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ABSTRACT

While multi-modal large language models (MLLMs) have made significant
progress in recent years, the issue of hallucinations remains a major challenge.
To mitigate this phenomenon, existing solutions either introduce additional data
for further training or incorporate external or internal information during infer-
ence. However, these approaches inevitably introduce extra computational costs.
In this paper, we observe that hallucinations in MLLMs are strongly associated
with insufficient attention allocated to visual tokens. In particular, the presence of
redundant visual tokens disperses the model’s attention, preventing it from focus-
ing on the most informative ones. As a result, critical visual cues are often under-
attended, which in turn exacerbates the occurrence of hallucinations. Building
on this observation, we propose PruneHal, a training-free, simple yet effective
method that leverages adaptive KV cache pruning to enhance the model’s focus
on critical visual information, thereby mitigating hallucinations. To the best of
our knowledge, we are the first to apply token pruning for hallucination mitiga-
tion in MLLMs. Notably, our method don’t require additional training and incurs
nearly no extra inference cost. Moreover, PruneHal is model-agnostic and can be
seamlessly integrated with different decoding strategies, including those specif-
ically designed for hallucination mitigation. We evaluate PruneHal on several
widely used hallucination evaluation benchmarks using four mainstream MLLMs,
achieving robust and outstanding results that highlight the effectiveness and supe-
riority of our method. Our code will be publicly available.

1 INTRODUCTION

Recent advancements in multi-modal large language models (MLLMs) have led to significant break-
throughs, enabling these models to effectively tackle a wide range of complex visual tasks (Wang
et al., 2024d; Bai et al., 2023; Achiam et al., 2023; Chen et al., 2024b; Dai et al., 2023; Liu et al.,
2023b; 2024a; Lu et al., 2024; Yao et al., 2024). Despite MLLMs’ strong performance across var-
ious visual tasks, their practicality remains limited due to hallucinations. The issues of hallucina-
tions (Bai et al., 2024; Rohrbach et al., 2018; Li et al., 2023b) often cause MLLMs to output content
that is inconsistent with visual input, severely undermining their reliability.

Several studies have explored mitigating hallucinations in MLLMs from different perspectives.
Some works (Gunjal et al., 2024; Zhou et al., 2023; Liu et al., 2023a; Yu et al., 2024) focus on
further training on specifically designed datasets or alignment to reduce the model’s propensity to
generate hallucinated content, typically by leveraging additional annotated data or specialized su-
pervision. In contrast, training-free approaches (Leng et al., 2024; Huang et al., 2024; Liu et al.,
2024b; Wang et al., 2024c; Xu et al., 2025) aim to alleviate hallucinations during inference, often
by designing specific decoding strategies. Although these methods have demonstrated effectiveness,
they incur additional training costs or computational overhead during inference.

In this paper, we first note that hallucinations in MLLMs are closely associated with the model’s
insufficient attention to visual tokens. Previous works (Chen et al., 2024a; Liu et al., 2024b) have
demonstrated that in MLLMs, visual tokens constitute most of the input tokens, yet they receive
little attention during the forward pass of the self-attention (Vaswani et al., 2017). It is reasonable
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Please describe this image 
in detail.

attn score
The image depicts a group of  people in a hospital 

setting……with a bed visible in the background. The presence 
of the medical equipment and the men's attire suggest that 

they are working on a medical procedure or treatment. MLLM
Amplify visual attention

The image depicts a group of  people in a hospital 
setting……with a window visible in the background. The 
overall atmosphere suggests a professional and focused 
environment, as the men work together to ensure the proper 
functioning of the medical equipment.

MLLM

0.5 0.2 0.3

0.5 0.4 0.3

User

Figure 1: An example where the hallucinated word “bed”, which is not presented in the image, is
correctly changed to “window”, by amplifying the visual attention. More examples can be found in
Appendix. C.3.

to hypothesize that the generation of hallucinated content may also be associated with this phe-
nomenon. To intuitively validate this, we conduct a qualitative experiment. Specifically, we attempt
to directly amplify the visual attentions in attention maps during model inference, immediately be-
fore the model generates hallucinated content (details are provided in Appendix. C.1). As shown in
Fig. 1, increasing MLLMs’ attention to visual information enables it to generate content that aligns
with the image during inference process, thereby reducing hallucinations.

To illustrate this quantitatively, we present a comparison between the visual attention in the inference
steps that lead to hallucinations and the average visual attention across all inference steps (details
are provided in Appendix. C.2). As illustrated in Fig. 2, it is clear that across the shallow, middle,
and deep layers of LLaVA-v1.5-7B, the generation of hallucinated contents are strongly associated
with lower attention scores on visual tokens (intuitively, most of the blue scatter points lie above the
red ones). These evidences reveal that the issue of lower attention scores received by visual tokens
is potentially one of the cause of generating hullucinated contents during decoding.
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Figure 2: Average visual attention in language model of LLaVA-v1.5-7B. Each blue scatter point
represents the mean attention scores received by all visual tokens in a caption, averaged over all
decoding steps. The red scatter points represent the mean attention values when hallucinated content
is generated in captions. Attention scores are averaged over all attention heads. Images and captions
are selected from the validation set of MSCOCO 2014.

Meanwhile, existing works (Chen et al., 2024a; Yang et al., 2025) have pointed out that visual tokens
in MLLMs exhibit widespread redundancy, with only a small number of key tokens containing
critical visual information needed for inference. We reasonably hypothesize that hallucinations in
MLLMs are highly correlated with visual tokens’ redundancy. In particular, the redundancy
of visual tokens could disperse models’ attention and cause important tokens to be under-attended.
This further reduces attention to critical and informative visual tokens, exacerbating the hallucination
phenomenon.

Based on these insights, we propose PruneHal, a novel framework that leverages KV cache pruning
to mitigate hallucinations in MLLMs. Initially, we apply a simple KV cache pruning method that
retains the top-K most important visual tokens. We show that this top-K-based approach is both
simple and effective, enabling the model to focus on key visual tokens. However, this strategy
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struggles to determine the optimal time for pruning, often leading to excessive pruning. This, in
turn, results in the loss of crucial visual information, negatively impacting the overall performance
of the model. To address this, we propose an adaptive pruning strategy that tracks the historical
visual attention distribution to prune redundant visual tokens more effectively. This allows PruneHal
to achieve a balanced trade-off as inference progresses, mitigating hallucinations while preserving
output quality.

To verify the effectiveness of the proposed method, we conducted extensive experiments on mul-
tiple widely-used MLLMs, including LLaVA (Liu et al., 2023b), InstructBLIP (Dai et al., 2023),
and Qwen-VL (Bai et al., 2023), across various benchmarks and hallucination metrics. The results
demonstrated that PruneHal significantly improves performance on a range of MLLMs, benchmarks
and datasets, showing favourable robustness. Additionally, we found that PruneHal is fully compat-
ible with existing decoding strategies designed specifically for hallucination mitigation.

Our contribution can be summarized as follows:

1. Our experiments reveal a strong link between hallucinations in MLLMs and the insufficient
attention given to key visual tokens. We further observe that redundant visual tokens siphon
off a substantial portion of the model’s attention, leaving key visual tokens under-attended.

2. To address the above issues, we introduce adaptive KV cache pruning to mitigate this is-
sue, and propose PruneHal framework. Our PruneHal alleviates hallucinations in MLLMs
during inference time while introducing almost no computational overhead.

3. Experimental results show that our PruneHal effectively mitigates MLLMs’ hallucinations.
When combined with existing approaches, PruneHal achieved state-of-the-art results on
various hallucination benchmarks.

2 RELATED WORKS

2.1 HALLUCINATION IN MULTI-MODAL LARGE LANGUAGE MODELS

Hallucinations in MLLMs refer to the phenomenon where the visual content in the input conflicts
with the generated textual information. Existing works have attempted to detect and address hal-
lucinations in MLLMs from multiple perspectives. CHAIR (Rohrbach et al., 2018) requires large
models to generate detailed captions for images and calculates the proportion of hallucinated content
in the captions. POPE (Li et al., 2023b) turns hallucination problem into binary classification which
can detect object hallucinations in MLLMs.

Existing works mainly address hallucinations in MLLMs from two perspectives. On one hand, some
approaches involve additional training or use external knowledge to guide the model. LURE (Zhou
et al., 2023) trains an extra state detector that triggers the regeneration of detected hallucinated
contents by a revisor model; WoodPecker (Yin et al., 2024) introduces an additional visual model
to monitor and ask the original model to regenerate hallucinated contents. On the other hand, some
works focus on specially designed decoding strategies: OPERA (Huang et al., 2024) highlights the
relationship between MLLM’s aggregation patterns and hallucinations, and mitigates hallucinations
using over-trust logit penalty and retrospection; VCD (Leng et al., 2024) points out that models’
visual uncertainty may lead to hallucinations and proposes a contrastive decoding method to address
this; DeCo (Wang et al., 2024c) suggests that MLLMs can correctly perceive visual content, and
leverages information from shallow layers of language models in MLLMs to guide the decoding
process. However, all above mentioned works introduce additional computational overhead, thus
slows down model inference speed.

2.2 VISUAL TOKEN COMPRESSION IN MULTI-MODAL LARGE LANGUAGE MODELS

Previous works accelerate MLLM’s inference by compressing visual tokens. FastV (Chen et al.,
2024a) firstly leveraged attention scores in language models of MLLMs to prune redundant visual
tokens. LLaVA-PruMerge (Shang et al., 2024) and VTC-CLS (Wang et al., 2024b) utilize informa-
tion from the [CLS] token in MLLM’s visual encoder to prune and merge redundant visual tokens.
VisionZip (Yang et al., 2025) picks a small proportion of key visual tokens based on attention scores
extracted from the visual encoder and applies a merging strategy to retain the remaining information.

3
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Additionally, some works (Tao et al., 2025; Fu et al., 2024; Sun et al., 2025) have been specifically
designed for video LLMs. These methods effectively accelerate MLLM’s inference.

3 METHODOLOGY

3.1 PRELIMINARIES

During MLLMs’ inference, for each token generation, the language model performs a forward pass.
When KV cache is available, the self-attention modules computes the attention map using only
the last generated token as the query. During decoding process, we denote the input sequence
as X = [x1,x2, ...,xn] ∈ Rn×d, where xn ∈ R1×d is the last generated token. d denotes the
dimension of hidden states.

In self-attention modules, for the i-th attention head, the attention map Ai ∈ R1×n for the last
generated query token is computed as follows:

Ai = softmax

(
qi
nK

i
n
T

√
dk

)
, (1)

where qi
n ∈ R1×dk is the query vector for the last generated token, Ki

n is the key matrix of the i-th
attention head, and dk denotes the dimension for each attention head. Next, the key and value vectors
ki
n and vi

n are concatenated with the corresponding KV cache and the cache itself is updated:

Ki
cache := concat([Ki

cache,k
i
n]), Vi

cache := concat([Vi
cache,v

i
n]), (2)

where Ki
cache,V

i
cache ∈ Rn×dk represent the KV cache.

We average the attention map Ai over all attention heads to obtain the average attention map A ∈
R1×n, where each value in A represents the attention paid by the last generated token to the token
at that position. Attention map A can also be represented as:

A = {At,Av,Ao}, (3)

where At,Av,Ao denotes attention scores distributed to prompt text tokens, visual tokens and out-
put text tokens, respectively. Previous works (Chen et al., 2024a; Liu et al., 2024b) have highlighted
that attention scores in Av are often very low, especially when considering that the number of visual
tokens is often large.

In Sec. 1, we have explored the connection between this phenomenon and hallucinations in MLLMs.
In this section, we propose PruneHal, a training-free, plug-and-play framework to mitigate
MLLMs’ hallucination. Specifically, in Sec. 3.2, we propose to leverage simple top-K-based KV
cache pruning to guide MLLMs toward focusing on critical visual tokens. In Sec. 3.3, we introduce
adaptive design into our framework, which seeks to strike a balance between loss of crucial visual
information and eliminating the redundant visual tokens.

3.2 KV CACHE PRUNING REMOVES REDUNDANT VISUAL TOKENS TO ENHANCE FOCUS ON
CRITICAL VISUAL INFORMATION

In this subsection, we argue that the insufficient attention paid to critical visual tokens is a key con-
tributor to hallucinations in MLLMs. Specifically, a large number of redundant visual tokens con-
sume a substantial portion of the model’s attention, leaving key visual information under-attended.

Simply amplifying visual attention as in Fig. 1 not only leads MLLMs to generate uninformative out-
puts, but also exacerbates the disruption caused by redundant tokens. To address this, we naturally
turn to KV cache pruning, which preserves the model’s language prior while seamlessly removing
redundant visual tokens. Among all visual tokens with attention scores Av , we select the top-k
tokens with the highest attention scores:
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Figure 3: Average visual attention scores over all samples from the validation set of MSCOCO
2014. The x-axis represents decoding steps, and the y-axis represents the average visual attention
score. We show data from Layer 1 for all three models. In the figures, Top-K denotes retaining K
most attended visual tokens after pruning, corresponding to the curve of that color. The curves
start from the second decoding step after pruning, and ends at 50-th decoding step. The numbers in
parentheses represent the proportion of hallucinated objects among all mentioned objects; the higher
the numbers, the more severe the hallucinations. More examples can be found in Appendix. C.4.

Iv = TopK(Av, k), 0 < k < Nv, (4)

where Nv denotes the number of visual tokens. After obtaining the indices of the tokens to be
retained in the previous decoding step, we perform KV cache pruning in the current step by keeping
only the entries corresponding to those indices. For convenience, we only show the case of a single
attention head; the principle of multi-head attention is exactly the same:

K
′

cache = {Ktext,K
′

vis}, where K
′

vis = Kvis[Iv, :] (5)

V
′

cache = {Vtext,V
′

vis}, where V
′

vis = Vvis[Iv, :], (6)

where we can represent Kcache = {Ktext,Kvis}, Ktext and Kvis correspond to the KV cache
for text and visual tokens, respectively. Here Kvis,Vvis ∈ RNv×d represent full KV cache, while
K

′

vis,V
′

vis ∈ Rk×d represent pruned KV cache. Among all KV cache entries in storage, we retain
the subset corresponding to the indices in Iv and discard the others.

As stated above, we conducted simple top-K-based KV cache pruning1 on several different MLLMs.
During the first decoding process, we recorded the indices to keep in the first decoding process, and
conduct pruning in the second decoding process. To validate the effectiveness of this, during each
subsequent decoding step, we record the visual attention distribution under different degrees of KV
cache pruning, averaged over the 100 random selected samples from the validation set of MSCOCO
2014. The visual attention plots are shown below in Fig. 3.

As shown in Fig. 3, KV cache pruning removes redundant visual tokens, which increases the average
attention scores of the remaining ones. Moreover, as more tokens are discarded and visual attention
scores increase, hallucinations are gradually mitigated, demonstrating that pruning effectively guides
MLLMs to focus on critical visual cues. Such an effect is consistent across all layers and models.

3.3 ADAPTIVE KV CACHE PRUNING STRIKES A TRADE-OFF BETWEEN PRESERVING VISUAL
INFORMATION AND MITIGATING HALLUCINATIONS

While KV cache pruning can mitigate hallucinations, excessive pruning leads to substantial loss
of visual information, which in turn inevitably degrades the performance of MLLMs (Wang et al.,
2024a; Liu et al., 2024c; Zhang et al., 2023). Moreover, as shown in Fig. 3, while the number
of tokens in the auto-regressive sequence keeps growing as decoding step increases, attention
scores assigned to visual tokens gradually diminishes, causing the model’s focus on them to

1We want to showcase conceptual effectiveness when combining KV Cache pruning to mitigate MLLMs’
hallucinations. More advanced KV Cache pruning methods are also compatible in our framework, which we
leave as our future works.
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Figure 4: Illustration of PruneHal. During decoding step i, visual attention distribution are tracked
and continuously monitored in subsequent steps. Once the visual attention distribution of more than
half of the layers falls below a predefined threshold, a pruning operation is performed.

continuously decline. This highlights the need for a dynamic mechanism to sustain attention to
visual tokens throughout decoding.

Therefore, we emphasize the need to dynamically strike a balance during decoding between pre-
serving crucial visual information and eliminating redundant visual tokens to maintain the model’s
performance. To address this, our PruneHal framework adaptively performs KV cache pruning, en-
hancing visual attention while avoid crucial visual information loss caused by excessive pruning,
thereby mitigating hallucinations while retaining MLLMs’ performance to the maximum extent.

To this end, we propose to adaptively conduct KV cache pruning. As illustrated in Fig. 4, we adopt
voting mechanism to decide whether to prune. Specifically, when a majority of layers indicate insuf-
ficient visual attention, a pruning operation is triggered to encourage the model to concentrate on the
most informative visual tokens. Each pruning step removes a fixed proportion of the remaining to-
kens, and an upper bound is imposed on the total number of pruning operations to prevent excessive
loss of visual information.

At the first decoding step, we record the average attention score of all remaining visual tokens in
each layer, i.e., avg(A1

vi) for i = 1, 2, . . . , N , where N is the number of layers in the language
model. In the second step, these recorded values are used to guide the first pruning operation, as
stated in Eq. 4–6.

Algorithm 1: Our PruneHal framework

Input: keep ratio r; max pruning times t;KV cache Kvis,Vvis ∈ RNv×d;visual token count n.
Input: {Am

vi
}Ni=1,m = 1, 2, ...; i: layer index, m: decoding step

1 prune cnt← 0, {Ai}Ni=1 ← {A1
vi}

N
i=1;

2 for each decoding step m do
3 if prune cnt = t then
4 continue;

5 Il = {i | Am
vi <

√
r · Ai}; // layer vote

6 if |Il| ≥ N
2 or m = 2 then

7 for i = 1 to N do
8 Iv = TopK(Am

vi , r × n) ⊂ {1, 2, . . . , n};
9 Kvis ← Kvis[Iv, :];

10 Vvis ← Vvis[Iv, :]; // Perform KV cache pruning
11 Ai ← Am−1

vi ; // Update parameters

12 prune cnt← prune cnt+ 1; // Update prune count
13 n← r × n; // Update visual token count

Our full framework can be described in Alg. 1. After each pruning operation, the historical visual
attention distribution are immediately refreshed to reflect the most recent state. We predefine the
retention ratio for KV cache pruning as r, which controls the fraction of visual tokens to be preserved

6
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at each step. In subsequent decoding steps, the framework continuously monitors average visual
attention scores across layers. Whenever more than half of the layers show that their current average
visual attention scores have dropped below

√
r times the historical distribution, a pruning operation

is triggered. During this process, only the top-r fraction of the remaining visual tokens with the
highest attention scores are retained in the KV cache, while the remaining tokens are discarded.

By performing pruning dynamically, we minimize the loss of crucial visual information while main-
taining the model’s focus on key visual tokens. In this way, the model’s all-round ability is preserved,
while hallucinations are effectively suppressed.

4 EXPERIMENTS

4.1 SETUP

Baselines. We first apply PruneHal on various decoding methods, including greedy decoding,
nucleus sampling, and beam search. Besides, following previous work(Wang et al., 2024c), we
also integrate PruneHal with various decoding strategies for mitigating hallucination, including
DoLa (Chuang et al., 2023), VCD (Leng et al., 2024), OPERA (Huang et al., 2024) and DeCo (Wang
et al., 2024c). For all aforementioned decoding strategies, we use the default hyperparameters from
the source code for fair comparison.

Model selection. Building upon the experiments of previous works (Huang et al., 2024; Wang et al.,
2024c) and to evaluate the generalizability of our method, we conduct experiments on the following
models: LLaVA-v1.5-7B, LLaVA-v1.5-13B (Liu et al., 2023b), InstructBLIP-7B (Dai et al., 2023),
and Qwen-VL-7B (Bai et al., 2023). These models include both MLP and QFormer (Li et al., 2023a)
connectors, as well as variants of different sizes, which allows for a comprehensive demonstration
of our method’s effectiveness and robustness.

Settings. We conduct all our experiments on a single NVIDIA H20 GPU. Due to the diverse charac-
teristics of different MLLMs (including significant variations in the number of visual tokens and the
proportion of attention they receive), we specify tailored parameters for each model. For LLaVA-
v1.5-7B and LLaVA-v1.5-13B, we set r = 0.4 and t = 3; for InstructBLIP-7B, we set r = 0.7 and
t = 2; for Qwen-VL-7B, we set r = 0.9 and t = 4.

Benchmarks and Metrics. Since our framework only affects the decoding phase during the infer-
ence of MLLMs and the prefilling phase remains unchanged, we cannot use metrics that require the
model to answer only yes or no, such as POPE (Li et al., 2023b), since models’ responses will keep
unchanged. We use CHAIR (Rohrbach et al., 2018), AMBER (Wang et al., 2023), and GPT-4V-
assisted evaluation as hallucination metrics to assess our framework, with detailed settings provided
in Appendix. A.

4.2 MAIN RESULTS

As shown in Tab. 1, across all models and decoding methods, our proposed PruneHal improves
the performance of the models on both the CHAIRS and CHAIRI metrics. When integrating with
existing decoding strategies for hallucination mitigation, our method further improves their perfor-
mances. For example, on LLaVA-v1.5-7B, the CHAIRS metric shows that our PruneHal reduces
the proportion of hallucinated sentences by 21.1%, 22.9%, and 25.0% under greedy, nucleus, and
beam search, respectively. When combined with Deco, which is the current state-of-the-art ap-
proach, it achieves an additional improvement of 23.9%, 16.7%, and 18.0% over Deco alone under
greedy, nucleus, and beam search, respectively, providing strong evidence for the effectiveness of
our method.

On AMBER dataset, as shown in Tab. 2, after applying our method, on the three hallucination-
related metrics—CHAIR, Hal, and Cog—the models’ performance show a significant improvement,
demonstrating that our method enhances the accuracy and reliability of the model’s outputs.

As for GPT-4V assisted evaluation, as shown in Tab. 3, our method significantly improves the cor-
rectness of the model outputs, while maintaining the detailedness of the outputs. On LLaVA-v1.5-
7B, our PruneHal improves the correctness score from 6.04 to 6.98, demonstrating a significant
enhancement in the truthfulness of the model’s output. The improvement in correctness indicates
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a successful reduction in MLLMs’ hallucinations, while the preservation of detailedness highlights
that our PruneHal does not compromise the diversity of the model’s responses.

4.3 MODEL ANALYSIS

Analysis on hyperparameters. We conducted experiments on different hyperparameter settings
and the results are shown in Appendix. B, which shows robustness of our framework.

Table 1: CHAIR object hallucination evaluation results. Lower scores mean fewer hallucinations.

Decoding Method LLaVA-v1.5-7B InstructBLIP-7B Qwen-VL-7B LLaVA-v1.5-13B

CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓

Greedy

Vanilla 44.6 12.5 60.0 24.2 53.6 14.7 44.2 12.1
PruneHal 35.2 ↓9.4 10.0 ↓2.5 52.8 ↓7.2 23.3 ↓0.9 52.4 ↓1.2 13.5 ↓1.2 34.6 ↓9.6 9.4 ↓2.7
DoLa(ICLR’24) 43.6 12.7 48.6 16.0 58.4 16.4 46.4 15.3
DoLa + PruneHal 36.2 ↓7.4 10.5 ↓2.2 44.3 ↓4.3 14.7 ↓1.3 51.4 ↓7.0 13.8 ↓2.6 39.0 ↓7.4 13.6 ↓1.7
DeCo(ICLR’25) 36.8 10.3 41.0 14.4 48.0 12.8 41.0 11.1
DeCo + PruneHal 28.0 ↓8.8 8.7 ↓1.6 38.8 ↓2.2 13.5 ↓0.9 40.8 ↓7.2 11.4 ↓1.4 32.6 ↓8.4 9.7 ↓1.4

Nucleus

Vanilla 53.2 15.3 57.8 25.7 54.4 14.8 53.8 14.8
PruneHal 41.0 ↓12.2 12.4 ↓2.9 49.4 ↓8.4 25.2 ↓0.5 52.8 ↓1.6 14.1 ↓0.7 45.2 ↓8.6 13.2 ↓1.6
VCD(CVPR’24) 54.6 16.3 58.0 16.9 54.0 12.9 53.6 14.6
VCD + PruneHal 41.2 ↓13.4 12.4 ↓3.9 54.0 ↓4.0 14.8 ↓2.1 51.2 ↓2.8 11.7 ↓1.2 42.4 ↓11.2 11.6 ↓3.0
DeCo 40.8 11.0 45.2 13.4 48.6 13.0 41.8 11.9
DeCo + PruneHal 34.0 ↓6.8 9.8 ↓1.2 40.6 ↓4.6 11.7 ↓1.7 46.6 ↓2.0 12.4 ↓0.6 33.8 ↓8.0 10.2 ↓1.7

Beam Search

Vanilla 48.8 13.9 54.0 15.4 42.2 10.5 47.8 13.7
PruneHal 36.6 ↓12.2 10.4 ↓3.5 49.4 ↓4.6 14.1 ↓1.3 38.4 ↓3.8 9.8 ↓0.7 38.0 ↓9.8 10.7 ↓3.0
OPERA(CVPR’24) 45.2 13.2 44.6 14.2 34.6 9.2 35.6 11.2
OPERA + PruneHal 35.2 ↓10.0 10.2 ↓3.0 39.8 ↓4.8 12.8 ↓1.4 31.0 ↓3.6 8.6 ↓0.6 29.6 ↓6.0 9.5 ↓1.7
DeCo 35.6 9.5 44.5 12.8 35.8 9.7 38.0 10.7
DeCo + PruneHal 29.2 ↓6.4 8.0 ↓1.5 41.8 ↓2.7 11.5 ↓1.3 33.2 ↓2.6 9.3 ↓0.4 31.2 ↓6.8 9.0 ↓1.7

Table 2: Results on AMBER image captioning dataset. Lower CHAIR, Hal, and Cog values indicate
better truthfulness. G., N., and B. represents Greedy, Nucleus and Beam Search, respectively.

Dec. Method LLaVA-v1.5-7B InstructBLIP-7B Qwen-VL-7B LLaVA-v1.5-13B

CHAIR↓ Hal↓ Cog↓ CHAIR↓ Hal↓ Cog↓ CHAIR↓ Hal↓ Cog↓ CHAIR↓ Hal↓ Cog↓

G.
Vanilla 6.5 30.6 3.3 20.6 60.5 8.0 11.0 52.5 6.1 6.2 29.3 3.0
PruneHal 6.2 ↓0.3 26.7 ↓3.9 2.9 ↓0.4 20.0 ↓0.6 58.6 ↓1.9 7.2 ↓0.8 10.5 ↓0.5 50.8 ↓1.7 5.6 ↓0.5 6.0 ↓0.2 28.0 ↓1.3 2.9 ↓0.1

N.
Vanilla 9.4 40.3 4.2 23.8 67.9 8.4 12.0 53.2 5.6 9.0 38.5 3.5
PruneHal 8.8 ↓0.6 37.1 ↓3.2 4.0 ↓0.2 22.6 ↓1.2 64.7 ↓3.2 7.3 ↓1.1 11.5 ↓0.5 51.2 ↓2.0 5.1 ↓0.5 8.6 ↓0.4 37.2 ↓1.3 3.3 ↓0.2

B.
Vanilla 7.8 30.5 3.5 11.0 46.0 5.7 6.7 32.5 3.1 7.3 30.0 3.5
PruneHal 7.4 ↓0.4 28.4 ↓2.1 3.2 ↓0.3 10.0 ↓1.0 45.2 ↓0.8 5.2 ↓0.5 6.5 ↓0.2 31.9 ↓0.6 3.0 ↓0.1 7.0 ↓0.3 26.7 ↓3.3 3.2 ↓0.3

Analysis on adaptive module de-
sign. Adaptive module balances cru-
cial visual information loss and atten-
tion to key tokens. Excessive pruning
harms detailedness and diversity of out-
puts, while insufficient pruning weak-
ens hallucination mitigation. Experi-
ments against simple KV cache prun-
ing across different ratios confirm this
trade-off. We evaluate hallucinations
with CHAIR and diversity with the
GPT-4V Detailedness metric and MM-
Vet (Yu et al., 2023).

Table 3: GPT-4V assisted evaluation results.
Two aspects are verified: correctness (C) and
detailedness (D). Higher correctness indicates
less hallucination. LLaVA-7B, BLIP-7B, Qwen-
7B and LLaVA-13B indicates LLaVA-v1.5-
7B, InstructBLIP-7B, Qwen-VL-7B and LLaVA-
v1.5-13B, respectively.

Model LLaVA-7B BLIP-7B Qwen-7B LLaVA-13B

C ↑ D ↑ C ↑ D ↑ C ↑ D ↑ C ↑ D ↑

Greedy 6.04 6.76 5.88 5.94 6.82 6.68 6.58 7.02
PruneHal 6.98 6.73 6.04 5.96 7.10 6.72 6.84 7.04

As shown in Tab. 4, conservative pruning results in high CHAIR scores (indicating persistent hal-
lucinations), while aggressive pruning reduces hallucinations but degrades GPT4V-D and MM-Vet.
In contrast, PruneHal strikes a balanced trade-off, achieving improvements on both metrics.
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Table 4: Ablation on adaptive module design. For Conservative and Aggressive, pruning is applied
once at the second decoding step. Conservative keeps ratio r, while Aggressive keeps ratio rt, which
equals the maximum pruning extent for each model.

Method LLaVA-v1.5-7B InstructBLIP-7B
CHAIRS↓ CHAIRI↓ GPT4V-D↑ MM-Vet↑ CHAIRS↓ CHAIRI↓ GPT4V-D↑ MM-Vet↑

Vanilla 44.6 12.5 6.76 28.3 60.0 24.2 5.94 24.1
Conservative 40.8 11.9 6.72 29.5 56.8 23.9 5.97 23.6
Aggressive 37.2 11.1 6.36 26.2 54.8 22.9 5.74 22.5
PruneHal 35.2 10.0 6.73 29.4 52.8 23.3 5.96 23.7
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(c) Beam Search

Figure 5: Average visual token attentions and hallucinations in LLaVA-v1.5-7B. Blue, orange, and
green denote PruneHal (top-attended tokens), random tokens, and least-attended tokens, respec-
tively. Lines show average attention scores over 500 samples across decoding steps; bars report
CHAIRS and CHAIRI , where lower values indicate fewer hallucinations.

Analysis on visual attention scores. In PruneHal, we retain the most attended visual tokens. To
study the link between visual attention and hallucinations, we compare against retaining random
tokens or the least attended ones, finding that lower attention leads to more hallucinations. As shown
in Fig. 5, pruning by retaining visual tokens with the lowest attention scores significantly increases
the proportion of hallucinated vocabulary (i.e. CHAIRI ) in the generated content. Under greedy,
nucleus, and beam search, the increases are 58.7% (10.9 → 17.3), 138.71% (12.4 → 29.6), and
53.85% (10.4 → 16.0), respectively. This further underscores the importance of retaining highly-
attended key visual tokens.

Latency analysis. Our method adds negligible
overhead compared to baselines. On 100 random
MSCOCO-2014 validation samples, we measured av-
erage forward-pass latency of all output tokens with de-
fault settings. Under beam search, our approach even
accelerates inference, since pruning reduces the heavy
computational cost associated with forward propaga-
tion. In contrast, Deco and DoLa introduce extra over-
head from intermediate-layer processing, while VCD
and OPERA requires multiple forward passes, yield-
ing a marked decrease in inference speed. Our method
only involves lightweight tensor operations and even
reduces FLOPs, making it the most efficient.

vanilla ours Deco vanilla ours vcd vanilla ours OPERA
19.5 21.2 23.3

20.8 21.7

40.7

29.2

21.9

168.0
Latency on various methods (ms/token)

Greedy
Nucleus
Beam Search

Figure 6: Per-token latency for various
methods on LLaVA-v1.5-7B.

5 CONCLUSION

In this paper, we reveal the strong correlation between low attention to visual tokens in MLLMs and
object hallucination, and propose to leverage KV cache pruning to reduce such issues. We introduce
PruneHal, a dynamic KV cache pruning framework that effectively mitigates hallucinations across
multiple mainstream models, while compatible with specifically designed decoding strategies for
hallucination mitigation to further enhance their performance. Moreover, our method is training-free
and introduces virtually no computational overhead, enabling a seamless and cost-free reduction of
hallucinations in MLLMs.
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A EXPERIMENTAL DETAILS

A.1 CHAIR

Caption Hallucination Assessment with Image Relevance (CHAIR) is the most widely used hallu-
cination identification metric. CHAIR calculates what proportion of words generated are actually
in the image according to the ground truth sentences and object segmentations, and evaluates ob-
ject hallucination both at the instance level (CHAIRI ) and sentence level (CHAIRS) as shown in
Eq. 7. we follow the same experimental settings as OPERA (Huang et al., 2024) and Deco (Wang
et al., 2024c), using the consistent 500 images from MSCOCO 2014 validation dataset, with prompt
"Please describe this image in detail.".

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

, CHAIRS =
|{captions with hallucinated objects}|

|{all captions}|
(7)

A.2 AMBER

AMBER is an LLM-free, multi-dimensional benchmark designed to evaluate existence, attribute,
and relation hallucinations. It includes four metrics: CHAIR, Cover, Hal, and Cog. Among these
four metrics, Cover evaluates the comprehensiveness of model outputs, while the others assess object
hallucinations from different perspectives. In our experiments, we select CHAIR, Hal, and Cog, the
three metrics related to hallucination evaluation to assess MLLMs’ hallucinations.

After generating responses, AMBER first extracts nouns from the sentences using language toolk-
its (e.g., NLTK). The proportion of extracted nouns that do not appear in the annotated words is
calculated as the CHAIR metric. Hal metric measures the proportion of responses containing hallu-
cinations, while Cog metric evaluates whether these hallucinations resemble those found in human
cognition. By leveraging a set of hallucinatory target objects, the likelihood of MLLMs generating
these objects is computed.

The AMBER dataset contains 1,004 images across diverse object categories, with 14 major cate-
gories, such as Nature, Architecture, and Street View. The distribution of each category is fairly
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balanced across categories without a long-tail phenomenon. The prompt used for the evaluation is:
"Describe this image.".

A.3 GPT-4V ASSISTED EVALUATION

Following prior work (Huang et al., 2024), we conduct an open-ended evaluation with GPT-4V on
500 randomly sampled COCO images. GPT-4V compares the outputs of two assistants with respect
to Correctness (C) (i.e., truthfulness) and Detailedness (D) (i.e., richness). The two answers from
vanilla models and the models paralleled with our PruneHal framework are offered to GPT-4V at
the same time for fair comparison, and it is required to give a judgement ranging from 1 to 10 points
respectively for each metric. The prompts are provided in Tab. 5.

GPT-4V prompt

You are required to score the performance of two AI assistants in describing a given image. You
should pay extra attention to the hallucination, which refers to the part of descriptions that are
inconsistent with the image content, such as claiming the existence of something not present in
the image or describing incorrectly in terms of the counts, positions, or colors of objects in the
image. Please rate the responses of the assistants on a scale of 1 to 10, where a higher score
indicates better performance, according to the following criteria:
1: Accuracy: whether the response is accurate with respect to the image content. Responses
with fewer hallucinations should be given higher scores.
2: Detailedness: whether the response is rich in necessary details. Note that hallucinated
descriptions should not count as necessary details.
Please output the scores for each criterion, containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores,
please provide an explanation of your evaluation, avoiding any potential bias and ensuring that
the order in which the responses were presented does not affect your judgment.
[Assistant 1]
{}
[End of Assistant 1]
[Assistant 2]
{}
[End of Assistant 2]
Output format:
Accuracy: <Scores of the two answers >
Reason:
Detailedness: <Scores of the two answers >
Reason:

Table 5: Prompt for GPT-4V assisted evaluation.

B ABLATION STUDIES ON HYPERPARAMETERS

We conduct hyperparameter ablation experiments on LLaVA-v1.5-7B and InstructBLIP-7B, using
CHAIR metrics on using the consistent 500 images from MSCOCO 2014 validation dataset. The re-
sults show that both parameters in PruneHal (r and t) exhibit strong robustness and can consistently
reduce hallucinations within a reasonable range. The results are shown in Tab. 6.
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Table 6: Ablation study on hyperparameters. Our selected hyperparameters and the best results are
highlighted in bold.

LLaVA-v1.5-7B Greedy Nucleus Beam Search
CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Vanilla 44.6 12.5 53.2 15.3 48.8 13.9
r=0.4, t=3 35.2 10.0 41.0 12.4 36.6 10.4
r=0.4, t=2 38.4 11.1 41.2 12.3 38.2 10.7
r=0.5, t=3 38.2 10.5 41.6 12.8 38.6 10.7
r=0.5, t=2 41.8 11.6 47.6 13.7 41.2 12.3
r=0.3, t=3 37.4 10.8 43.2 14.0 36.2 10.7
r=0.3, t=2 36.7 10.9 43.2 10.8 36.6 10.8

InstructBLIP-7B Greedy Nucleus Beam Search
CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Vanilla 60.0 24.2 57.8 25.7 54.0 15.4
r=0.7, t=2 52.8 23.3 49.4 25.2 49.4 14.1
r=0.7, t=3 52.9 23.4 50.3 25.1 50.1 14.8
r=0.8, t=2 57.0 22.9 50.2 24.4 53.2 14.7
r=0.8, t=3 56.2 23.7 54.4 26.0 51.4 14.7
r=0.6, t=2 57.4 23.8 51.2 23.5 53.2 15.1
r=0.6, t=3 59.8 24.7 56.9 25.4 51.8 15.2

C DETAILED EXPERIMENTAL SETTINGS AND MORE EXAMPLES IN SECTION 1

For experiments conducted in Fig. 1 and Fig. 2, following (Huang et al., 2024), the images are se-
lected from the 500 images subset from MSCOCO 2014 validation dataset, and all experiments are
conducted on LLaVA-v1.5-7B. The prompts and images are exactly the same as in Appendix. A.1.
We first acquire the generated results and get image-caption pairs, and selected those captions con-
taining hallucinatory outputs.

C.1 DETAILED SETTINGS FOR QUALITATIVE EXPERIMENT

For the experiment mentioned in Fig. 1, We truncate the generated text up to (but not including)
the hallucinated word, and feed it into the model together with the original instruction. In each
layer’s self-attention module of the language model, after computing the attention map, we double
the attention values corresponding to visual tokens at the position of the last token. Once the forward
pass produces an output token, we append this token to the instruction. For the following tokens, no
further amplification of attention is applied, and the computation proceeds normally.

C.2 DETAILED SETTINGS FOR QUANTITATIVE EXPERIMENT

For the experiment mentioned in Fig. 2, we select all image-caption pairs containing hallucinatory
outputs (223 out of 500). For captions containing hallucinations, we track visual attention scores
for the entire generation process. At each decoding step, we compute the average attention score
from the generated token to all visual tokens. After collecting the data for all tokens, we calculate
both the overall average across all tokens (shown as a single red scatter in Fig. 2) and the average
specifically for the hallucinated tokens (shown as a single red scatter in Fig. 2).

C.3 MORE EXAMPLES FOR QUALITATIVE EXPERIMENT

We also provide more examples for the qualitative experiment in Sec. 1 in Fig. 7.

C.4 MORE EXAMPLES FOR EXPERIMENTS IN SEC. 3.2

In Fig. 3, we presented examples from the first layer of the language models in various MLLMs. In
Fig. 8, we additionally report results from Layers 16 and 31, representing middle and deep layers
in 32-layer language models, respectively. These layers exhibit the same phenomenon as Fig. 3,
highlighting the generalizability of our findings.

D CASES

In this section, we present several cases where our proposed PruneHal successfully mitigates hallu-
cinations in MLLMs. By contrasting these successful cases with the outputs of the vanilla model,
we demonstrate that PruneHal not only suppresses hallucinations but also preserves the overall de-
scriptive quality of the generated responses.

We conduct experiments under greedy search mode for every model. The cases for LLaVA-v1.5-7B,
Qwen-VL-7B, InstructBLIP-7B and LLaVA-v1.5-13B are shown in Figs. 9–12, respectively.
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Please describe this image 
in detail.

attn score

The image features an older woman sitting at a dining table, 
preparing food. She is in the process of cutting up a hot 
dog……A fork is also visible on the table, likely used for 
eating the hot dogs. The scene appears to be a casual meal 
setting, with the woman enjoying her time preparing and 

eating the hot dogs.

MLLM

Amplify visual attention

The image features an older woman sitting at a dining 
table, preparing food. She is in the process of cutting up a 
hot dog……A camera is also present on the table, possibly 
used for capturing the food preparation process. The dining 
table occupies most of the scene, with the woman sitting 
comfortably in the middle of it.

MLLM

0.5 0.2 0.3

0.5 0.4 0.3

User

Please describe this image 
in detail.

attn score

The image features a cat sitting on top of a multi-level cat 
tree, which is placed in a room.……A remote control can also 
be seen on a surface, suggesting that the room is used for 

entertainment purposes. MLLM

Amplify visual attention

The image features a cat sitting on top of a multi-level cat 
tree, which is placed in a room.……A window can also be 
seen in the background, allowing natural light to enter the 
room. MLLM

0.5 0.2 0.3

0.5 0.4 0.3

User

Please describe this image 
in detail.

attn score

The image features a bedroom with a bed that has a colorful 
floral bedspread on it.……The room also has a chair situated 
near the bed, and a clock is mounted on the wall above the 
bed. The overall atmosphere of the room is cozy and inviting. MLLM

Amplify visual attention

The image features a bedroom with a bed that has a colorful 
floral bedspread on it.……The room also has a rug on the 
floor, adding to the cozy atmosphere. The overall setting 
appears to be a comfortable and inviting space for 
relaxation and rest.

MLLM

0.5 0.2 0.3

0.5 0.4 0.3

User

Figure 7: Additional examples for qualitative experiments in Sec. 1.
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(a) Layer 16 of LLaVA-v1.5-7B.
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(b) Layer 16 of InsturctBLIP-7B.
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(c) Layer 16 of Qwen-VL-7B.
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(d) Layer 30 of LLaVA-v1.5-7B.
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(e) Layer 30 of InsturctBLIP-7B.
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(f) Layer 30 of Qwen-VL-7B.

Figure 8: Examples from middle and deep layers for experiments in Sec. 3.2.
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Please describe this image in detail. The image features a woman sitting on a motorcycle, which is 
parked in front of a white building. She is wearing a leather jacket 
and appears to be posing for the camera. The motorcycle is 
positioned in the foreground, occupying a significant portion of the 
scene. In the background, there is a car parked further away from 
the motorcycle, and a handbag can be seen placed on the ground 
near the woman. The scene seems to be set in a parking area or a 
similar location where vehicles are parked.

LLaVA-v1.5-7B

The image features a woman sitting on a motorcycle, which is 
parked in front of a building. She is wearing a leather jacket and 
appears to be posing for the camera. The motorcycle is the main 
focus of the scene, with the woman sitting comfortably on it. The 
building in the background adds context to the location of the 
motorcycle.

LLaVA-v1.5-7B  
+ PruneHal

User

Please describe this image in detail. The image features a woman standing next to a large 
clock on a pole, which is decorated with a bow and 
Christmas lights. She is posing for a picture in front of 
the clock, which is located on a street corner.
In the background, there are several cars parked along 
the street, including a truck on the left side of the 
scene. Another person can be seen standing further 
back on the right side of the image. 

LLaVA-v1.5-7B

The image features a woman standing next to a large 
clock on a pole, which is decorated with Christmas 
lights. She is posing for a picture in front of the clock, 
which is located on a street corner.
In the background, there are several cars parked along 
the street. Additionally, there is another person 
standing further back on the right side of the scene, 
possibly observing the woman or waiting for someone.

LLaVA-v1.5-7B  
+ PruneHal

User

Figure 9: Cases for LLaVA-v1.5-7B.

The scene shows a bathroom with a dark sink and wooden floors, 
giving it a cozy appearance. A bottle is placed on the right side of 
the sink, and two cups can be seen nearby - one cup is closer to 
the sink area, while the other is slightly farther away. There is 
also an electronic device sitting on the floor near the sink, possibly 
for use as a computer mouse or some other digital tool. The 
bathroom has a mirror above the sink, which complements the 
overall design of the space. Two towels are visible in the 
background, hanging likely to dry hands after washing them at the 
green sink.

Qwen-VL-7B

The scene shows a bathroom with a dark sink and wooden floors, 
giving it a cozy appearance. A bottle is placed on the side of the 
sink, and two towels can be seen hanging above the sink-one near 
the faucet and another further back, likely for drying hands after 
washing them. A cup is also present in the room, positioned closer 
to the edge of the sink. The bathroom features a mirror, which 
helps create an illusion of more space and adds functionality to the 
area by allowing users to check their appearance while using the 
sink or applying makeup. Overall, the bathroom appears clean and 
well-organized, providing a comfortable environment for personal 
hygiene activities."

Qwen-VL-7B  
+ PruneHal

User

Please describe this image in detail. The scene features a baby sitting in a high chair, closely observing 
and reaching for a small cake placed on the high chair‘s tray. The 
birthday cake is beautifully decorated with purple flowers on top, 
capturing the child’s attention. Around the baby and the cake, 
there are several kitchen items such as two spoons, one closer to 
the left side of the image and another near the right side, a knife 
slightly above and to the right of the spoon on the left, and a book 
that can be seen at the upper part of the image near the back. 
There is also a refrigerator visible at the far end of the room. A 
bowl is located towards the leftmost edge of the image.

Qwen-VL-7B

The scene features a baby sitting in a high chair, closely examining 
a small cake placed on the tray. The birthday cake is decorated 
with beautiful flowers, capturing the child's attention. 
In addition to the main subject, a stove can be seen in the kitchen 
area nearby, suggesting that the celebration is taking place in a 
home setting. There is also a refrigerator and an oven, indicating 
that the kitchen is well-equipped for cooking and dining purposes.

Qwen-VL-7B  
+ PruneHal

User

Figure 10: Cases for Qwen-VL-7B.
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Please describe this image in detail. The image depicts a group of people standing on the 
deck or pier near water, with several boats in view. 
There are at least 10 individuals present among them -
some holding onto railings and others walking around 
freely along various parts of the dock area. A few cars 
can be seen parked nearby as well to provide 
transportation for those who may need it while enjoying 
their time by the harbor's edge.

InstructBLIP-7B

The image depicts a group of people standing on the 
deck or pier near water, with some holding onto railings. 
There are several boats in view as well - one is closer to 
shore and another further away from it towards left 
side while others can be seen scattered around them at 
different distances along both sides of their pathway 
across the body of waters they're navigating through. 
A few individuals appear focused intently upon 
something happening off-screen behind an object 
placed close by; possibly discussing plans for future 
activities together?

InstructBLIP-7B
+ PruneHal

User

Please describe this image in detail.
The image depicts a canal with two red boats floating down 
the waterway. One boat is located closer to us, while another 
one can be seen further away from our perspective on top of it 
in front and slightly left sideways towards its stern area. 
There are several people visible around these vessels: some 
near them or standing by buildings along both sides of this 
narrow channel lined up against each other like houses built 
close together for easy accessibility between homes 
overlooking their respective balconies/porches above street 
level viewing points at different levels across multiple floors 
within those structures that surround either end of the river-
like setting where they reside alongside various objects such 
as chairs placed nearby.

InstructBLIP-7B

The image depicts a canal with two red boats floating along 
the waterway. One boat is located closer to us, while another 
one can be seen further away from our perspective in front of 
it on its left side. Both vessels are docked and appear ready 
for passengers or cargo transportation through this scenic 
location surrounded by buildings nearby. There're several 
people visible throughout different parts within view: some 
near each other at various distances towards both sides 
(left/right) around 10 feet apart; others scattered across 
multiple locations but still close enough together that they 
could interact if needed – possibly enjoying their time here as 
tourists exploring these charming surroundings filled with 
activity.

InstructBLIP-7B
+ PruneHal

User

Figure 11: Cases for InstructBLIP-7B.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Please describe this image in detail. The image depicts a room with a large table in the 
center, surrounded by several chairs. On the table, 
there are several laptops placed next to each other, 
each with a mouse in front of them. The laptops are 
open and ready for use, indicating that this is a 
workspace or a meeting area. In addition to the laptops, 
there are two TVs mounted on the walls, one on the left 
side and the other on the right side of the room. The 
room also features a dining table with chairs, and a few 
more chairs are scattered around the room. A person 
can be seen in the background, possibly attending to 
the laptops or preparing for a meeting.

LLaVA-v1.5-13B

The image depicts a room with a large round table in 
the center, surrounded by several chairs. On the table, 
there are several laptop computers, each with their 
own mouse, arranged in a circular fashion. The laptops 
are open and ready for use, indicating that this is a 
workspace or a meeting area. In addition to the laptops, 
there are two TVs in the room, one on the left side and 
the other on the right side. The room also features a 
projector, which is placed on the left side of the room, 
likely for presentations or meetings.

LLaVA-v1.5-13B
+ PruneHal

User

Please describe this image in detail. The image features a giraffe sitting on the grass in a 
fenced-in area. The giraffe is positioned in the center 
of the scene, with its long neck and legs stretched out. 
The fence can be seen surrounding the giraffe, 
providing a safe and secure environment for the animal. 
In addition to the giraffe, there are several birds 
scattered throughout the scene, some of which are 
perched on branches or flying in the air. The presence 
of these birds adds to the lively atmosphere of the 
image.

LLaVA-v1.5-13B

The image features a giraffe sitting on the grass in a 
fenced-in area. The giraffe is positioned in the center 
of the scene, with its long neck and legs stretched out. 
The fenced-in area provides a safe and controlled 
environment for the giraffe to rest and relax. LLaVA-v1.5-13B

+ PruneHal

User

Figure 12: Cases for LLaVA-v1.5-13B.
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