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Abstract

Structural heart disease (SHD) is typically diagnosed using transthoracic echocardiograms
(TTEs), a modality underutilized in the United States. We investigate what combination
of common clinical modalities in electrocardiograms (ECGs), posteroanterior view chest X-
rays, and structured electronic health record (EHR) data can detect SHD labels generated
with an TTE unseen by the model. Our experiments show that ECG-based models in both
unimodal and multimodal settings performed best and that the inclusion of additional
modalities with a late-fusion approach can give a marginal performance improvement.
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1. Introduction

Transthoracic echocardiograms (TTEs) are the modality of choice for diagnosing structural
heart disease (SHD) (Members et al., 2021). Despite being low-risk and non-invasive, TTEs
are often underutilized in the United States due to diagnostic stewardship and non-clinical
factors such as competing financial incentives (Papolos et al., 2016). In contrast, electrocar-
diograms (ECGs) and chest X-rays (CXRs) are among the most common forms of imaging
in hospital settings. Motivated by capturing both electrophysiology through ECGs and
anatomical structure via CXRs, we investigate which combination of modalities in stan-
dard 12-lead electrocardiograms, posteroanterior view chest radiographs, and tabular data
containing subject demographics from electronic health records (EHRs) and clinician inter-
pretations of ECGs can best detect structural heart disease labels generated using an TTE
unseen by the model.

2. Methods

Subject population and dataset. We collected data from 12,587 unique patients who
visited the NewYork-Presbyterian hospital system in New York City between 2009 and
2019. Our cohort had a mean age of 62.97 ± 16.40 years, 7,075 (56.21%) female subjects,
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and 2,295 (18.23%) subjects with a diagnosis of SHD. For each subject, we selected their
first TTE date and selected the ECG and CXR collected on the closest date irrespective
of modality order. Only subjects with all three exams taken within 365 days of each other
were included in our dataset and each subject had only one modality triplet and label.
For the tabular data, we collected both demographic (patient sex and age at TTE) and
ECG-generated features (atrial rate, ventricular rate, PR interval, QRS duration, corrected
QT interval, and QT-QTc ratio). We applied a temporal data split, where subjects with
TTEs taken on or after 2018 were allocated to the test set. The split between training and
validation sets was done randomly with the remaining subjects using a 80:20 ratio.

Preprocessing. For all CXR inputs, we center cropped each image along the short edge
to make square dimensions, applied Contrast Limited Adaptive Histogram Equalization
(CLAHE) (Pizer et al., 1987) with clip limit=0.02, and resized to 224× 224 pixels. We
then converted all images from grayscale to RGB and applied ImageNet-1K (IN-1K) (Deng
et al., 2009) normalization. Additionally, all ECGs were collected at or downsampled to 250
Hz for 10 seconds to dims (1, 2500, 12). We normalized the waveforms along ECG channels
using the respective means and standard deviations from the training set. For our tabular
data, we mean imputed missing values and applied standard normalization.

Models. For CXR classification, we used a DenseNet-121 (DN) (Huang et al., 2017)
model after performing model selection between DN, ResNet-v2-50 (RN) (He et al., 2016b),
and Vision Transformer-Base (ViT) (Dosovitskiy et al., 2021) classifiers with a single node
output layer pretrained with IN-1K (DN) or IN-21K (RN, ViT) (Deng et al., 2009) based on
availability in timm (Wightman, 2019). For ECG classification, we chose a 1-D variant of
ResNet-18 (RN-1D) with standard initialization (He et al., 2016a). Our tabular model is a
logistic regression classifier with L2 regularization. For the multimodal setting, models with
CXRs and ECGs had DN and RN-1D encoders with output size 512 and an additive fusion
layer. If tabular features were used, they were concatenated to the encoder outputs. The
embeddings were then passed through a fully connected output layer with a single node.

Training procedure and model selection. Table 1 contains selected training hyper-
parameters by model. All neural networks were trained with binary cross-entropy loss with
class weights, batch size of 256 for 30 epochs with an AdamW (Loshchilov and Hutter,
2019) optimizer. For all models, we ran hyperparameter sweeps with initial learning rates
(LRs) {0.01,0.003,0.001,0.0003} both with and without a cosine LR scheduler (Loshchilov

Table 1: Model-specific training hyperparameters. Tab: tabular. LR: initial learning rate.
Sched: learning rate scheduler. Aug: data augmentation. Parentheses denote 95%
confidence intervals.

Input Modality Model LR Sched Aug Val AUROC ↑
Tab Only Logistic Regression - - - 0.740 (0.701,0.774)
CXR Only DenseNet-121 (DN) 0.003 None Yes 0.720 (0.681,0.755)
ECG Only ResNet-1D (RN-1D) 0.001 Cosine No 0.844 (0.817,0.873)
CXR+Tab DN+Tab 0.003 None No 0.764 (0.728,0.799)
ECG+CXR RN-1D+DN 0.003 Cosine No 0.848 (0.816,0.875)
ECG+Tab RN-1D+Tab 0.0003 Cosine No 0.839 (0.808,0.869)
All DN+RN-1D+Tab 0.001 Cosine No 0.859 (0.830,0.888)
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Table 2: Classification metrics on the test set (n = 1, 611, 16.88% positive). Parentheses
denote 95% confidence intervals. Best values by metric are in bold.

Accuracy ↑ AUROC ↑ AUPRC ↑ F1 Score ↑
Tab 0.837 (0.818,0.855) 0.723 (0.686,0.757) 0.370 (0.316,0.428) 0.228 (0.170,0.287)
CXR 0.669 (0.646,0.693) 0.668 (0.630,0.705) 0.313 (0.263,0.367) 0.363 (0.320,0.406)
ECG 0.839 (0.821,0.857) 0.802 (0.773,0.83) 0.470 (0.410,0.531) 0.490 (0.435,0.542)
CXR+Tab 0.601 (0.577,0.626) 0.739 (0.707,0.773) 0.388 (0.333,0.444) 0.394 (0.357,0.431)
ECG+CXR 0.783 (0.762,0.803) 0.816 (0.787,0.844) 0.498 (0.429,0.562) 0.512 (0.467,0.556)
ECG+Tab 0.842 (0.826,0.859) 0.805 (0.778,0.832) 0.482 (0.421,0.548) 0.411 (0.351,0.466)
All 0.750 (0.729,0.773) 0.822 (0.793,0.849) 0.513 (0.443,0.576) 0.499 (0.455,0.544)

Figure 1: Left: ROC curves for all models for SHD detection. Right: PR curves. Unimodal
and multimodal models with ECG inputs outperformed the other models. Mul-
timodal models have a small performance uplift compared to unimodal ones.

and Hutter, 2017). CXR-only classifiers were trained without augmentation, or with hor-
izontal and vertical shifts, random erasing (Zhong et al., 2020), and random crop and
resizing augmentations. ECG only RN-1D models were trained without augmentations, or
with combinations of time masking and frequency masking. To keep the number of experi-
ments tractable, we did not experiment with augmentations for the multimodal models. We
selected the architecture and training procedure with the lowest bootstrapped mean valida-
tion AUROC. All experiments were performed using Python 3.12.2, PyTorch 2.2.1 (Paszke
et al., 2019), timm 0.9.16 (Wightman, 2019) and standard Python scientific libraries on an
Ubuntu 22.04 server equipped with an Intel Xeon E5-2640 CPU, 128 GB of memory, and a
NVIDIA GTX Titan X with 12GB VRAM.

Results. Table 2 contains classification metrics and Figure 1 contains classification plots.
ECG models in both unimodal and multimodal settings outperformed other models. Adding
modalities on top of ECGs offer marginal benefit to SHD detection.

3. Conclusion

Multimodal models can outperform unimodal ones in deep-learning based detection of
echocardiogram diagnosed structural heart disease as long as electrocardiograms are used
as one of the input modalities.
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Appendix A. Subject Demographics

All Train Test

Unique Subjects 12587 10976 1611
Male 5512 (43.79%) 4805 (43.78%) 707 (43.89%)
Female 7073 (56.19%) 6169 (56.2%) 904 (56.11%)
Age 62.97 ± 16.4 62.97 ± 16.36 63.01 ± 16.63
SHD Prevalence 2295 (18.23%) 2023 (18.43%) 272 (16.88%)

Echocardiogram Year 2009 - 2019 2009 - 2017 2018 - 2019
Days b/w TTE and ECG 23.4 ± 60.85 21.68 ± 57.7 35.08 ± 78.05
Days b/w TTE and CXR 53.48 ± 88.34 47.97 ± 82.83 91.03 ± 112.35
Days b/w ECG and CXR 49.41 ± 86.71 46.0 ± 83.68 72.59 ± 102.12

White 4687 (37.24%) 4045 (36.85%) 642 (39.85%)
Black or African American 1992 (15.83%) 1655 (15.08%) 337 (20.92%)
Asian 315 (2.5%) 258 (2.35%) 57 (3.54%)
Declined 1275 (10.13%) 1128 (10.28%) 147 (9.12%)
Missing 2336 (18.56%) 2233 (20.34%) 103 (6.39%)
Other 1982 (15.75%) 1657 (15.1%) 325 (20.17%)

Atrial Rate 85.76 ± 39.46 85.71 ± 39.46 86.12 ± 39.47
Ventricular Rate 80.76 ± 19.27 80.68 ± 19.16 81.34 ± 19.98
PR Interval 159.78 ± 31.61 160.12 ± 31.57 157.45 ± 31.76
QRS Duration 91.34 ± 19.39 91.4 ± 19.35 90.94 ± 19.68
QT Corrected 445.54 ± 35.44 445.31 ± 35.27 447.11 ± 36.6
QT-QTC Ratio 0.88 ± 0.1 0.88 ± 0.1 0.88 ± 0.11

Table 3: Subject demographics. Summary statistics for continuous values are denoted with
mean ± std dev. TTE: Transthoracic echocardiogram. ECG: Electrocardiogram.
CXR: Posteroanterior (PA) view chest X-ray. The “Other” subgroup comprises of
subjects who identified as “American Indian or Alaska Nation”, “Native Hawaiian
Other pacific island”, or “Other Combinations Not Described”. SHD: Structural
heart disease.
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Appendix B. Subgroup Performance Metrics

Subgroup Subjects (n) SHD (%) AUROC ↑ AUPRC ↑
Male 708 19.49 0.802 (0.758,0.84) 0.52 (0.428,0.599)
Female 903 14.84 0.837 (0.799,0.874) 0.521 (0.428,0.609)

White 642 18.54 0.855 (0.813,0.893) 0.628 (0.534,0.716)
Black / AA 337 18.40 0.796 (0.736,0.85) 0.47 (0.345,0.591)
Asian 57 14.04 0.809 (0.627,0.96) 0.604 (0.199,0.888)
Other 325 11.38 0.786 (0.706,0.86) 0.378 (0.23,0.529)
Declined 147 15.65 0.861 (0.772,0.938) 0.598 (0.37,0.793)
Missing 103 22.33 0.724 (0.62,0.829) 0.467 (0.287,0.647)

Table 4: Performance metrics by subgroup for the classifier with ECG, CXR, and tabular
inputs. Parentheses denote 95% confidence intervals. Black / AA: Black or African
American.
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