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ABSTRACT

Data analytics is essential for extracting valuable insights from data that can assist
organizations in making effective decisions. We introduce InsightBench, a benchmark
dataset with three key features. First, it consists of 100 datasets representing diverse
business use cases such as finance and incident management, each accompanied by
a carefully curated set of insights planted in the datasets. Second, unlike existing
benchmarks focusing on answering single queries, InsightBench evaluates agents based
on their ability to perform end-to-end data analytics, including formulating questions,
interpreting answers, and generating a summary of insights and actionable steps. Third,
we conducted comprehensive quality assurance to ensure that each dataset in the
benchmark had clear goals and included relevant and meaningful questions and analysis.
Furthermore, we implement a two-way evaluation mechanism using LLaMA-3 as an
effective, open-source evaluator to assess agents’ ability to extract insights. We also
propose AgentPoirot, our baseline data analysis agent capable of performing end-to-end
data analytics. Our evaluation on InsightBench shows that AgentPoirot outperforms
existing approaches (such as Pandas Agent) that focus on resolving single queries. We
also compare the performance of open- and closed-source LLMs and various evaluation
strategies. Overall, this benchmark serves as a testbed to motivate further development
in comprehensive automated data analytics 1.

1 INTRODUCTION

Businesses frequently leverage vast datasets to perform data analytics to uncover insights, discover patterns,
and analyze trends in order to support effective decision-making (McAfee & Brynjolfsson, 2012; Colson,
2019; Bean, 2022). The task of end-to-end data analysis starts with stating a high-level goal; the analyst
then alternates between identifying key questions to explore, and extracting valuable insights from their
answers, working towards the goal. This iterative process continues until they have a comprehensive
summary of insights and recommended actions (shown in Figure 1).

Analysts often carry out such tasks by leveraging tools like Jupyter notebooks and dashboards (Bean, 2022;
Yin et al., 2023), which, unfortunately, require both significant human effort as well as data science and
domain expertise. Fortunately, agents based on large language models (LLMs) have emerged as promising
assistants to users in performing data science tasks (OpenAI, 2022; 2023). But these agents (such as
Pandas Agent (LangChain, 2024) and Code Interpreter (OpenAI, 2024)) only focus on solving narrow,
single-step code-completion (or data analytics) tasks (E.g., “What is the R2 value for a linear regression
model on this dataset?”).

One of the reasons most existing agents have limited data analysis capabilities is because current
benchmarks focus on evaluating agents on single-step code-completion tasks (Lai et al., 2022; Chen et al.,
2021a; Hu et al., 2024). Another reason is that it is challenging to evaluate LLM-based agents accurately
without including substantial information about the problem details, expected code structure, and expected
outputs (such as identifying variable correlation) in the prompt. Recent works such as InsightPilot (Ma
et al., 2023) and InsightLens (Weng et al., 2024) propose agents that can perform end-to-end data
analytics, but they were evaluated using human assessments, which require significant effort and often
lack consistency due to variability in individual biases and interpretations of evaluation criteria.

1Preprint. Under Review.
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The R-squared value is around 
0.67, indicating that the linear 
regression model explains only 
67% of the variability in the data. 
This suggests a poor fit, as a 
significant portion of the data's 
variance remains unexplained by 
the model, implying that the linear 
relationship does not capture the 
underlying trends effectively.

Expert User Existing Agents

AgentPoirot 
(Ours)

Answer without Actionable Insight

General User

Expert Question for a Specific Task:

Is there a linear relationship between the 
incident time and task difficulty in the data.csv? 
Conduct linear regression and use the 
resulting coefficient of determination 
(R-squared) to evaluate the model's goodness 
of fit.

Free-Form Utterance with a High Level Goal:

Analyze incident trends in the data.csv to 
understand the types of incidents that effect 
operational efficiency.

Insight 1: Descriptive
Specific Task 1
Are some kinds of devices 
failing more than others?

Insight 2: Diagnostic
Specific Task 2
...

Insight 3: Predictive
Specific Task 3
...

Insight k: Prescriptive
Specific Task k
...

...

Actionable Insight

Insight Summary:
- Hardware category incients are 

higher.
- A printer failure located in 

Melbourne.

Action Items:
- Open an incident ticket to 

replace the asset.

Existing Benchmarks

InsightBench (Ours)

Figure 1: Existing benchmarks (top) assess the agents’ ability to solve a highly specific data analytics query with
pre-defined output templates. They often require an expert user to ask the questions. InsightBench (bottom), on the
other hand, evaluates the LLM-based agents on the complete comprehensive data analytics processes. This includes
evaluating the agents’ ability to answer high-level questions by a general user, recommend the best specific tasks to
address a specific goal, extracting insights across descriptive, diagnostic, predictive, and prescriptive categories, and
summarizing both findings and recommending next steps (as demonstrated by AgentPoirot).

Constructing a standardized, automated benchmark to address the consistency and reliability concerns
involves tackling two main challenges. The first concern is to ensure that the agent explores the most
informative and interesting questions, given the data and goals. Second, we must ensure that the insights
derived from these questions are accurate and relevant. These challenges stem from the fact that there
are many ways to ask interesting questions about the data and different ways to interpret their answers. To
address these issues, we need datasets with clearly defined data and goals, equivalent to analysis performed
by an expert data scientist.

This inspired us to propose InsightBench, which consists of 100 datasets whose structures have been
acquired from the ServiceNow (ServiceNow, 2024) platform, which focuses on business operations and
workflows. This platform allows us to generate synthetic tabular data that mimics real-life enterprise data.
We used it to create datasets for Incident, User, Finance, Inventory, and Enterprise Goal Management.
We chose this data because an agent capable of effectively extracting insights from it can be deployed
to help organizations optimize their business operations.

To ensure the quality of goals and questions in our datasets, we had expert annotators set clear goals and
manipulate the data to plant interesting insights. Each insight includes a question, generated code, and plot
values from which the insight is extracted. The annotators then aggregate these insights, summarize them,
and provide recommended actions. We ensure that our insights are discoverable, so a good LLM-based
agent performing analytics on the data should recommend similar questions and extract similar insights
as the ones planted by the annotators.

To effectively score the agent’s ability to predict the most relevant insights, we need a scoring method
that can compute the semantic and factual similarities between two free-form texts. In our case, we need
to score how closely the predicted insights match the ground-truth insights.

Therefore, we draw inspiration from G-Eval which is a state-of-the-art technique that uses GPT-4 to
evaluate the quality of generated texts in a manner that aligns closely with human judgment (Liu et al.,
2023). Since GPT-4 is costly and closed-source, we replace it with Llama-3 (Touvron et al., 2023) and call
the technique LLaMA-3-Eval. Our experiments show that LLaMA-3-Eval and G-Evalproduce consistent
outcomes when ranking the performance of agents in extracting insights.

We benchmark LLM-based agents on InsightBench, where we run a variant of the Pandas Agent that can
perform end-to-end data analysis by recommending questions and extracting insights from their answers.
We also propose a baseline agent, AgentPoirot, which can extract deeper insights and questions by carefully
designed prompts covering Descriptive (what happened), Diagnostic (why it happened), Predictive (what

2
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Insight 1 Insight 2 Insight K 
(Flag)

Question Plot Insight type description  Flag?

Data Agent

c.

. . .

a. b.

Figure 2: Stages of Benchmark Creation: (a) Shows a demo incidents table from ServiceNow for the Incident
Management theme, detailing schema and data fields. (b) Demonstrates the process of creating one of the datasets in
the benchmark that embeds a linear increasing trend in incident resolution times, also highlighting the role of the slope
parameter in dictating the trend’s strength. (c) Displays the multi-step annotation analysis, with each step involving a
question, corresponding plot, insightful description, and classification of the insight type.

will likely happen), and Prescriptive (what actions to take) analytics. Our evaluation shows that AgentPoirot
obtains a higher LLaMA-3-Eval score compared to Pandas Agent.

To summarize, our paper makes the following contributions:

• We propose InsightBench, the first benchmark specifically designed to evaluate LLM-based agents for
performing end-to-end, multi-step data analytics.

• We present a comprehensive set of experiments contrasting open-source and closed-source models
and different prompting strategies for evaluation on our benchmark. Our results show that AgentPoirot
outperforms existing analytics methods such as Pandas Agent and LLaMA-3-Eval is a feasible alternative
to using the closed-source G-Eval.

2 InsightBench – AN ENTERPRISE DATA ANALYSIS BENCHMARK

InsightBench’s data were derived from the ServiceNow (ServiceNow, 2024) platform, which is used to
manage business workflows crucial for enterprise operations. It consists of tables that store and manage
records and data entities relevant to various organizational functions. Common tables in ServiceNow
include incident tables (for incident records), user tables (for user information), and asset management
tables (to oversee infrastructure). InsightBench consists of 100 tabular datasets acquired from the
ServiceNow platform covering five distinct themes (see Figure 3).

Overview of Benchmark Creation. InsightBench is an automated data analysis benchmark that can
rigorously assess the performance of LLM-based data analysis agents in real-world scenarios. Building
InsightBench consisted of four stages: 1) selecting relevant data tables from the ServiceNow data tables
and extracting a list of relevant columns to define the schema (Section 2.1.1), 2) formulating trends to
inject in the data (Section 2.1.2), 3) creating synthetic data entries to populate the tables that follow the
trend formulated in the previous step (Section 2.1.3), and 4) creating a ground-truth analysis notebook
for the generated data (Section 2.1.4). See Figure 2 for an overview of the multi-stage process. A detailed
list of the datasets sorted by themes is presented in Appendix B.3. We propose a multi-step evaluation
mechanism to measure the performance of an agents on InsightBench (See Section 2.2)

2.1 CREATING InsightBench DATASETS

Each dataset consists of 500 synthetically generated entries, stored as a CSV file. We choose a size of
500 entries to keep the volume of data manageable for analysis and substantial enough to simulate typical
enterprise data loads. To emulate a realistic enterprise environment, InsightBench uses a hybrid approach
combining actual data structures with synthetic insights.

3
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2.1.1 DATA TABLES

To create the datasets, we first select relevant data tables from ServiceNow system tables. As a guiding
example, consider an incident table, which contains records of any disruption to normal service operations.
The incidents can range from server outages to hardware malfunctions, such as a non-operational printer.
This table is structured with fields (aka columns) relevant to managing the lifecycle of an incident, such
as the time it was opened, the description of the incident, and assigned agents (See Figure 2(a)). We
choose appropriate columns that allow us to plant realistic trends (as explained in the next subsection)
while excluding irrelevant columns.

2.1.2 PLANTING INSIGHTS

We embed systematic anomalies and trends into the datasets to certain types of columns in the datasets,
referred to as controllable columns. These trends were implemented using standard mathematical models
or algorithms, such as regression, to ensure consistency and detectability of the planted insights. For
instance, we manipulated the time-to-resolution (TTR) trend for incidents in a service management dataset
to reflect an increasing trend over time. This was achieved by using a linear model to generate the TTR
based on the creation date of each incident: TTR=1+slope·(incident open date−data start date), where
(slope) is a parameter that controls the rate of increase in resolution time (See Figure 2(b)).

Types of Insights. Every insight in InsightBench can be categorized into four types, where each type
serves a specific function in data analysis, contributing uniquely to the utility of the insights derived.
1. Descriptive: These insights describe what has happened and are vital in summarizing large datasets

into understandable plots. E.g., a plot of the distribution of incident categories over the past year.
2. Diagnostic: These insights explain the why or the cause behind observed trends using tools such as

segmentation and correlation. E.g., a wordcloud of the most common words in incident description.
3. Predictive: These insights use statistical methods to forecast future outcomes based on past data. E.g.,

a plot forecasting the future volume of incidents based on current trends in resolution times.
4. Prescriptive: These types of insights suggest actions to tackle the current issues. E.g., an insight

recommending strategies to mitigate this projected increase in incident volume.

2.1.3 SYNTHETIC DATA GENERATION

We employed two primary methods to populate the non-controllable columns–columns that are not directly
manipulated to embed synthetic insights, where each method is chosen to maintain authenticity and
alignment with real-world data characteristics. The entire data generation pipeline is implemented in
Python, allowing for reproducibility and scalability. We now describe the two methods below:

• Random Sampling: For fields like IDs, categories of incidents or assets, transaction dates, and status
codes, we used random sampling from carefully curated lists of plausible values.

• Context Generation Using Large Language Models (LLMs): To introduce complexity and realism,
certain text-based fields like incident or goal descriptions and user feedback were generated using LLMs
such as GPT-4 (OpenAI, 2023). These models were tasked with creating coherent and contextually
relevant entries that align with the data schema, enhancing the datasets with natural-looking and
appropriate text data.

We include more details in Appendix B.1, and the prompt structure used can be found in Appendix D.

2.1.4 GROUND-TRUTH ANALYSIS NOTEBOOKS

A key component of constructing InsightBench was developing 100 expert-annotated Jupyter notebooks,
each tailored for a specific context, such as incident management or financial operations. The notebook
structure and contents are as follows (see Figure 2(c)):

• Dataset overview and a SMART Goal: Each notebook begins with a comprehensive dataset overview,
outlining its relevance and structure. It is accompanied by a SMART (Specific, Measurable, Attainable,
Relevant, and Timely) goal (E.g., “Analyze the discrepancy and imbalance in the distribution of
incidents assigned across categories,” aimed at identifying the primary causes of hardware failures in
an organization.)

• Sequential Analysis: The notebook contains a series of questions designed to uncover layers of insights
gradually. Each question has a Python code block that generates a plot to answer the question, and each

4
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plot’s data is summarized as JSON metadata outlining the insights. We ensure that each question builds
sequentially onto the previous one, leading up to the final insight.

• Insight Summary: The final section of each notebook summarizes the findings and proposes actionable
steps. This might include recommendations like “Open a Ticket” for further investigation.

2.2 EVALUATING AGENTS ON InsightBench

To evaluate agents on InsightBench, we compare the ground-truth annotations (GT ) in Jupyter notebooks
against the list of insights (A) provided by an agent. Formally speaking, we compare two natural
language texts. While multiple metrics have been proposed in the past, like ROUGE (Lin, 2004),
METEOR (Banerjee & Lavie, 2005), and BERTSCore (Zhang et al., 2019), they do not align well with
human preferences. Recently, G-Eval (Liu et al., 2023) was shown to be highly aligned with human
preferences for a variety of tasks, including text summarization. Since our task involves comparing two
free-form sentences, we adopt an LLM-based evaluator as well. Specifically, we use LLaMA-3-Eval,
a variant of G-Eval that uses LLaMA-3-70b instead of a GPT model. We use LLaMA-3-Eval as the
primary metric to measure the correctness of agent-provided insights. We chose LLaMA-3-Eval over
G-Eval because LLaMA-3-70b is open-sourced, allowing us to a) avoid API costs for using GPT
models from OpenAI and b) fix the model weights to obtain a stable and reliable evaluation metric, unlike
G-Eval, whose output scores can change due to periodic updates to GPT endpoints.

InsightBench performs a two-way evaluation:
1. Summary-level. To obtain the summary-level score, we simply compute the LLaMA-3-Eval score

between the agent-provided summary of insights, and the ground-truth summary.
2. Insight-level. First, we select the most appropriate insight a∈A to evaluate against a given ground-truth

insight (gt∈GT ), and then average the scores for all the ground-truth insights. The insight-level score
can be expressed as in Equation 1, where |GT | is the number of ground-truth insights in a dataset, and
M represents LLaMA-3-Eval evaluator:

score=

∑
gt∈GTargmaxa∈AM(gt,a)

|GT |
(1)

We average the summary-level and insight-level scores for all 100 datasets in InsightBench to obtain a
measure of the agent’s performance. Additionally, we compute scores using ROUGE-1 for comparison.

2.3 DATASET STATISTICS

The reason is that it seems like InsightBench covers a distinct range of business analytics themes and
varying difficulty levels, each chosen to reflect typical scenarios encountered in enterprise settings
The benchmark includes 100 datasets with a total of 475 insights spread across five key topics. The
distribution across the topic is shown in Figure 3, and the data tables used are outlined in Appendix B.2.

Incident Mgmt.

25.0%

Asset Mgmt.

25.0%

User Mgmt.

18.8%

Finance Mgmt.18.8%

Goal Mgmt.

12.5%

Figure 3: InsightBench breakdown across five
key thematic areas.

Distribution by Dataset Category. The benchmark has
20 datasets on Incident Management, 20 datasets on Asset
Management, 15 datasets on User Management, 15 datasets
on Finance Management, 10 datasets on Goal Management,
10 datasets on Asset & User Management combined, and 10
datasets on Finance & User Management.

Distribution by Difficulty. The datasets are assigned a dif-
ficulty level on a scale from 1 (easy) to 4 (hard). Easy (Level
1-2) comprises 30 datasets that primarily involve direct data
retrieval and basic analysis. Medium (Level 3) includes 36
datasets that may require the integration of multiple data
sources or applying moderate data transformations. Hard
(Level 4-5) consists of 34 datasets that require the calcula-
tion of multiple intermediate quantities or significant trans-
formation of data variables. A detailed list of datasets with
their respective topics and difficulty range is outlined in Ap-
pendix B.3

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.4 QUALITY ASSURANCE

To ensure our datasets are of high quality, we designed a questionnaire and an interface that displays our
dataset to users. We had 20 volunteers with basic data science skills evaluate whether our datasets were
accurately described, contained relevant and interesting questions, and provided substantial insights. The
exact questions used, the interface design, and the results are shown in B.4. The average rating was 4 out of
5 across these questions, and we received helpful comments that improved parts of the dataset.

3 EXPERIMENTAL SETUP

The main experimental setup in our benchmarking process involves inputting the dataset schema and an
overarching goal for each dataset in InsightBench and letting the agent perform exploratory data analysis.
As discussed in Section 2, the goals are carefully designed to provide a meaningful signal to the agent
without revealing the ground-truth answer.

In addition to the main experiments, we conduct the following ablation studies to understand the importance
of different parameters of InsightBench and their effect on agent performance.

Effect of Using Generic Goals. Instead of using the carefully designed goal from the ground-truth
annotations, we use the generic goal “I want to find interesting trends in this dataset.” We aim to study the
effectiveness of our goals in steering the agents toward performing meaningful data analysis.

Effect of Trend Intensity. We generate variations of Dataset 2 (see Table 3 for the complete list), which
has the planted insight, “Time to resolution increases linearly over time.” We vary the slope of the linear
curve for that insight from -0.1 to 0.9. Through this experiment, we study whether an agent needs a trend
to be blatantly obvious (high intensity) to retrieve or if the agent can retrieve nuanced trends (low intensity)
as well. Notably, we also consider negative slopes in this experiment to test if the agents output a false
positive (discovering a trend even when it is not present).

Effect of Question Diversity. We restrict the agent to generate only “descriptive” questions as follow-ups
instead of letting it generate different types of questions.

Effect of LLM Sampling Temperature. We vary the sampling temperature of the LLM from 0 to 1.0 to
study its effect on the agent’s performance.

3.1 BASELINES

We run the following data analytics agents on InsightBench:

a) Pandas Agent (PA) (LangChain, 2024). A data science agent by LangChain optimized for question-
answering 2. Given a data frame and a question related to it, Pandas Agent first generates Python code
and then executes it to produce the answer. In our experiments, we input the goal to the agent and let it
iteratively generate question and their answers. We then pass the list of answers to the agent again and ask
it to generate a summary of those answers.

b) AgentPoirot (Ours). We propose AgentPoirot that, given a dataset (D) in InsightBench and a goal (G),
performs systematic data exploration aimed at achieving G. Figure 7 shows the working of AgentPoirot:

1. Extract Dataset Schema (S): The dataset schema contains information about every column in the
dataset. AgentPoirot extracts the name, type, total unique values, and total NA values for every column.
Additionally, if a column contains numerical data, it extracts the minimum, maximum, mean, and
standard deviation; if a column contains dates, it extracts the minimum and maximum dates; otherwise,
it extracts the top 5 unique values from the column.

2. Generate Insights: Given the triplet (D,G,S), AgentPoirot uses the Question Generation Prompt to
generate k(=3) high-level questions. It answers each high-level question by first generating Python
code and then interpreting the output of the code. Then, it generates n(=4) follow-up questions for each
high-level question and then answers them as well to obtain a total of generates (n+1)×k insights(see
Figure 7 to see a complete overview of AgentPoirot).

3. Generate Summary: AgentPoirot summarizes the insights from the previous step (using Prompt 7.)

2LangChain is an MIT Licensed Python library for building context-aware reasoning applications
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Table 1: Performance of different agents on InsightBench. All results are for 5 different seeds.

Insight-level Scores Summary-level Scores

Agent ROUGE-1 LLaMA-3-Eval ROUGE-1 LLaMA-3-Eval

PA (gpt-4o) 0.35±0.03 0.54 ±0.01 0.35 ±0.01 0.40 ±0.04
Ours (gpt-4o) 0.32 ±0.02 0.60 ±0.03 0.37 ±0.09 0.44 ±0.03

- w/ generic goal 0.30 ±0.03 0.40 ±0.03 0.30 ±0.08 0.33 ±0.12
Ours (gpt-4-turbo) 0.30 ±0.02 0.56 ±0.02 0.35 ±0.08 0.35 ±0.04

- w/ generic goal 0.28 ±0.01 0.38 ±0.03 0.29 ±0.02 0.27 ±0.11
Ours (gpt-3.5-turbo) 0.34 ±0.01 0.50 ±0.02 0.27 ±0.14 0.31 ±0.06

- w/ generic goal 0.30 ±0.02 0.36 ±0.03 0.24 ±0.03 0.25 ±0.06
Ours (llama-3-70b) 0.33 ±0.02 0.52 ±0.04 0.36 ±0.01 0.33 ±0.01

- non-diverse follow-ups 0.29 ±0.01 0.51 ±0.03 0.32 ±0.01 0.28 ±0.03
- w/ generic goal 0.27 ±0.03 0.35 ±0.01 0.23 ±0.03 0.23 ±0.02

c) AgentPoirot (Ours) w/ generic goal. We use the generic goal, “I want to find interesting insights in this
dataset,” instead of the carefully designed goal and run AgentPoirot on InsightBench as in b).

d) AgentPoirot (Ours) non-diverse follow-ups. We use Prompt 4 instead of Prompt 3 to generate only
one type of follow-up questions and run AgentPoirot on InsightBench as in b). Refer to Figure 7 in the
Appendix for a visualization of our proposed method.

In addition to PandasAgent, we also considered the following baselines: Insightpilot (Ma et al., 2023),
but neither the code nor the prompts are available; Data-Copilot (Zhang et al., 2023b), but it is limited
to Chinese financial data, which isn’t suitable for our task; OpenAgents (Xie et al., 2023), but the public
version only allows 10 requests, which isn’t enough for meaningful benchmarking; InfiAgent-Dabench (Hu
et al., 2024), but we excluded it due to its extremely poor performance in this benchmark. It handles only
simple tasks like “Generate Python code to compute the mean of a list,” but struggles with more complex
queries like “What is the distribution of incidents by category in this dataset?” Lastly, we considered using
PowerBI 3, but it is a closed-source tool that is not suitable for large-scale benchmarking. We conducted a
small-scale evaluation of PowerBI and found that it obtained low-quality insights and generated inconsistent
outputs for the same prompt. Our benchmark emphasizes transparency and reproducibility, therefore we
focussed on methods that the scientific community can easily inspect and scrutinize, which is not possible
with the aforementioned baselines.

3.2 IMPLEMENTATION DETAILS

We use Python’s openai package to access the family of GPT models for our experiments and vllm
to host LLaMA-3-70b 4 model on 4 A100 GPUs. We use different LLMs as backbones in our
experiments to benchmark, including gpt-4o, gpt-4-turbo, gpt-3.5-turbo, and llama-
3-70b 5. All results are reported for the sampling temperature of 0.0, unless otherwise stated. We use the
evaluate Python package to compute ROUGE-1 scores and Prompt 9 in Appendix D for computing
LLaMA-3-Eval scores. We also fix the temperature of LLaMA-3-70b to 0 during evaluation. We repeat
all our experiments for 5 seeds and report the mean and standard deviation in our results.

4 BENCHMARK RESULTS

Main Results. Table 1 shows the performance of different data analytics agents on InsightBench. First,
we note that AgentPoirot outperforms Pandas Agent in terms of ROUGE-1 and LLaMA-3-Eval scores.
We note that using gpt-4o consistently achieves the best overall performance. We further see that
AgentPoirot with LLaMA-3-70b outperforms AgentPoirot with gpt-3.5-turbo and is close to
gpt-4-turbo in terms of LLaMA-3-Eval scores.

Our performance analysis by dataset categories (Figure 4a) shows agents performing best in ”Asset Man-
agement,” ”Goal Management,” and ”Finance Management.” While AgentPoirot with LLaMA-3-70b
underperforms on combined datasets due to context limitations, PandasAgent excels in these categories.
Performance varies by difficulty (Figure 4b), with strong results on ”Easy” and ”Medium” tasks but
declining on ”Hard” ones. Across insight types (Figure 4c), agents show decreasing performance from De-

3https://app.powerbi.com/home
4https://github.com/meta-llama/llama3
5We use gpt-4-turbo-2024-04-09 and gpt-3.5-turbo-0125, specifically.
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Figure 4: Performance of different agents on InsightBench grouped by difficulty and dataset category.

scriptive (0.52-0.62) through Diagnostic, Prescriptive, and Predictive insights. Table 2 provides qualitative
comparisons between AgentPoirot and PandasAgent.

Effect of Using Generic Goals. Table 1 also shows the performance of AgentPoirot that uses a generic
goal. We notice a drastic overall decrease in the ROUGE-1 and LLaMA-3-Eval scores for all the backbones.
For instance, the insight-level LLaMA-3-Eval score for AgentPoirot (gpt-4o) drops from 0.60 (± 0.03)
to 0.40 (± 0.03) and the summary-level LLaMA-3-Eval score drops from 0.44 (±0.03) to 0.33 (±0.12)
(see “Ours (gpt-4o)” v/s “Ours (gpt-4o) w/ generic goal” rows in Table 1). This highlights the importance
of including a SMART goal in the agent’s performance.

Effect of Exploring Diverse Questions. Table 1 includes the performance of AgentPoirot when gener-
ating only a single type of follow-up questions (see “Ours (llama-3-70b) non-diverse follow-ups”). We
observe a notable decrease in ROUGE-1 scores and a slight decrease in LLaMA-3-Eval scores, confirming
that discovering a diverse set of questions during data analysis leads to better performance.

Effect of Trend Intensity Figure 8b shows the performance of AgentPoirot with different backbones on
variations of dataset 2 in InsightBench. First, we note that all the models fail to discover insight when
the slope is less than 0.1 (including negative slopes). This suggests that our model did not generate false
positives (we assume the flag is discovered if LLaMA-3-Eval is greater than 0.5. Overall, for slope
greater than 0.1, gpt-4o and gpt-4-turbo discovered the insight every time, LLaMA-3-70b
discovered it nearly half the times, and gpt-3.5-turbo had a particularly hard time discovering
the insight. While both LLaMA-3-70b and gpt-3.5-turbo have difficulty discovering the trend
sometimes (as showcased by the fluctuations in LLaMA-3-Eval scores), LLaMA-3-70b shows a better
overall discovery rate of the insight compared to gpt-3.5-turbo.

Effect of Sampling Temperature. Figure 8a in Appendix C shows the performance of AgentPoirot with
LLaMA-3-70b for different sampling temperatures. The performance of the agent peaks at temperature
0.2 before it starts to decrease. Higher temperatures also lead to unstable performance, as indicated
by bigger standard deviations in the plot. Overall, we note that the temperature should be low but not
completely 0 for optimal agent performance on InsightBench.

G-Eval v/s LLaMA-3-Eval Table 5 in Appendix C shows results for a small-scale study where we
compare G-Eval and LLaMA-3-Eval. We note that both scores are similar in range and follow the same
trend for all agents. This suggests that LLaMA-3-70b is a good alternative to using gpt-4o for evaluation.

One-to-Many v/s Many-to-Many Evaluation. We conduct another study to compare our approach with an
alternative many-to-many version, where, instead of computing a score for each ground truth and prediction
pair, we first prompt the LLM to match every ground truth response with an appropriate prediction. We
perform this experiment because the one-to-many evaluation approach can be time-consuming as it needs
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Table 2: Comparsion of insights generated by PandasAgent and AgentPoirot. Parts in bold show why an insight is a
close approximation of the ground truth insight. We note that AgentPoirot consistently generates to-the-point insights
compared to PandasAgent, which often generates related but slightly off-topic insights.

Ground Truth Insight Insight Predicted by PandasAgent (gpt-4o) Insight Predicted by AgentPoirot (gpt-4o)

Dataset Category: Incident Management

The time to resolution of incidents is in-
creasing over time

Network assignment group consistently has longer resolution
times compared to other groups, with an average resolution
time of approximately 1074 hours.

Yes, there is a clear trend of increasing incident resolution
times over the months, with the average resolution time rising
from 113.03 hours in January 2023 to 3150.86 hours in June
2024.

The increase in volume of incidents is seen
only for one particular category i.e. Hard-
ware

The trend in assigned incidents varies significantly across dif-
ferent assignment groups, with the “Hardware” group having
the highest number of incidents (314), followed by “Software”
(56), “Network” (48), “Database” (43), and “Service Desk”
(39).

The category ‘Hardware’ has shown the highest increase
in the number of incidents over the given period, with a total
increase of 32.0 incidents.

Dataset Category: User Management

Fred Luddy has a significantly higher av-
erage TTR compared to other agents

There are specific types of incidents where the specified hu-
man agent, Fred Luddy, consistently performs worse than
others.

The absence of Howard Johnson significantly impacts the
workload and performance of other agents, as evidenced
by the high mean resolution times, particularly for Fred
Luddy at 410.055 hours, compared to other agents like Beth
Anglin at 102.210 hours.

There is no significant change in the dis-
tribution of incident categories for Beth
Anglin and Luke Wilson during the other
agents’ PTO

During peak business hours, Luke Wilson and Beth Anglin
receive the highest number of incident assignments, while off-
peak hours show a more balanced distribution among agents.

No specific periods identified where the number of incidents
assigned to agents significantly increases or decreases, and no
correlation with agents’ leave periods has been established.

Dataset Category: Asset Management

Servers and Web Servers are the most ex-
pensive asset categories on average, fol-
lowed by computers.

Yes, there are cost outliers within specific model categories as
the maximum cost of an asset is 4786, which is significantly
higher than the 75th percentile cost of 2834.

Yes, certain model categories such as ‘Server’ and ‘Com-
puter’ have a higher variance in asset costs compared to
others, with variances of 4,441,227.02 and 1,063,157.44 re-
spectively, and these categories also have relatively longer
mean warranty periods of 730.87 and 1,228.08 days.

There is an excessive number of comput-
ers per user in HR Department

Yes, in the HR department, the ’Computer’ model category
has significantly higher costs compared to other models, total-
ing 61215.

Yes, the HR department has a disproportionately high
number of Computers (19) compared to other model cate-
gories such as Web Servers (5) and Servers (4).

Dataset Category: Finance Management

Most of the declined expenses are belong
to a few specific users in IT Department

There is a correlation between the user submitting the expense
and the likelihood of rejection, as some expenses are declined,
indicating a rejection, while others are processed or pending.

Yes, specific users such as Vernon Engelman and Helene
Iberg from the IT department have higher rates of expense
rejections, particularly in the ‘Assets’ category.

There is a linear positive correlation be-
tween new employee’s start dates and their
expense rejection rates

There are differences in the approval rates of expense sub-
missions between newer and more experienced employees,
with newer employees having higher rates of submission er-
rors and rejections compared to more experienced employees.

The rejection rate of expense submissions tends to be
higher for employees with shorter employment durations,
as indicated by the higher rejection rates observed in the initial
days of employment.

Dataset Category: Goal Management

There is a uniform distribution of goal pri-
orities in the Finance department

There is no significant correlation between the owner of a goal
in the Finance department and the time taken for completion.

The priority level of goals in the Finance department is rel-
atively balanced, with counts of 58 for Low, 52 for Medium,
52 for High, and 51 for Critical priorities.

The IT department exhibits a higher num-
ber of both Critical and High priority goals
compared to other departments

The Marketing department has the highest number of goals,
followed by HR, IT, and Finance.

The distribution of goal priorities within the IT depart-
ment is 56 High, 54 Critical, 10 Low, and 9 Medium, which
shows a higher concentration of High and Critical priori-
ties compared to other departments.

to compute a LLaMA-3-Eval score for every ground truth-prediction pair to determine the most appropriate
prediction to evaluate against a given ground truth and using many-to-many matching may result in a faster
evaluation process. We also show justifications generated by LLaMA-3 for its scores for high and low
scoring examples in Table 7 of Appendix C.

Table 6 shows the quantitative results of our experiments. We note that using many-to-many evaluation
generally leads to a lower score; however, upon inspection, we find that many-to-many prompt often
mismatches a ground truth insight with a wrong prediction (even though a more appropriate prediction was
present in the pool of predicted insights). Table 6 shows some mismatches generated by the many-to-many
evaluation approach compared to the proposed one-to-many evaluation approach that intuitively does not
miss a good prediction if it is present in the list of generated insights.

5 RELATED WORK

Our work intersects with the literature on Data Science Benchmarks, LLM Evaluation Frameworks, and
Text-to-Analytics Agents.
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Data Science Benchmarks With enhanced abilities in code generation, utilization of LLM-based data
analytics assistants is becoming increasingly prevalent. This has led to the development of numerous data
science benchmarks (Lai et al., 2022; Chandel et al., 2022; Zan et al., 2022; Hu et al., 2024; Zhang et al.,
2024b). DS-1000 (Lai et al., 2022) focuses on code generation for diverse data science questions sourced
from StackOverflow. Similarly, InfiAgent-DABench (Hu et al., 2024) assesses the end-to-end problem-
solving ability of LLMs by asking questions based on provided CSV files. DSP (Chandel et al., 2022),
evaluates a model’s proficiency through a code-infilling task within Jupyter Notebooks. DSEval (Zhang
et al., 2024b) focuses on the overall behavior of data science agents without getting into the nuances of
code generation techniques. On the other hand, Text2SQL and tabular data reasoning benchmarks assess
the ability of models to parse queries, extract information, and synthesize the retrieved data to formulate
responses (Katsogiannis-Meimarakis & Koutrika, 2021; Zhong et al., 2018; Chen et al., 2021b). While
existing benchmarks primarily evaluate agents on single-step code generation, InsightBench shifts the focus
to multi-step analysis (Delen & Ram, 2018).

LLM Evaluation Frameworks Existing LLM evaluations frameworks focus on handling structured
outputs and predominantly rely on pre-formatted prompts to assess code completion (Wu et al., 2023;
Zhang et al., 2023a; 2024a; Yao et al., 2023). While recent advancements have seen autonomous agents
specializing in intricate data science tasks, including analysis, visualization, and modeling (Qian et al., 2023;
2024; Zhang et al., 2023a), evaluations for these methods often depend on extensive human effort (Cheng
et al., 2023) or use more powerful LLMs to assess the output (Dubois et al., 2023; Belyi et al., 2024).
Another work uses the “Capture the Flag” principle, where insights are planted into a dataset as flags to
evaluate whether models can uncover them (Laradji et al., 2023). G-Eval (Liu et al., 2023) is a recent
technique used to evaluate the quality of free-form texts in terms of factuality and coherence. In this work,
we use a variation of G-Eval to score how well the predicted insights are aligned with the ground-truth
insight.

Text-to-Analytics Agents Chen et al. (2023) explore the application of GPT variants within a data
visualization context, highlighting the strengths and limitations of these models. More recent LLM-based
data analysis agents include Code Interpreter (OpenAI, 2024) and Pandas Agent (LangChain, 2024) that are
capable of processing multiple data formats and answering questions about them. Ma et al. (2023) propose
InsightPilot, an advanced automated tool that leverages LLMs to enhance data exploration by automatically
identifying goals and generating targeted intentional queries. Vacareanu et al. (2024) showed that LLMs
can also perform regression tasks, enhancing their predictive abilities. Additional studies assess the data
analysis capabilities of GPT-4 and propose an end-to-end framework for automating data processes (Cheng
et al., 2023; Wang et al., 2023; 2024; Hong et al., 2024). Inspired by InsightPilot, we propose AgentPoirot
that can perform end-to-end data analysis that includes extracting descriptive, diagnostic, predictive, and
prescriptive insights.

6 CONCLUSION

We have introduced InsightBench, a benchmark with 100 diverse datasets that evaluates agents on their
ability to perform end-to-end data analytics, including suggesting questions, interpreting answers, and
summarizing insights. We ensured each dataset has clear goals and meaningful analysis as ground-truth to
evaluate agents reliably. Using LLaMA-3-Eval, an open-source evaluator, we assessed how well the agents
extracted insights compare to the ground-truth. We showed how our proposed agent, AgentPoirot, can
perform data analytics from high-level goals using both open-source and closed-source models and showed
that it outperforms existing approaches like Pandas Agent. We believe InsightBench will significantly drive
advancements in data analytics. For future work, we look into expanding this benchmark to include more
categories of data such as healthcare data, social media trends, environmental data, e-commerce analytics,
and educational statistics.

7 LIMITATIONS

Benchmarks have the risk of reinforcing existing biases or oversimplifying complex decision processes. The
design of InsightBench necessitates continuous reviews to ensure that the insights generated by agents do not
perpetuate biases or lead to misinformed decisions. Additionally, agents’ performance on this benchmark
should be continually assessed against evolving business practices and technological advancements to
maintain relevance and effectiveness. More discussions on limitations are presented in Appendix A.
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8 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our results, we have taken the following measures:

1. Code Availability: All our code, including data used for model implementation, training, and evaluation,
is available in the supplementary material.

2. Computing Infrastructure: All LLaMA-3 experiments were conducted on 2 x 80G A100 GPUs.

4. Ablations: A complete list of hyperparameters used in our experiments is provided in Appendix C of the
paper. Additionally, all prompts used in this work are included in Appendix D.

5. Random Seeds: To ensure reproducibility, we have run our experiments for 5 random seeds.

6. Evaluation Metrics: We provide a detailed description of all evaluation metrics used in Section 2.2 of the
paper. Implementation of these metrics is included in our codebase.

7. Experimental Procedures: Section 3 of the paper includes a comprehensive description of our experi-
mental procedures.

8. Dependencies: A complete list of software dependencies, is provided in the ‘requirements.txt‘ file of the
supplementary material.

By specifying these details, we aim to ensure that our work can be readily reproduced and built upon by
the research community.
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A LIMITATIONS AND POTENTIAL SOCIETAL IMPACT

InsightBench is designed to advance the field of Exploratory Data Analysis (EDA) by providing a chal-
lenging framework for evaluating open-ended multi-step data analytics tools and models. The dataset
evaluates and helps build conversational data agents with significant potential to enhance decision-making
and operational efficiencies in organizations, particularly for end-users who may not have deep technical
expertise in data science. Yet, there are important considerations and limitations concerning the current
data construction and the benchmark’s application in the real-world setting.

Diversity and Scope of Data Simulation. While InsightBench covers a spectrum of business areas and
themes, the datasets are synthesized based on patterns observed in widely-used ServiceNow. Consequently,
the synthetic ”flags” are designed to mimic real-world anomalies and trends but may not capture genuine
enterprise data’s full complexity or unexpected behavior.

Expanding the Benchmark. The current structure of InsightBench allows for scalable expansions
to include more nuanced scenarios, themes, and more datasets that could involve unstructured data like
reports, logs, or emails. Crucial information and actionable insights can also be derived from visual
representations such as charts and plots. Further development could also integrate diverse business norms,
the ability to analyze the plots and graphs from a visual context alongside language by the agents. Moreover,
incorporating feedback from real-world deployments could help refine the datasets to simulate underlying
business data better. Lastly, InsightBench allows interpreting data types and evaluating outputs for practical
utility. Its adaptive framework, which evolves through multi-step interactive feedback, may align with agile
development practices. This positions our InsightBench a future setup for integrating intelligence into the
end-to-end software development process.

B APPENDIX: OVERVIEW

Our supplementary material includes the following sections:

• Section A: Contains details of data accessibility, generation process, and a breakdown of domains
covered by InsightBench.

• Sectoin B: Contains results of some ablation experiments and qualitative examples.
• Section C: Discusses relevant literature for our work.
• Section D: Contains all the prompts used in our experiments.

Dataset Maintenance Authors are committed to ensuring the dataset’s regular upkeep and relevance, we
will place a system for users to report issues or suggest updates. A feedback form will be available for users
to contribute their input. We commit to actively reviewing these suggestions and making the necessary
adjustments to the dataset. We also invite contributions from the community through pull requests on
InsightBench’s GitHub repository.

B.1 EXAMPLE PROTOCOL FOR DATA GENERATION AND INSIGHT PLANTING

Here, we outline a practical case of how we created a flag dataset for an incidents table with a trend in
which the duration of incident resolution increases over time:

1. Schema Exporting and Standardization: Initially, the schema for the incidents table is exported
and standardized by inspecting a demo instance. Fields such as ”number”, ”opened at”, and
”closed at”, among others, are defined.

2. Data Generation Parameters: Parameters for generating the data include factors that influence
and define the trend. For this example, the parameters include a slope to model the trend in
resolution time. Dates ranging from start date to end date are used to set the temporal context of
the data. In the experiments section, we ablate and study the effect of the key parameters.

3. Synthetic Data Creation: The entire synthetic data generation pipeline is implemented in Python,
leveraging libraries such as Pandas for data manipulation and custom scripts for quality control.
For example, for fields like IDs, categories of incidents or assets, transaction dates, and status
codes, we used random sampling from carefully curated lists of plausible values. The lists were
created by analyzing common patterns in actual operational data to capture typical distributions
and variances. For example:
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• ID fields: We generated unique identifiers based on specific formats to simulate real data
structures, such as GUIDs or composite keys for hierarchical datasets.

• Date fields: Transaction dates and timestamps were randomly sampled within specific
ranges, often constrained by meaningful boundaries (e.g., fiscal quarters or business hours)
to reflect real-life constraints.

• Categorical fields: Categories like incident types and asset classifications were randomly
sampled to create a balanced distribution that mirrors real datasets’ diversity. Sampling
strategies included uniform and weighted distributions to reflect frequency differences in
actual usage patterns.

Additionally, we applied statistical validation to ensure that the generated datasets reflected the
anticipated distributions and complexities.

4. Trend Implementation: The time to resolution is calculated using a linear model where the
resolution time increases over the duration of the dataset. The parameter chosen in step 2 is used
to model the linear function. The closing time of an incident is determined based on the resolution
time and its opening time.

5. LLM Utilization: For fields that require diverse and realistic inputs like short descriptions of the
incidents, an LLM generates descriptions based on the incident category, ensuring that the data
retains an authentic and varied narrative quality.

This approach provides a flexible and scalable framework to produce synthetic datasets that closely resemble
real-world business data, allowing us to introduce realistic patterns, variations, and inconsistencies essential
for robust model training and evaluation. Further details on our data generation approach, including specific
parameters and code snippets, are provided in Appendix B.1.

B.2 DATA TABLES ACROSS THEMES

Here is an exhaustive and descriptive outline of the topics covered in the benchmark:

• Incidents Management: Focuses on tracking, analyzing, and resolving workplace incidents. An
extensive description of this data table is discussed afore-mentioned Sec 2.1.1.

• User Management: Datasets in this theme are derived from sys user system table of ServiceNow. This
table tracks all user profiles within the platform. It contains information about each user, such as their
roles, department affiliations, contact details, and activity status. Key fields include the user’s ID, name,
email, department, and last login time. This table is used in InsightBench for insights related to roles and
permissions of employee agents, focusing on schedules and activity patterns.

• Finance Expenses: Datasets in this topic examine detailed records of expenses to uncover patterns and
optimize budget allocations and prioritization. Datasets are built from fm expense list, a system table
that logs detailed entries of financial transactions and expenses as part of the financial management
module. It includes data points like the expense amount, date, associated user, department, category, and
processing status.

• Inventory Management: Manages data regarding hardware assets and procurement, aiming to un-
derstand patterns in inventory systems. Datasets are derived from alm hardware, a system table that
manages records of all physical assets, particularly IT hardware. Fields in this table detail each asset’s
tag number assigned to the user, status, location, purchase date, and warranty expiration. It supports asset
tracking, lifecycle management, and maintenance activities within an organization.

• Enterprise Goal Management: Datasets in this theme evaluate the alignment of departmental per-
formance with overarching goals, focusing on the effectiveness and achievement rates. Datasets are
derived from sn gf goal system table of ServiceNow, which is essential for evaluating goal management
efficiency and aligning departmental outputs with organizational objectives. Fields in this table consist of
goal description, start and end dates, current status, owner, priority, and percentage completion.

B.3 LIST OF DATASETS AND PROBLEMS

Table 3 shows the names of all the datasets in InsightBench along with their difficulty and category. Table 4
presents an example of a question-insight pair along with corresponding plots for each category.
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(a) (b)

(c)

Figure 5: Screenshots of the Interface used for Dataset Quality-check:

B.4 QUALITY-CHECK INTERFACE

To ensure the high standards of data quality and relevance, InsightBenchhas implemented a comprehensive
quality-check process involving volunteer contributors. This process is facilitated through a specifically
developed gradio interface, which guides the expert reviewers through a structured review of the ground-
truth analysis notebooks included in the benchmark (Figure 5). The evaluation is divided into three main
sections:

Section 1: Dataset Overview Evaluation. Volunteers assess how clearly the dataset and its objectives are
described. This includes reviewing the clarity of the dataset description and the specificity and measurability
of the stated goals (Figure 5a).

Section 2: Question and Insights Evaluation. This section focuses on the engagement and relevance
of the questions posed in the notebooks. Volunteers use a slider interface to review each question and
corresponding insight sub-sections, evaluating how effectively the plotting code answers the questions and
how well the insights align with the analysis goals (Figure 5b).

Section 3: Summary of Insights Evaluation. The final section requires volunteers to determine whether
the summary accurately encapsulates the key insights and conclusions drawn from the data analysis. This
involves checking if the final flag provides a comprehensive and concise summary of the notebook’s
findings (Figure 5c).

The average rating scores for questions across the three sections is depicted in Figure 6.

B.5 DETAILS OF THE PROPOSED AgentPoirot

Here we describe the proposed baseline AgentPoirot in further detail. Figure 7 depicts our pipeline. Initially,
AgentPoirot uses the dataset and its schema to obtain a set of root questions about the data, aligning with
the user’s Goal or Role. Each of the root questions can be injected into a Code Generation prompt to
obtain and execute code, as well as obtain textual descriptions of the insight found. From these outputs, we
generate follow-up questions and start the process again, obtaining a model that navigates the data in depth
and in breadth to find interesting insights.
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(a) (b)

(c)

Figure 6: Distribution of Dataset Quality-check Scores across the three sections:

RQ 
Prompt

CG 
Prompt

IE 
Prompt

FQ 
Prompt

Database / Schema

Question 1

...

Question 2

Question k

Code Plots/Figures

Answer/Insight 
& Justification

Conversation 
History

Top Ranked 
Question

Code Execution

Follow-Up Questions

Question 1

...

Question 2

Question k

Root Questions

Goal

loop

Figure 7: AgentPoirot uses the “Question Generation (or QG) Prompt” (Prompt 1 in Appendix D) that takes as input
the dataset schema and the goal to generate k high-level questions. Then, it uses the “Code Generation (or CG) Prompt”
(Prompt 2 in Appendix D) to generate plots answering the high-level questions. Using the “Insight Extraction (or IE)
Prompt” (Prompt 5 in Appendix D), and the outputs from the previous step, it generates an insight and the justification
of that insight. Finally, AgentPoirot uses the “Follow-Up Question (FQ) Prompt” (Prompt 3 in Appendix D) to generate
diverse follow-up questions, and selects the top one using the “Question Selection (or QS) Prompt” (Prompt 6 in
Appendix D). This question is injected back into the CG prompt to start the cycle again.
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Table 3: Overview of InsightBench Datasets and Problems. This table enumerates a subset of the first 30 datasets
included in the benchmark, detailing their respective topics, difficulty levels, and titles. This enlists diverse scenarios
that InsightBench covers to evaluate the abilities of data analytics agents.

Dataset Dataset ID Difficulty Category

Hardware Incident Dataset 1 4 Incident Management

Incident Resolution Time Dataset 2 3 Incident Management

Incident Assignment Distribution Dataset 3 2 Incident Management

Incident Category Trends Over Time 4 4 Incident Management

Time to Resolution Trends Across Incident Cate-
gories

5 2 Incident Management

Agent Performance Analysis Over Time 6 4 Incident Management

Incident Assignment and Resolution Efficiency
Analysis

7 3 Incident Management

Caller Incident Impact Analysis 8 2 Incident Management

Hardware Incident Analysis During Specific Time
Windows

9 4 Incident Management

Incident Resolution Time Trends Analysis 10 3 Incident Management

Category based Incident Trends Analysis 11 4 Incident Management

Hardware Incident Easy Dataset 12 1 Incident Management

User Agent Wellbeing and Incident Volume Analy-
sis

13 2 Incident Management

Performance Trends in Employee Agents Manage-
ment

14 4 User Management

Workload Distribution and Efficiency Analysis 15 4 User Management

Asset Warranty Analysis 16 2 Asset Management

Asset Cost Analysis by Department 17 3 Asset Management

Asset Warranty and Purchase Date Analysis 18 3 Asset Management &
User Management

Expense Management Discrepancies 19 3 Finance Management

Travel Expense Rejection Analysis 20 2 Finance Management

Expense Rejection Trends for New Employees 21 2 Finance Management
& User Management

Expense Processing Efficiency Analysis 22 3 Finance Management

Expense Claim Patterns and Fraud Analysis 23 3 Finance Management

Expense Processing Time Analysis 24 3 Finance Management

Expense Processing Dynamics Analysis 25 2 Finance Management

Asset Warranty Analysis 26 2 Asset Management

Management Staffing Analysis in IT Department 27 3 User Management

Goal Achievement Rate Analysis in IT Department 28 2 Goal Management

Goal Management Analysis Category Focus 29 2 Goal Management

Goal Management Analysis in Cost Reduction 30 3 Goal Management
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Table 4: Instances of insights from InsightBench for each category.

Dataset Category Insights Plot
Incident Management Question: What is the trend in time to resolution (TTR)

of incidents across categories?
Insight: TTR starts to increase linearly for hardware
incidents abruptly during a particular time period.

User Management Question: What is the distribution of reporters per Man-
ager by Department?
Insight: The average number of reportees per manager
in the IT department is significantly higher than other
departments. It is 50.5 compared to 8.8 in Customer
Support, 11.6 in Finance, 12.8 in HR , and 13.0 in Sales.

Assets Management Question: What is the relationship between the purchase
date of assets and their warranty periods?
Insight: There is a significant correlation between pur-
chase dates and warranty periods in that the later one
purchases an asset the higher the warranty which is a
surprising insight.

Expense Management Question: What is the distribution of processing times
of expense reports across different cost brackets?
Insight: Counter-intuitively, expenses within lower
cost brackets experience significantly longer process-
ing times.

Goal Management Question: How long do goals under ‘Cost Reduction’
take to achieve?
Insight: As time passes, there is an increase in the time
it takes to achieve ‘Cost Reduction’ goals.
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C ABLATION RESULTS

Table 5 shows the difference between various evaluation strategies, and Table 6 shows qualitative results
for many-to-many and one-to-many evaluation.

Table 5: Comparison of different evaluation methods on the first 10 datasets of InsightBench.

Soft Scores Summary Scores

Agent G-Eval LLaMA-3-Eval LLaMA-3-Eval G-Eval LLaMA-3-Eval
(many-to-many)

Ours (gpt-4o) 0.53 ±0.01 0.57 ±0.02 0.43 ±0.03 0.55 ±0.01 0.58 ±0.03
Ours (gpt-4-turbo) 0.52 ±0.02 0.55 ±0.02 0.40 ±0.02 0.54 ±0.03 0.58 ±0.02
Ours (gpt-3.5-turbo) 0.46 ±0.01 0.50 ±0.01 0.35 ±0.02 0.48 ±0.01 0.50 ±0.01
Ours (llama-3-70b) 0.45 ±0.01 0.50 ±0.02 0.34 ±0.03 0.47 ±0.01 0.49 ±0.01

Table 6: Mismatched examples by many-to-many compared to one-to-many evaluation scheme. Parts in bold indicate
why the prediction is appropriate to compare against the ground truth insight.

Ground Truth Insight Prediction Matched by Many-to-Many
Evaluation Scheme

Prediction Matched by One-to-Many
Evaluation Scheme

The time to resolution of
incidents is increasing over
time

The average resolution time for incidents
is 1677.27 hours for ‘1 - Critical’ priority,
1554.63 hours for ‘2 - High’ priority, and
1584.00 hours for ‘3 - Moderate’ priority.

Yes, there is a clear trend of increas-
ing incident resolution times over the
months, with the average resolution time
rising from 113.03 hours in January 2023
to 3150.86 hours in June 2024.

The time to resolution of in-
cidents is uniform over time

Beth Anglin has shown the highest effi-
ciency in resolving incidents with a mean
resolution time of 153.90 minutes, and
her workload has included handling 105
incidents over the given period.

There are no noticeable patterns in the
types of incidents (categories) that are
being resolved more quickly or slowly
over time.

The volume of Hardware in-
cidents is elevated during
specific time windows

Yes, certain ‘caller id’ individuals such
as ‘Don Goodliffe’ report more incidents
in the ‘Hardware’ category, and there is
a trend showing that ‘Bud Richman’ and
’David Loo’ also frequently report inci-
dents in ‘Hardware’ and ‘Software’ cate-
gories.

Yes, there are patterns in the types
of incidents reported over time, with
‘Hardware’ incidents peaking signifi-
cantly in July and August.

There is a specific agent,
Fred Luddy, who is as-
signed significantly more in-
cidents than others

The assignment group with the highest
number of incidents assigned to them is
‘Network’ with 310 incidents.

Fred Luddy consistently handles a
higher number of incidents compared
to others, with 385 incidents assigned to
him.

There are higher expense re-
jection rates for employees
with shorter tenure

Yes, the ‘Assets’ and ‘Travel’ categories
have a higher rate of submission errors
or rejections, with counts of 91 and 72
respectively, compared to ‘Services’ and
‘Miscellaneous’ which have 16 and 6.

The rejection rate of employees tends
to be higher for employees with
shorter employment durations, with
many instances of 1.0 rejection rates ob-
served in the initial days of employment,
and it gradually decreases as employment
duration increases.

There are higher success
rates in Critical and High
priority goals within the IT
department

Yes, there are correlations between the
metric types and the success rates of
projects, as indicated by the plot statis-
tics showing a range of data points for
percent complete and target percentage
of projects.

The dataset reveals a trend where
projects with ‘High’ and ‘Critical’ pri-
ority levels generally have higher com-
pletion rates, often exceeding 80%, com-
pared to those with ‘Low’ and ‘Medium’
priorities, which show more variability
and lower completion rates overall.
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Table 7: Comparison of Generated Insights with Ground Truth

Example Ground Truth
(GT)

Generated Insight LLaMA-3-Eval Score and Justification

1 (Good) There are
significantly
higher asset
costs in the HR
Department.

The average cost of
assets in the HR de-
partment is $4874.25,
which is significantly
higher compared to
the average cost of
$1967.26 in other de-
partments.

Score: 0.81
The generated text accurately conveys that
the HR department has higher asset costs
compared to other departments, with spe-
cific numerical values supporting the claim.
The score is slightly less than 1 because
”significant” is used in a general rather than
statistical sense. Additional context could
further improve this.

2 (Bad) There is a weak
correlation be-
tween the num-
ber of users and
the high cost of
computer assets
in the HR de-
partment.

The distribution of as-
set types within the
HR department in-
cludes 19 computers,
5 web servers, and
4 servers, with com-
puters being the most
prevalent asset type.

Score: 0.18
The generated text does not address the
correlation between the number of users
and the cost of computer assets. Instead, it
discusses asset distribution, which is irrel-
evant to the GT claim, resulting in a low
score.

3 (Bad) There is a
strong positive
correlation
between the
increase in
training hours
and improved
employee
performance.

The training program
was held over a span
of 6 months for six
agents.

Score: 0.11
The generated text fails to address the cor-
relation between training hours and em-
ployee performance. Instead, it provides
irrelevant details about the training pro-
gram’s duration and the number of partici-
pants, resulting in a low score.
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D PROMPT DESIGN

In this section, we illustrate the use of tailored prompts to enhance the analytical capabilities of our models
for extracting insights and conducting advanced analytics.

Prompt 1: Prompt used for Extracting Questions from Data
SYSTEM MESSAGE:
You the manager of a data science team whose goal is to help stakeholders

within your company extract actionable insights from their data.
You have access to a team of highly skilled data scientists that can

answer complex questions about the data.
You call the shots and they do the work.
Your ultimate deliverable is a report that summarizes the findings and

makes hypothesis for any trend or anomaly that was found.

PROMPT:
### Instruction:

Given the following context:
<context>{context}</context>

Given the following goal:
<goal>{goal}</goal>

Given the following schema:
<schema>{schema}</schema>

Instructions:
* Write a list of questions to be solved by the data scientists in your

team to explore my data and reach my goal.
* Explore diverse aspects of the data, and ask questions that are

relevant to my goal.
* You must ask the right questions to surface anything interesting (

trends, anomalies, etc.)
* Make sure these can realistically be answered based on the data schema.
* The insights that your team will extract will be used to generate a

report.
* Each question should only have one part, that is a single ’?’ at the

end which only require a single answer.
* Do not number the questions.
* You can produce at most {max_questions} questions. Stop generation

after that.
* Most importantly, each question must be enclosed within <question></

question> tags. Refer to the example response below:

Example response:
<question>What is the average age of the customers?</question>
<question>What is the distribution of the customers based on their age?</

question>

### Response:
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Prompt 2: Prompt used for Generating and Executing code for answering a Question
PROMPT:
Given the goal:\n
{goal}

Given the schema:\n
{schema}

Given the data path:\n
{database_path}

Given the list of predefined functions in cba.tools module and their
example usage:\n\n

{function_docs}

Give me the python code required to answer this question "{question}" and
put a comment on top of each variable.\n\n

Make a single code block for starting with ‘‘‘python
Do not produce code blocks for languages other than Python.
Import cba.tools at the beginning.
You must only use the predefined functions mentioned above to make the

plot.
You must generate one single simple plot and save it as a jpg file.
For the plot, save a stats json file that stores the data of the plot.
For the plot, save a x_axis.json and y_axis.json file that stores a

maximum of 50 of the most important x and y axis data points of the
plot, respectively.

Save each json file using the cba.save_json function
For the json file must have a "name", "description", and "value" field

that describes the data.
The content of the json file should be less than 4500 characters

Call the fix_fnames function in cba.tools at the end of your code.
End your code with ‘‘‘.

Output code:\n
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Prompt 3: Prompt used for Generating Diverse Follow-up Questions based on the previous answer
SYSTEM:
You the manager of a data science team whose goal is to help stakeholders

within your company extract actionable insights from their data.
You have access to a team of highly skilled data scientists that can

answer complex questions about the data.
You call the shots and they do the work.
Your ultimate deliverable is a report that summarizes the findings and

makes hypothesis for any trend or anomaly that was found.

PROMPT:
Hi, I require the services of your team to help me reach my goal.

<context>{context}</context>

<goal>{goal}</goal>

<schema>{schema}</schema>

<question>{question}</question>

<answer>{answer}</answer>

Instructions:
* Produce a list of follow up questions explore my data and reach my goal

.
* Note that we have already answered <question> and have the answer at <

answer>, do not include a question similar to the one above.
* Explore diverse aspects of the data, and ask questions that are

relevant to my goal.
* You must ask the right questions to surface anything interesting (

trends, anomalies, etc.)
* Make sure these can realistically be answered based on the data schema.
* The insights that your team will extract will be used to generate a

report.
* Each question that you produce must be enclosed in <question>content</

question> tags.
* Each question should only have one part, that is a single ’?’ at the

end which only require a single answer.
* Do not number the questions.
* You can produce at most {max_questions} questions.
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Prompt 4: Prompt used for Generating only one type of Follow-up Questions based on the previous answer
SYSTEM:
You the manager of a data science team whose goal is to help stakeholders

within your company extract actionable insights from their data.
You have access to a team of highly skilled data scientists that can

answer complex questions about the data.
You call the shots and they do the work.
Your ultimate deliverable is a report that summarizes the findings and

makes hypothesis for any trend or anomaly that was found.

PROMPT:
Hi, I require the services of your team to help me reach my goal.

<context>{context}</context>

<goal>{goal}</goal>

<schema>{schema}</schema>

<question_type>{question_type}</question_type>

<question>{question}</question>

<answer>{answer}</answer>

Instructions:
* Produce a list of follow-up questions to explore my data and reach my

goal.
* Note that we have already answered <question> and have the answer at <

answer>, do not include a question similar to the one above.
* Explore diverse aspects of the data, and ask questions that are

relevant to my goal.
* You must ask the right questions to surface anything interesting (

trends, anomalies, etc.)
* Make sure these can realistically be answered based on the data schema.
* The insights that your team will extract will be used to generate a

report.
* The question has to adhere to the type of question that is provided in

the <question_type> tag
* The type of question is either descriptive, diagnostic, prescriptive,

or predictive.
* Each question that you produce must be enclosed in <question>content</

question> tags.
* Each question should only have one part, that is a single ’?’ at the

end which only require a single answer.
* Do not number the questions.
* You can produce at most {max_questions} questions.
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Prompt 5: Prompt used for Interpreting the Solution
PROMPT:
### Instruction:
You are trying to answer a question based on information provided by a

data scientist.

Given the context:
<context>

You need to answer a question based on information provided by a data
scientist.

</context>

Given the goal:
<goal>{goal}</goal>

Given the question:
<question>{question}</question>

Given the analysis:
<analysis>

<message>
{message}

</message>
{insights}

</analysis>

Instructions:
* Based on the analysis and other information provided above, write an

answer to the question enclosed with <question></question> tags.
* The answer should be a single sentence, but it should not be too high

level and should include the key details from justification.
* Write your answer in HTML-like tags, enclosing the answer between <

answer></answer> tags, followed by a justification between <
justification></justification> tags.

* Refer to the following example response for the format of the answer
and justification.

Example response:
<answer>This is a sample answer</answer>
<justification>This is a sample justification</justification>

### Response:
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Prompt 6: Prompt used for Selecting the best Question based on previously asked questions and the goal
SYSTEM MESSAGE:
You the manager of a data science team whose goal is to help stakeholders

within your company extract actionable insights from their data.
You have access to a team of highly skilled data scientists that can

answer complex questions about the data.
You call the shots and they do the work.
Your ultimate deliverable is a report that summarizes the findings and

makes hypothesis for any trend or anomaly that was found.

PROMPT:
Hi, I require the services of your team to help me reach my goal.

<context>{context}</context>

<goal>{goal}</goal>

<prev_questions>{prev_questions_formatted}</prev_questions>

<followup_questions>{followup_questions_formatted}</followup_questions>

Instructions:
* Given a context and a goal, select one follow up question from the

above list to explore after prev_question that will help me reach my
goal.

* Do not select a question similar to the prev_questions above.
* Output only the index of the question in your response inside <

question_id></question_id> tag.
* The output questions id must be 0-indexed.
"""
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Prompt 7: Prompt used for Summarizing the Insights
SYSTEM_MESSAGE:
You the manager of a data science team whose goal is to help stakeholders

within your company extract actionable insights from their data.
You have access to a team of highly skilled data scientists that can

answer complex questions about the data.
You call the shots and they do the work.
Your ultimate deliverable is a report that summarizes the findings and

makes hypothesis for any trend or anomaly that was found.

PROMPT:
Hi, I require the services of your team to help me reach my goal.

<context>{context}</context>

<goal>{goal}</goal>

<history>{history}</history>

Instructions:
* Given a context and a goal, and all the history of <question_i><

answer_i> pairs from the above list generate the 3 top insights that
will help me reach my goal.

* Output each insight within this tag <insight></insight>.
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Prompt 8: Prompt used for generating the synthetic data for non-controllable elements of an incidents
dataset.

gpt_fields = ["short_description", "assignment_group"]

field_info = "\n".join(
[

"<field>"
+ f"<name>{f}</name><type>{col_info[f][’type’]}</type>"
+ (

f"<choices>{col_info[f][’choices’]}</choices>"
if "choices" in col_info[f]
else ""

)
+ "</field>"
for f in gpt_fields

]
)

prompt = f"""
Create a fake ServiceNow incident by generating realistic values for the

following fields:
<fields>

{gpt_fields}
</fields>

Here are the types of each of these fields and the permitted values:
<field_info>

{field_info}
</field_info>

Produce a json dictionnary with a single value for each of these fields.
Make sure to respect allowed values and use their full diversity.

Example:
{{"short_description": "My laptop is broken"}}

Respond with the json only.

"""

valid_data = []
while len(valid_data) < num_samples:

try:
completion = client.chat.completions.create(

model="gpt-4-turbo",
messages=[

{
"role": "system",
"content": "You’re going to help me generate

simulated data that looks like it really came from ServiceNow Glide
tables.",

},
{"role": "user", "content": prompt},

],
)
incident = json.loads(completion.choices[0].message.content)

# Validate values
assert set(gpt_fields) == set(incident.keys())
for f in gpt_fields:

if "choices" in col_info[f]:
assert incident[f] in col_info[f]["choices"]
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# Accept it
valid_data.append(incident)
print(f"... {len(valid_data)} / {num_samples}")

except:
print("... invalid value, trying again")

Prompt 9: Prompt used for LLaMA-3-Eval Scores
SYSTEM:
You are a high school teacher evaluating student responses to a question.

You are tasked with grading the response based on how well it
answers the question. You are to provide a numerical rating for how
well the response answers the question based on the ground truth
answer.

PROMPT:
Below is an instruction that describes a task. Write a response that

appropriately completes the request.

### Instruction:
Provided Answer:
{answer}

Ground Truth Answer:
{gt_answer}

Follow these instructions when writing your response:
* On a scale of 1-10, provide a numerical rating for how close the

provided answer is to the ground truth answer, with 10 denoting that
the provided answer is the same as ground truth answer.

* Your response should contain only the numerical rating. DONOT include
anything else like the provided answer, the ground truth answer, or
an explanation of your rating scale in your response.

* Wrap your numerical rating inside <rating></rating> tags.
* Check very carefully before answering.
* Follow the output format as shown in the example below:
Example response:
<rating>7</rating>

### Response:
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Prompt 10: Prompt used for many-to-many LLaMA-3-Eval Scores
SYSTEM:
You are a high school teacher evaluating student responses to some

questions. Before scoring their answers, you need to first match each
ground truth answer with the most appropriate answer provided by the
student.

PROMPT:
Below is an instruction that describes a task. Write a response that

appropriately completes the request.

### Instruction:
Predicted Answers:
{pred_list}

Grouth Truth Answers:
{gt_list}

For each ground truth answer above, provide the index of the most
appropriate predicted answer (1-indexed).

Each line must contain a single integer value denoting the id of the
matched prediction.

If there is no appropriate prediction for a ground truth answer, write
-1.

Check very carefully before answering.

### Response:
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