
Under review as a conference paper at ICLR 2024

ABSTRACT INTERPRETATION OF RELU NEURAL
NETWORKS WITH OPTIMIZABLE POLYNOMIAL
RELAXATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks have shown to be highly successful in a wide range of appli-
cations. However, due to their black box behavior, their applicability can be re-
stricted in safety-critical environments, and additional verification techniques are
required. Many state-of-the-art verification approaches use abstract interpretation
based on linear overapproximation of the activation functions. Linearly approxi-
mating non-linear activation functions clearly incurs loss of precision. One way
to overcome this limitation is the utilization of polynomial approximations. A
second way shown to improve the obtained bounds is to optimize the slope of the
linear relaxations. Combining these insights, we propose a method to enable simi-
lar parameter optimization for polynomial relaxations. Given arbitrary polynomi-
als parameterized by their monomial coefficients, we can obtain valid polynomial
overapproximations by appropriate upward or downward shifts. Leveraging au-
tomatic differentiation, we optimize the choice of the monomial coefficients via
gradient-based techniques.

1 INTRODUCTION

Neural networks (NNs) achieve state of the art performance on many machine learning tasks. How-
ever, research by Szegedy et al. (2014) has shown that NNs can exhibit unexpected behavior even
in the case of slight input perturbations. Additionally, they comprise a large number of weights and
biases that renders them incomprehensible to humans. Despite these problems their impressive per-
formances have led to their use in safety critical areas like airborne collision avoidance (Julian et al.,
2016) or autonomous driving (Pan et al., 2020). In order to avoid the severe consequences of failures
in these areas of application, formal guarantees for the behavior of NNs are needed. Methods based
on MILP (Cheng et al., 2017; Tjeng et al., 2019) or semidefinite programming (Raghunathan et al.,
2018; Lan et al., 2022) are capable of providing bounds on the violation of a property via encoding as
an optimization problem. Bounds obtained via abstract interpretation-based approaches are the re-
sult of propagating sets of inputs through a network. Propagation of symbolic intervals (Wang et al.,
2018a;b; Zhang et al., 2018; Singh et al., 2019; Henriksen & Lomuscio, 2020) using convex linear
overapproximation of the activation functions has proven to be a promising approach. However, the
activation functions are non-linear and the output set of an NN can be non-convex. Consequently,
in order to better integrate these methods into the analysis of cyber-physical systems, which often
rely on Taylor model arithmetic, researchers have turned to overapproximation techniques involving
polynomials (Zhang et al., 2018; Ivanov et al., 2019; 2021; Fatnassi et al., 2022; Huang et al., 2022;
Kochdumper et al., 2022). In the context of SIP based on linear overapproximation, multiple valid
relaxations of the activation function ReLU(x) = max(0, x) have been proposed. Using the insight
that the set of valid relaxations can be described by a free (or only interval-constrained) parameter,
choosing the value of the parameter via gradient-based optimization of the obtained output bounds
led to significantly tighter bounds (Xu et al., 2021). The current state of abstract interpretation based
on propagation of polynomials also relies on a small number of proposed ReLU relaxations. In this
paper, our main contribution is a parametrization of the set of valid polynomial overapproximations
of the ReLU activation function. Similar to the case of propagation of linear symbolic intervals, this
parametrization allows for unconstrained optimization to select the parameters of the polynomial
ReLU relaxations.

1

Under review as a conference paper at ICLR 2024

2 BACKGROUND

2.1 NEURAL NETWORKS

A feed-forward neural network N comprises an input layer, L− 1 hidden layers and an output layer
(Goodfellow et al., 2016). The network computes a function fN : Rd0 → RdL : x 7→ y, where the
l-th layer consists of dl neurons nl. Given the weights Wl ∈ Rdl×dl−1 and biases bl ∈ Rdl of layer
l and the activation values nl−1 of the previous layer (or the inputs, for l = 0, identifying n0 with
the input vector x, the activations of the current layer can be calculated according to

n̂l = Wlnl−1 + bl

nl = σ(n̂l) ,

where we denote the pre-activation values of layer l by n̂l and σ is a non-linear activation function.
In this paper, we only consider the case of already trained feed-forward NNs with the popular ReLU
activation function ReLU(x) = max(0, x).

2.2 SYMBOLIC INTERVAL PROPAGATION FOR NEURAL NETWORK VERIFICATION

Given a NN N computing a function y = fN (x) on an input set X and a property P(y) on the
output space Y = fN (X) of the NN, the problem of NN verification can be cast as deciding whether
the implication

∀x ∈ X ,∀y ∈ Y : y = fN (x) =⇒ P(y) (1)

holds or is violated. Although the problem is decidable for feed-forward NNs with ReLU activation
functions, it still is NP-complete (Katz et al., 2017).

Therefore, many solvers sacrifice completeness for scalability and use abstract interpretation to-
gether with overapproximation of the activation functions to efficiently propagate set representations
through the layers of the NN. The property P then only has to be checked on the set representation
obtained after the output layer of the NN.

However, too coarse approximations may not allow proving a desired property. Thus, we can weaken
our verification goal and try to obtain an approximation that is as close as possible to the real output
region. We therefore search for overapproximations that are as tight as possible.

In its easiest form, hyperrectangles are propagated through the NN via interval arithmetic. As not
only the non-linear activation functions, but also the affine layers need to be overapproximated in this
setting, large amounts of dependency information are lost, which led to the development of symbolic
interval propagation (SIP) (Wang et al., 2018b;a). Instead of enclosing the values of neurons n(x),
for an input x of the NN, with concrete bounds [n, n] ∈ R, such that n(x) ∈ [n, n], the values of
neurons are now enclosed by functions l(x) ≤ n(x) ≤ u(x) (also written as n(x) ∈ [lb(x), ub(x)]),
where the inequalities hold point-wise for all considered inputs x ∈ X of the NN. Given lower
and upper bounding functions lbl−1(x) and ubl−1(x) on nl−1(x), bounding functions for n̂l =
Wlnl−1 + bl can be obtained by calculating

lbl(x) = W+
l lbl−1(x) +W−

l ubl−1(x) + bl (2)

ubl(x) = W+
l ubl−1(x) +W−

l lbl−1(x) + bl , (3)

where W+
l and W−

l denote the positive and negative entries of Wl respectively. After concrete
bounds on the input n ∈ [n, n] have been obtained from the symbolic bounds on n, for exam-
ple via interval arithmetic (Moore, 1966), they can be used to define lower and upper relaxations
ReLU(n) ≤ ReLU(n) ≤ ReLU(n) ∀n ∈ [n, n]. This allows for propagation of a symbolic interval
n(x) ∈ [lb(x), ub(x)] through the ReLU function according to

lb′(x) = ReLU(lb(x)) (4)

ub′(x) = ReLU(ub(x)) . (5)

Since linear functions can be represented as matrices of their coefficients, which allows for a fast
implementation of Equation 2, they are widely used as bounding functions in SIP (Wang et al.,
2018a;b; Henriksen & Lomuscio, 2020; Singh et al., 2019; Zhang et al., 2018). As the propagation

2

Under review as a conference paper at ICLR 2024

(a) α = 0 (b) α = 1 (c) α = 0.75

Figure 1: Linear relaxations of the ReLU function for different slopes α of the lower relaxation.

(a) −n ≥ n (b) −n < n < −2n (c) n ≥ −2n

Figure 2: Quadratic relaxations of the ReLU function proposed by Zhang et al. (2018) chosen based
on the relationship between the lower and upper concrete bounds n < 0 < n on the input n of
ReLU(n).

of linear symbolic intervals through a ReLU relaxation should again result in a linear symbolic
interval, these approaches are restricted to linear ReLU relaxations. If ReLU(n) is fixed – i.e. when
n ≥ 0 or n ≤ 0 – it already is a linear function over the interval [n, n] and thus no relaxation is
needed. Otherwise we call the neuron unstable or crossing and we set:

ReLU(n) = αn, α ∈ [0, 1] (6)

ReLU(n) =
n

n− n
n− nn

n− n
. (7)

Linear relaxations for different α are shown in Figure 1. Most approaches statically choose the value
of α based on information locally available at the current neuron. It is set to α = n

n−n to be parallel
to the upper relaxation in (Henriksen & Lomuscio, 2020; Singh et al., 2018; Wang et al., 2018b) or
as α = 0, if |n| ≥ n, and α = 1, if |n| < n, in (Zhang et al., 2018; Singh et al., 2019) to minimize
the volume of the relaxation. However, any α ∈ [0, 1] results in a valid lower relaxation. Therefore,
given a fixed input set X and network N , the obtained concrete output bounds can be viewed as
a function of the values of α for each individual neuron. This function can then be optimized by
varying the parameters α to achieve significantly tighter bounds (Xu et al., 2021).

To overcome the restriction to linear ReLU relaxations and increase the potential for tighter relax-
ations, others have turned to SIP using polynomials as bounding functions. The relaxations pro-
posed in the literature again select the coefficients of the relaxation polynomials statically based
on the concrete bounds of the input n ∈ [n, n] to the activation function. While the methods pro-
posed by Huang et al. (2022) and Kochdumper et al. (2022) are restricted to parallel relaxations,
as they build on Taylor models (Makino & Berz, 2003) and polynomial zonotopes (Kochdumper &
Althoff, 2021), Zhang et al. (2018) use non-parallel quadratic ReLU relaxations in their tool CROWN

3

Under review as a conference paper at ICLR 2024

as follows:1

ReLU(n) =

0 ,−n ≥ n

n
n2−nn

n2 − nn
n2−nn

,−n < n < −2n

n , n ≥ −2n

(8)

ReLU(n) =

{
− n

(n−n)2n
2 + n2+n2

(n−n)2n− nn2

(n−n)2 ,−n ≤ n
n

(n−n)2n
2 − 2nn

(n−n)2n+ n2n
(n−n)2 ,−n > n

, (9)

These quadratic relaxations are visualized in Figure 2. Closed-form parallel quadratic ReLU re-
laxations are also defined in (Kochdumper et al., 2022). Parallel polynomial relaxations of higher
degree can be obtained by regression (Kochdumper et al., 2022) or via approximation by Bern-
stein polynomials (Huang et al., 2022; Fatnassi et al., 2022). Although parameterizing the ReLU
relaxations by α has proven successful in the linear case, finding a similar parameterization for poly-
nomial relaxations has received no attention so far. We will present our solution to this problem in
Section 3.

2.2.1 BACKWARD SUBSTITUTION

In contrast to this forward propagation of symbolic intervals, several approaches also construct valid
linear lower and upper bounding functions by applying substitutions in a backward manner from the
output layer to the inputs (Zhang et al., 2018; Singh et al., 2019; Xu et al., 2021). Since computation
of a lower bound is analogous, we only review the computation of upper bounds. Given a linear
upper bounding function nL ≤ ub(nl) = Γnl + γ of the output neurons in terms of the neurons in
layer l and concrete bounds n̂l ∈ [n̂l, n̂l], we can use these bounds to construct a ReLU relaxation
and obtain another valid upper bound

nL ≤ Γnl + γ (10)
= ΓReLU(n̂l) + γ (11)

≤ Γ+ReLU(n̂l) + Γ−ReLU(n̂l) + γ (12)

= Γ′n̂l + γ′ , (13)
this time in terms of the pre-ReLU activation nl. The substitution in Equation 12 still results in
a valid upper bound as we substitute the upper (or lower) ReLU relaxation depending on whether
the linear function Γnl + γ is monotonically increasing (or decreasing) in nl,i, which for a linear
function only depends on the sign of the respective coefficients in Γ. Since polynomials need not
be monotonic in their input variables, the substitution in Line 12 is in general not possible for
polynomial relaxations. Summarizing the terms in Line 12 into the linear function in Line 13 is also
only possible for linear ReLU relaxations. In the linear case, using the weights of layer l, we can
further backsubstitute via

nL ≤ Γ′n̂l + γ′ = Γ′ (Wlnl−1 + bl) + γ′ = Γ′Wlnl−1 + Γbl + γ′ = Γ′′nl−1 + γ′′

to obtain a valid upper bound in terms of the previous layer’s outputs nl−1, and repeat this process
until the input layer is reached. Concrete bounds nL ∈ [nL,nL] can then be calculated via interval
arithmetic. Bounds calculated via this backsubstitution process are typically significantly tighter
than bounds obtained by forward propgation of symbolic intervals, as the dependency problem with
respect to intermediate neurons (see (Kern et al., 2022) for a good explanation) is greatly reduced.
However, this increased tightness of the bounds is not free: Substitution from layer l backwards
requires concrete bounds for all layers 1, . . . , l − 1, which – again – have to be calculated using
backsubstitution to utilize the improvements in bound tightness. Therefore Θ(L2) backsubstitution
passes are required to calculate bounds on the output of a L-layer NN.

3 PARAMETERIZED POLYNOMIAL RELU RELAXATIONS

We use the polynomial representation developed by Kochdumper & Althoff (2021) for sparse poly-
nomial zonotopes. In their approach, important functions for symbolic interval propagation of poly-

1These relaxations are not described in their publication, but can be found in their tool’s implemen-
tation at https://github.com/huanzhang12/CROWN-Robustness-Certification/blob/
master/quad_fit.py

4

https://github.com/huanzhang12/CROWN-Robustness-Certification/blob/master/quad_fit.py
https://github.com/huanzhang12/CROWN-Robustness-Certification/blob/master/quad_fit.py

Under review as a conference paper at ICLR 2024

nomials like addition of polynomials, multiplication of polynomials by constant matrices and cal-
culation of concrete lower and upper bounds can be efficiently represented as operations on the
matrices of monomial coefficients of the involved polynomials. The same holds true for element-
wise application of univariate polynomials. A detailed description is given in Appendix A.1.

Given concrete lower and upper bounds on the input x ∈ [x, x] to a ReLU node, and a vector of
monomial coefficients a = (a0, a1, . . . , ad)

T , we can easily construct a valid polynomial upper
relaxation u(x) ≥ ReLU(x) ∀x ∈ [x, x].

For this purpose, we set p(x) =
∑d

i=0 aix
i and shift that polynomial upwards by a sufficiently large

δ ∈ R to obtain a valid overapproximation u(x) = p(x) + δ of the ReLU function. The smallest
possible value for δ can be obtained as the solution to

δ = max
x∈[x,x]

(ReLU(x)− p(x)) . (14)

Since the ReLU function is piecewise linear, this reduces to finding δ0 and δ1 with

δ0 = max
x∈[x,0]

(ReLU(x)− p(x)) = max
x∈[x,0]

−p(x) (15)

δ1 = max
x∈[0,x]

(ReLU(x)− p(x)) = max
x∈[0,x]

x− p(x) (16)

and setting δ = max(δ0, δ1). Note that solving Equation 16 only requires finding the maxima of
univariate polynomials.

The above method can be understood as a projection operator taking any vector of monmial coef-
ficients a and projecting them to the monomial coefficients a′ = (a′0, a1, . . . , ad)

T of the closest
polynomial u(x) ≥ ReLU(x), ∀x ∈ [x, x] along the dimension of the 0-th coefficient. We there-
fore obtain valid overapproximations for any choice of monomial coefficients a, and thus can use
optimization methods to select those coefficients that lead to tight bounds at the output of the NN.

For efficient optimization, we need to be able to calculate the gradients with respect to the given
monomial coefficients. Since the maximizers of Equation 16 can be obtained via closed form so-
lutions for polynomials up to degree d = 4, it would be possible to differentiate through these
computations using automatic differentiation. However, we found that to be inefficient for gradient
computation. Instead, we still use an exact approach to find the maximizer x∗(a) of Equation 16
given parameters a. This exact maximizer of f(x,a) = ReLU(x) − p(x | a) in [l, u] = [x, 0]
(respectively [l, u] = [0, x]) is then of course also a local maximizer and thus a fixed point of the
projected gradient descent update rule

xi+1 = max(l,min(u, xi − η∇1f(xi,a))) . (17)

Using the results of (Blondel et al., 2022), we can then use implicit differentiation as a more efficient
way to calculate gradients with respect to a.

Because gradient computation using the view as a fixed point of projected gradient descent is agnos-
tic to the method that calculated the exact maximizer x∗(a), gradients for a could also be computed
by iterative root finding methods (Skowron & Gould, 2012) and therefore enable relaxation by poly-
nomials of degree d ≥ 5. Our implementation is (currently) restricted to d = 2, though.

Construction of valid lower relaxations l(x) ≤ ReLU(x) ∀x ∈ [x, x] is straightforward. We simply
set l(x) = p(x) + δ, but instead of a maximization, we solve the minimization problem

δ = min
x∈[x,x]

ReLU(x)− p(x) . (18)

If we use different monomial coefficients al and au as a basis for our construction, our method
is able to produce non-parallel lower and upper relaxations. However, it can also be incorporated
into propagation techniques that require parallel relaxations, as those presented by Kochdumper &
Althoff (2021) and Kochdumper et al. (2022). In this case, we have to use the same monomial
coefficients for the construction of the lower and the upper relaxation.

3.1 OPTIMIZATION OF OUTPUT BOUNDS

Given a concrete vector θ = {(akl ,aku) | k = 1, ..., L} containing all required monomial coefficients
for the unstable neurons in a network, concrete lower and upper bounds on the network’s outputs

5

Under review as a conference paper at ICLR 2024

lb,ub can be computed via

lb(x),ub(x) = PROPAGATE(X | θ) (19)

lb, lb = CONCRETIZE(lb(x)) (20)

ub,ub = CONCRETIZE(ub(x)) . (21)

As PROPAGATE depends on the parameters θ and all functions used to obtain lb and ub are differen-
tiable, we can use gradient-based optimization techniques to optimize the tightness of the obtained
concrete lower and upper bounds. Since the number of unstable neurons in a network can be large
and each unstable neuron requires 2d + 2 monomial coefficients for forward overapproximation
by non-parallel polynomial lower and upper relaxations of degree d, we need to perform optimiza-
tion over a high dimensional parameter space. In this setting, it is crucial to utilize that due to our
parametrization of the polynomial ReLU relaxations, any value for θ leads to valid lower and up-
per bounds. Therefore, we can treat the problem as an unconstrained optimization problem, which
enables us to profit from the efficiency of unconstrained gradient-based optimisation.

The loss function L can be any function of the concrete (or even the symbolic) output bounds. We
chose to minimize the sum of the widths of the concrete output bounds by setting L =

∑nL

i=1 ubi −
lbi to obtain tight concrete bounds.

Depending on the number of unstable neurons overapproximated by polynomial relaxations, we may
need to use norm-clipping of the gradients to avoid numerical difficulties caused by large gradients.

We present two instantiations of the function PROPAGATE(X | θ): Forward propagation of symbolic
intervals as introduced by Wang et al. (2018b), but with polynomial ReLU relaxations, as well as
integrating polynomial ReLU relaxations into the backsubstitution approach presented by Xu et al.
(2021) and reviewed in Section 2.2.1. Since polynomials are not necessarily monotonic in their
input variables, the substitution procedure described in equations 10-13 is in general not possible, if
we replace the linear upper bounding function nL ≤ Γnl + γ by a polynomial bounding function
nL ≤ ub(nl). However, we can calculate a polynomial symbolic interval n1 ∈ [lb(x),ub(x)] via
forward propagation and use linear backsubstitution from layer l ≥ 2 only down to the first layer to
obtain a linear upper bounding function in terms of n1 and then substitute

nl ≤ Γn1 + γ (22)

≤ Γ+ub(x) + Γ−lb(x) + γ (23)

as the linear function is of course monotonic. The resulting upper bounding function is a polynomial
and as we have to perform one backsubstitution pass from layer l down to layer 1 for each layer
2 ≤ l ≤ L of the NN, each of the resulting symbolic bounding functions is a polynomial and the
bounds for layer l benefit from the tighter polynomial relaxation of the first hidden layer.

An example for forward propagation of optimizable polynomial symbolic intervals can be found in
Appendix A.2.

4 EVALUATION

Benchmarks. Since the number of monomial terms of a polynomial grows rapidly with the num-
ber of unfixed input dimensions, we need to restrict our evaluation to verification problems with a
small or intermediate number of unfixed inputs. We therefore evaluated our approach on the two
fully connected networks with ReLU activation functions, ACAX Xu and MNIST, from the annual
NN competitions VNN-COMP2 (Brix et al., 2023). The ACAS Xu benchmark set was published by
Katz et al. (2017) and consists of NNs that were trained to provide navigation advisories on board of
aeroplanes as part of the Airborne Collision Avoidance System for unmanned aircraft. Each of the
45 NNs has a small input dimension of only 5 input neurons, 6 fully connected layers of 50 neurons
each, and 5 output neurons representing scores for the different navigation advisories. All of the
properties define a hyperrectangle of valid values for the input space and an appropriate property
on the output space of the NN. The MNIST benchmark set deals with classification of handwritten
digits. It consists of 3 fully-connected networks with 2, 4 or 6 layers of 256 neurons each. The input

2https://github.com/stanleybak/vnncomp2021

6

https://github.com/stanleybak/vnncomp2021

Under review as a conference paper at ICLR 2024

(a) Tightness of output bounds for all ACAS-Xu
properties

(b) Tightness of output bounds for the first 80 prop-
erties

Figure 3: Comparison of the tightness (sum of the widths) of the output bounds for each of the
ACAS-Xu properties sorted by the tightness after initialization of α-POLY to α-NEURIFY.

dimension is 784 for the greyscale level of 28x28 pixels. We use the original three fully connected
NNs, but instead of considering small L∞-perturbations to all 784 pixels of the 15 input images, we
consider adversarial patches of varying sizes up to 50 pixels, where each unfixed pixel can admit the
whole range of grayscale values.

Tools. We evaluate the performance of our optimizable polynomial relaxations instantiated with
forward propagation of polynomials – which we call α-POLY – and our second instantiation – which
we call POLYCROWN – and which is based on inclusion of polynomial relaxations in the first layer
of the backsubstitution procedure α-CROWN (Xu et al., 2021) with optimizable linear relaxations.
Our Julia implementation can be found at 3.

We compare our approach to α-NEURIFY – our implementation of NEURIFY (Wang et al., 2018b),
where we included optimization of the linear relaxations – and our implementation of α-CROWN
(Xu et al., 2021) 4.

We further compare to forward propagation of zonotopes and polynomial zonotopes (Kochdumper
et al., 2022). As suggested by Kochdumper et al. (2022), we use polynomial relaxations for the first
two layers of an NN and then switch to linear relaxations.

ACAS Xu. For each of the 186 verification instances, we propagate the associated input set
through the NN and record the sum of the widths of the output bounds obtained by using static
ReLU relaxations (which are also used to initialize the optimizable relaxations) and the tightness of
the output bounds after optimization. Optimization for an instance is stopped as soon as a timeout of
5 minutes, a predefined number of steps is reached or the objective did not improve for 50 steps. We
abort optimization for α-CROWN and POLYCROWN after at most 5000 steps and for α-NEURIFY
after at most 40000 steps.

Our results on forward propagation of symbolic intervals shows that forward propagation of poly-
nomials is – at least when output bounds are large – already tighter in most cases than the bounds
obtained via optimized linear relaxations as can be seen on the right of Figure 3a. Even when the
output bounds are tighter, we observe that the initial values using polynomial relaxations as well
as the values after optimization are better than the initial and optimized values obtained via linear
relaxations. as is evident from Figure 3b.

Although not as pronounced as in the case of forward propagation, we see from Figure 4 that
the initial output bounds obtained via POLYCROWN are mostly tighter than the initial bounds

3Anonymous OSF-link for double blind review: https://osf.io/p23ga/?view_only=
85448974a7e34dd3bedb4c3c8d86987d

4We chose to reimplement α-CROWN due to difficulties with the execution of single benchmark instances
and for better accessiblity to data during the optimization process. We confirmred via testing that our im-
plementation produces the same bounds as the original implementation of α-CROWN, when the parameter
shared alpha=True is set.

7

https://osf.io/p23ga/?view_only=85448974a7e34dd3bedb4c3c8d86987d
https://osf.io/p23ga/?view_only=85448974a7e34dd3bedb4c3c8d86987d

Under review as a conference paper at ICLR 2024

(a) Relative improvement of POLYCROWN vs α-
CROWN

(b) Tightness of output bounds

Figure 4: Comparison of the tightness (sum of the widths) of the output bounds for each of the
ACAS-Xu properties sorted by the tightness after initialization of POLYCROWN to α-CROWN as
well as propagation of zonotopes and polynomial zonotopes.

(a) 256× 2 (b) 256× 4 (c) 256× 6

Figure 5: Relative improvement of POLYCROWN vs α-CROWN after initialization for different
MNIST networks. Note the logarithmic scale! For property 14 the initial POLYCROWN bounds
are 163 times tighter than the initial bounds obtained using α-CROWN.

of α-CROWN for large output bounds and significantly outperform the bounds obtained by
propagation of zonotopes or polynomial zonotopes. A closer look at the relative improvement
Lα−CROWN/LPOLYCROWN as shown in Figure 4a reveals that the bounds obtained by POLYCROWN
are on average 18% tighter, when Lα−CROWN≥100, while being on average 6% worse on the remain-
ing instances.

MNIST. We compare the performance of POLYCROWN to α-CROWN for all three networks
and all 15 images in the benchmark. However, as a single propagation of an input set through
a network is very efficient compared to a whole optimization run, we evaluate bounds tightness
after initialization for all patch sizes between 1 and 50 pixels, while only considering patch sizes in
{15, 20, 25} for the evaluation of optimized bounds.

The results after initialization again show that the initial bounds obtained by POLYCROWN can
significantly outperform the bounds obtained by linear relaxations in many cases. While there is
almost no improvement for the smaller 256 × 2 network, bound tightness for the 256 × 4 network
mostly improves whereas a relative improvement Lα−CROWN/LPOLYCROWN of up to 163× can be
observed for the output bounds on the largest 256× 6 network. We believe that the performance of
linear and polynomial relaxations is roughly on a similar scale, when most of a network’s neurons
are fixed – when the adversarial patches only have a small number of unfixed pixels in the left
Figure 5c – and similarly, when the majority of the neurons are crossing – when the patches consist
of a very large number of unfixed pixels in the right of Figure 5c. Large improvements seem to
happen between these two extremes, when the polynomial relaxations are able to compute bounds
in the intermediate layers that are tight enough for some neurons to still be fixed, while the lack
of tighness of the linear relaxations forces α-CROWN to start overapproximating these neurons,
leading to coarse output bounds.

8

Under review as a conference paper at ICLR 2024

(a) Tightness of output bounds for all MNIST
properties

(b) Tightness of output bounds for the first 110
properties. Note the logarithmic scale!

Figure 6: Comparison of the tightness (sum of the widths) of the output bounds for each of the
MNIST properties sorted by the tightness after initialization of POLYCROWN to α-CROWN.

Table 1: Comparison of the tightness (sum of the widths, ℓ1 norm) of the output bounds after a
timeout of one hour for the 5 MNIST properties where POLYCROWN performed worst compared
to α-CROWN after a 5-minute timeout.

POLYCROWN POLYCROWN-opt α-CROWN α-CROWN-opt

1545.61 41.15 2106.62 23.21
3.13 0.4032 2.08 0.4014

408.09 51.39 355.91 59.00
942.27 46.09 1343.97 71.86
260.83 16.88 264.85 15.84

Counterintuitively, optimization of the output bounds using a timeout of 5 minutes shows that the
tightness of the optimized linear bounds is oftentimes better than the results for optimized polyno-
mial bounds. This can be explained as the cost per iteration scales quadratically in the number of
unfixed input dimensions for POLYCROWN with quadratic ReLU relaxations in contrast to the lin-
ear relaxations of α-CROWN. While this difference in runtime was not significant in the ACAS-Xu
benchmark, in the MNIST benchmark, a single propagation of POLYCROWN was on average 5.2×
slower than α-CROWN for patches of size 15 and on average 7.6× slower for patches of size 25.
As expected, the iteration speed of α-CROWN did not change significantly with increasing patch
size.

To further investigate the potential of optimizable polynomial relaxations, we select the 5 properties
where our approach performed worst compared to α-CROWN and repeat the experiments with a
longer timeout of one hour. The results summarized in Table 1 show that POLYCROWN was able to
come significantly closer to α-CROWN on three of five instances and even significantly surpass α-
CROWN on the remaining two. Progress of the optimization runs is shown in Figure 9 in Appendix
A.3. Note that α-CROWN achieves a significantly higher iteration count than POLYCROWN.

5 CONCLUSION

Parameterized ReLU relaxations have been proposed for abstract interpretation of NNs with linear
symbolic intervals. These relaxations have allowed for the calculation of tighter output bounds by
optimization of their parameters. In this paper, we proposed the first parameterized ReLU relaxation
for propagation of polynomial symbolic intervals by taking arbitrary polynomials and shifting them
up or down by a sufficient amout to obtain valid ReLU overapproximations. We demonstrate in our
evaluation that our optimized polynomial relaxations can achieve significantly tighter output bounds
for many verification problems.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Matthias Althoff, Dmitry Grebenyuk, and Niklas Kochdumper. Implementation of taylor models
in cora 2018. In Goran Frehse (ed.), ARCH18. 5th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems, volume 54 of EPiC Series in Computing, pp. 145–173.
EasyChair, 2018. doi: 10.29007/zzc7. URL https://easychair.org/publications/
paper/9Tz3.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentia-
tion. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html.

Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T. Johnson, and Changliu Liu. First
three years of the international verification of neural networks competition (VNN-COMP). Int. J.
Softw. Tools Technol. Transf., 25(3):329–339, 2023.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neu-
ral networks. In Deepak D’Souza and K. Narayan Kumar (eds.), Automated Technology for
Verification and Analysis, pp. 251–268, Cham, 2017. Springer International Publishing. ISBN
978-3-319-68167-2.

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. BERN-NN: tight
bound propagation for neural networks using bernstein polynomial interval arithmetic. CoRR,
abs/2211.14438, 2022. doi: 10.48550/arXiv.2211.14438. URL https://doi.org/10.
48550/arXiv.2211.14438.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Patrick Henriksen and Alessio R. Lomuscio. Efficient neural network verification via adaptive re-
finement and adversarial search. In ECAI, volume 325 of Frontiers in Artificial Intelligence and
Applications, pp. 2513–2520. IOS Press, 2020.

Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. POLAR: A polynomial arithmetic
framework for verifying neural-network controlled systems. In Ahmed Bouajjani, Lukás Holı́k,
and Zhilin Wu (eds.), Automated Technology for Verification and Analysis - 20th International
Symposium, ATVA 2022, Virtual Event, October 25-28, 2022, Proceedings, volume 13505 of Lec-
ture Notes in Computer Science, pp. 414–430. Springer, 2022. doi: 10.1007/978-3-031-19992-9\
27. URL https://doi.org/10.1007/978-3-031-19992-9_27.

Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Verisig: verify-
ing safety properties of hybrid systems with neural network controllers. In Necmiye Ozay and
Pavithra Prabhakar (eds.), Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019,
pp. 169–178. ACM, 2019. doi: 10.1145/3302504.3311806. URL https://doi.org/10.
1145/3302504.3311806.

Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pappas, and Insup
Lee. Verisig 2.0: Verification of neural network controllers using taylor model precondition-
ing. In Alexandra Silva and K. Rustan M. Leino (eds.), Computer Aided Verification - 33rd
International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, vol-
ume 12759 of Lecture Notes in Computer Science, pp. 249–262. Springer, 2021. doi: 10.1007/
978-3-030-81685-8\ 11. URL https://doi.org/10.1007/978-3-030-81685-8_
11.

Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and Mykel J. Kochenderfer. Policy
compression for aircraft collision avoidance systems. In 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), pp. 1–10, 2016. doi: 10.1109/DASC.2016.7778091.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor

10

https://easychair.org/publications/paper/9Tz3
https://easychair.org/publications/paper/9Tz3
http://papers.nips.cc/paper_files/paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2211.14438
https://doi.org/10.48550/arXiv.2211.14438
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-031-19992-9_27
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-030-81685-8_11
https://doi.org/10.1007/978-3-030-81685-8_11

Under review as a conference paper at ICLR 2024

Kuncak (eds.), Computer Aided Verification - 29th International Conference, CAV 2017, Hei-
delberg, Germany, July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes in
Computer Science, pp. 97–117. Springer, 2017. doi: 10.1007/978-3-319-63387-9\ 5. URL
https://doi.org/10.1007/978-3-319-63387-9_5.

Philipp Kern, Marko Kleine Büning, and Carsten Sinz. Optimized symbolic interval propagation
for neural network verification. In 1st Workshop on Formal Verification of Machine Learning
(WFVML 2022) colocated with ICML 2022: International Conference on Machine Learning,
July 2022.

Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set representation
for reachability analysis. IEEE Trans. Autom. Control., 66(9):4043–4058, 2021. doi: 10.1109/
TAC.2020.3024348. URL https://doi.org/10.1109/TAC.2020.3024348.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open- and closed-
loop neural network verification using polynomial zonotopes. CoRR, abs/2207.02715, 2022. doi:
10.48550/arXiv.2207.02715. URL https://doi.org/10.48550/arXiv.2207.02715.

Jianglin Lan, Yang Zheng, and Alessio Lomuscio. Tight neural network verification via semidefinite
relaxations and linear reformulations. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022, pp. 7272–7280. AAAI Press, 2022. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/20689.

K. Makino and Martin Berz. Taylor models and other validated functional inclusion methods. In-
ternational Journal of Pure and Applied Mathematics, 4, 01 2003.

Ramon E Moore. Interval analysis, volume 4. Prentice-Hall Englewood Cliffs, 1966.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A.
Theodorou, and Byron Boots. Imitation learning for agile autonomous driving. Int. J. Robotics
Res., 39(2-3), 2020. doi: 10.1177/0278364919880273. URL https://doi.org/10.1177/
0278364919880273.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certi-
fying robustness to adversarial examples. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pp. 10900–10910, 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/29c0605a3bab4229e46723f89cf59d83-Abstract.html.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast and
effective robustness certification. In NeurIPS, pp. 10825–10836, 2018.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An abstract domain for
certifying neural networks. Proc. ACM Program. Lang., 3(POPL):41:1–41:30, 2019.

Jan Skowron and A. Gould. General complex polynomial root solver and its further optimization for
binary microlenses. CoRR, abs/1203.1034, 2012. URL http://arxiv.org/abs/1203.
1034.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and
Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6199.

Vincent Tjeng, Kai Yuanqing Xiao, and Russ Tedrake. Evaluating robustness of neural networks
with mixed integer programming. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=HyGIdiRqtm.

11

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1109/TAC.2020.3024348
https://doi.org/10.48550/arXiv.2207.02715
https://ojs.aaai.org/index.php/AAAI/article/view/20689
https://ojs.aaai.org/index.php/AAAI/article/view/20689
https://doi.org/10.1177/0278364919880273
https://doi.org/10.1177/0278364919880273
https://proceedings.neurips.cc/paper/2018/hash/29c0605a3bab4229e46723f89cf59d83-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/29c0605a3bab4229e46723f89cf59d83-Abstract.html
http://arxiv.org/abs/1203.1034
http://arxiv.org/abs/1203.1034
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm

Under review as a conference paper at ICLR 2024

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. In USENIX Security Symposium, pp. 1599–1614.
USENIX Association, 2018a.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In NeurIPS, pp. 6369–6379, 2018b.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.
net/forum?id=nVZtXBI6LNn.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
4944–4953, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
d04863f100d59b3eb688a11f95b0ae60-Abstract.html.

A APPENDIX

A.1 REPRESENTATION OF POLYNOMIALS

The efficiency of SIP with polynomial bounds is highly dependent on an efficient implementation
of addition of polynomials, multiplication of a polynomial by constant matrices, as well as elemen-
twise application of univariate polynomials and fast, but precise calculation of concrete lower and
upper bounds. Therefore, we utilize the polynomial representation developed for sparse polynomial
zonotopes by Kochdumper & Althoff (2021). In this setting, the tuple

p(x) = ⟨G,E, id⟩ , (24)

where G ∈ Rn×m, E ∈ Nd×m and id ∈ Nd, represents a multidimensional polynomial p : Rd →
Rn

p(x) =

m∑
i=1

(
d∏

k=1

xEki

k

)
Gi (25)

with m monomial terms. In the remainder of this paper, we sometimes just write polynomial instead
of multidimensional polynomial where it is clear from the context. The monomial coefficients for
the i-th monomial are stored in the i-th column Gi of the generator matrix and the corresponding
powers of the d variables are stored in the i-th column Ei of the exponent matrix. An identifier for
the k-th variable is stored in idk.

For example, the tuple 〈(
5 4 3 0
2 3 0 −7

)
,

(
0 1 2 0
0 1 0 2

)
,

(
1
2

)〉
(26)

is a representation of the polynomial

p(x1, x2) =

(
5
2

)
+

(
4
3

)
x1x2 +

(
3
0

)
x2
1 +

(
0
−7

)
x2
2 . (27)

Given polynomials p : Rd → Rn, p(x) = ⟨Gp, Ep, id⟩ and q : Rd → Rn, q(x) = ⟨Gq, Eq, id⟩
depending on the same input variables x and a matrix A ∈ Rt×n, a representation of the addition of
two polynomials is given as

p(x) + q(x) = ⟨[Gp Gq] , [Ep Eq] , id⟩ . (28)

12

https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html

Under review as a conference paper at ICLR 2024

Duplicate monomials – i.e. duplicate columns in [Ep Eq] – can be summarized by only keeping
one of these columns along with the sum of the corresponding columns in the new generator matrix
[Gp Gq]. If both polynomials share the same exponent matrix (i.e. Ep = Eq), there are no redundant
monomials and the expression reduces to

p(x) + q(x) = ⟨Gp +Gq, E, id⟩ , (29)

thus saving the cost of summarizing duplicate monomials.

The linear map also admits an efficient representation by multiplication with the generator matrix
Gp:

A p(x) = ⟨A Gp, Ep, id⟩ (30)

For ease of notation, we now let p(x) = ⟨G,E, id⟩ and additionally consider a polynomial f(y) :
Rn → Rn. The component-wise polynomial map is defined as the polynomial r(x) : Rd → Rn

where ri(x) = fi(pi(x)), ∀i ∈ [n]. In that case, all fi(x) =
∑k

j=0 aijx
j are univariate polyno-

mials, each of which can be described by a vector (ai0, ai1, . . . , aik) of monomial coefficients. We
can then write fi(pi(x)) =

∑k
j=0 aijpi(x)

j . Since addition of polynomials was already introduced
above, we only need to consider the operation of raising a polynomial to a given power j, which is
given by

p(x)j =
〈
Ĝ, Ê, id

〉
, (31)

with
Ĝ =

[
Ĝ1 Ĝ2 . . . Ĝ(j+m−1

m−1)

]
Ê =

[
Ê1 Ê2 . . . Ê(j+m−1

m−1)

]
Ĝi =

(
j

α1,α2,...,αm

)∏m
l=1 G

αl

il Êi =
∑m

l=1 αlEl ,

where
(

j
α1,α2,...,αm

)
is the multinomial coefficient and the index 1 ≤ i ≤

(
j+m−1
m−1

)
enumerates the

possible combinations of α1 + α2 + · · · + αm = j such that α ≥ 0. Note that this number is in
Θ(mj) for fixed j ∈ N.

The validity of this result can be seen from expansion of p(x)j using the multinomial theorem:

pi(x)
j =

(
m∑
l=1

(
d∏

k=1

xEkl

k

)
Gil

)j

(32)

=
∑

α1+α2+···+αm=j
α≥0

(
j

α1, α2, . . . , αm

) m∏
l=1

((
d∏

k=1

xEkl

k

)αl

Gαl

il

)
(33)

=
∑

α1+α2+···+αm=j
α≥0

(
j

α1, α2, . . . , αm

) m∏
l=1

(
x
(
∑m

l=1 αlEkl)
k

) m∏
l=1

Gαl

il . (34)

Concrete lower and upper bounds p and p of a polynomial p(x) = ⟨G,E, id⟩ can be efficiently
computed via interval arithmetic. To further increase the efficiency and also the tightness of the
bounds calculation, we first normalize the input variables to x ∈ [−1, 1]d (Althoff et al., 2018). and
then obtain:

p = G+E +G−E p = G+E +G−E (35)

with

E =

 e1
...
em

 ei =

1, Eki = 0, ∀k (constant monomial)
0, Eki mod 2 = 0, ∀k
−1, otherwise

E =

1
...
1

 .

Note that normalization only has to be done once before propagating the input set through the net-
work. When the number of monomial terms m of a polynomial p(x) exceeds a predefined threshold
nterms, we can compute concrete bounds m,m for the m− nterms monomials whose columns Gi

in the generator matrix have the smallest L2-norm, remove these monomials and add m (m) to the
constant monomial to get a valid lower (upper) bounding polyomial p′(x) with less monomial terms.

13

Under review as a conference paper at ICLR 2024

x y

n̂1

n̂2

n1

n2

1

−1

1

1

+0.2

−0.2

ReLU

ReLU

[−1, 1]

n̂1 ≥ x+ 0.2

n̂1 ≤ x+ 0.2

n̂1 ∈ [−0.8, 1.2]

n̂2 ≥ −x− 0.2

n̂2 ≤ −x− 0.2

n̂2 ∈ [−1.2, 0.8]

n1 ≥ 0.5x2 + 0.6x+ 0.1

n1 ≤ 0.2x2 + 0.6x+ 0.4

n2 ≥ 0

n2 ≤ 0.2x2 − 0.4x+ 0.2

y ≥ 0.5x2 + 0.6x+ 0.1

y ≤ 0.4x2 + 0.2x+ 0.6

n1 ≥ 0.008x2 + 0.956x+ 0.19

n1 ≤ 0.134x2 + 0.576x+ 0.49

n2 ≥ −0.006x2 − 0.956x− 0.19

n2 ≤ −0.041x2 − 0.564x+ 0.60

y ≥ 0.001x2

y ≤ 0.093x2 + 0.012x+ 1.095

Figure 7: Propagation of polynomials through an example network. Results of the static quadratic
relaxations used in CROWN (Zhang et al., 2018) are shown in black. Differences when propagation
is optimized to minimize the interval enclosure of the output are shown in blue. All coefficients are
rounded to three significant digits.

(a) Relaxations for ReLU(n̂1) and ReLU(n̂2) (b) Polynomial symbolic bounds on the output y

Figure 8: Polynomial ReLU relaxations and symbolic output bounds for our example network. The
result of the static relaxations are shown as dashed lines. The results after optimizing the relaxations
giving tighter output bounds are shown as solid lines.

A.2 EXAMPLE

To illustrate the positive effect of the proposed optimizable ReLU relaxations, we show how they
can be used to obtain better bounds on the output neuron of the example network shown in Figure 7
when compared to forward propagation of symbolic intervals using the static relaxations used in
CROWN (Zhang et al., 2018). The symbolic intervals for n̂1 and n̂2 are calculated according to
Equation 2 as (

n̂1

n̂2

)
≥ W+x+W−x+ b =

(
1
0

)
x+

(
0
−1

)
x+

(
0.2
−0.2

)
where the lower and upper bounding functions of x are just x, since no overapproximation was
necessary yet. The upper bound is calculated similarly.

We then use interval arithmetic to obtain concrete bounds n̂1 ∈ [−0.8, 1.2] and n̂2 ∈ [−1.2, 0.8] on
the pre-ReLU activations.

Using these concrete bounds, we can apply the static ReLU-relaxations given in Equations 8 and 9
proposed by Zhang et al. (2018) to obtain

ReLU(n̂1) = 0.5n̂2
1 + 0.4n̂1 ReLU(n̂1) = 0.2n̂2

1 + 0.52n̂1 + 0.2

ReLU(n̂2) = 0 ReLU(n̂2) = 0.2n̂2
2 + 0.48n̂2 + 0.2 ,

which are represented by the dashed lines in Figure 8a.

14

Under review as a conference paper at ICLR 2024

Symbolic bounds for n̂1, n̂2 can then be calculated according to Equation 4. We only show the
process for n̂1:

n1 ≥ ReLU(x+ 0.2) = 0.5(x+ 0.2)2 + 0.4(x+ 0.2) = 0.5x2 + 0.6x+ 0.1

n1 ≤ ReLU(x+ 0.2) = 0.2(x+ 0.2)2 + 0.52(x+ 0.2) + 0.2 = 0.2x2 + 0.6x+ 0.4 .

Finally, symbolic bounds for the output neuron y are then again calculated via the formula in Equa-
tion 2 as

y ≥ (1 1)

(
0.5x2 + 0.6x+ 0.1

0

)
+ (0 0)

(
0.2x2 + 0.6x+ 0.4
0.2x2 − 0.4x+ 0.2

)
= 0.5x2 + 0.6x+ 0.1 (36)

y ≤ (1 1)

(
0.2x2 + 0.6x+ 0.4
0.2x2 − 0.4x+ 0.2

)
+ (0 0)

(
0.5x2 + 0.6x+ 0.1

0

)
= 0.4x2 + 0.2x+ 0.6 , (37)

which are shown as dashed lines in Figure 8b. Using interval arithmetic, we can obtain concrete
bounds of y ∈ [−0.5, 1.2]. Exact optimization yields a tighter interval enclosure of y ∈ [−0.08, 1.2].

When our parameterized ReLU relaxations are used to optimize the monomial coefficients of the
ReLU relaxations in order to obtain tighter concrete bounds on y, we can indeed improve the ob-
tained interval enclosure to y ∈ [0, 1.2]. The resulting symbolic bounds are shown as solid lines in
Figure 8b. Due to our flexible parameterization, the optimization process was able to find the ReLU
relaxations (shown in Figure 8a as solid lines) that allow the symbolic lower bounds of n1 and n2 to
almost completely cancel out, when calculating the symbolic lower bound of y.

A.3 FURTHER EVALUATION RESULTS

Figure 9: Comparison of the tightness (sum of the widths) of the output bounds after a timeout of one
hour for the 5 MNIST properties where POLYCROWN performed worst compared to α-CROWN.

15

	Introduction
	Background
	Neural Networks
	Symbolic Interval Propagation for Neural Network Verification
	Backward Substitution

	Parameterized Polynomial ReLU Relaxations
	Optimization of Output Bounds

	Evaluation
	Conclusion
	Appendix
	Representation of Polynomials
	Example
	Further Evaluation Results

