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Abstract

Assessment of cancer cell radiosensitivity is essential for understanding the effectiveness
of radiotherapy. The clonogenic assay is the gold standard for quantifying radiosensitiv-
ity by enumerating survived cell colonies in vitro post-radiation exposure. However, the
technique is time-consuming and subject to observer variability. In this study, we present
a computer vision pipeline to automate colony counting, tested on 787 HCT116 assay im-
ages. Our method addresses challenges: (i) lack of annotated data, (ii) variability in data
collection, and (iii) unavailability of microscopic images of individual colonies. Using our
augmented marker-based watershed algorithm, the pipeline achieved an average of 78.5%
accuracy compared to the ground-truth colony count. Ongoing work focuses on improving
the robustness of the pipeline and validating the approach across more cell lines.
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1. Introduction

The radiosensitivity of cancer cells is the response of the tumour to irradiation that can
be measured by the extent of regression (Yashar, 2018). Radiosensitivity is influenced by
various biological factors such as cell cycle position and the degree of metastasis, which
differ significantly between cancer types and even individuals (Yashar, 2018). Assessing
the radiosensitivity of given cells is crucial for understanding the radiotherapy efficacy,
which eventually can lead to a better treatment plan for the patient. In radiobiology,
the clonogenic assay is regarded as the gold standard for quantifying radiosensitivity in
vitro by evaluating the cell reproductive abilities post-radiation exposure (Backer et al.,
2011; Franken et al., 2006; Barber et al., 2001). Clusters containing more than 50 cells are
considered colonies (Backer et al., 2011; Franken et al., 2006) and are counted to generate
survival fraction curves, which describe the relationship between radiation dosage and the
proportion of surviving cells.

Currently, colony counting in the clonogenic assay is done manually by observing indi-
vidual colonies through a stereomicroscope (Barber et al., 2001; Lavitt et al., 2021; Zhang,
2022). Hence, this process is laborious, time-consuming and prone to interobserver vari-
ability.
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In this study, we present a computer vision-based pipeline to automate the clonogenic
assay counting process. We compiled 787 HCT116 cell line images, each with the ground
truth colony count, radiation qualities1 and the replicate information. The pipeline ad-
dresses the following challenges:(i) the lack of annotated data due to the tedious nature of
annotating the wells; (ii) variability in data collection, leading to differences in images that
require preprocessing; and (iii) the unavailability of microscopic-resolution images of cell
clusters, which makes cell counting difficult, thereby necessitating reliance on morphologi-
cal features.

2. Methodology

In preprocessing, a common challenge in automated cell counting is the edge effect, where
cells near the well boundary are challenging to distinguish from the edge due to similar
color intensity (Zhang, 2022; Dahle et al., 2004). To address this, we used OpenCV’s Hough
Circles2 algorithm (Bradski, 2000) to detect and isolate wells in each image. A binary mask
was applied to mask out non-assay regions; then, the images were cropped to the bounding
box of the assays. Images were then resized to the medium dimension of the dataset for
consistency (see Figure 1). This pipeline standardizes inputs for downstream processing.

Figure 1: Clonogenic assay well image, a. before preprocessing and b. after preprocessing

We developed a colony enumeration pipeline, which begins with assay background mask-
ing to isolate cell clusters. Thresholds for masking were manually selected at colony edges,
taking advantage of the high contrast between colonies and the background. Then, the
masks were refined using OpenCV morphological closing3 with a 3 × 3 kernel to smooth
edges and suppress noise caused by thresholding (Bradski, 2000). Non-colony cell clusters
were removed from the mask with a manually tuned area threshold of 400 pixels using
cv2.connectedComponentsWithStats. An ”overlay” mask was then generated by overlay-
ing the masks on top of the original image using cv2.bitwise_and.

Colony aggregation, where bordering colonies appear as a single blob in a binary mask,
was addressed with an augmented marker-based watershed algorithm shown in Figure 2.
Foreground and background extraction are required for the algorithm. The background was
generated via binary mask dilation (Figure 2 D). For the foreground generation, to segment
the colonies, we leveraged the fact that the bigger HCT116 cell colonies are characterized
by a darker inner core and a lighter outer ring (Figure 2 B). We applied a threshold to
isolate the core, followed by morphological opening and cv2.connectedComponents for
segmentation. From the original binary mask, small colonies were isolated by filtering out

1. Radiation quality is the radiation source used during irradiation experiment.
2. Hough Circles algorithm detects circles in an image within a range of radii; this range is manually defined.
3. Morphological closing is a process where the mask undergoes dilation followed by erosion (Bradski, 2000).
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the large blobs; the resulting mask was concatenated with segmented large colonies to form
the foreground (Figure 2 G). The foreground and the background were inputted into the
watershed, producing the segmented binary masks (Figure 2 H).

Figure 2: Flow diagram of the CV-based segmentation pipeline. (A) Raw binary mask. (B) Original
image overlaid with a binary mask. (C) inverted gray-scale image of B. (D). Sure background from
C for the watershed algorithm. (E) Sure foreground 1 from C. (F) Sure foreground 2 from C. (G)
Sure foreground from E and F for the watershed algorithm. (H) Segmented mask.

3. Results

To evaluate the accuracy of the segmented masks, we used the OpenCV function cv2.moments4

to count the number of segmented colonies. The observed count was then compared with
the ground truth, and the accuracy was calculated with the following equation:

%accuracy = |countobserved − counttrue
counttrue

|×100%

The accuracy of the dataset, categorized with radiation qualities, was tabulated in Table 1.

Table 1: Generated masks accuracy categorized with radiation qualities

Overall, the accuracy of the pipeline on the dataset is 78.5%. From Table 1, we can
observe that the algorithm performed better on some experiment replicas than others;
however, there is no correlation between radiation qualities and accuracy. Our ongoing
work will focus on improving the robustness of the pipeline and validating the approach
across more cancer cell lines.

4. cv2.moments detect the center of a contoured region, but can be used to count the number of centers.
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