on multi-source
data, but exhibits degraded performance on single-
source data that requires tabular reasoning. This

‘ Backbone

| HybridQA WikiTQ

HeteQA

Method
‘ ‘ - - Single-Source Multi-Source Overall
Direct Claude-3.5 9.84 6.21 10.68 8.65 10.00
DeepSeek-R1 24.42 12.20 3.40 13.46 6.77
DeepSeek-V3 14.75 10.39 6.80 28.85 14.19
Qwen-2.5-72b 11.47 7.37 4.85 12.50 7.42
NaiveRAG | Claude-3.5 20.28 82.60 33.20 40.35 34.54
DeepSeek-V3 26.56 75.40 33.60 45.61 35.85
Qwen-2.5-72b 22.62 66.33 23.07 36.84 25.66
ReAct Claude-3.5 43.38 69.81 26.40 44.44 29.60
DeepSeek-V3 38.36 63.40 21.14 47.39 26.07
Qwen-2.5-72b 37.38 53.80 16.94 35.71 20.47
TableGPT2 ‘ 9.51 63.40 35.60 16.67 32.24
TableRAG | Claude-3.5 47.87 84.62 44.94 40.74 44.19
DeepSeek-V3 47.87 80.40 43.32 51.85 44.85
Qwen-2.5-72b 48.52 78.00 37.65 43.96 38.82

Table 1: Performance of TableRAG compared to baseline models across multiple benchmarks, measured by accuracy.
"Multi-Source" indicates questions requiring both tabular and textual information, while “Single-Source” refers to

questions relying on only one source type.

can be attributed to context insensitivity during
multi-turn reasoning. Queries decomposed into
multiple sub-tasks, such as filtering or aggrega-
tion, suffering from information incompleteness or
error propagation. (2) TableGPT?2 yields accept-
able results solely on single-source queries, such
as WikiTQ, underscoring its limited capacity for
handling multi-source queries. This reflects a lack
of generalizability in heterogeneous information
environments. (3) TableRAG surpasses all base-
lines, achieving at least a 10% improvement over
the strongest alternative. Notably, it performs ro-
bustly across both single-source and multi-source
data. This performance gain is attributed to the in-
corporation of symbolic reasoning, which enables
effective adaptation to heterogeneous documents.
Moreover, the consistency in performance across
different LLM backbones underscores TableRAG’s
architectural generality and compatibility with a
broad range of backbones.

5.3 Ablation Study

To elucidate the relative importance of each compo-
nent within the TableRAG framework, we evaluate
the full architecture against three ablated variants:
(1) w/o Context-Sensitive Query Decomposition,
where query decomposition is performed without

Figure 4: Ablation study on HybridQA and HeteQA
benchmarks based on DeepSeek-V3 backbone.

conditioning on retrieved table schema. (2) w/o
SQL Execution, which replaces the SQL program-
ming and execution module with the markdown
table format. (3) w/o Textual Retrieval, which
operates solely through table-based SQL execu-
tion, without leveraging textual resources such as
Wikipedia documents. The results are summarized
in Figure 4. All the modules contribute to the over-
all performance of TableRAG, though their relative
impact varies across benchmarks. On HybridQA,
document retrieval proves particularly critical, due
to its emphasis on the extraction of entity-centric
or numerical cues. Conversely, for HeteQA, SQL
execution proves more influential, as the queries
involve nested operations that benefit from SQL-

Execution Iterations Comparison on HeteQA

TableGPT2

ReACT

TableRAG

0 20 40 60 80 100
Percentage

less than 3 steps 3 steps 4 steps 5steps mmm more than 5 steps

Figure 5: Comparison of the execution iterations on
HeteQA between TableRAG, ReAct and TableGPT2.

based symbolic reasoning. These findings highlight
the complementary design of TableRAG’s textual
retrieval and program-executed reasoning compo-
nents.

6 Efficiency

We evaluate the efficiency of TableRAG by exam-
ining the distribution of its execution iterations,
as illustrated in Figure 5. Execution lengths are
grouped into four categories: fewer than 3 steps,
3-5 steps, exactly 5 steps, and more than 5 steps.
Among the evaluated methods, TableGPT2 demon-
strates the highest average number of execution
steps, with a modal value centered around five.
In contrast, TableRAG consistently requires fewer
steps, resolving approximately 63.55% of instances
in fewer than five steps and an additional 30.00%
precisely within five, with only a marginal propor-
tion of cases remaining unsolved under the given
iteration constraints. While ReAct exhibits a com-
parable distribution in execution steps, its overall
performance remains markedly inferior to that of
TableRAG. These results suggest that TableRAG
achieves both superior efficiency in execution and
outstanding reasoning accuracy. It is attributed to
the incorporation of SQL-based tabular reasoning.

7 Analysis

We provide a comprehensive analysis of TableRAG
in this section, with additional results presented in
Appendix D.

7.1 Error Analysis

In addition to evaluating the overall performance
of TableRAG against established baselines, we per-
formed a detailed error analysis to characterize the
nature of prediction failures. Broadly, the incorrect
outputs fall into two primary categories: (1) reason-
ing failures, attributable to errors in SQL execution

Error Distribution

TableGPT2 {

ReAct (Qwen-72b)

ReAct (DeepSeek-V3)

TableRAG (Qwen-72b) 4

TableRAG (DeepSeek-V3) 1

0 50 100 150 200 250 300
Percentage (%)

Correct Reasoning Error Refusal or Exceeding Max Iteration

Figure 6: Error analysis of TableRAG, TableGPT2 and
ReAct with DeepSeek-V3 and Qwen-2.5-72b as back-
bones on HeteQA.

or flawed intermediate query decomposition, and
(2) task incompletion, typically manifesting as re-
fusals to answer or termination upon exceeding the
maximum iteration limit. The prediction distribu-
tion is shown in Figure 6. Notably, TableGPT2 ex-
hibits the highest frequency of such failures, largely
due to its limited capacity to integrate contextual
cues from the wiki documents. This constraint
frequently results in the model either explicitly re-
fusing to respond or acknowledging its inability
to do so. In contrast, ReAct, which lacks mecha-
nisms for context-aware query decomposition and
code execution simulation, often engages in un-
necessarily elaborate reasoning steps for problems
that could be addressed via a single structured in-
quiry. TableRAG demonstrates the lowest failure
rate among the methodologies assessed. Its con-
sistent ability to yield valid responses within five
iterations highlights the efficacy of its design —
particularly its use of context-aware query decom-
position and selective SQL-based execution plan-
ning.

7.2 Prediction across Domains

Figure 7 presents a comparative evaluation of
TableRAG, instantiated with various backbone
LLMs, against the ReAct framework across var-
ious domains. The results reveal that TableRAG
consistently outperforms ReAct in the majority of
domains, demonstrating its effectiveness in het-
erogeneous document question answering. Only
certain domains, such as Culture, exhibit compar-
atively weaker performance on TableRAG with
Qwen backbone. A closer inspection of the data
distribution suggests that this degradation may stem
from the sparsity of domain-specific instances.

Figure 7: Performance distribution of TableRAG and
ReAct across different domains.

8 Related Work

8.1 Retrieval Augmented Generation

Retrieval-Augmented Generation (RAG) has
emerged as a robust paradigm for mitigating hallu-
cination (Zhang et al., 2023a) and enhancing the
reliability of Large Language Models (LLMs) gen-
erated responses (Lewis et al., 2020; Guu et al.,
2020). The RAG approaches retrieve from the
knowledge base, and the most relevant document
chunks are subsequently incorporated into the gen-
eration process (Gao et al., 2023; Zhu et al., 2024;
Borgeaud et al., 2022). However, this straightfor-
ward retrieval process often yields noisy chunks
that may lack critical details, thereby diminishing
the quality of the subsequent generation. Recent
advancements have thus focused on task-adaptive
retrieval mechanisms. Notable frameworks in this
regard include Self-RAG (Asai et al., 2023), RQ-
RAG (Chan et al., 2024), etc. Despite these inno-
vations, RAG still faces challenges when dealing
with heterogeneous contexts (Satpute et al., 2024).

8.2 Table Reasoning via Large Language
Models

Table reasoning refers to the development of a sys-
tem that provides responses to user queries based
on tabular data (Lu et al., 2025). The mainstream
approaches to table reasoning can be broadly clas-
sified into two categories. The first category re-
volves around leveraging LLMs through prompt
engineering. For instance, Tab-CoT (Jin and Lu,
2023) applies chain-of-thought (CoT) reasoning
to establish a tabular structured reasoning process.
Similarly, Chain-of-Table (Wang et al., 2024) ex-
tends the CoT methodology to the tabular setting,
enabling a multi-step reasoning process for more
complex table-based queries. The second category

involves utilizing programs to process tabular data.
Tabsqlify (Nahid and Rafiei, 2024) employs a text-
to-SQL approach to decompose tables into smaller,
contextually relevant sub-tables. DATER (Ye et al.,
2023a) adopts a few-shot prompting strategy to
reduce large tables into more manageable sub-
tables, using a parsing-execution-filling technique
that generates intermediate SQL queries. BINDER
(Cheng et al., 2022; Zhang et al., 2023b) integrates
both Python and SQL code to derive answers from
tables. InfiAgent-DABench (Hu et al., 2024) uti-
lizes an LLM-based agent that plans, writes code,
interacts with a Python sandbox, and synthesizes
results to solve table-based questions.

9 Conclusion

We address the limitations of existing RAG ap-
proaches in handling heterogeneous documents
that combine textual and tabular data. Current ap-
proaches compromise the structural integrity of ta-
bles, resulting in information loss and degraded per-
formance in global, multi-hop reasoning tasks. To
overcome these issues, we introduce TableRAG, an
SQL-driven framework that integrates textual un-
derstanding with precise tabular manipulation. To
rigorously assess the capabilities of our approach,
we also present a new benchmark HeteQA. Ex-
perimental evaluations across public datasets and
HeteQA reveal that TableRAG significantly outper-
forms existing baseline approaches.

Limitations

While TableRAG demonstrates strong performance,
several limitations merit consideration: 1. The ef-
fectiveness of TableRAG is closely tied to the capa-
bilities of the underlying LLMs. Our implementa-
tion leverages high-capacity models such as Claude,
DeepSeek-v3, and Qwen-72B-Instruct, which pos-
sess strong generalization abilities. Smaller models
that lack specialized instruction tuning may ex-
hibit a marked degradation in performance. This
suggests that achieving competitive results may ne-
cessitate substantial computational resources. 2.
The HeteQA benchmark is restricted to English.
This limitation arises from the difficulty in curating
high-quality heterogeneous sources across multiple
languages. As a result, cross-lingual generalization
remains unexplored. In future work, we aim to
extend HeteQA to a multilingual setting, thereby
broadening the applicability and robustness of our
evaluation framework.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206-2240. PMLR.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. Rqg-rag: Learn-
ing to refine queries for retrieval augmented genera-
tion. arXiv preprint arXiv:2404.00610.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
arXiv preprint arXiv:2402.03216.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024b. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026-1036, Online. Association for Computa-
tional Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
et al. 2022. Binding language models in symbolic
languages. arXiv preprint arXiv:2210.02875.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and
Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pe-
dro Gengo, Celio Larcher, Marcos Piau, Pablo Costa,
and Vinicius Carid4. 2024. The chronicles of rag:
The retriever, the chunk and the generator. arXiv
preprint arXiv:2401.07883.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929-3938. PMLR.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, et al. 2024. Infiagent-dabench: Eval-
uating agents on data analysis tasks. arXiv preprint
arXiv:2401.05507.

Ziqi Jin and Wei Lu. 2023. Tab-cot: Zero-shot tabular
chain of thought. arXiv preprint arXiv:2305.17812.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Weizheng Lu, Jing Zhang, Ju Fan, Zihao Fu, Yueguo
Chen, and Xiaoyong Du. 2025. Large language
model for table processing: A survey. Frontiers of
Computer Science, 19(2):192350.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024.
Tabsqlify: Enhancing reasoning capabilities of
Ilms through table decomposition. arXiv preprint
arXiv:2404.10150.

Panupong Pasupat and Percy Liang. 2015a. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Panupong Pasupat and Percy Liang. 2015b. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Ankit Satpute, Noah GieBing, André Greiner-Petter,
Moritz Schubotz, Olaf Teschke, Akiko Aizawa, and
Bela Gipp. 2024. Can llms master math? investigat-
ing large language models on math stack exchange.
In Proceedings of the 47th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 2316-2320.

Hesam Shahrokhi, Amirali Kaboli, Mahdi Ghorbani,
and Amir Shaikhha. 2024. Pytond: Efficient python
data science on the shoulders of databases. In 2024
IEEE 40th International Conference on Data Engi-
neering (ICDE), pages 423-435. IEEE.

Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou,
Ga Zhang, Gang Chen, Guangcheng Zhu, Haobo
Wang, Haokai Xu, Hao Chen, et al. 2024. Tablegpt2:
A large multimodal model with tabular data integra-
tion. arXiv preprint arXiv:2411.02059.

https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, et al. 2024. Chain-of-table: Evolving tables in
the reasoning chain for table understanding. arXiv
preprint arXiv:2401.04398.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023a. Large language
models are versatile decomposers: Decompose evi-
dence and questions for table-based reasoning. arXiv
preprint arXiv:2301.13808.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023b. Large language
models are versatile decomposers: Decomposing ev-
idence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR °23, page 174-184, New
York, NY, USA. Association for Computing Machin-
ery.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023a. Siren’s song in the ai
ocean: a survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M Patel. 2023b.
Reactable: Enhancing react for table question answer-
ing. arXiv preprint arXiv:2310.00815.

Fengbin Zhu, Wengqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. arXiv preprint arXiv:2105.07624.

Yinghao Zhu, Changyu Ren, Shiyun Xie, Shukai Liu,
Hangyuan Ji, Zixiang Wang, Tao Sun, Long He,
Zhoujun Li, Xi Zhu, et al. 2024. Realm: Rag-driven
enhancement of multimodal electronic health records

analysis via large language models. arXiv preprint
arXiv:2402.07016.

A HeteQA

A.1 Prompt Design

The templates employed for HeteQA benchmark
construction are presented in Table ??.

10

N Refer to wiki
Document

Selected wiki
Table Schema

N Generate Query| Execute Code
>—] and Code for Answer

Figure 8: The dataset construction pipeline of HeteQA.

A.2 Table Collection

To enable complex reasoning over tabular struc-
tures, we curate a subset of extensive tables from
the Wikipedia-based corpus. Specifically, we retain
only tables containing more than 20 rows and at
least 7 columns. This filtering process reduced the
initial collection from 15,314 tables to 1,345 candi-
dates that meet the criteria for structural richness.
To further enhance query diversity and reduce re-
dundancy in the dataset, we apply a deduplication
step based on schema similarity. In cases where
multiple tables share identical column structures —
for example, the entries for 1947 BAA draft and
1949 BAA draft — only a single representative
instance is preserved. This procedure yielded a
final dataset comprising 155 unique tables.

A.3 Data Collection

As illustrated in Figure 8, each data instance is con-
structed through a three-stage pipeline, facilitated
via the Claude 3.7 Sonnet API>.

To construct the dataset, we prompt the LLM
to generate SQL or pandas code associated with
queries conditioned on a provided table schema.
The generated code is then executed against the
table to obtain the corresponding answer. Instances
that fail to produce an executable result are dis-
carded. To promote diversity within the dataset
and avoid redundancy, we eliminate any instances
exhibiting duplicate queries or identical answers.
This filtering is performed using regular expres-
sions to detect lexical or semantic repetition. Ad-
ditionally, we discard cases where the execution
result is ambiguous, such as queries seeking the top-
ranked entity when multiple candidates are tied.
Following automated filtering, all remaining in-
stances undergo a manual verification process. Two
human annotators independently assess each query,
the corresponding code, and the resulting answer.
In cases of inconsistency or error, annotators revise
the SQL or Python code and correct the associated
answer to ensure accuracy and coherence.

3ht’cps: //www.anthropic.com/claude/sonnet

https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://www.anthropic.com/claude/sonnet

B Guidelines for HeteQA Annotations

B.1 Annotator Profiles

The two annotators are volunteers whose native lan-
guage is Chinese and who possess fluent English
proficiency. Both annotators are professional soft-
ware engineers with substantial experience in SQL
and Python programming.

B.2 Guidelines for Answer Verification

Objective

Your task is to verify whether the provided answer
correctly and completely addresses the natural
language query, based on the associated code and
table. You will also identify and handle ambiguous
or non-unique cases.

Annotation Steps

1. Verify the Answer

Read the natural language query and examine the
accompanying Excel table, SQL statements, and
Python (pandas) code. Verify whether the output
aligns with the semantics of the original query and
the underlying data. To this end, you are permit-
ted to execute multiple operations on the provided
Excel files.

2. Correction Tasks (if necessary)

If the answer is incorrect, modify both the code and
the answer so that they correctly fulfill the query.
Ensure the modified code is minimal, clean, and
logically sound.

3. Ambiguity and Tie Cases

In instances where the query yields no unique reso-
lution - whether due to tied outcomes, under spec-
ified conditions, or semantic ambiguity in the for-
mulation - you can employ principled strategies to
ensure meaningful processing:

- Option A: Modify the query to resolve the ambi-
guity (e.g., make clarification).

- Option B: If the ambiguity is irreparable or the an-
swer depends on arbitrary choices, discard the case.

Additional Guidelines

Maintain consistency between the query, code, and
answer. Ensure your corrections do not introduce
new ambiguities or assumptions not grounded in
the table or query.

B.3 Guidelines for Document Reference

Objective
Your task is to add an additional reasoning hop to
the original query using the provided Wikipedia

11

entities and content. This will help transform the
original query into a more complex, multi-hop
question that requires deeper reasoning.

Input Data
Each data case consists of:

* Original Query
* Answer

* A set of Wikipedia entities relevant to the query
or the answer

» Corresponding Wikipedia content for each entity

Task Overview

For each data case, check if the original answer is
mentioned in the provided Wiki entities:

- If not mentioned or ambiguous (e.g., "Jordan"
for both basketball star and sports brand), do not
change the query and answer. Just mark the case
as “No modification needed”.

- If the answer entity exists in the Wikipedia content,
perform the following steps:

1. Identify key factual descriptions about the
answer entity from its Wiki content.

2. Add a reasoning hop to the original query that
leads to the answer via this key fact.

3. Generate two candidate (Query, Answer)
pairs by rewriting the query to incorporate this
extra reasoning step and updating the answer
accordingly.

Example

Original Query: Which album takes first place on
the Billboard leaderboard in 2013?

Original Answer: ArtPop

Wiki Entity: ArtPop (album)

A key description: It was released on November 6,
2013, by Streamline and Interscope Records.
Modified Query Candidates:

Who released the album that takes the first place
on the Billboard leaderboard in 2013? — Answer:
Streamline and Interscope Records

C Implementation Details of Baselines

This section provides a detailed account of the im-
plementation procedures for the baseline method-
ologies to ensure a fair and reproducible evaluation.

)

oW

C.1 ReAct

For the ReAct framework, we preprocess tabular
data by converting it into markdown-formatted
plain text. To ensure consistency in experimen-
tal conditions, we adopt the same chunking and
retrieval configurations as those employed in our
TableRAG model. We build upon the publicly
available ReAct implementation*. The framework
addresses user queries through an iterative rea-
soning loop consisting of Thought, Action, and
Observation steps, culminating in a final answer
via the Finish operation. The max iteration is set
to 5, the same as TableRAG.

C.2 TableGPT2

We evaluate TableGPT?2 using its officially released
TableGPT Agent implementation >. As specified
in its API documentation, we provide both the doc-
ument content and the tabular data as inputs to
the HumanMessage class, ensuring adherence to the
intended usage of the model:

from typing import TypedDict

from langchain_core.messages
HumanMessage

import

class Attachment (TypedDict):

filename: str

attachment_msg HumanMessage (

content="",
additional_kwargs={"attachments”: [
Attachment (filename="titanic.csv")
] } ’

)

D Analysis

We present a series of auxiliary analyses conducted
on both our proposed benchmark, HETEQA, and
the publicly available HYBRIDQA dataset. These
analyses offer further insight into the behavior and
limitations of TableRAG beyond the primary eval-
uation metrics.

D.1 Analysis on HybridQA

We extend our investigation to the HYBRIDQA
dataset by examining the performance distribution
on data domains and conducting a detailed error
analysis, using DEEPSEEK-V3 as the backbone
model. The results, summarized in Figures 10

*https://github.com/ysymyth/ReAct
Shttps://github.com/tablegpt/tablegpt-agent

12

Prediction Distribution

TableGPT2 {

ReAct (Qwen-72b)

ReAct (DeepSeek-V3)

TableRAG (Qwen-72b) 1

TableRAG (DeepSeek-V3) 1

150 200 250

Percentage (%)

0 50 100

Correct Reasoning Error Refusal or Exceeding Max Iteration

Figure 9: Prediction distribution of TableRAG,
TableGPT2 and ReAct on HybridQA.

Culture / Literature

Trahsportation

Entertainment

Society
—— TableRAG DeepSeek-V3
—— ReAct DeepSeek V3

TableRAG Qwen
ReAct Qwen

Figure 10: Model performance of different domains on
HybridQA.

and 9, reveal patterns consistent with those ob-
served on HETEQA. This parallel further validates
the generality of our observations across HeteQA
settings.

D.2

To elucidate the influence of the top-k retrieval
parameter on the performance of TableRAG, we
undertook a systematic sensitivity analysis. While
our main experimental setup fixed k = 3, we ex-
panded our investigation on the HeteQA dataset,
utilizing DeepSeek-V3 as the retrieval backbone,
and varied k across the set 1,3,5. The resulting

HyperParameter Analysis

Top-k vs HybridQA and HeteQA

—e— HybridoA
HeteQA

»
&

Accuracy (%)
8

1 3 5
Top-k

Figure 11: Hyperparameter top-k analysis of TableRAG
on HeteQA.

https://github.com/ysymyth/ReAct
https://github.com/tablegpt/tablegpt-agent

table List_of Australian_films_of 2012 0
query Who wrote and starred the comedy film released in the second half of 2012 (July-December)
that had the highest number of cast members in the List of Australian films of 20127
sql_query Which comedy film released in the second half of 2012 (July-December) had the highest
number of cast members in the List of Australian films of 2012?

sql

| SELECT

2 title,

3 LENGTH(cast_subject_of_documentary) - LENGTH(

4 REPLACE (

5 cast_subject_of_documentary, ’,’,

(])

7)

8) + 1 AS cast_count

9 FROM

10 ‘list_of_australian_films_of_2012_0_sheetl

11 WHERE

12 genre LIKE ’%Comedy%’

3 AND (

14 release_date LIKE ’'%July%’

15 OR release_date LIKE ’%August%’

16 OR release_date LIKE ’'%September%’

17 OR release_date LIKE ’%October%’

18 OR release_date LIKE ’%November%’

19 OR release_date LIKE ’\ufffdcember%’

20)

21 ORDER BY

22 cast_count DESC

23 LIMIT

24 1;
sql_ans Kath & Kimderella
answer Riley, Turner, and Magda Szubanski

Table 2: An example of HeteQA.

13

performance metrics are illustrated in Figure 11.

Our observations reveal distinct behaviors across
benchmarks with respect to the choice of k. No-
tably, HybridQA exhibits superior performance
at higher k values. This effect is plausibly at-
tributable to the lack of deduplication within its
tables, whereby overlapping or similar information
from multiple tables or Wikipedia documents con-
tributes constructively during retrieval. In aggre-
gate, setting k = 3 strikes an effective balance,
yielding robust performance across both bench-
marks while maintaining computational efficiency.
This efficiency gain arises from the direct relation-
ship between the top-k retrieval size and the subse-
quent LLM context length, underscoring the practi-
cal importance of this hyperparameter in optimiz-
ing the trade-off between accuracy and resource
consumption.

E Check List

Harmful information And Privacy We propose
anew RAG solution to address multi-hop problems
related to heterogeneous data, without involving
any harmful information or privacy. In addition,
we provide a heterogeneous benchmark containing
tables and texts sourced from Wikipedia. All of
the data is publicly available, contains no personal
information, and involves no harmful content.

License and Intend We provide the license we
used here:

- Claude 3.5 Sonnet (https://www.anthropic.
com/legal/aup)

- Qwen2.5-72B-Instruct (https://huggingface.
co/Qwen/Qwen2.5-72B-Instruct/blob/
main/LICENSE)

- DeepSeek-V3 (https://huggingface.co/
deepseek-ai/DeepSeek-V3/blob/main/
LICENSE-MODEL)

- TableGPT Agent (Apache License 2.0) and
TableGPT2-7B
co/tablegpt/TableGPT2-7B/blob/main/
LICENSE)

Our use of these existing artifacts was consistent
with their intended use.

Documentation of the artifacts We propose
a novel Retrieval-Augmented Generation (RAG)

(https://huggingface.

14

framework that integrates traditional document re-
trieval with structured data querying via SQL, aim-
ing to enhance performance in table-related ques-
tion answering tasks. The framework comprises
two fundamental stages: offline database construc-
tion and online interactive reasoning. Compared to
conventional document-centric RAG approaches,
our architecture offers additional reliable SQL exe-
cution results—when table fragments are involved
in the retrieval process. This supplementary source
mitigates the limitations of generative models in
handling structured tabular data.

To facilitate a more comprehensive evaluation
of our framework, we further construct a heteroge-
neous benchmark named HeteQA. This benchmark
aims to evaluate the capability to handle multi-hop
reasoning tasks across heterogeneous documents.
The benchmark instances are initially generated
by LLMs, and then rigorously validated by experi-
enced programmers and database administrators to
ensure correctness and realism.

https://www.anthropic.com/legal/aup
https://www.anthropic.com/legal/aup
https://www.anthropic.com/legal/aup
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE
https://huggingface.co/tablegpt/TableGPT2-7B/blob/main/LICENSE

F Prompts

The prompts for TableRAG are presented in this
section.

Prompt Template for SQL generation

Multi-Hop Table Reasoning Query Generator

Task
Generate a genuine multi-hop reasoning query based on the provided markdown table, along with SQL and pandas
solutions in a structured JSON format.

Input
A markdown formatted table schema.

Output Requirements

Provide exactly ONE multi-hop reasoning query that:

- Requires sequential analytical operations where each step depends on the previous result
- Cannot be broken down into separate independent questions

- Is solvable using both SQL and pandas

- Is relevant to the data domain in the table

- Mention the table name in query to indicate the source table file

Operations to Consider in Your Sequential Reasoning Chain
- Group or Aggregate

- Filtering subsets

- Calculating percentages or ratios between groups

- Comparing specific subgroups

- Rank or order

- Finding extremes (max/min) of aggregated values

- Computing difference or sum

- Finding correlations

Example Operations Combinations

- Filter — Group — Rank in groups

- Group — Sum — Compare

- Filter — Calculate percentage — Rank

- Group — Aggregate — Filter on aggregate

Guidance for True Multi-Hop Queries
A proper multi-hop query requires sequential operations where each step builds on the result of the previous step. For
example:

GOOD (True multi-hop): "What was the average lap time among the top 5 ranked drivers in the team which had the
best average lap time?"

- This requires first finding the team with best average lap time

- Then identifying the top 5 drivers in that specific team

- Finally calculating the average lap time of just those drivers

BAD (Separable questions): "Which team had the best average lap time, and what was that average among the top 5
ranked drivers?"
- This could be answered as two separate questions

Format your response as a single JSON object with this structure:

{

"query": "Clear natural language question requiring true multi-hop reasoning",

"operations_used": ["List operations used, such as: filtering, aggregation, grouping, sorting, etc."],

"sql_solution": "Complete executable SQL query that solves the question",

"pandas_solution": "Complete executable pandas code that solves the question",

"result_type: "The type of the result, must be either number or entity."

}

Ensure your query truly requires chained reasoning where later steps must use results from earlier steps and generates
one answer.

15

Prompt Template for Query Decomposition

I tools = [{

2 "type": "function”,

3 "function”": {

4 "name”: "solve_subquery"”,

5 "description”: "Return answer for the decomposed subquery”,
6 "parameters”: {

7 "type": "object”,

8 "properties”: {

9 "subquery": {

10 "type"”: "string",

11 "description”: "The subquery to be solved”
12 }

13 }y

14 "required”: [

15 "subquery"”

16 i

17 "additionalProperties”: False
18 }y

19 "strict”: True

20 }

21 }]

Next, You will complete a table-related question answering task. Based on the provided materials
such as the table content (in Markdown format), you need to analyze the Question. And try to
decide whether the Question should be broken down into subquerys. After you have collected
sufficient information, you need to generate comprehensive answers.

You have a "solve_subquery" tool that can execute SQL-like operations on the table data. It
accepts natural language questions as input.

Instructions:

1. Carefully analyze the user query through step-by-step reasoning.

2. If the query requires multiple pieces of information, more than the given table content:
- Decompose the query into subqueries

- Process one subquery at a time

- Use "solve_subquery" tool to retrieve answers for each subquery

3. If a query can be answered by table content, do not decompose it. And directly put the origin
query into the "solve_subquery" tool.

The "solve_subquery" tool can solve complex subquery on table via one tool call.

4. Generate exactly ONE subquery at a time.

5. Write out all terms completely - avoid using abbreviations.

6. When you have sufficient information, provide the final answer in this format:
<Answer>: [your complete response]

Table Content: {table_content}

Question: {query}
Please start!

16

Prompt Template for Intermediate Answer Reasoning

You are about to complete a table-based question answering task using the following two types of
reference materials:

Content 1: Original content (table content is provided in Markdown format)
{docs}

Content 2: NL2SQL related information and SQL execution results in the database
the user given table schema
{schema}

SQL generated based on the schema and the user question:
{nl2sql_model_response}

SQL execution results
{sql_execute_result}

Please answer the user’s question based on the materials above.
User question: {query}

Note:

1. The markdown table content in Content 1 may be not complete.

2. You should cross-validate the given two materials:

- if the answers are same, you may directly output the answer.

- If the SQL shows error, such as "SQL execution results", try to answer solely based on Content 1.
- If the two material shows conflict, carefully evaluate both sources, explain the discrepancy, and
provide your best assessment.

17

Prompt Template for Answer Evaluation

We would like to request your feedback on the performance of the Al assistant in response to
the user question displayed above according to the gold answer. Please use the following listed
aspects and their descriptions as evaluation criteria:

- Accuracy and Hallucinations: The assistant’s answer is semantically consistent with the gold
answer; The numerical value and order need to be accurate, and there should be no hallucinations.
- Completeness: Referring to the reference answers, the assistant’s answer should contain all the
key points needed to answer the user’s question; further elaboration on these key points can be
omitted.

Please rate whether this answer is suitable for the question. Please note that the gold answer can
be considered as a correct answer to the question.

The assistant receives an overall score on a scale of 0 OR 1, where 0 means wrong and 1 means
correct.
Dirctly output a line indicating the score of the Assistant.

PLEASE OUTPUT WITH THE FOLLOWING FORMAT, WHERE THE SCORE IS 0 OR 1 BY
STRICTLY FOLLOWING THIS FORMAT: "[[score]]", FOR EXAMPLE "Rating: [[1]]":

<start output>

Rating: [[score]]

<end output>

[Question]
question

[Gold Answer]
golden

[The Start of Assistant’s Predicted Answer]
{gen}

18

	Introduction
	Task Formulation
	TableRAG Framework
	Overview and Design Principles
	Database Construction
	Iterative Reasoning

	Benchmark Construction
	Data Collection
	Discussion

	Experiments
	Experimental Settings
	Datasets.
	Implementation Details
	Baselines

	Main Result
	Ablation Study

	Efficiency
	Analysis
	Error Analysis
	Prediction across Domains

	Related Work
	Retrieval Augmented Generation
	Table Reasoning via Large Language Models

	Conclusion
	HeteQA
	Prompt Design
	Table Collection
	Data Collection

	Guidelines for HeteQA Annotations
	Annotator Profiles
	Guidelines for Answer Verification
	Guidelines for Document Reference

	Implementation Details of Baselines
	ReAct
	TableGPT2

	Analysis
	Analysis on HybridQA
	HyperParameter Analysis

	Check List
	Prompts

