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Abstract001

Off-the-shelf large language models (LLMs)002
have been showing promising performance in003
personalization based on user preference. How-004
ever, previous studies mainly discuss using nu-005
meric signals such as scores, which require006
many data points for satisfactory performance.007
Some systems based on fine-tuned LLMs have008
achieved reasonable performance by using re-009
view texts as additional information, but their010
use with off-the-shelf LLMs is underexplored.011
This work aims to clarify the effects of review012
texts on off-the-shelf LLM–based personaliza-013
tion from various perspectives. By compar-014
ing multiple prompt formats with different in-015
context information, we show that per-item re-016
view texts can improve the user rating predic-017
tion performance by off-the-shelf LLMs across018
different datasets and models, even with a few019
data points. We also find that instructing LLMs020
to write expected reviews can improve the per-021
formance, while general prompt engineering022
techniques such as zero-shot chain-of-thought023
can result in a worse performance. These re-024
sults open the possibility of LLM-based per-025
sonalization systems with fewer required data026
points.027

1 Introduction028

Recent large language models (LLMs) have demon-029

strated remarkable capabilities across various tasks030

without task-specific fine-tuning. Personalization031

is one such application. By providing user prefer-032

ences in textual form and applying prompt engi-033

neering techniques, previous studies enabled off-034

the-shelf LLMs to align with individual preferences035

in tasks such as preferred item prediction (Zhang,036

2024), user rating prediction (Kang et al., 2023),037

and item reranking (Xu et al., 2024; Hou et al.,038

2024).039

For those tasks, user preference signals are typi-040

cally provided as simple numeric preference scores041

(Harper and Konstan, 2015) or binary flags (Wu042

Figure 1: By leveraging the review text provided in
the context, LLMs can more accurately infer a user’s
preference for the target item.

et al., 2020). However, each of these signals only 043

contains limited information. As a result, the LLM- 044

based prediction system can suffer from the “cold- 045

start problem” (Schein et al., 2002; Zhang et al., 046

2024), in which reliable predictions are unavailable 047

until a user accumulates sufficient data points. 048

An alternative approach to mitigate this issue is 049

to supplement the signals with richer data, such as 050

user-generated review texts. Figure 1 shows that 051

LLMs can improve their preference score predic- 052

tions by leveraging review text in the input context. 053

As shown in this example, review texts contain 054

more concrete and detailed information about the 055

user’s preference than the numeric signals, so in- 056

cluding review texts can enhance LLMs’ perfor- 057

mance on preference prediction even with a few 058

data points. Writing a simple review can be less 059

costly than sampling many items in domains such 060

as movies or recipes. Therefore, using review texts 061

can reduce the amount of required data points for 062

LLM-based recommendation systems, making the 063

system less burdensome to use. 064

Several user preference prediction datasets al- 065

ready provide review texts (Ni et al., 2019; Wang 066

et al., 2024; Majumder et al., 2019). Prior work 067
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has fine-tuned LLMs on one of those datasets and068

obtained reasonable preference prediction perfor-069

mance with only around three in-context examples070

(Wang et al., 2024). Therefore, the hypothesis that071

“review texts enable personalization with small ex-072

amples” is verified in fine-tuning settings. However,073

the effect of review texts on off-the-shelf LLMs is074

under-explored.075

In this paper, we investigate the effect of the076

user-written reviews on the preference alignment077

by off-the-shelf LLMs, specifically on user rating078

prediction tasks. We analyze the behavior of mul-079

tiple LLMs on different datasets based on the fol-080

lowing four research questions:081

• RQ1: Do review texts contribute to the perfor-082

mance improvement of the rating prediction083

task by off-the-shelf LLMs?084

• RQ2: How does the performance change on085

more difficult settings?086

• RQ3: Can the prediction performance be fur-087

ther enhanced with prompt engineering tech-088

niques?089

• RQ4: Do review texts have a better effect than090

preference described in other formats?091

To answer RQ1, we compose different instruction092

prompts with and without review texts as the in-093

context information, and compare the user rating094

prediction performance with multiple datasets and095

LLMs. Then, for RQ2, we raise the difficulty of the096

problem by evaluating three independent settings097

with different in-context examples: fewer reviews,098

shorter reviews, and reviews written by non-target099

users. To address RQ3, we apply different prompt100

engineering strategies inspired by previous stud-101

ies (Kojima et al., 2022; Xi et al., 2024; Lyu et al.,102

2024). Finally, for RQ4, we analyze the difference103

of the per-item review texts with “self-described104

preference” used in previous studies (Sanner et al.,105

2023; Eberhard et al., 2025) by converting the per-106

item reviews into the self-described preference for-107

mat using LLMs.108

Our key findings are the following:109

• Across different datasets and off-the-shelf110

LLMs, per-item review texts consistently im-111

prove the performance on user rating predic-112

tion. Instructing the LLMs to write down113

the expected review text is also a promising114

method to improve the performance of review-115

based preference prediction.116

• As long as the review texts are correctly paired 117

with the corresponding integer scores, smaller 118

amount of data is still effective. 119

• General prompt engineering strategies, such 120

as zero-shot chain-of-thought (Kojima et al., 121

2022), do not straightforwardly improve the 122

performance of the preference prediction task. 123

• Per-item review format has an advantage over 124

the self-described preference format used by 125

Sanner et al. (2023). 126

2 Related Work 127

2.1 Personalization with Off-the-Shelf LLMs 128

Many previous studies have analyzed the personal- 129

ization performance by off-the-shelf LLMs, mainly 130

with non-textual preference signals. Hou et al. 131

(2024) used off-the-shelf LLMs for the personal- 132

ized item ranking task based on the user’s histor- 133

ical interaction with other items. Di Palma et al. 134

(2023) analyze ChatGPT1’s performance on the 135

top-N recommendation task based on historical in- 136

teraction. Wu et al. (2024) show that providing 137

the user’s historical responses in the context im- 138

proves off-the-shelf LLMs’ performance on the 139

LaMP (Salemi et al., 2024) dataset. Zhang (2024) 140

proposes a method of instructing LLMs to summa- 141

rize the user’s past interactions in a specific manner 142

to improve the performance of off-the-shelf LLMs 143

on the multiple-choice preference prediction task. 144

Xu et al. (2025) provide a large-scale performance 145

analysis across different LLMs on item reranking 146

tasks based on historical interactions. 147

Some work focuses on the preference described 148

in textual forms. Eberhard et al. (2025) proposed 149

a recommendation system based on free-form text 150

user requests with off-the-shelf LLMs and basic 151

prompt engineering techniques, such as few-shot 152

or role-playing prompting. Sanner et al. (2023) 153

collect self-described preferences of users to en- 154

hance the item reranking performance by LLMs. 155

However, since these studies are limited to sim- 156

pler tasks such as top-N recommendation or item 157

reranking, whether the same method is applicable 158

to more complex settings such as user rating pre- 159

diction is unknown. Comparison with other forms 160

of preference data such as per-item reviews is also 161

not explored. 162

1https://openai.com/index/chatgpt/
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2.2 Incorporation of Textual Preference163

Description in LLM-based164

Personalization165

If not limited to the off-the-shelf LLMs, many166

LLM-based personalization systems use the per-167

item reviews as the preference signals. Most no-168

table ones are from task-specific fine-tuning. Zhang169

et al. (2023) build an LLM-based recommendation170

system by instruction-tuning with various formats171

of prompts that describe user preferences.172

Per-MPST (Wang et al., 2024) is a user rating173

prediction dataset with past user reviews as part174

of its inputs. The authors also propose PerSE as175

the framework for solving the problem with fine-176

tuned LLMs and achieving reasonable prediction177

performance with a few in-context examples. If a178

similar method also works only with off-the-shelf179

LLMs, we can save training cost for fine-tuning.180

2.3 Prompt Engineering on Preference181

Prediction182

Prompt engineering has been actively studied to183

enhance the LLMs’ performance on various tasks.184

Chain-of-thought (CoT; Wei et al., 2022; Kojima185

et al., 2022) is one of the most notable ones, boost-186

ing LLMs’ performance in multiple domains. How-187

ever, a recent study (Sprague et al., 2024) suggests188

that CoT only works effectively on domains that189

require math or logic.190

Zhang (2024) instructs LLMs to generate inter-191

mediate outputs from a specific viewpoint. The192

prompt used by Wang et al. (2024) has LLMs ex-193

plicitly write down the expected review texts from194

the users. Those two can be considered as task-195

specific prompt engineering techniques.196

Another line of work uses LLMs for data aug-197

mentation so that the downstream LLM-based sys-198

tems can use more data. Knowledge Augmented199

Generation (KAR; Xi et al., 2024), LLM-Rec (Lyu200

et al., 2024), and UR4Rec (Zhang et al., 2025) gen-201

erate intermediate texts with LLMs to increase the202

input data to the fine-tuned recommendation mod-203

els. Sun et al. (2025) and Richardson et al. (2023)204

summarize the user-generated texts with them so205

that their retrieval-augmentation-based system can206

use the texts effectively. However, whether these207

techniques are effective for off-the-shelf LLMs to208

handle the review texts is still unknown.209

3 Problem Formulation 210

We investigate the effect of review texts on the per- 211

sonalization performance by off-the-shelf LLMs. 212

More specifically, we focus on the user rating pre- 213

diction task. The task is formulated as follows. 214

Let the target LLM be M. For each given target 215

item description xu and the user u, the goal of the 216

task is for M to predict the preference score yu that 217

u assigns to xu. yu always takes an integer value 218

between ymin and ymax inclusive, where ymin and 219

ymax denote the minimum and maximum scores 220

defined for each dataset, respectively. 221

For each prediction, M gets two additional pa- 222

rameters: pu, a set of texts that contains u’s per- 223

sonal preference information, such as u’s past re- 224

view history (user profile), and I , an instruction 225

that specifies the input and output formats of the 226

tasks. Based on those inputs, M gives an output 227

ou as 228

ou = M(I, xu, pu) (1) 229

Note that ou could contain additional texts other 230

than the predicted score, depending on the instruc- 231

tion I . Therefore, the predicted score y′u can be 232

obtained by the instruction-specific extraction func- 233

tion fI as 234

y′u = fI(ou). (2) 235

We collect a set of users U and prepare D = 236

{(xu, pu, yu)}u∈U as an evaluation dataset. The 237

final performance is measured based on the com- 238

parison of {(y′u, yu)}u∈U . We control the format 239

of pu and I and see the effects on the performance. 240

4 Experimental Settings 241

4.1 Datasets 242

We use three datasets to evaluate the rating predic- 243

tion performance of LLMs. 244

Per-MPST (Wang et al., 2024) (Movies) is a 245

movie review dataset based on the IMDb2 data. 246

Each data point consists of the textual description 247

of the movie plot, a user’s review text, and a review 248

score from 1 (lowest) to 10 (highest). The dataset 249

provides five subsets based on the number of in- 250

context examples k used for querying. We use the 251

test split of the k = 5 version. 252

Different data splits are provided based on the 253

number of in-context examples used for querying, 254

and we use k = 5 test split for this experiment. 255

2https://www.imdb.com/
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We also use Recipe3 (Majumder et al., 2019) and256

the Book Category of Amazon Reviews’234 (Ni257

et al., 2019) (Books) as the target datasets. To an-258

alyze the difference between the target domains259

without being affected by other factors such as data260

formats, we postprocess those two datasets to align261

with the format of the Movies dataset. We con-262

catenate multiple properties in the original datasets263

(name, description, and steps for Recipe, title, sub-264

title, and features for Books) to craft a single “item265

description text”, filter out review texts with less266

than 200 characters, then randomly pick 1000 in-267

stances with k = 5 in-context examples respec-268

tively. See Section B.3 for detailed dataset statis-269

tics.270

4.2 Models271

We use five open-source LLMs to test the ef-272

fectiveness of the review text data. Among273

the well-known open-source series widely used274

in recommendation systems, we choose the lat-275

est versions available at the time across differ-276

ent parameter sizes: Llama 3.1 8B, Llama 3.3277

70B (Grattafiori et al., 2024), Gemma 3 12B,278

Gemma 3 27B (Gemma Team et al., 2025). We279

use instruction-tuned versions of those four models.280

We also use QwQ 32B (Qwen Team, 2024) to test281

the effect on reasoning models. See Section B.1282

for detailed configurations.283

4.3 Evaluation Methods284

We report Spearman and Kendall-Tau correlation285

coefficients as the evaluation metrics of the agree-286

ment between the ground truth labels and the inte-287

ger preference scores predicted by LLMs.288

Part of the responses from some models cannot289

be parsed as integer scores due to problems such290

as an infinite loop in review generation settings.291

Since the number of such data points is minimal292

for each model, we exclude these data points when293

calculating the correlations. Section C.1 shows294

detailed results, including the parse failure rate.295

Our model configurations involve inherent ran-296

domness, but we only report the values obtained by297

a single run as the main results. See Section C.2298

for the verification of the score robustness.299

3https://www.kaggle.com/datasets/shuyangli94/food-
com-recipes-and-user-interactions

4https://amazon-reviews-2023.github.io/

5 RQ1: Effect of review texts 300

5.1 Comparison Method 301

First of all, we verify whether the per-item review 302

texts improve the personalization performance by 303

off-the-shelf LLMs. We accomplish this by com- 304

paring the LLMs’ performance based on the three 305

following prompting formats. 306

First, we only use the user’s past numeric scores 307

as the preference information in pu. More con- 308

cretely, pu = {(x(i)u , y
(i)
u )}ki=1, where k is the num- 309

ber of in-context examples given to the model, x(i)u 310

is the description of i-th item, and y
(i)
u is the nu- 311

meric score u assigned to it in the past. The LLM 312

only outputs the predicted score y′u. We write this 313

format as S → S (Score → Score) . 314

Second, we also put the user’s past review 315

texts into pu. pu can be written as pu = 316

{(x(i)u , t
(i)
u , y

(i)
u )}ki=1, where t

(i)
u is u’s textual re- 317

view for x(i)u . The LLM only outputs the predicted 318

score y′u as well. We write this format as RS → S 319

(Review + Score → Score). 320

Third, in addition to the RS → S settings, we 321

modify the instruction I for the LLM to output 322

(t′u, y
′
u), where t′u is the review text that the LLM 323

expects u to write for the target item xu. This is the 324

format used by PerSE with fine-tuned LLMs (Wang 325

et al., 2024), and we investigate whether the virtual 326

review written by the off-the-shelf LLM can further 327

enhance its performance. We write this format as 328

RS → RS (Review + Score → Review + Score). 329

See Section B.5 for more detailed prompt formats. 330

5.2 Results and Analysis 331

Figure 2 shows the Spearman correlations obtained 332

with different prompting styles on all combinations 333

of the datasets and the off-the-shelf LLMs. Sec- 334

tion C.1 reports concrete numbers including the 335

Kendall-Tau correlations. 336

In all of the 15 combinations, RS → RS out- 337

performs S → S. RS → S also shows better per- 338

formance than that of S → S. This result suggests 339

that utilizing the review texts written by the users 340

improves the rating prediction accuracy across dif- 341

ferent datasets and models. 342

It is also notable that smaller models can outper- 343

form larger models with stronger reasoning capa- 344

bilities under the settings with in-context review 345

texts. In particular, Gemma 3 12B with RS → 346

RS on Recipe and Books datasets outperforms all 347

the other models, including larger models known 348
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Figure 2: Comparison of S → S , RS → S , and RS → RS prompting on different models and datasets. RS → RS
and RS → S show significant performance improvement from S → S, which suggests the impact of the review texts.

for more substantial reasoning capabilities, such as349

Gemma 3 27B or QwQ 32B. The result indicates350

that the ability to extract the preference informa-351

tion from the texts can be different from the general352

reasoning capability.353

Another important finding is that instructing the354

LLMs to write the expected reviews explicitly can355

further enhance the performance. For most datasets356

and models combinations, the models perform bet-357

ter with RS → RS than with S → S. The effect358

is more significant with smaller models such as359

Llama 3.1 8B and Gemma 3 12B. The preference360

information given to the models in those two set-361

tings is exactly the same, so the difference is made362

by the instruction to write down the expected re-363

view.364

We hypothesized that a possible explanation for365

this phenomenon is that writing the review allows366

LLMs to predict more extreme scores. Figure 7367

shows the comparison of output score distribution368

of Gemma 12B for the Movies dataset with RS369

→ S and RS → RS prompts. While with RS →370

S (Figure 7b) the model outputs “neutral” scores371

such as six or seven very frequently, RS → RS372

(Figure 7c) results in a flatter output distribution,373

which is similar to the ground truth. This difference374

implies that the review writing process widens the375

possible score range that the LLMs can output. We376

leave deeper analysis as our future work.377

6 RQ2: Difficult Settings378

6.1 Variants of In-Context Examples379

To answer RQ2, we make the preference prediction380

problem more difficult by providing the in-context381

preference information in the following ways and382

compare the results with RQ1.383

Fewer First, we investigate the effect of the num- 384

ber of in-context examples. With the same datasets 385

introduced in Section 4.1, we reduce the number 386

of in-context examples to k = 1, 3, and compare 387

the results with Section 5.2, which uses k = 5. 388

Shorter Second, we examine the performance 389

change in the situation where each review is a 390

shorter text. We create the Books (Short) dataset 391

by sampling reviews with less than 200 charac- 392

ters from the same Amazon Reviews’23 (Ni et al., 393

2019), which is also used for the standard Books 394

dataset. To exclude extremely short reviews, such 395

as single words, we also set a length of 10 as the 396

lower threshold. See Section B.3 for more detailed 397

statistics of the dataset. 398

Shuffle Third, we randomly shuffle the in- 399

context review texts to verify whether LLMs im- 400

prove user rating prediction performance by identi- 401

fying target user characteristics from user review 402

contents. 403

We create the Movies (Shuffle) dataset, which is 404

made by shuffling the in-context examples of the 405

Movies dataset in Section 4.1. Therefore, in RS 406

→ RS and RS → S settings, the target user’s past 407

review scores are paired with unrelated reviews 408

written by other users. 409

6.2 Results and Analysis 410

Figure 3, 10, and 5 show the results on the two 411

settings with Llama 3.1 8B and Gemma 3 12B. 412

Both models perform better with RS → RS and 413

RS → S compared to S → S, even with fewer in- 414

context examples such as k = 1, 3. RS → RS 415

also marks higher performance than RS → S. The 416

results suggest that the findings in Section 5.2 still 417

hold with extremely a small number of in-context 418

examples. 419
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Figure 3: Comparison of the results with k = 1, 3, 5.
RS → RS and RS → S enhance the performance even
with a fewer in-context examples.

Figure 4: Comparison of the results with the Books and
the Books (Short) datasets. Shorter reviews still lead to
the performance improvement.

The short review experiment also supports a sim-420

ilar conclusion. Both LLMs show improved perfor-421

mance on the Books (Short) dataset with RS → RS422

compared to S → S. This suggests that even short423

review texts can contribute to the rating prediction424

task performed by off-the-shelf LLMs.425

Although the degree of improvement looks426

smaller than that with the standard Books dataset,427

direct comparison is not appropriate because of428

the difference in rating prediction difficulty in both429

datasets. As shown in Section B.3, users extracted430

for the Books (Short) dataset show smaller variance431

in their integer preference scores, which makes it432

easier to predict the scores in the Books (Short)433

dataset solely from the numeric ratings. We leave434

a more rigorous comparison for future work.435

In the shuffle setting, performance improvement436

by using review texts cannot be observed. On the437

Figure 5: Comparison of the results with the Movies
and the Movies (Shuffle) datasets. RS → S and RS →
RS prompting worsen the performance on the Movies
(Shuffle) dataset, which suggests that the LLMs actually
reference the review contents to predict the target user’s
preference.

Movies (Shuffle) dataset, since the review texts are 438

more incorporated into the prediction process in RS 439

→ S and RS → RS prompting settings, a significant 440

drop in the prediction performance is observed for 441

the Shuffle dataset, contrary to the improvement in 442

the standard dataset. This result indicates that the 443

LLMs actually reference the review contents to pre- 444

dict the target user’s preference, which means that 445

giving the correct reviews as in-context examples 446

is at least required for performance enhancement. 447

7 RQ3: Prompt Engineering 448

7.1 Prompt Engineering Techniques 449

We pick various prompt engineering techniques 450

from the related work introduced in Section 2.3 451

and compare the impact on the user rating pre- 452

diction performance. All the prompt engineering 453

techniques below are implemented as an extension 454

of the RS → RS format. We present the concrete 455

prompts used for this section in Section B.6. 456

Zero-shot CoT Following Kojima et al. (2022), 457

we add “Let’s think step by step” to the end of the 458

prompt and try to trigger the reasoning capability of 459

the LLMs. We investigate whether the prompt engi- 460

neering techniques for reasoning tasks are effective 461

for the user rating prediction tasks. 462

Score Range Summary In this format, we first 463

use the LLMs to output the range of user ratings 464

(the most common positive and negative scores). 465

This is initially introduced by Richardson et al. 466

(2023) to summarize the user ratings obtained with 467

retrieval augmentation, but adding an explicit step 468

to summarize the trend of scores could also im- 469

prove the performance in our settings. 470

Preference Summary This utilizes a prompt 471

used for KAR (Xi et al., 2024) to summarize the 472
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user preference first, then predict the scores as the473

next step. Although the original work consumed474

the summary with fine-tuned models, summariz-475

ing preference information in the context can also476

benefit off-the-shelf LLMs.477

Preference Summary + Item Recommendation478

In addition to the preference summary, we also479

use a prompt for LLM-Rec (Lyu et al., 2024) to480

ask LLMs to write the recommendation text for481

the target item, then perform the rating prediction482

with both intermediate outputs in the context. We483

expect this to trigger the LLMs’ ability to capture484

the correlation between the user preference and the485

preferred item features.486

7.2 Results and Analysis487

We present the comparison of different prompt en-488

gineering techniques for each dataset with Llama489

3.1 8B and Gemma 3 12B in Figure 6. The original490

RS → RS prompting achieves the best performance491

in three out of six settings. The preference sum-492

mary prompting on the Movies dataset with Llama493

3.1 8B shows a noticeable improvement, but the494

performance enhancements observed in the other495

cases are negligible, even if they exist.496

In particular, Zero-shot CoT prompting leads to497

worse performance in five out of six combinations498

of datasets and models. This result may support the499

findings by Sprague et al. (2024) that CoT leads to500

better performance mainly for math or logic tasks.501

Figure 7 illustrates the possible cause of that dif-502

ference. Although applying RS → RS prompting503

(Figure 7c) widens the range of predicted scores504

compared to RS → S (Figure 7b), applying CoT505

on it (Figure 7d) makes LLMs predict the neutral506

scores such as seven more often again. This dis-507

tribution change could reverse the positive effect508

obtained with RS → RS prompting. With CoT,509

LLMs tend to output the analysis results for both510

likes and dislikes of the users at the same time,511

which may result in the “balanced” output score.512

We show concrete examples in Section C.3.513

8 RQ4: Comparison with Self-described514

Preference515

8.1 Self-Described Preference516

We verify that the per-item review format is more517

effective than the self-described preference format518

used by Sanner et al. (2023). Self-described prefer-519

ence is the text in which the target user describes520

the sort of items they like. The text typically starts521

with “I like...” and the preference description is 522

not based on any specific items (see the detailed 523

difference of the two formats in Figure 17 of Ap- 524

pendix B.7). 525

Sanner et al. (2023) show that the self-described 526

preference text improves the LLMs’ performance 527

of top-N prediction, and also claim that the text 528

is more effective than per-item binary preference. 529

However, their problem settings and preference 530

signals are much simpler than ours, so whether the 531

self-described preference format is still adequate 532

for our problem settings is unclear. 533

8.2 Settings 534

Datasets Although comparison of the two for- 535

mats is necessary, the dataset used for their ex- 536

periments does not contain the per-item review 537

texts, and the ones we use do not have the self- 538

described preference style text either. To fill the 539

gap, we use the Gemma 3 12B and Llama 3.1 8B to 540

transform the per-item reviews to the self-described 541

preference. Implementation details and the exam- 542

ple outputs are listed in Section B.7. Using those 543

generated self-described preferences, we query the 544

LLMs to predict the preference scores and mea- 545

sure the correlations with the ground truth labels. 546

We use the preference text generated by the rating 547

prediction model itself. 548

Prompting Formats As the prompting format, 549

we introduce a ∅ → S format, in which per-item 550

scores are removed from the S → S prompt. We 551

combine this with the generated self-described pref- 552

erence. Here, LLMs need to predict the prefer- 553

ence scores only based on the self-described pref- 554

erence text. We also combine this self-described 555

preference with the three prompting formats intro- 556

duced in Section 5.1 and check if adding the self- 557

described preference improves the performance. 558

8.3 Results and Analysis 559

Figure 8 compares the user rating prediction per- 560

formance of Llama 3.1 8B and Gemma 3 12B with 561

and without the self-described preference text. De- 562

spite the observation by Sanner et al. (2023), ∅ → 563

S prompting with the self-described preference re- 564

sults in worse performance than RS → S prompt- 565

ing without the self-described preference for both 566

models. This indicates that the self-described pref- 567

erence does not work as effectively as the per-item 568

reviews under complex problem settings such as 569

user rating prediction. 570
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Figure 6: Comparison of the prompt engineering techniques on the user rating prediction task. In most cases the
additional techniques do not result in the performance improvement compared to the original RS → RS prompting.

(a) Ground Truth (b) RS → S

(c) RS → RS (d) RS → RS + CoT

Figure 7: Output score distribution of Gemma3 12B on
the Movies dataset with different prompting methods.
RS → RS flatten the distribution compared to RS → S ,
but adding CoT partially reverts the effect.

When the self-described preference and the per-571

item review texts are combined, both models show572

performance improvement with RS → RS on the573

Movies dataset. Still, the performance drops for574

the other datasets. Since the Movies dataset has575

longer review texts, it is possible that summarizing576

the reviews in the self-described preference form577

helps the models to organize the preference data,578

while it might be noisy for shorter reviews.579

9 Conclusion580

In this work, we show that providing a few review581

texts written by the target user improves the per-582

formance of user rating prediction by off-the-shelf583

LLMs. The positive effect is observed across vari-584

ous models and datasets. We also find that further585

performance enhancement can be achieved by in-586

structing LLMs to write down the expected review587

Figure 8: Comparison of rating prediction performance
with and without the self-described preference generated
by LLMs. The self-described preference does not work
as effectively as the per-item reviews under the rating
prediction settings.

explicitly. The per-item review texts are still ef- 588

fective even if the amount of available preference 589

information is small, as long as the reviews written 590

by the target user are correctly given. Regarding the 591

combination of review texts and existing prompt 592

engineering techniques, zero-shot CoT does not 593

always work effectively for the rating prediction 594

task. Finally, we confirm the advantage of per-item 595

review text over self-described preference used in 596

prior studies. 597

Our results confirm that review texts are a power- 598

ful source for preference prediction and suggest an 599

effective way to utilize the data with off-the-shelf 600

LLMs. We hope these findings lead to the future 601

implementation of data-efficient personalization 602

systems based on off-the-shelf LLMs. 603
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Limitations604

Our model configurations are non-deterministic,605

so the results may differ with different random606

seeds. Moreover, excluding failed examples is not607

appropriate when evaluating correlation metrics,608

and this exclusion may have unexpectedly affected609

the results.610

Another limitation concerns the comparison611

of datasets with different review lengths. Sam-612

pling users from distributions with different review613

lengths introduced disparities in the difficulty of614

rating prediction based on numeric information. A615

rigorous comparison requires a new dataset con-616

struction with different lengths of reviews from the617

same users.618

Finally, the analysis of self-described prefer-619

ences relies on text transformation performed by620

LLMs, which may affect the quality of the gener-621

ated preference texts. Although we manually check622

the similarity of the generated texts with the ex-623

amples used in previous studies, it is still possible624

that the artificially generated preference texts have625

qualitative differences from human-written texts.626

Again, a new dataset with different styles of prefer-627

ence text from the same user is needed for a more628

accurate comparison.629

Ethical Considerations630

The three datasets used in our study are based on631

user-generated contents crawled from online ser-632

vices. None of the datasets contains sensitive user633

information, and we ensure we do not disclose any634

personally identifiable information as part of our635

work.636

In addition, providing the user information in637

the context of deployed LLM-based systems might638

result in an unexpected information leakage. Al-639

though our work expects the situation where only640

the data obtained from the target user is used, de-641

velopers need to pay attention to handling sensitive642

data when implementing a similar system.643
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A Additional Experiment851

A.1 Self-described Preference Generated by852

Different Models853

In Section 8.3, we only use the self-described pref-854

erence generated by the same model as the one855

that performs the preference prediction. To check856

whether the quality of the text transformation af-857

fects the result of the user rating prediction, we858

repeat the same experiment as Section 8.3 with859

Gemma 3 12B as the self-described preference gen-860

erator and Llama 3.1 8B as the user rating predictor.861

Figure 9 reports the result. Although the per-862

formance with ∅ → S is slightly improved when863

Gemma 3 12B is used as the self-described prefer-864

ence generator model, it is still worse than the RS865

→ S without the self-description text. This result866

suggests that the impact of the model selection on867

self-described preference generation is lower than868

that of the existence of the per-item review texts.869

Figure 9: Comparison Llama 3.1 8B’s performance with
self-description generated by different LLMs

Figure 10: Comparison of the results with the Books
and the Books (Short) datasets. Shorter reviews still
lead to the performance improvement.

A.2 Experiment with Books (Short) Dataset 870

B Implementation Details 871

B.1 Models 872

During inference with models, we limit the maxi- 873

mum number of generated tokens to 768 for Llama 874

and Gemma models. For QwQ-32B, we set this to 875

32768 to allow more extended reasoning. 876

We set the temperature to 0.01 for Llama mod- 877

els. Other parameters follow the default set on the 878

huggingface pages56789 as of 2025 April. 879

5https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

6https://huggingface.co/meta-llama/Llama-3.3-70B-
Instruct

7https://huggingface.co/google/gemma-3-12b-it
8https://huggingface.co/google/gemma-3-27b-it
9https://huggingface.co/Qwen/QwQ-32B
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B.2 Computational Resources880

We conducted the experiments with different num-881

bers of NVIDIA A100 (40GB), depending on the882

LLM used for each run. We report the number of883

GPUs used and the maximum hours spent for each884

run in Section 5.2 with each model as follows:885

• Llama 3.1 8B: 1 GPU, 2 hours886

• Llama 3.3 70B: 4 GPUs, 6 hours887

• Gemma 3 12B: 1 GPU, 4 hours888

• Gemma 3 27B: 2 GPUs, 6 hours889

• QwQ 32B: 2 GPUs, 24 hours890

Each run in Section 6, Section 7, and ?? took the891

same number of GPUs and twice as much time as892

listed above because of the required intermediate893

outputs.894

B.3 Dataset Statistics895

(a) Movies (b) Recipe

(c) Books (d) Books (Short)

Figure 11: Label distribution of each dataset (including
the in-context examples)

We show the statistics about the datasets we used896

in the experiments in Table 1. We also present the897

numeric score distribution in Figure 11. Note that898

for the Movies (Shuffle) dataset, all the values are899

the same as those of the standard Movies dataset,900

since the dataset is just made by shuffling the re-901

view text data in the original dataset.902

B.4 Other Software and Artifacts903

We ran the code for all the experiments with904

Python 3.11.10. For LLM inference, we used905

PyTorch (Paszke et al., 2019) 2.6.0 and Trans- 906

formers (Wolf et al., 2020) 4.50.0. We calculated 907

the evaluation metrics with scikit-learn (Pedregosa 908

et al., 2011) 1.6.1 and SciPy (Virtanen et al., 2020) 909

1.15.1. 910

B.5 RS → RS, RS → S and S → S Prompts 911

We present the base prompt used for Llama Models 912

and Movies dataset with RS → RS settings in Fig- 913

ure 12. The prompt is adopted from PerSE (Wang 914

et al., 2024). The "{plot}" variable is replaced with 915

the target movie plot, and "{icl_example}" is filled 916

with the list of in-context examples described with 917

the template in Figure 13. 918

For RS → S and S → S settings, the "Review" 919

part of the output format specifier is removed. For S 920

→ S, the "Review" part of the in-context example 921

template is removed. Note that newlines are in- 922

serted accordingly on the paper to improve the visi- 923

bility. When applying the prompt to other datasets, 924

we replace words representing the target dataset’s 925

domain. The tags like "<|start_header_id|>" are 926

also replaced for experiments with different mod- 927

els. 928

B.6 Prompt Engineering Techniques 929

In this section, we introduce detailed prompt tem- 930

plates used for experiments in Section 7.2 931

Zero-shot CoT We reused the prompt in Fig- 932

ure 12, except that the beginning of the assistant re- 933

sponse is replaced with “Let’s think step by step.”. 934

Score Range Summary We use the prompt pre- 935

sented in Figure 14 adopted from Richardson et al. 936

(2023) to generate the score range summary text, 937

then add this intermediate output to the prompt 938

in Figure 12 with the prefix “The trend of review 939

scores given by this user is analyzed as follows:” 940

Preference Summary We use the prompt pre- 941

sented in Figure 18, originally used for KAR (Xi 942

et al., 2024), to generate the analysis of the user 943

preference. This output is added to the rating pre- 944

diction prompt in Figure 12 with the prefix “The 945

preference of him/her is analyzed as follows:”. 946

Preference Summary + Item Recommendation 947

In addition to the Preference Summary, we also add 948

the item recommendation text generated with the 949

prompt presented in Figure 16, which is originally 950

used in LLM-Rec(Lyu et al., 2024). 951

Then the item recommendation text is also added 952

to the bottom of the prompt in Figure 12, sur- 953
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Dataset Num of Examples Avg Item Description Length Avg Review Length Avg Per-user Score Stddev

Movies 702 1142.0 752.8 1.54
Recipe 1000 766.8 370.6 0.44
Books 1000 1134.2 650.7 0.74
Books (Short) 1000 1075.2 84.8 0.49

Table 1: Dataset-level statistics: number of examples, average item-description length (characters), average review
length (characters), and per-user score standard deviation.

<|start_header_id|>system<|end_header_id|>
You function as an insightful assistant whose
role is to assist individuals in making
decisions that align with their personal
preferences. Use your understanding of their
likes, dislikes, and inclinations to provide
relevant and thoughtful recommendations.
<|eot_id|>

<|start_header_id|>user<|end_header_id|>
[User Question] You will be presented with
several plot summaries, each accompanied by
a review from the same critic. Your task is
to analyze both the plot summaries and the
corresponding reviews to discern the
reviewer's preferences. Afterward, consider
a new plot and create a review that you
believe this reviewer would write based on
the established preferences.

{icl_example}

Please follow the above critic and give a
review for the given plot. Your response
should strictly follow the format:
```json
{{

"Review": "<proposed review conforms to
style demonstrated in the previous

reviews>",
"Score": <1-10, 1 is the lowest and

10 is the highest>
}}
```
Please remember to replace the placeholder
text within the "<>" with the appropriate
details of your response.

[The Start of Plot]
{plot}
[The End of Plot]
<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
[Review] Here is the Json format of the review:

Figure 12: Query Prompt used for RS → RS examples

[The Start of Plot {n}]
{plot}
[The End of Plot {n}]
[Review]
```json
{{

"Review": "{review}",
"Score": {score}

}}
```

Figure 13: In-Context Example Template used for RS
→ RS examples

A critic's past movie reviews are listed
below:

{icl_example}

Based on this user’s past reviews, what
are the most common scores they give
for positive and negative reviews?
Answer in the following form:

most common positive score:
<most common positive score>,
most common negative score:
<most common negative score>

Figure 14: Prompt used to generate the score range
summarization text

A critic's past movie reviews
are listed below:

{icl_example}

Analyze the critic's preferences.
Provide clear explanations based
on details from the past reviews
and other pertinent factors.

Figure 15: Prompt used to generate the preference sum-
mary
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The description of a movie plot is as follows:

{plot}

what else should I say if I want to
recommend it to others?

Figure 16: Prompt used to generate the item recommen-
dation text

Figure 17: Comparison between self-described pref-
erence (top) and per-item review (bottom). Per-item
review format can contain more specific preference in-
formation, and makes it easy to add more information if
available.

rounded by “[The Start of Recommendation Text]”954

and “[The End of Recommendation Text]” tags.955

B.7 Self-Described Preference956

Figure 17 illustrates the difference between per-957

item review and self-described preference formats.958

For the experiments in Section 8.3, we use the959

prompt in Figure 15 to transform the per-item re-960

view text into the self-description style text. Exam-961

ple texts are listed in Table 3. LLMs successfully962

generate the self-description style text similar to the963

original example of Sanner et al. (2023) presented964

in Table 2.965

At the inference time, the self-description text is966

added to the review prediction prompt in Figure 12967

A critic's past movie reviews are listed
below:

{icl_example}

Write the passage this person would write when
asked to describe their movie preferences.
The passage must start with “I like . . . ” and
be no more than 300 characters long.

Figure 18: Prompt used to convert the per-item review
to self-description style text

with the prefix "His / her self-description of the 968

preference is as follows:". 969

C Detailed Results 970

C.1 Detailed Results of Section 5.2 971

We report the concrete numbers of Spearman Cor- 972

relation, Kendall-Tau correlation, and Failure Rate 973

of the experiment of Section 5.2 in Table 4. The 974

failure rate is highest (1.7%) with the combination 975

of Llama 3.1 8B and Books dataset, but generally 976

at an acceptable level. 977

C.2 Robustness of Metrics 978

To verify the robustness of the obtained scores, 979

based on six runs, including those reported in Ta- 980

ble 4, we report each output metric’s average and 981

standard deviation for each model, Movies dataset, 982

and RS → RS setting. Compared to the standard 983

deviation values, it is confirmed that the score im- 984

provement by incorporating the review data is not 985

statistically negligible.. 986

C.3 Concrete Outputs with Different 987

Prompting Styles 988

Table 6 lists the outputs on a data point in the 989

Movies dataset by Gemma 3 12B, based on dif- 990

ferent prompting styles. As the table shows, with 991

RS → S the model predicts seven as a generally 992

plausible score, while with RS → RS the model 993

predicts three, which is close to the ground truth 994

score. However, when Zero-shot CoT is also ap- 995

plied, the model lists up the user’s dislikes and likes 996

first, and predicts a more favorable score of ight 997

as a result. This example aligns with the output 998

distribution change illustrated in Figure 7. 999
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Original Example I like comedy genre movies, while watching comedy movies I will feel very happy
and relaxed. Comedy films are designed to make the audience laugh. It has different
kinds of categories in comedy genres such as horror comedy, romantic comedy,
comedy thriller, musical-comedy.

Table 2: Example in the original dataset proposed by Sanner et al. (2023)

Gemma 3 12B I like complex plots with suspense, intrigue, and a touch of action. Gritty noir films and
thrillers with morally ambiguous characters are right up my alley! A good story is key.

Llama 3.1 8B I like complex, suspenseful stories with intricate plots and unexpected twists. I’m drawn
to films that explore the human condition, morality, and the blurred lines between right
and wrong. I appreciate gritty, atmospheric settings and powerful filmmaking.

Table 3: Examples of self-description style preference generated by LLMs

D License and Intended Use of Scientific1000

Artifacts1001

In this work, scientific artifacts including datasets1002

(Section 4.1), models (Section 4.2), and other soft-1003

ware (Section B.4) are used under the specified1004

license and the terms of use.1005

E AI Assistance Usage1006

In this work, ChatGPT10 has been used for writing1007

elaboration. GitHub Copilot11 has also been used1008

as a coding assistant for the experiments.1009

10https://chatgpt.com/
11https://github.com/features/copilot
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Dataset Model S → S RS → S RS → RS

ρ τ FR ρ τ FR ρ τ FR

Movies Llama 3.1 8B 0.149 0.125 0.000 0.205 0.171 0.000 0.215 0.168 0.003
Movies Llama 3.3 70B 0.265 0.214 0.000 0.287 0.234 0.000 0.290 0.237 0.000
Movies Gemma 3 12B 0.164 0.132 0.000 0.247 0.198 0.001 0.274 0.216 0.003
Movies Gemma 3 27B 0.198 0.157 0.000 0.231 0.183 0.001 0.252 0.200 0.000
Movies QwQ 32B 0.231 0.183 0.007 0.267 0.216 0.013 0.279 0.225 0.009

Recipe Llama 3.1 8B 0.058 0.057 0.000 0.103 0.100 0.000 0.195 0.189 0.010
Recipe Llama 3.3 70B 0.152 0.148 0.000 0.158 0.154 0.000 0.157 0.153 0.001
Recipe Gemma 3 12B 0.169 0.163 0.000 0.215 0.208 0.000 0.246 0.239 0.000
Recipe Gemma 3 27B 0.157 0.151 0.000 0.214 0.205 0.000 0.215 0.208 0.005
Recipe QwQ 32B 0.169 0.016 0.000 0.185 0.180 0.003 0.185 0.180 0.003

Books Llama 3.1 8B 0.181 0.169 0.000 0.180 0.167 0.000 0.286 0.258 0.017
Books Llama 3.3 70B 0.254 0.234 0.000 0.257 0.237 0.000 0.255 0.234 0.006
Books Gemma 3 12B 0.215 0.193 0.000 0.300 0.268 0.000 0.311 0.277 0.001
Books Gemma 3 27B 0.230 0.207 0.000 0.299 0.266 0.002 0.295 0.264 0.010
Books QwQ 32B 0.225 0.206 0.000 0.283 0.261 0.005 0.276 0.257 0.002

Table 4: Performance by Dataset, Model and Prompting Method. Symbols: ρ = Spearman correlation, τ = Kendall–τ
correlation, FR = failure rate.

Model ρ σρ τ στ FR σFR

Llama 3.1 8B 0.241 0.013 0.189 0.010 0.005 0.001
Llama 3.3 70B 0.305 0.010 0.250 0.009 0.000 0.000
Gemma 3 12B 0.274 0.007 0.217 0.006 0.002 0.001
Gemma 3 27B 0.251 0.006 0.198 0.005 0.002 0.001
QwQ 32B 0.302 0.012 0.244 0.010 0.007 0.002

Table 5: Statistics of 6 RS → RS runs on the Movies
dataset with different models on Movies dataset. Sym-
bols: ρ = Spearman correlation, σρ = its standard de-
viation, τ = Kendall–τ correlation, στ = its standard
deviation, FR = failure rate, σFR = its standard devia-
tion.
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Prompting Method Score Raw Response
Ground Truth 1 / 10 this crap gives Dracula a bad name ||| This is one of the most inane

films I have ever had the misfortune of viewing...

RS → S 7 /10 N/A

RS → RS 3 /10 ""Review"": ""What a load of hooey! ||| This one was a real mess.
Too many characters, too many ridiculous plot twists...

RS → RS + Zero-shot CoT 8 /10 Okay, analyzing the critic’s preferences:...
* **Dislikes:** ""Sugary,"" overly sentimental/romantic ...
* **Likes:** Strong characters...
""Review"": ""Another bloodsucker on the loose ||| Well, at least
this one doesn’t insult the viewer’s intelligence too much...

Table 6: Example responses by Gemma 3 12B on the Movies dataset with different prompting methods
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