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Abstract

Factual knowledge extraction aims to explicitly001
extract knowledge parameterized in pre-trained002
language models for application in downstream003
tasks. While prior work has been investigating004
the impact of supervised fine-tuning data on the005
factuality of large language models (LLMs), its006
mechanism remains poorly understood. We007
revisit this impact through systematic experi-008
ments, with a particular focus on the factuality009
gap that arises when fine-tuning on known ver-010
sus unknown knowledge. Our findings show011
that this gap can be mitigated at the inference012
stage, either under out-of-distribution (OOD)013
settings or by using appropriate in-context014
learning (ICL) prompts (i.e., few-shot learn-015
ing and Chain of Thought (CoT)). We prove016
this phenomenon theoretically from the per-017
spective of knowledge graphs, showing that the018
test-time prompt may diminish or even over-019
shadow the impact of fine-tuning data and play020
a dominant role in knowledge extraction. Ulti-021
mately, our results shed light on the interaction022
between finetuning data and test-time prompt,023
demonstrating that ICL can effectively compen-024
sate for shortcomings in fine-tuning data, and025
highlighting the need to reconsider the use of026
ICL prompting as a means to evaluate the effec-027
tiveness of fine-tuning data selection methods.028

1 Introduction029

Pre-trained large language models (LLMs) store030

extensive parameterized knowledge (Meng et al.,031

2022; Petroni et al., 2019a; Allen-Zhu and Li,032

2024), which can be extracted and applied to var-033

ious downstream tasks through different prompt034

designs (Chen et al., 2024; Wang et al., 2024b).035

However, querying LLMs with naturally phrased036

questions may increase the likelihood of generat-037

ing incorrect answers, leading to model hallucina-038

tions (Zhang et al., 2024; Huang et al., 2025). Pre-039

vious research has shown that fine-tuning LLMs040

can enhance their factuality (Wei et al., 2022a), yet041
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Figure 1: Overview: In-context learning (ICL) prompts
can help reduce the factuality gap, as they enhance the
connectivity of the graph of the FT-Unknown LLM
by incorporating demonstrations like (s′, a′), thereby
narrowing the factuality gap. FT-Unknown LLM and
FT-Known LLM refer to LLM fine-tuned on unknown
and known knowledge, respectively.

the impact varies significantly depending on the 042

dataset. For instance, Gekhman et al. (2024) and 043

Ghosal et al. (2024) indicate that fine-tuning on 044

well-established or popular knowledge improves 045

model performance, while fine-tuning on unknown 046

or unpopular data can have the opposite effect. 047

Previous research has extensively explored how 048

different fine-tuning datasets impact the factual- 049

ity of LLMs(Gekhman et al., 2024; Kazemi et al., 050

2023; Joshi et al., 2024; Ghosal et al., 2024). In 051

this work, however, we find that this factuality gap 052

caused by finetuning data is highly fragile. Modify- 053

ing the test-time prompt, such as through few-shot 054

examples (Brown et al., 2020) or chain-of-thought 055

(CoT) (Wei et al., 2022b), can significantly reduce 056

or even reverse the gap. Our work suggests that 057

the factuality gap caused by fine-tuning data can be 058

understood from a novel perspective of knowledge 059

graph modeling. 060

To gain deeper insight into the nature of this fac- 061

tuality gap, we pose the following three intriguing 062

research questions: RQ1: How to understand the 063

factuality gap caused by finetuning data? RQ2: 064

Can the factuality gap be easily mitigated? RQ3: 065

What can we do to utilize this finding in knowledge 066

extraction? We select two types of models, the 067

1



Llama-3.1-8B (Dubey et al., 2024) and Mistral-7B-068

v0.3 (Jiang et al., 2023), in both their Base and069

Instruct versions, and conduct experiments on two070

task categories: question answering (QA) and open-071

ended generation. These experiments allow us to072

answer the above questions. In this paper, our main073

contributions can be summarized as follows:074

• Through extensive experiments, we validate the075

existence of a factuality gap introduced by fine-076

tuning data and demonstrate that this gap dimin-077

ishes as the distributional distance of the test set078

increases. Furthermore, we identify in-context079

learning at inference time as an effective ap-080

proach to mitigate this gap.081

• We conduct an in-depth analysis of the factuality082

gap and offer a deeper understanding from the083

perspective of knowledge graphs. To the best084

of our knowledge, we are the first to prove this085

phenomenon theoretically through the lens of086

graph modeling.087

• Building on our empirical and theoretical work,088

we leverage this finding to explore its potential089

applications, especially introduce novel insights090

into the evaluation of data selection algorithms.091

2 Related Works092

2.1 Factual Knowledge Extraction in LLM093

LLMs store extensive world knowledge within094

their parameters, and ineffective extraction is a ma-095

jor cause of model hallucinations (Kandpal et al.,096

2023; Mallen et al., 2023). Therefore, understand-097

ing knowledge extraction is crucial for improving098

LLM efficiency and performance. Allen-Zhu and099

Li (2024) integrates pretraining and fine-tuning to100

highlight the importance of data augmentation for101

extractable knowledge. Yin et al. (2024) introduces102

the concept of a knowledge boundary, where knowl-103

edge that cannot be correctly accessed under any104

expression is considered outside the model’s bound-105

ary. While prior work focuses on either pretraining106

and fine-tuning phases or extraction during infer-107

ence, we study the interaction between model fine-108

tuning and inference to offer a more comprehensive109

analysis of factual knowledge extraction.110

2.2 Finetuning Data and Model Factuality111

Recent studies have explored the impact of fine-112

tuning data on model factuality. Kang et al. (2024)113

suggests that unfamiliar examples in the fine-tuning114

dataset affect how the model handles unfamiliar test115

instances, but they do not address how these exam- 116

ples influence the overall factuality of the model. 117

Gekhman et al. (2024) empirically demonstrate that 118

fine-tuning on unknown knowledge negatively im- 119

pacts factuality, attributing this to overfitting on 120

such data during training. Ghosal et al. (2024) 121

shows that finetuning on lesser-known facts leads 122

to worse factuality because of less attention on the 123

entity tokens during training. Lin et al. (2024b); 124

Liu et al. (2024b) attempt to improve the factu- 125

ality of the model by refining the data used for 126

fine-tuning. Extending prior work, we examine the 127

impact of fine-tuning data on model factuality from 128

the graph modeling angle, and propose a method 129

to reduce its adverse effects. 130

2.3 In-context Learning and Model Factuality 131

As a test-time method, ICL plays an important 132

role in LLM knowledge extraction capabilities, and 133

many studies have explored how ICL affects model 134

factuality. Some works focus on using ICL for 135

knowledge editing (Zheng et al., 2023), while oth- 136

ers investigate how the construction of ICL exam- 137

ples influences knowledge extraction (Wang et al., 138

2024a; Wu et al., 2025; Yang et al., 2024; Lin et al., 139

2024a). In contrast, our work steps further to study 140

the impact of ICL prompts on the factuality of 141

fine-tuned models, rather than improving the ICL 142

construction itself. 143

3 Preliminaries and Setup 144

3.1 Factual Knowledge 145

Following prior work on factual knowledge in 146

LLMs (Ghosal et al., 2024; Petroni et al., 2019b), 147

we represent each factual statement as a triplet 148

(s, r, a), where s is the subject entity, r is the 149

relation type, and a is the answer. This triplet 150

structure is widely used in benchmarks such as 151

LAMA (Petroni et al., 2019b), KILT (Petroni et al., 152

2021), and TruthfulQA (Lin et al., 2022). Formally, 153

we denote a piece of knowledge as k = (s, r, a) ∈ 154

S ×R×A, where S ,R, and A represent the sets 155

of all subject entities, relation types, and answers, 156

respectively. This abstraction provides a unified 157

format for evaluating whether a language model 158

contains and can retrieve specific facts. 159

3.2 Knowledge Extraction in LLMs 160

To analyze the mechanism of knowledge extrac- 161

tion, we consider a simplified one-layer transformer 162

architecture, with fixed non-orthogonal embed- 163
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dings E ∈ R|T |×d and the vocabulary T . An164

input sequence of n tokens is written as X =165

(x1, . . . , xn) ∈ T . The model computes its out-166

puts as167

f(X;WKQ,W V ) = σ(Att(E(X);WKQ,W V )),168

where WKQ,W V ∈ Rd×d are learnable parame-169

ters, Att() is the self-attention function and σ() is170

the function that predict next token from the prob-171

ability distribution. In this paper, we focus on the172

prediction for the next token, given by the final173

output vector f[:,−1](X;W,V ). For more detailed174

model settings, please refer to Appendix A.1.175

Given a factual triplet (s, r, a) ∈ T 3, we ask176

whether the model can retrieve the answer a when177

provided with an appropriate context. Specifically,178

we allow any context sequence {x1, . . . , xn−1} ∈179

T \ {s, r, a}, with s and r. If the model predicts a180

as the next token, we say that the knowledge has181

been successfully extracted.182

Definition 3.1 (Unknown Knowledge). A token183

triple (s, r, a) ∈ T 3 is said to be an unknown184

knowledge if, for all contexts {x1, . . . , xn−1} ⊂185

T \ {s, r, a}, f[:,−1](x1, . . . , xn−1, s, r) ̸= a.186

Definition 3.2 (Known Knowledge). A token triple187

(s, r, a) ∈ T 3 is said to be a known knowledge188

if there exists a context {x1, . . . , xn−1} ⊂ T \189

{s, r, a} such that f[:,−1](x1, . . . , xn−1, s, r) = a.190

In practice, we approximate this distinction us-191

ing few-shot prompting. A triplet is considered192

known if the model produces the correct answer193

in at least one prompt. Otherwise, it is treated as194

unknown. This empirical definition enables gener-195

alization across prompt templates while preserving196

alignment with the formal setting above.197

4 Understanding the Factuality Gap from198

Finetuning on Known vs Unknown199

Knowledge (RQ1)200

In this section, we examine the factuality gap201

in models fine-tuned on known versus unknown202

knowledge, under both in-distribution and out-of-203

distribution scenarios. We present comprehensive204

experimental observations and support them with205

corresponding theoretical analysis.206

4.1 Factuality Gap under In-distribution207

Generalization208

Settings. We evaluate the impact of fine-tuning on209

known versus unknown factual knowledge across210

two task settings: QA and open-ended generation. 211

For QA task, we follow the experimental proto- 212

col of Gekhman et al. (2024), fine-tuning both 213

base and instruction-tuned variants of LLaMA3.1- 214

8B 1 and Mistral-7B-v0.3 2 on known and unknown 215

subsets derived from EntityQuestions (Sciavolino 216

et al., 2021), PopQA (Mallen et al., 2023), and 217

MMLU (Hendrycks et al., 2020). Exact match 218

accuracy is used as the evaluation metric. For open- 219

ended generation task, we follow Kang et al. (2024) 220

using the WikiBios dataset (Stranisci et al., 2023). 221

The dataset is split analogously into known and un- 222

known subsets, and performance is measured using 223

the FActScore metric (Min et al., 2023). All mod- 224

els are evaluated under both early stopping and full 225

convergence conditions. Implementation details 226

are provided in Appendix B. 227

Obs. 1: Factuality gaps widen with training 228

but are consistently smaller in instruction-tuned 229

models. Table 1 reports results for models at early 230

stopping and full convergence. We observe that 231

the average factuality gap increases as training pro- 232

gresses. Across both Llama and Mistral architec- 233

tures, instruction-tuned models consistently exhibit 234

smaller gaps than their base counterparts. This 235

pattern also holds on the WikiBios dataset. 236

4.2 Factuality Gap under Out-of-distribution 237

Generalization 238

Settings. Beyond in-distribution (ID) generaliza- 239

tion, we extend factuality generalization into other 240

two out-of-distribution (OOD) types based on the 241

distance between the test and training data patterns: 242

(1) near in-distribution generalization and (2) open- 243

world model factuality. In the following, we ex- 244

amine the effects of unknown data on each type 245

of factuality. We employ all-MiniLM-L6-v23 em- 246

bedding model (Reimers and Gurevych, 2019) to 247

extract and process data patterns from both OOD 248

and ID test sets. By comparing the cosine similar- 249

ity between these patterns, we are able to measure 250

the distance between OOD and ID data. 251

We conduct validation experiments using mod- 252

els fine-tuned on the Entity Questions dataset in 253

Section 4.1. For near in-distribution tasks, we sam- 254

ple non-overlapping data from the Entity Questions 255

1https://huggingface.co/meta-llama/{Llama-3.1-8B,
Llama-3.1-8B-Instruct}

2https://huggingface.co/mistralai/{Mistral-7B-v0.3,
Mistral-7B-Instruct-v0.3}

3https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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Dataset Split
Llama Llama-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

EQ
Unknown 28.25 24.80 28.75 25.00 21.15 18.00 26.00 20.90

Known 40.30 38.50 39.20 37.70 36.05 34.45 35.40 34.50

PopQA
Unknown 31.28 26.98 30.09 27.33 26.94 20.54 25.26 19.59

Known 36.81 35.55 35.86 35.09 33.00 31.67 32.26 31.63

MMLU
Unknown 34.94 33.90 33.64 33.51 28.09 26.52 31.61 25.87

Known 37.49 37.10 35.92 34.88 35.60 34.81 33.44 32.14

WikiBios
Unknown 55.50 46.90 47.30 36.67

Known 58.25 49.69 49.16 39.58

Table 1: QA tasks exact match accuracy and WikiBios FActScore evaluation. ES: Early Stop, Con.: Convergence.
Llama: Llama-3.1-8B, Llama-Instrcut: Llama-3.1-8B-Instruct, Mistral: Mistral-7B-v0.3, Mistral-Instruct: Mistral-
7B-Instruct-v0.3

and PopQA datasets to create near in-distribution256

test sets, eq_ood and pop_ood. For the open-257

world task, we choose MMLU to create a com-258

plete mmlu_ood set, which provides more diverse259

data and significantly different question formats.260

The cosine similarities between eq_ood, pop_ood,261

mmlu_ood and the ID test set are 0.86, 0.82 and262

0.55 respectively. More details about experiments263

can be found in Appendix B.4.264

Obs. 2: Factuality gaps persist on the OOD265

data but vanish under strong distribution shifts.266

As shown in Table 2, Llama3.1-8B fine-tuned on267

known data consistently outperforms its unknown-268

trained counterpart on both eq_ood and pop_ood,269

with gaps of 9% and 4% at early stopping, and270

7.5% and 8% at convergence. Similar trends hold271

for Mistral. However, on the mmlu_ood dataset,272

which is more semantically distant, the factuality273

gap nearly disappears across all models.274

4.3 A Graph-Theoretic Understanding of275

Factuality Gap276

Theoretical Insight. We present a formal graph-277

theoretic framework for analyzing factuality in278

LLMs. Prior work has explored knowledge extrac-279

tion empirically using graphs (Tang et al., 2024; Liu280

et al., 2024a), but lacks a principled account of gen-281

eralization. We show that fine-tuning induces an282

edge-completion process over a latent knowledge283

graph, where one-hop connectivity captures factual284

prediction. This explains why known knowledge285

enables stronger generalization and why the factual-286

ity gap vanishes under semantic shift. Our analysis287

provides the first theoretical explanation of factual-288

ity emergence and decay in LLMs.289

Let Gr = (V, Er, E sim) be a directed graph de-290

fined under a specific relation r. The node set291

V = {t1, t2, . . . , t|V|} consists of entity tokens292

drawn from the LLM’s token space. The edge set 293

Er = {(vs, va) ∈ V2 | f[:,−1](s, r) = a} captures 294

explicit relational knowledge: an edge from vs to 295

va exists if the model, when given the input token 296

sequence (s, r), predicts a as the next token. The 297

similarity edge set E sim
t = {(vt, vt′) ∈ {t} × V | 298

t′ ̸= t and ∥t− t′∥2 ≤ ϵ} represents implicit con- 299

nections based on embedding similarity: an edge 300

from t to t′ exists if the distance between their em- 301

beddings is less than ϵ. A more detailed definition 302

is provided in Appendix A.1. 303

Memorizing Knowledge as an Edge- 304

Completion Process. Under the graph-theoretic 305

formulation, SFT can be viewed as an edge- 306

completion process through which the LLM 307

acquires new one-hop knowledge. Formally, this 308

corresponds to augmenting the internal knowledge 309

graph by adding edges that connect previously 310

disjoint or weakly connected subgraphs, thereby 311

encoding new relational facts into the model. 312

Lemma 4.1 (Memorizing Knowledge as an Edge– 313

Completion Process). Let Dr be the training 314

dataset for relation r. For a knowledge triple 315

k = (s, r, a) ∈ Dr, let Gs = (Vs, E sim
s ) and 316

Ga = (Va, E sim
a ) be the subgraphs connected to s 317

and a via similarity edges. Then after memorizing 318

k, the relation graph Gr is updated as Gr ← Gr ∪ 319

{(vi, vj) | (vi, vj) ∈ Vs × Va, f[:,−1](i, r) = j}. 320

Remark 1. We interpret the memorization of 321

knowledge in LLMs as an edge-completion pro- 322

cess on the relation graph. The formal justification 323

is provided in Appendix A.2. Notably, while the 324

update considers all candidate pairs in Vs × Va, 325

only a subset of edges,specifically those satisfying 326

f[:,−1](i, r) = j, are actually added. In particular, 327

there always exists at least one edge (vs, va) added 328

to the graph. 329
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Dataset Split
Llama Llama-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

ID eq_id
Unknow 28.25 24.80 28.75 25.00 21.15 18.00 26.00 20.90
Known 40.30 38.50 39.20 37.70 36.05 34.45 35.40 34.50

NID
eq_ood

Unknown 30.00 28.93 31.67 30.43 32.17 23.73 30.43 24.13
Known 39.03 36.60 38.17 37.03 34.83 33.00 34.17 32.43

pop_ood
Unknown 28.17 23.79 19.00 19.42 23.13 20.19 25.89 22.74

Known 32.58 32.05 27.54 25.47 28.69 27.40 29.71 28.06

OW mmlu_ood
Unknown 66.11 66.70 69.23 69.30 62.63 62.46 62.25 62.53

Known 67.05 67.09 69.51 69.47 62.98 63.54 60.74 60.70

Table 2: Generalization factuality. ID: in-distribution, NID: near in-distribution, OW: open world.

The generalization capability of SFT is reflected in330

the emergence of new connections between previ-331

ously unlinked subgraphs. Let G′r = (V, E ′r, E sim)332

denote the relation graph internal to the LLM af-333

ter fine-tuning. If there exists a pair (s′, a′) ∈334

Vs × Va such that the corresponding knowledge335

triple (s′, r, a′) /∈ Dr, and (vs′ , va′) /∈ Er but336

(vs′ , va′) ∈ E ′r, then the model has successfully337

generalized beyond the training data by inferring338

the unseen triple (s′, r, a′).339

Factuality Gap Explained via Differential340

Connectivity. If a knowledge triple (s, r, a) is341

present in the training set Dr, few-shot prompt-342

ing can be viewed as temporarily injecting edges343

{(vs′i , va′i)}, where each (s′i, r, a
′
i) is a support344

triple, to connect Vs and Va. This mechanism will345

be presented in Section 5.3. Unknown knowledge346

under few-shot prompting typically arises when347

the connectivity between vs and vs′i , or between348

va and va′i , is weak, which is often due to sparsity349

in the induced subgraphs, particularly when s or350

a corresponds to a low-degree entity. As a result,351

fine-tuning on such unknown knowledge induces352

only limited updates to the relation graph, thereby353

reducing the model’s capacity to generalize across354

the domain r. Figure 2 illustrates the process of355

adding edges when LLM finetuned on different356

types of knowledge.357

Theorem 4.1 (Factuality Gap as a Connectiv-358

ity Gap in Knowledge Graphs). Let Gkn =359

(V, Ekn, E sim) and Gunk = (V, Eunk, E sim) be knowl-360

edge graphs induced by LLMs fine-tuned on known361

and unknown knowledge, respectively. Let (s, r, a)362

be a test triple sampled uniformly at random from363

a fixed test set. Define indicator variables Zkn =364

1{(vs, va) ∈ Ekn} and Zunk = 1{(vs, va) ∈ Eunk}.365

Assume edges under relation r are uniformly dis-366

tributed and test triples are uniformly sampled over367

their support. Then the expected factuality gap sat-368

s1

s0 a0

a1

s2 a2

sim sim

Finetuned on known knowledge
(s0,r,a0)

s1

s0 a0

a1

s2 a2

sim sim

r

r

r

Finetuned on unknown knowledge
(s2,r,a2)

Figure 2: Memorizing a known knowledge triple
(s0, r, a0) generalizes to memorizing (s1, r, a1) but
memorizing an unknown knowledge triple (s2, r, a2)
can not generalize.

isfies E[Zkn − Zunk] = ∆fact ∝ |Ekn| − |Eunk| > 0. 369

Remark 2. Theorem 4.1 interprets the factuality 370

gap as a direct consequence of differences in one- 371

hop connectivity induced by fine-tuning. Under 372

uniform sampling assumptions, the expected gap 373

in one-hop accuracy reflects the difference in the 374

number of factual edges established in the graph. 375

A detailed proof is provided in Appendix A.3. 376

OOD Generalization and the Vanishing Gap. 377

As the test distribution diverges from the train- 378

ing graph structure, both known and unknown 379

knowledge graph Gkn,Gunk become equally less 380

overlapped to the OOD knowledge graph. Conse- 381

quently, as the knowledge graph corresponding to 382

the training data domain becomes nearly disjoint 383

from that of the test data domain, the factuality gap 384

approaches zero. 385

Theorem 4.2 (Decay of Factuality Gap Under 386

Distributional Shift). Let cos⟨Dtest,Dtrain⟩ := 387

Ex∼Dtest, x′∼Dtrain⟨x, x′⟩ denote the semantic simi- 388

larity between the test and training distributions, 389

where x, x′ are unit-normalized representations. 390

Then, the factuality gap ∆fact under OOD eval- 391

uation decreases as the semantic similarity van- 392

ishes: if cos⟨Dtest,Dtrain⟩ → 0, the factuality gap 393

∆fact → 0. 394
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Dataset
Llama Llama-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.
E

Q U 41.55+13.3 38.95+14.2 41.00+12.3 37.40+12.4 35.35+14.2 32.95+15.0 35.25+9.25 30.05+9.15

K 43.45+3.15 42.20+3.70 41.20+2.00 40.70+3.00 38.25+2.20 37.95+3.50 33.15−2.25 32.65−1.85

PQ

U 39.82+8.54 37.89+10.91 35.06+4.97 34.01+6.68 35.93+8.99 35.76+15.22 31.46+6.20 31.32+11.73

K 38.77+1.96 38.66+3.11 35.55−0.31 36.18+1.09 35.93+2.93 35.90+4.23 31.63−0.63 31.84+0.21

M
U U 54.80+19.9 54.60+20.7 64.99+31.4 65.32+31.8 55.39+27.3 55.13+28.6 58.00+26.4 60.09+34.2

K 67.60+30.1 67.86+30.8 69.30+33.40 68.84+34.0 58.46+22.9 58.39+23.6 61.07+27.6 60.94+28.8

W
B U 55.20−0.30 48.32+1.42 47.93+0.63 37.99+1.32

K 58.20−0.05 50.85+1.16 50.58+1.42 40.22+0.64

Table 3: Performance of the fine-tuned model with few-shot and few-shot CoT. EQ: Entity Questions, PQ: PopQA,
MU: MMLU, WB: WikiBios. Exact Match Accuracy for QA tasks and FactScore for WikiBios, with underlined
results for few-shot and non-underlined for few-shot CoT. The small number in the bottom right corner represents
the improvement or decline in current performance relative to the performance without using few-shot learning.

Remark 3. In practice, we compute the semantic395

similarity using an external embedding model. We396

assume that the resulting scores closely approxi-397

mate those that would be obtained using the inter-398

nal representations of the LLM. A formal proof of399

Theorem 4.2 is provided in Appendix A.4.400

5 Can Fatcuality Gap be Easily401

Mitigated? (RQ2)402

5.1 ICL Mitigates the Factuality Gap403

Settings. We evaluate all models and tasks from404

Section 4 using few-shot and few-shot CoT prompt-405

ing. Few-shot examples are selected from the406

Known training data. For CoT, GPT-4o4 generates407

entity-level analyses to construct reasoning chains,408

which are integrated into the CoT prompts. The409

format is shown below.410

Question:{} Analysis:{} Answer:{}
411

We construct three prompt sets and evaluate two412

prompting variants: with and without CoT. All413

models, including Known and Unknown, are eval-414

uated using the same prompts. The prompt set415

yielding the highest performance on the Unknown416

model is reported. For generation tasks, we use417

few-shot prompting only, following the same ex-418

ample selection strategy. Full prompt details are419

provided in Appendix C.420

Obs. 3: In-context learning narrows the fac-421

tuality gap, especially with few-shot CoT. Table422

3 presents a comparison of the results obtained423

through few-shot or few-shot CoT inference after424

training different models on various datasets. We425

4https://openai.com/index/gpt-4o-system-card/

can observe that, in most cases, after using few- 426

shot learning, the performance on the Unknown 427

split improves more significantly compared to the 428

Known split. This suggests that the factuality gap 429

can be mitigated or even fully eliminated. Addi- 430

tionally, we observe the following points: 1) The 431

gap in models with early stopping is more easily 432

mitigated. 2) The factuality gap of the Instruct 433

model is easier to mitigate than Base model, espe- 434

cially in the case of Convergence. In MMLU and 435

WikiBios, using few-shot learning sometimes even 436

increases the performance gap. This may be due to 437

the particularities of these two tasks compared to 438

regular QA tasks. The former is a comprehensive 439

dataset with complex and varied question formats, 440

while the latter is an open-ended generation task, 441

both of which result in a more complex factuality 442

gap pattern. 443

5.2 Ablation study 444

To better understand how in-context learning mit- 445

igates the factuality gap, we conduct ablation ex- 446

periments using the Llama-3.1-8B model on the 447

Entity Questions dataset. Full details are provided 448

in Appendix D. 449

Obs. 4: All of example source, CoT reasoning 450

and question format critically affect factual gen- 451

eralization. We conduct an ablation study on the 452

composition of the prompt, separately examining 453

the source of examples in few-shot prompts and 454

the impact of CoT. We validated the effectiveness 455

of Known examples and CoT, as shown in Figure 3. 456

We also study the impact of changing the prompt 457

format on the factuality gap. We use GPT-4o to 458

rephrase these questions in three different formats 459

and find that the performance decline in all cases, 460
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Figure 3: Ablation study of few-shot examples and CoT.
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Figure 4: Ablation study of prompt formulation. We use
three levels of rephrasing: Minor, Moderate, Radical.

and the factuality gap remains large, which is illus-461

trated in Figure 4.462

5.3 Understanding the Role of ICL463

ICL prompts act as subgraph injections that464

reduce the factuality gap. We present a new the-465

oretical perspective on ICL: few-shot examples466

and CoT rationales can be interpreted as prompt-467

induced subgraphs that augment the model’s in-468

ternal knowledge graph during inference. Given469

a prompt Π containing n support triples (si, r, ai),470

we treat it as an auxiliary knowledge graph GΠ =471

(VΠ, ErΠ , E sim
Π ). For CoT prompting, a target triple472

(s, r, a) is supported by a structured reasoning473

chain C = {(s, ri, ai) | 1 ≤ i ≤ n, an = a},474

where all steps share the subject s, and relations475

ri may differ. This defines an additional support476

graph GC . At inference time, the model operates477

on an augmented graph G⋆ = G ∪ GΠ ∪ GC , where478

G is the base knowledge graph encoded by the fine-479

tuned model, and GΠ ∪GC are injected through the480

ICL prompt.481

Theorem 5.1 (ICL Prompt Can Mitigate the Fac-482

tuality Gap). Let G be the knowledge graph in-483

duced by an LLM after fine-tuning, and let P be484

a valid in-context prompt represented as an aux-485

iliary graph GP . The augmented graph at infer-486

ence time is G⋆ = G ∪ GP . Then, the factuality487

gap under prompt-augmented inference satisfies488

∆⋆
fact < ∆fact.489

Remark 4. This result provides a structural ex-490

planation for why in-context prompting improves491

s1

s0 a0

a1

s2 a2

r

sim

r

sim sim

sim

s’ a’
r

sim sim

sim

sim
r sim

sims1

s0 a0

a1

s2 a2

r

r

s’ a’
r

sim sim

sim

sim

r
sim

sim

Figure 5: In an LLM fine-tuned on unknown knowledge
(left), the demonstration (s′, r, a′) introduces new edges
(s0, a0) and (s2, a2). In contrast, for the LLM fine-
tuned on known knowledge (right), these edges already
exist and thus are not newly added. Consequently, the
factuality gap narrows as the difference in the number
of edges between the two graphs decreases.

factuality: it temporarily densifies connectivity be- 492

tween relevant subgraphs, effectively compensating 493

for missing fine-tuned edges. Please refer to Ap- 494

pendix A.5 for the proof of Theorem 5.1. 495

6 Leveraging ICL for Knowledge 496

Extraction (RQ3) 497

6.1 Improving Generalization under Limited 498

or Noisy Supervision 499

Building on our theoretical insights, we hypothe- 500

size that ICL can improve factual generalization 501

not only in the presence of low-quality fine-tuning 502

data, but also when the available data is limited. To 503

test this, we conduct an experiment on the PopQA 504

dataset, comparing two conditions: (1) applying 505

ICL after fine-tuning on a random 5% subset of the 506

training data, and (2) applying ICL after full-data 507

fine-tuning. As shown in Figure 6, the 5%-trained 508

model achieves performance comparable to the full- 509

data model when combined with ICL. Full details 510

are provided in Appendix B.5. These findings sug- 511

gest that well-designed ICL prompts can effectively 512

compensate for limited or low-quality supervision 513

in the knowledge extraction of LLM. 514

0-shot 4-shot 4-shot CoT 0-shot 4-shot 4-shot CoT0

10

20

30

40

Ac
cu

ra
cy

Llama Mistral

small whole

Figure 6: Comparison between Llama-3.1-8B and
Mistral-7B-v0.3 models fine-tuned on 5% of dataset
and the whole dataset.
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6.2 Rethinking the Metric for Finetuning515

Data Selection Method516

Recent studies on data selection algorithms for fine-517

tuning commonly evaluate performance using few-518

shot prompting (Liu et al., 2024b; Xia et al., 2024).519

However, our theoretical and empirical findings520

suggest that in-context learning can significantly re-521

duce, and in some cases even eliminate, the perfor-522

mance differences arising from variations in train-523

ing data. Consequently, evaluations based solely524

on few-shot prompting may mask the true effective-525

ness of data selection methods. We therefore argue526

that a more comprehensive evaluation framework527

is necessary to reliably assess the performance of528

data selection algorithms.529

7 Discussion: How Far Can CoT Go?530

Toy Example Setup. To further eliminate the531

potential impact of data filtering, we construct a532

Toy Example using manually created Unknown533

data that genuinely extends beyond the knowledge534

boundary of the LLM. We use the Llama3.3-70B-535

Instruct5 model to extract data from the EntityQues-536

tions dataset with a single query, without relying on537

few-shot examples. We then introduce fixed-format538

perturbations ("$&") to entity tokens in the known539

set to create unknown knowledge set, ensuring that540

the model is unable to handle these perturbed ex-541

amples. We fine-tune the models using LoRA, and542

evaluate their performance on the test set, which543

shares the same data type as the training set, i.e.,544

normal (known) or perturbed (unknown). Addition-545

ally, we also add special CoT to the Toy Example546

for verification. Detailed prompt design is shown547

in the box below. Experiment details are presented548

in Appendix B.3.549

CoT for Toy Example

Ignore all the special characters in the follow-
ing question. Think step by step. First, clean
all special characters in the question. In this
step, you might see some Unicode characters
in foreign languages. Next, rethink the cleaned
question. Finally, give the detailed answer of
the cleaned question with a short explanation.

550

Obs 5: Under controlled perturbations, the551

factuality gap remains large, but is substantially552

reduced by CoT prompting. As shown in Table553

5https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

4, we observe consistent gaps in factuality across 554

models fine-tuned on known and unknown knowl- 555

edge sets. The results further confirm that unknown 556

knowledge encourages factuality failure. We also 557

observe that CoT effectively enhances model test- 558

ing performance and narrows the factuality gap 559

between the two 70B models. 560

Split
Original With CoT

ES Con. ES Con.
Unknown 44.73 41.70 84.08 82.81
Known 83.11 82.81 86.72 87.60

Table 4: Performance of Toy Example

Discussion. For more powerful 70B models, 561

fine-tuning on both known and unknown knowl- 562

edge can still lead to a factuality gap. However, 563

the way these models mitigate the gap through 564

in-context learning differs significantly from the 565

approach discussed above. This mitigation is 566

achieved by using instructions to directly establish 567

a connection between perturbed entities and nor- 568

mal entities, which then enables correct knowledge 569

extraction. These results demonstrate that CoT is 570

powerful enough to bypass the mapping established 571

during the fine-tuning stage, allowing the model to 572

respond based on the new mapping defined within 573

the CoT prompt. This highlights the effectiveness 574

of prompt-based reasoning in decoupling model 575

behavior from parameter-level modifications. 576

8 Conclusion 577

This work provides both theoretical and empiri- 578

cal investigations of the factuality gap introduced 579

by fine-tuning LLMs on known versus unknown 580

knowledge. Based on the analysis of experimen- 581

tal phenomena, we further attempt to explain and 582

investigate this gap from a graph-theoretic per- 583

spective, viewing the process of knowledge ex- 584

traction as a problem of graph connectivity and 585

structural completeness. This theoretical frame- 586

work reveals the interaction mechanism between 587

fine-tuning and test-time ICL prompts, uncover- 588

ing how prompt-based reasoning compensates for 589

parameter-induced limitations. In summary, in 590

this paper, we offer a new perspective on the fac- 591

tual behavior of LLMs, providing foundational in- 592

sights into factual generalization that can inform 593

data selection strategies, prompt design, model in- 594

terpretability, and the deployment of models in 595

knowledge-intensive tasks. 596
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Limitations597

The proposed framework is derived from empirical598

observations and may lack full formal generality.599

Some underlying assumptions may not fully cap-600

ture model behavior across diverse domains, archi-601

tectures, or prompt formats. In particular, this work602

does not fully explain the anomalous behavior ob-603

served on datasets such as MMLU and WikiBios,604

which may involve more complex or multimodal605

factual structures. We hope this work encourages606

future efforts to refine the theoretical framework,607

extend it to broader task types, and develop more608

robust explanations for these challenging settings.609
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A Theory Work857

A.1 Notation and Setup858

Embedding Layer We define the embedding ma-859

trix E ∈ R|T |×d, where the i-th row E[i] = Eti is860

the (non-orthogonal) embedding vector of token ti,861

and the un-embedding matrix is U ∈ Rd×|T |. The862

matrices E and U are weight-tied and are learned863

during pretraining.864

We assume the embeddings are non-orthogonal865

and fixed during finetuning, this setting reflects866

realistic language model behavior and allows us867

to define local neighborhoods over tokens via eu-868

clidean distance similarity in the embedding space.869

Specifically, we define:870

ti ∼ϵ tj ⇐⇒ ∥E[i]− E[j]∥ < ϵ,871

which enables generalization from seen tokens to872

nearby tokens in the semantic space.873

One-Layer Transformer Architecture We con-874

sider a one-headed, one-layer transformer with875

untied, learned embedding E ∈ R|T |×d and876

un-embedding U ∈ Rd×|T | matrices. For a877

prompt (s, r), the input embedding matrix is X =878

[Es, Er] ∈ Rd×2, where Es, Er are the continuous879

token embeddings.880

Let WKQ = (WK)⊤WQ ∈ Rd×d and W V ∈881

Rd×d. The attention weights are:882

α = softmax(X⊤WKQX:,−1)883

= softmax(
[
(WKQ)s,r
(WKQ)r,r

]
)884

=

[
αs

αr

]
.885

where the subscript :,−1 denotes the last column886

of the matrix. Thus, we take the softmax of the887

(post-self-attention) embedding of the last input888

token to predict the next token. The hidden state is:889

h(s, r) = W V Xα = αsW
V Es + αrW

V Er.890

The logits for token i are computed via:891

zi(s, r) = U⊤
:,ih(s, r),892

and the output distribution is:893

pθ(i | s, r) = softmaxi(z(s, r)).894

A.2 Proof of Lemma 4.1 895

In Lemma 4.1, we characterize the SFT process as 896

adding edges between the connected subgraph of 897

vs and the connected subgraph of va in the LLM’s 898

knowledge graph. We now provide a proof of this 899

statement. 900

Proof. We assume a standard cross-entropy loss on 901

the output, and we perform a gradient update (SGD 902

step) on the model parameters using the example 903

(s, r, a). Let pθ(x | s, r) denote the model’s pre- 904

dicted probability for token x as the answer given 905

(s, r). The cross-entropy loss for the correct answer 906

a is 907

L = − log pθ(a | s, r). 908

This loss pushes the model to increase the proba- 909

bility of a while decreasing the probability of other 910

tokens for the input (s, r). Then, we examine the 911

gradients with respect to various components. The 912

gradient of L with respect to the hidden states for 913

any token x is 914

δh =
∂L

∂h(s, r)
915

=
∑
x

∂L
∂zx(s, r)

· ∂zx(s, r)
∂h(s, r)

916

=
∑
x

(pθ(x | s, r)− I{x = a}) · U:,x 917

where I{x = a} is 1 for x = a and 0 otherwise.δh 918

points in the direction that increases the logit for a 919

and decreases logits for others. Then, SGD update 920

(with learning rate η) for W V , and the new value 921

vector for any other token i ∈ Vs after updated is: 922

vnew
i = (W V +∆W V )E[i] 923

= W V E[i] + η
∂L

∂W V
924

= W V E[i] + ηαs δh (E[s]⊤E[i]) 925

+ ηαr δh (E[r]⊤E[i]) 926

Because E[i] ≈ E[s], the inner product E[s]⊤E[i] 927

will be close to |E[s]|2 (and E[r]⊤E[i] is presum- 928

ably small unless r happened to be similar to s in 929

embedding). Thus vi gets a nearly identical adjust- 930

ment in the δh direction. For any token i ∈ Vs, 931

consider its key after the update: 932

knew
i = (WK +∆WK)E[i] 933

= WKE[i] 934

+ η αs(1− αs) · δ⊤h W V (E[s]− E[r]) 935

· qr(E[s]⊤ − E[r]⊤)E[i] 936
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WK is being adjusted so that the keys of s and all937

similar tokens i move closer in the direction of the938

relation’s query qr. This increases qr · ki for each939

such i, thus increasing the attention weight αr→i940

when the model processes (i, r) in the future.941

The WQ update also specifically adjusted qr =942

WQE[r] to better align with ks. This change ben-943

efits any input where the key is similar to ks. In944

particular, qr will now have higher dot-product with945

ki for any i in Vs (since knewi ≈ knews ). Thus, both946

WK and WQ updates reinforce the attention to any947

subject token similar to s.948

Now consider the forward pass for a new input949

(i, r) after the update. The new hidden state for950

(i, r) is then:951

αnew
i =

exp
(
(qnew

r )⊤knew
i

)
exp ((qnew

r )⊤knew
i ) + exp ((qnew

r )⊤knew
r )

952

Given our analysis, (qnewr )⊤knewi is significantly953

larger than the old (qoldr )⊤koldi , and also larger954

relative to (qnewr )⊤knewr . Since the update was955

based on s vs. r, we expect (qnewr )⊤knewi ≈956

(qnewr )⊤knews which was boosted. Thus αnew
i will957

be close to the αnew
s achieved for the training pair,958

which is likely near 1 if the model learned to almost959

fully attend to the subject. So the relation r will960

heavily attend to i:961

h(i, r) ≈ αnew
i vnew

i + αnew
r vnew

r962

≈ vnew
i + (small residual).963

Because vnewi was updated to be nearly vnews in the964

δh direction, and vnews was tuned to align with ua,965

it follows that h(i, r) points toward U:,a as well. In966

other words, the hidden representation the model967

computes from (i, r) is now oriented in a way that968

favors the answer a and similar tokens.969

Since h(i, r) ≈ vnewi and vnewi ≈ vnews and970

vnews was pushed toward U:,a, we have za(i, r)971

greatly increased. The probabilities P (x|i, r) =972

softmax(z(i, r)) will assign much more mass to a973

and its neighbors. Therefore, the model’s predicted974

answer token j = f[:,−1](i, r) will lie in the neigh-975

borhood Va. Symbolically, f[:,−1](i, r) = j with976

j ∈ Va.977

A.3 Proof of Theorem 4.1978

In this section, we prove Theorem 4.1 and analyze979

why the unknown knowledge identified by few-shot980

prompting tends to correspond to nodes with lower981

degrees. Based on this observation, we further982

show that performing SFT on unknown knowledge983

results in a graph with fewer associated explicit 984

edges, compared to the graph formed by fine-tuning 985

on known knowledge. 986

Assumption A.1. We assume that, when using few- 987

shot prompting, the attention mechanism guides 988

the query (s, r) to follow the patterns observed in 989

the demonstrations (s′i, r, a
′
i) when predicting the 990

answer. 991

This assumption is reasonable based on prior 992

work (Brown et al., 2020; Von Oswald et al., 2023; 993

Akyürek et al., 2023), which demonstrates that lan- 994

guage models can imitate demonstrated patterns 995

via in-context learning. 996

Proof. In the transformer’s attention mechanism, 997

the weight placed on any key–value pair is 998

αt =
exp

(
(WQE[r])⊤(WKE[t])

)∑
u∈{s,r,s′i,... }

exp ((WQE[r])⊤(WKE[u]))
. 999

Here, q = WQE[r] is the query vector for the 1000

relation token, and each key vector kt = WKE[t] 1001

corresponds to token t. 1002

If a demonstration subject s′i has an embedding 1003

E[s′i] so close to E[s] that 1004

∥E[s′i]− E[s]∥ < ϵ, 1005

then applying the same linear map WK yields 1006

ks′i = WKE[s′i] ≈WKE[s] = ks. 1007

Because the two key vectors are nearly identical, 1008

their dot products with the query vector are also 1009

nearly the same: 1010

q⊤ks′i ≈ q⊤ks. 1011

According to Assumption A.1, the prediction 1012

for (s, r) follows the pattern established by the 1013

demonstrations (s′i, r, a
′
i). Based on the derivation 1014

in Appendix A.2, when 1015

q⊤ks′i ≈ q⊤ks, 1016

the resulting distribution pθ(x | . . . , s, r) will place 1017

most of its mass near a′i. In this case, if a ∼ϵ 1018

a′i, then the probability of correctly predicting the 1019

target answer a increases significantly. 1020

Therefore, for known knowledge where few-shot 1021

prompting successfully leads to correct predictions, 1022

the pairs (s, a) are typically close in the embedding 1023

space to many demonstration pairs (s′i, a
′
i). This 1024
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implies that |Vs|, the size of the similarity neigh-1025

borhood in the constructed graph Gs = (Vs, E sim),1026

is relatively large. Similarly, |Va| is also larger.1027

According to Lemma 4.1, this means that fine-1028

tuning on known knowledge typically results in1029

more than one new edge, while fine-tuning on un-1030

known knowledge generally adds only one new1031

edge. Thus, we have:1032

|Ekn| > |Eunk|.1033

Let Dtest be a random sample of test triples1034

(s, r, a). Under the uniform-edge assumption (i.e.,1035

every possible pair in V × V is equally likely to1036

be included in Er), the probability that a test triple1037

(s, r, a) is “in” the graph (i.e., can be answered1038

correctly in one hop) is1039

Pr ((vs, va) ∈ Er) =
|Er|
|V|2

.1040

Hence, the expected number of correctly answered1041

test triples is1042

|Dtest| ×
|Er|
|V|2

.1043

Define the factuality gap between known- and1044

unknown-fine-tuning as1045

∆fact = |{(vs, va) ∈ Ekn | (s, r, a) ∈ Dtest}|1046

− |{(vs, va) ∈ Eunk | (s, r, a) ∈ Dtest}| .1047

Taking expectations under random sampling, we1048

have:1049

E[∆fact] = |Dtest| ·
(
|Ekn| − |Eunk|
|V|2

)
1050

∝ |Ekn| − |Eunk|1051

> 0.1052

That is,1053

∆fact ∝ |Ekn| − |Eunk| > 0,1054

which is exactly the statement of Theorem 4.1.1055

1056

A.4 Proof of Theorem 4.21057

We make several foundational proofs and attempt1058

to provide a graph-theoretic analysis showing that1059

the greater the semantic distance between the test1060

set and the training set, the smaller the observed1061

factuality gap on the test set.1062

We begin by proving the relationship between1063

cosine similarity and the edge connectivity of the1064

knowledge graph associated with the dataset.1065

Proof. First, we assume that all token embeddings 1066

are unit-normalized, so for any two tokens i, j 1067

||ei|| = ||ej || = 1. 1068

Their Euclidean distance and cosine similarity are 1069

related, and under the neighborhood condition 1070

there is 1071

||ei − ej || < ϵ⇐⇒ cos(ei, ej) > 1− ϵ2

2
. 1072

Let 1073

γ = E(stest,strain) [cos (estest , estrain)] 1074

be the average cosine similarity between a random 1075

test subject embedding and a random training sub- 1076

ject embedding. Define the threshold 1077

τ = 1− ϵ2

2
. 1078

Then, by Markov’s inequality, the fraction of 1079

test–training pairs whose cosine exceeds τ is 1080

bounded above by 1081

Pr (cos(estest , estrain) > τ) ≤ γ

τ
. 1082

In particular, as γ decreases, so does the probability 1083

that a random test subject lies within an ϵ-ball of 1084

a random training subject. The same argument 1085

applies to object embeddings a. 1086

Since embedding neighborhoods are indepen- 1087

dent for the subject and the object, the joint proba- 1088

bility that a given training triple implants the cor- 1089

rect test edge is bounded by 1090

Pr (stest ∈ Vstrain ∧ atest ∈ Vatrain) 1091

= Pr (cos(estest , estrain) > τ) 1092

× Pr (cos(eatest , eatrain) > τ) 1093

≤
(γ
τ

)2
. 1094

Thus, each training triple contributes to the test- 1095

set edge-coverage only with probability at most 1096(γ
τ

)2. Then the factuality gap scales at most like 1097(γ
τ

)2
·Dkn−

(γ
τ

)2
·Dunk =

(γ
τ

)2
·(Dkn −Dunk) . 1098

In particular, as the average test–train cosine 1099

similarity γ decreases, the factor
(γ
τ

)2 becomes 1100

smaller, thereby reducing the factuality gap propor- 1101

tionally. 1102

1103
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A.5 Proof of Theorem 5.11104

In this work, the term ICL prompt refers to two spe-1105

cific types of prompts: few-shot prompts and CoT1106

prompts. In the following, we consider these two1107

types separately to provide the theoretical analysis.1108

Proof. Let Π = {(s′i, r, a′i)} be the few-shot1109

prompt that provided to the LLM together with1110

the input pair (s, r). This prompt can be inter-1111

preted as an auxiliary knowledge graph GΠ =1112

(VΠ, ErΠ , E sim
Π ). The graph includes not only the1113

triples (s, r, a) from the demonstrations, but also1114

the edges connecting them to semantically similar1115

nodes that are implicitly related within the same1116

domain.1117

With graph GΠ, the updated knowledge graph1118

becomes1119

G⋆ = Gunk/kn ∪ GΠ.1120

Since GΠ,Gunk,Gkn ⊆ Gr, with a knowledge1121

prompt that has enough semantic connection with1122

the in-distribution data, there exists a sufficiently1123

large subgraph GP such that1124

|EΠ ∩ Ekn| > |EΠ ∩ Eunk|.1125

Then, the factuality gap is1126

∆⋆
fact = λ (|Ekn ∪ EP | − |Eunk ∪ EP |)1127

= λ [(|Ekn|+ |EP | − |Ekn ∩ EP |)1128

− (|Eunk|+ |EP | − |Eunk ∩ EP |)]1129

= λ(|Ekn| − |Eunk|1130

− (|Ekn ∩ EP | − |Eunk ∩ EP |))1131

< λ (|Ekn| − |Eunk|)1132

= ∆fact.1133

According to Appendix A.3, there λ = |Dtest|
|V|2 .1134

Therefore, we can get1135

∆⋆
fact < ∆fact.1136

Let C = (s, r1, a1, r2, a2, . . . , rk, a) be the CoT1137

prompt that provided to the LLM together with the1138

input pair (s, r). This prompt can be interpreted1139

as an auxiliary knowledge graph GC = (VC , EC).1140

The graph consists of the complete set of nodes1141

and edges that lie along the reasoning path from1142

the subject s to the object a.1143

With graph GΠ, the updated knowledge graph1144

becomes1145

G⋆unk/kn = Gunk/kn ∪ GC .1146

The new factuality gap is defined as 1147

∆⋆
fact = |{covered by G⋆kn}|−|{covered by G⋆unk}| . 1148

But for every test triple (s, r, a) that is explained 1149

by the CoT prompt, it is covered by both aug- 1150

mented graphs. Therefore, its contribution to the 1151

gap is 1 − 1 = 0. Any remaining gap can only 1152

come from test triples not supported by CoT. 1153

In the extreme case where CoT covers the entire 1154

test set, we have: 1155

∆⋆
fact = 0. 1156

More generally, since the same CoT subgraph 1157

is added to both graphs, the only remaining differ- 1158

ence in coverage comes from test triples outside 1159

the scope of CoT. Thus, we have: 1160

∆⋆
fact ≤ ∆fact. 1161

1162

B Experiment Details 1163

B.1 QA tasks 1164

Data processing. For the Entity Questions task, 1165

we adopt the experimental framework outlined by 1166

Gekhman et al. (2024). Specifically, we select train 1167

split and dev split data from the following relation 1168

subsets: P131, P136, P17, P19, P26, P264, P36, 1169

P40, P495, P69, P740, and P800 for both training 1170

and evaluation purposes. The remaining relation 1171

subsets are reserved for out-of-distribution (OOD) 1172

testing, as described in Section 5. We employ a few- 1173

shot learning approach to classify the Unknown and 1174

Known datasets. Within the dev split, we randomly 1175

select 10 sets, each containing 4 examples, and 1176

apply both greedy and random sampling decoding 1177

methods. For random sampling, the following pa- 1178

rameters are used: temperature=0.5, top_p=1.0, 1179

top_k=40, and 16 answers are sampled. The data 1180

is classified as either Unknown or Known based 1181

on the accuracy of the greedy search and random 1182

sample. If at least one correct answer is obtained 1183

from either the greedy search or random sampling, 1184

the data is classified as Known. We perform this 1185

filtering procedure for each relation subset and sub- 1186

sequently use the filtered Unknown and Known 1187

splits to balance the data across categories. For 1188

each relation, we take the smaller data size between 1189

the Known split and the Unknown split as the final 1190

data size, in order to ensure that the Known and 1191

Unknown splits have equal amounts of data under 1192
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each relation. After filtering, the number of Un-1193

known and Known samples for each of the four1194

models is as follows: Llama Base: 28,337, Llama1195

Instruct: 31,226, Mistral Base: 30,952, and Mistral1196

Instruct: 31,335. For evaluation, we randomly se-1197

lect 2,000 samples from the development dataset1198

corresponding to the relation subsets used in the1199

training dataset.1200

For PopQA, similar to Entity Questions, we per-1201

form the splitting for each question type individ-1202

ually. First, each subclass dataset is randomly di-1203

vided into a training set and an evaluation set in a1204

4:1 ratio. Then, the training set is further split into1205

two halves to ensure an equal distribution of each1206

type of question. We also use few-shot prompting1207

to filter the Unknown and Known splits. The dif-1208

ference is that, considering the smaller size of the1209

PopQA dataset, we randomly select only 3 few-1210

shot groups from the evaluation set, while keeping1211

the other filtering parameters consistent with those1212

used for Entity Questions. Finally, the number of1213

Known and Unknown samples used for each of the1214

four models is as follows: LLaMA Base: 3,659;1215

LLaMA Instruct: 3,589; Mistral Base: 3,488; and1216

Mistral Instruct: 3,421. The evaluation dataset con-1217

sists of 2,858 samples.1218

For MMLU, we also adopt a few-shot learning1219

approach, but with some simplifications. We di-1220

rectly select 5 data points from the MMLU dev1221

split as a group of few-shot examples. Apart from1222

changing the number of random samples to 4, the1223

other model hyperparameters are set the same as in1224

Entity Questions. We use the test split of MMLU1225

as the training data and the val split as the evalu-1226

ation data. For the training data, we ensure that1227

the Unknown and Known datasets have the same1228

number of samples by taking the smaller size from1229

each class. Finally, the number of Unknown and1230

Known samples for the four models is as follows:1231

Llama Base: 2,724, Llama Instruct: 2,730, Mistral1232

Base: 2,994, Mistral Instruct: 4,128. The length of1233

the evaluation dataset is 1,531.1234

Training Details. We divide all the training into1235

12 groups based on the 3 datasets and 4 models,1236

with each group containing training on the Un-1237

known and Known subsets. We ensure that the1238

training parameters are exactly the same within1239

each group.1240

For all the 12 groups, the training hyperparame-1241

ters are set as follows: the batch size is 128, and we1242

use a fixed learning rate. Specifically, the learning1243

rates for Llama Base and Llama Instruct are set to 1244

1e-5, while for Mistral Base and Mistral Instruct, 1245

the learning rate for Entity Questions is 5e-6, and 1246

for the other datasets, it is set to 1e-6. No addi- 1247

tional regularization methods are used during train- 1248

ing. The training for all 12 groups uses the model 1249

with the best accuracy on the evaluation set as the 1250

Early Stop model, and the model whose loss con- 1251

verged after completing all epochs is considered 1252

the Convergence model. 1253

For the Entity Questions and PopQA dataset, all 1254

models are trained for 20 epochs. For MMLU, the 1255

Llama models are trained for 15 epochs, while the 1256

Mistral models are trained for 30 epochs. All of 1257

the models are trained on an 8× RTX 6000 Ada 1258

Generation 48G setup. 1259

Additionally, for the SFT process prompt, the 1260

PopQA dataset use the original questions and an- 1261

swers, while the question prompt format for the 1262

Entity Questions dataset is as follows: 1263

Answer the following question.\n Who is
Caitlin Thomas married to?

1264

The question prompt format for the MMLU 1265

dataset is as follows: 1266

The following is a multiple choice question,
paired with choices. Answer the question
in format: ’Choice:content’.\n\n### Ques-
tion:\nThe cyclic subgroup of Z_24 generated
by 18 has order\n\n### Choices:\nA) 0 B) 4
C) 2 D) 6 \n\n### Answer:\n

1267

Evaluation Details. We use Exact Match as the 1268

metric to measure the model’s evaluation accuracy. 1269

During testing, the prompt format of the questions 1270

is the same as during training. The model during 1271

testing uses the greedy search decoding method 1272

with a max_new_token value of 10. 1273

B.2 Open-ended generation tasks 1274

Data processing. We utilize the WikiBios (Kang 1275

et al., 2024) data directly, randomly selecting 2,000 1276

entries as the training set and 500 entries as the 1277

evaluation dataset. For the training set partition, we 1278

also employ a few-shot learning approach. In the 1279

evaluation set, we select 4 examples and used the 1280

random sample decoding method to sample two an- 1281

swers, with max_token=32. The remaining decod- 1282

ing parameters are the same as in Entity Questions. 1283
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To assess the accuracy of the answers, we employed1284

the FActScore metric. The GPT model used for1285

this task is gpt-3.5-turbo-0125, with raw scores1286

and no penalties applied for the num_fact parame-1287

ter. Each data point is evaluated individually, and1288

the average of the two sampled answers is taken.1289

Based on the resulting FActScore, the training set is1290

then divided into two parts: the higher-scoring sub-1291

set is classified as Known, while the lower-scoring1292

subset is classified as Unknown.1293

Training Details. The dataset is trained only on1294

Llama Base and Mistral Base, with a batch size of1295

128 and a fixed learning rate of 1e-5. No additional1296

regularization methods are used. Training stops1297

when the loss converged to below 0.01, and this1298

model is considered the Convergence Model. The1299

model with the lowest evaluation loss is selected as1300

the early stop model.1301

Evaluation Details. We used FActScore as the1302

evaluation metric, with the same data processing1303

settings as described above.1304

B.3 Toy Example1305

For our Toy Example, we utilized the Llama3.3-1306

70B-Instruct6 model, incorporating data sampled1307

from the EntityQuestions dataset.1308

Data processing. We employ the Llama3.3-70B1309

model to construct the Known knowledge set by1310

querying the model with the original questions. To1311

each question, we append the phrase "Answer the1312

following question." before the question itself to1313

form a complete query, without relying on addi-1314

tional few-shot examples. Specifically, we apply1315

a greedy sampling method, limiting the model’s1316

output to a maximum of 10 tokens, and verified1317

whether the ground truth answer is present in the1318

model’s response. If the ground truth answer is1319

included, we identifiy the subject words in the ques-1320

tion. For each subject word longer than two letters,1321

we introduce a fixed perturbation, "$&". For sub-1322

ject words of three letters, the perturbation is in-1323

serted after the first letter. For subject words longer1324

than three letters, the perturbation is applied before1325

the second letter. The modified question is then re-1326

entered into the model to ensure that the resulting1327

response did not contain the answer to the original1328

question, and regarded as the Unknown knowledge.1329

Below is an example of our known and unknown1330

set consturction, using the real question from re-1331

6https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

lation P26. The question in this case is “Who is 1332

Caitlin Thomas married to?”, and the ground truth 1333

answer is “Dylan Thomas”. The subject words in 1334

the question is “Caitlin Thomas”. 1335

Q: Answer the following question.\n Who is
Caitlin Thomas married to?
A: Caitlin Thomas.
Modified: Answer the following question.\n
Who is C$&aitl$&in T$&hom$&as married
to?
A: Rio de Janeiro.

1336

We combine the following relations from the En- 1337

tityQuestion dataset: P131, P136, P17, P19, P26, 1338

P264, P36, P40, P495, P69, P740, and P800, result- 1339

ing in a training set of 2,000 data entries and a test 1340

set of 1,000 for the Known and Unknown dataset. 1341

Training Details. During the training of the Toy 1342

Example, we use a learning rate of 2e-5, a batch 1343

size of 128, and a weight decay of 0. We apply a 1344

cosine learning rate scheduler with a warm-up of 1345

64 steps. We use the training data template detailed 1346

in Appendix B.1, and trained the model for a total 1347

of 50 epochs on an 8×6000 Ada 48G setup. 1348

Toy Example CoT prompt. To mitigate the 1349

performance gap caused by fine-tuning on differ- 1350

ent data filters, we employ the following Chain- 1351

of-Thought (CoT) prompt to guide the model in 1352

reasoning and answering the questions. 1353

Ignore all the special characters in the follow-
ing question. Think step by step. First, clean
all special characters in the question. In this
step, you might see some unicode characters
in foreign languages. Next, rethink the cleaned
question. Finally, give the detailed answer of
the cleaned question with short explanation.

1354

B.4 OOD Generalization 1355

For near in-distribution tasks, We follow Gekhman 1356

et al. (2024) and sample non-overlapping data 1357

from the remaining relation subsets of the Entity 1358

Questions with 3000 data points to create near 1359

in-distribution test set eq_ood.We use the entire 1360

PopQA evaluation dataset as near in-distribution 1361

test sets pop_ood. The cosine similarities between 1362

eq_ood, pop_ood, and the ID test set are 0.86 and 1363

0.82, respectively. For the open-world task, we 1364

choose MMLU, which provides more diverse data 1365

and significantly different question formats. We se- 1366
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lect 50 samples from each of the 57 MMLU tasks1367

to create a complete mmlu_ood set. After embed-1368

ding, the cosine similarity between mmlu_ood and1369

the ID test set is 0.55.1370

B.5 Finetuned on Small Dataset1371

In this section, we introduce the experimental setup1372

for evaluating the factuality gap resulting from fine-1373

tuning on a small subset versus the whole dataset.1374

The construction of the PopQA training and evalua-1375

tion sets has already been described in Appendix B.1376

We fine-tune both the LLaMA Base and Mistral1377

Base models on two dataset settings: (1) the full1378

PopQA training set, consisting of 11,409 samples1379

and (2) a randomly selected 5% subset of the full1380

data, consisting of 561 samples. The training hyper-1381

parameters follow those specified in Appendix B1382

for the corresponding PopQA experiments. The1383

only difference is that here we train for 10 epochs1384

and select the final model based on early stopping.1385

The evaluation settings remain the same as in1386

previous experiments, including the reuse of the1387

original ICL prompt design.1388

C Prompt Design Details1389

For few-shot learning, we select examples from the1390

Known split. Considering the length and effective-1391

ness of the examples, 4 examples were selected1392

from PopQA and Entity Questions, while 3 exam-1393

ples were selected from MMLU. We used GPT-4 to1394

generate the CoT prompts for each type of task. For1395

each dataset, we input the few-shot learning exam-1396

ples and generate the CoT instructions according to1397

the question type, thus obtaining the corresponding1398

few-shot CoT prompt for each question type. The1399

instructions for each dataset are as follows:1400

Entity Questions, PopQA: Follow the few
shot Chain of Thought example format: Ques-
tion:{} Analysis:{} Answer:{} to modify the
format and generate analysis of the entity in
each question of the QA pairs below. The anal-
ysis should describe the related information of
the entity shortly in the question in order to
lead to the answer:

1401

MMLU: ’Follow the few-shot Chain of
Thought example format: Question:{}
Choices:{} Analysis:{} Answer:{} to modify
the format and generate analysis of the critical
entity in each multiple choice question below.
The analysis should describe the related
information of the entity in the question
shortly in order to lead to the answer:\n

1402

D Abalation Study Details 1403

For the selection of few-shot learning examples, 1404

Table 5 shows the test results for all Unknown ex- 1405

amples. The testing of Unknown examples is the 1406

same as for Known examples, where 3 sets are 1407

randomly selected from the corresponding dataset, 1408

with each set containing 4 examples. The set with 1409

the best performance is then chosen. As for the 1410

results using only Known examples in Table 6, it 1411

can be observed that for most models, the factuality 1412

improves when using Known examples. 1413

For the ablation experiment of CoT, the results 1414

using only few-shot learning and those with the 1415

addition of CoT are shown in Table 6 and Table 1416

7, respectively. By comparing the results, we can 1417

observe the differences between the models with 1418

and without CoT. We find that the factuality of the 1419

models trained on PopQA and Entity Questions 1420

improves, while the results on MMLU are more 1421

unstable and sometimes do not show any improve- 1422

ment with the addition of CoT. We hypothesize that 1423

this may be due to CoT causing the text to become 1424

too long, leading to a performance degradation. 1425

For the ablation experiment on the variation of 1426

question formats, we used GPT-4 to rephrase 2,000 1427

data points from the Entity Questions evaluation 1428

dataset three times. The instructions for the three 1429

rephrasings are as follows: 1430

Please rephrase this question with Minor Dif-
ference. Just return the rephrased question
without additional word.
Please rephrase this question with Moderate
Difference. Just return the rephrased question
without additional word.
Please rephrase this question with Radical Dif-
ference. Just return the rephrased question
without additional word.

1431
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Benchmark Split
Llama Llama-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

EQ
Unknow 36.60 29.60 33.25 26.20 26.55 18.50 30.95 19.20
Known 41.45 39.55 39.45 37.55 33.80 33.75 32.55 32.80

PopQA
Unknown 32.61 29.46 27.64 26.77 28.87 28.45 29.01 28.20

Known 35.97 34.71 32.68 31.18 31.39 31.42 30.06 29.92

MMLU
Unknown 54.02 53.43 64.34 64.14 54.02 53.63 55.26 55.45

Known 66.62 66.69 66.95 66.75 56.89 57.09 59.70 59.96

WikiBios
Unknown 54.18 48.62 48.24 38.18

Known 54.81 50.63 48.54 36.48

Table 5: Few-shot learning with Unknown examples

Benchmark Split
Llama Llama-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

EQ
Unknow 39.10 32.10 37.65 34.40 31.70 25.05 32.05 21.25
Known 41.75 39.90 39.80 37.80 31.40 30.15 33.05 33.90

PopQA
Unknown 37.05 33.80 31.07 28.52 28.97 28.55 29.25 28.38

Known 36.91 36.00 34.29 33.00 31.42 31.60 30.27 30.13

MMLU
Unknown 54.80 54.60 64.99 65.32 55.39 55.13 56.24 56.43

Known 67.60 67.86 69.30 68.84 58.46 58.39 60.48 60.74

WikiBios
Unknown 53.72 47.03 47.93 35.53

Known 55.61 50.09 50.58 38.97

Table 6: Few-shot learning with Known examples

Benchmark Split
Llama Llama-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

EQ
Unknow 41.55 38.95 41.00 37.40 35.35 32.95 35.25 30.05
Known 43.45 42.20 41.20 40.70 38.25 37.95 33.15 32.65

PopQA
Unknown 39.82 37.89 35.06 34.00 35.93 35.76 31.46 31.32

Known 38.77 38.66 35.55 36.18 35.93 35.90 31.63 31.84

MMLU
Unknown 45.79 47.35 64.34 64.01 53.04 53.49 58.00 60.09

Known 56.56 56.83 65.12 65.45 56.50 58.13 61.07 60.94

Table 7: Few-shot learning with CoT
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