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ABSTRACT

Hierarchical reinforcement learning (HRL) has seen widespread interest as an ap-
proach to tractable learning of complex modular behaviors. However, existing
work either assume access to expert-constructed hierarchies, or use hierarchy-
learning heuristics with no provable guarantees. To address this gap, we analyze
HRL in the meta-RL setting, where a learner learns latent hierarchical structure
during meta-training for use in a downstream task. We consider a tabular set-
ting where natural hierarchical structure is embedded in the transition dynamics.
Analogous to supervised meta-learning theory, we provide “diversity conditions”
which, together with a tractable optimism-based algorithm, guarantee sample-
efficient recovery of this natural hierarchy. Furthermore, we provide regret bounds
on a learner using the recovered hierarchy to solve a meta-test task. Our bounds
incorporate common notions in HRL literature such as temporal and state/action
abstractions, suggesting that our setting and analysis capture important features of
HRL in practice.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated tremendous successes in many domains (Schulman
et al., 2015; Vinyals et al., 2019; Schrittwieser et al., 2020), learning near-optimal policies despite
limited supervision. Nevertheless, RL remains difficult to apply to problems requiring temporally
extended planning and/or exploration (Ecoffet et al., 2021). A promising approach to this problem
is hierarchical reinforcement learning (HRL), which has seen continued interest due to its appealing
biological basis. In its most basic form, HRL seeks to decompose tasks into a sequence of skills,
each of which is easier to learn individually than the full task. By restricting the agent to using
learned skills, the search space over policies can be greatly reduced. Furthermore, learned skills can
induce simpler state and/or action spaces, simplifying the learning problem. Finally, learned skills
with useful semantic behavior can be reused across tasks, enabling transfer learning.

Naturally, a hierarchy-based learner is limited by the quality of skills that are made available and/or
learned. Accordingly, many empirical works have proposed algorithms for online skill learning in
the context of a single RL task (Nachum et al., 2019a; 2018). These approaches have been exper-
imentally demonstrated to be effective in finding useful and interpretable skills. Other approaches
consider the skill learning problem in the context of meta-RL (Frans et al., 2018), or in the reward-
free setting (Eysenbach et al., 2018). Nevertheless, the heuristics and algorithms proposed in these
empirical works do not provide any provable guarantees on the quality of learned skills.

On the other hand, theoretical analyses have mostly focused on how learners benefits from having
access to skills. For example, Fruit & Lazaric (2017) provide a regret bound on learning with skills
in the infinite-horizon average reward case. Meanwhile, in the meta-RL setting, Brunskill & Li
(2014) considers the problem of finding and using skills in a continual learning setting and provides
a sample complexity analysis. However, these analyses either sidestep the question of how the skills
are obtained, or do not address the problem in a computationally tractable manner.

In this work, we aim to take a step towards providing provable guarantees for hierarchy learning
through tractable algorithms. We focus on the meta-RL setting, in which a learner extracts skills
from a set of provided tasks which are then used in a downstream task. We work in the tabular case,
assuming the transition dynamics of the given tasks share latent hierarchical structure induced by
predetermined clustering and bottlenecks. Our contributions are as follows:
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1. “Diversity conditions” ensuring hierarchy recovery. We develop natural optimism-
based coverage conditions which ensure that bottlenecks embedded in the transition dy-
namics are detectable by solving provided meta-training tasks.

2. A tractable hierarchy-learning algorithm. We provide an algorithm that provably learns
the latent hierarchy from interactions, assuming the coverage conditions above. Our
method has sample complexity scaling as O(TKS) in the leading term compared to
O(TS2A) for a brute-force method, where T are the number of tasks, S is the number
of states, A is the number of actions, and K � SA is the number of skills to learn.

3. Regret bounds on downstream tasks. We provide regret bounds for learners that apply
the extracted hierarchy from meta-training on downstream tasks. Furthermore, we show an
exponential regret separation between hierarchy-based and hierarchy-oblivious learners for
a family of task distributions, corroborating prevailing intuitions regarding when/why HRL
helps. In particular, hierarchy-based learners incur regret bounded by O(

√
H2N) while

hierarchy-oblivious learners incur worst-case regret of at least O(2H/2
√
H2N).

2 NOTATION

We now introduce notation which we will use throughout the paper. We write [K] := {1, . . . ,K}.
Furthermore, we use the standard notations O,Θ,Ω to denote orders of growth, and Õ, Θ̃, Ω̃ to
indicate suppressed logarithmic factors. We use δ(x) to denote the Dirac delta measure on x.

We work with finite-horizon Markov decision processes (MDPs), defined as a tuple M =
(S,A,P, r,H), where S is the set of states, A is the set of actions, P : S × A × S → [0, 1]
are the transition dynamics, r : S × A → [0, 1] is the reward function, and H is the horizon. We
assume stationary dynamics unless otherwise noted, in which case P(h) is the dynamics at time
step h. For constants relating to horizons, we will define [H] := {0, . . . ,H − 1}. Given a policy
π : [H]× S → A, we define the value functions

V πh (s) := E

[
H−1∑
k=h

r(sk, ak)

∣∣∣∣∣ sh = s

]
and Qπh(s, a) := E

[
H−1∑
k=h

r(sk, ak)

∣∣∣∣∣ (sh, ah) = (s, a)

]
where sk+1 ∼ P(· | sk, ak) and ak = πk(sk). Furthermore, we write V ∗ and Q∗ to denote optimal
value functions obtained by maximizing over π (and are attained by the optimal policy π∗). When a
learner plays π1, . . . , πN inM, we define its regret as

RegretN (M) :=

N∑
t=1

V ∗0 (s0)− V πt0 (s0).

We use 	 to denote a terminal state. We let τπ denote the (random) trajectory generated by π. For a
state s and length-H trajectory τ , we write s ∈ τπ if sh = s for some h ∈ [H]. We define (s, a) ∈ τπ
similarly. Finally, given an MDPM,M(2H) denotes a copy ofM with a doubled horizon.

3 SETTING

We work in the tabular meta-RL setting. The learner can access T meta-training MDPs
{(S,A,Pt, rt, H)}t∈[T ] = {Mt}t∈[T ]. Note that Pt and rt both vary across tasks. We set S := |S|
and A := |A|. After interacting with these tasks, the learner is presented with a meta-test MDP
(S,A,PTg, rTg, H), where the learner seeks to minimize its regret. We assume, without loss of
generality, that the MDPs have a shared starting state s0. For meta-learning to succeed, the MDPs
must have shared structure. We focus on the following notion of shared hierarchical structure:

Definition 3.1 (Latent Hierarchy). Let {Zc} be a partition of the state space S into clusters. We
associate with each cluster Z a set of entrances Ent(Z) ⊆ Z and a set of exits Ext(Z) ⊆ Z × A.
We say that the tasks have a latent hierarchy with respect to ({Zc} ,Ent(·),Ext(·)) if for any Zc:

(a) For any (s, a) ∈ (Zc×A)\Ext(Zc), Pt(· | s, a) is constant over t and supported on Zc. �
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(b) For any (s, a) ∈ Ext(Zc), there exists t, t′ with t 6= t′ such that Pt(· | s, a) 6= Pt′(· | s, a).
Furthermore, Pt(· | s, a) is supported on

⋃
c Ent(Zc) for any t ∈ [T ].

Figure 1: The gated four-
room setting, with a task re-
quiring navigation from the
green square to the star.

Definition 3.1 partitions the shared state space of the MDPs into
clusters such that (1) non-exit (s, a) dynamics do not change be-
tween the MDPs and (2) exits are bottlenecks between clusters.

Example 3.1 (Gated Four-Room). Figure 1 illustrates the gated
four-room environment along with a sample task. The environment
has a latent hierarchy with respect to the rooms outlined by colored
gates (which can be open or closed). Entrances are colored aqua,
while exits are marked by arrows.

Although we assume a single fixed starting state, we can model
task-dependent initial states by appending a dummy state s0. A
dummy action a0 then takes the agent to the starting state for the
task. Observe that (s0, a0) is an exit, and therefore must transition
to an entrance. y

To see how Definition 3.1 captures intuitive notions of hierarchy in
practical settings, we provide an example of a continuous setting
roughly fitting into our framework:

Example 3.2 (The Alchemy benchmark). Alchemy (Wang et al.,
2021) is a recently proposed empirical benchmark for meta-RL,
where the agent needs to place a stone in a series of potions to ob-
tain some desired appearance, as illustrated in Figure 2. Dipping
a stone into a potion traverses an edge (determined by the potion)
in a graph where nodes are possible stone appearances. We focus
on task distributions that randomize the edges of this graph (i.e.,
potion positions and feasible stone appearances are fixed). Then,
the set of obtainable MDPs has a latent hierarchy where dipping the
stone into any of the potions is an exit. Indeed, other than dipping the stone into a potion, all other
actions (e.g., moving the stone around the room) have the same dynamics in all tasks. y

Figure 2: Alchemy. Placing
stones in potions moves the agent
through a latent graph of object
properties.1

For convenience, we will define several relevant notions. First,
for any clusterZ, we define its interior Z◦ := (Z×A)\Ext(Z).
Furthermore, we let Ent(S) :=

⋃
c Ent(Zc) denote the set of

all entrances and Ext(S) :=
⋃
c Ext(Zc) the set of all exits.

Finally, we define

K := |Ext(S)| L := |Ent(S)|
M := sup

c
|Ext(Zc)|

so that K and L are the total number of exits and entrances,
respectively, while M is the maximal number of exits from any
cluster.

Query Model. We work in the online setting, where the agent interacts with the tasks by playing
policies from the initial state s0. During meta-training, we allow the agent to interact with the
environments using an unbounded number of timesteps for each trajectory before resetting. We then
compute query complexity in terms of the total number of timesteps spent in all tasks in total.

4 META-TRAINING ANALYSIS

In this section, we outline an algorithm for uncovering the latent structure that can be used for
downstream tasks. Recall that exits are defined by changing dynamics between tasks. To quantify
the number of samples needed for exit detection, we define the following quantity:

1Image from Wang et al. (2021), extracted from a larger figure with no other modifications (License).
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Definition 4.1 (β-dynamics separation). There exists β > 0 such that for any t, t′ ∈ [T ] and
(s, a) ∈ Ext(S), Pt(· | s, a) 6= Pt′(· | s, a) =⇒ ‖Pt(· | s, a)− Pt′(· | s, a)‖TV ≥ β. �

In defining β above, we ensure high-probability exit detection with Õ(S/β2) samples. Note that
there is a brute-force approach to learning the underlying structure: one can learn Pt(· | s, a) for all
(s, a) and t ∈ [T ], and iterate over (s, a) to check for changing dynamics. This can be done with
query complexity Õ(TS2A/β2). However, under reasonable “coverage” assumptions outlined in
the next section, this query cost can be lowered to Õ(TKS/β2).

4.1 DEFINING A NOTION OF COVERAGE

In supervised meta-learning, “diversity conditions” ensure that the meta-training tasks reveal the
underlying latent structure (Tripuraneni et al., 2020; Du et al., 2020). We provide analogous condi-
tions ensuring thatM1, . . . ,MT “cover” the latent hierarchy. Since solving maxπ V

π(s0) requires
fewer samples than learning P, we expect such conditions to provide sample complexity gains.

Visitation Probabilities and α-Importance. Minimally, exits should be visited by optimal poli-
cies of the meta-training tasks for coverage. We thus define the following notion:

Definition 4.2. Fix an MDPM = (S,A,P, r,H), and let (s, a) ∈ S × A. Construct a modified
MDPM\ (s, a), where (s, a) brings the agent to a terminal state with no reward. Then, we say that
(s, a) is α-important forM if VM\(s,a),∗

0 (s0) < VM,∗
0 (s0)− α. �

Figure 3: Illustrating α-
importance. Since the
black arrow is the only
path to the goal, it is
V ∗0 (s0)-important.

The α-importance condition quantifies the value gap between policies
that can use (s, a) and those that cannot. For example, consider the task
in Figure 3. Any π with V π(s0) > 0 must visit the marked (s, a) pair
with some probability. Therefore, (s, a) is V ∗0 (s0)-important. This sug-
gests that high α-importance implies high visitation probability by near-
optimal policies. The following result, proven in Section A, formalizes
this connection:

Lemma 4.1. If (s, a) is α-important for M, then for any policy π,
V ∗(s0)− V π(s0) < ε implies that P ((s, a) ∈ τπ) > (α− ε)/H .

A Preliminary Coverage Assumption? Lemma 4.1 suggests a simple
coverage condition: for any (s, a) ∈ Ext(S), assume that there exists
t, t′ ∈ [T ] so that (s, a) is α-important for t and t′, and Pt(· | s, a) 6=
Pt′(· | s, a). However, as the following example shows, this condition
excludes natural settings:

Example 4.1. In Example 3.1, gates are either open or closed. For closed gates, the associated (s, a)
pairs are unimportant for any goal. Thus, if (s, a) is α-important for some t, t′ ∈ [T ] with α > 0,
then Pt(· | s, a) = Pt′(· | s, a), and no change in dynamics can be detected using π∗t and π∗t′ .

Figure 4: The black arrow is not α-significant for one of the tasks,
but is nevertheless “covered” by optimistic imagination.

Figure 5: Using optimistic imag-
ination for exit detection.

4



Under review as a conference paper at ICLR 2022

Figure 4 illustrates how the proposed condition fails in covering an exit marked with a black arrow.
While (s, a) is unused by optimal policies in the first task, it is V ∗0 (s0)-important for the second. y

Optimistic Imagination as a Coverage Mechanism. The proposed assumption fails because
there are cases where exits are only α-important in certain configurations (e.g., only open corridors
are α-important in Example 3.1). In such cases, near-optimal policies only ever see one configura-
tion of the dynamics for those exits and thus are insufficient for formalizing exit coverage.

As an alternative, consider the following hypothetical scenario in the context of Figure 4: an agent
has solved both tasks, achieving optimal values V ∗1 and V ∗2 . Additionally, in the process of learning
the second task, the agent has learned P2(· | ⇓). If the agent then relearns the first task while setting
P̂1(· | ⇓) ← P2(· | ⇓), it would obtain a new value V̂1 � V ∗1 . Thus, it can reasonably conclude
that the black arrow must have been an exit. We illustrate this process in Figure 5, where πI is the
optimal policy after “borrowing dynamics.” The learner could then run πI for exit detection.

We refer to the counterfactual reasoning about the dynamics used above as optimistic imagination.
Unlike the preliminary condition, optimistic imagination only requires that an exit be important for
one task and induce a value gap in another when borrowing dynamics – a weaker condition in many
cases. With the above intuition in mind, we now present the main coverage assumption.
Assumption 4.1 ((α, ζ)-coverage). Assume (Mt)t∈[T ] have a latent hierarchy with respect to
({Zk} ,Ent(·),Ext(·)). There exists α, ζ > 0 such that for any {(s1, a1), . . . , (sn, an)} ⊆ Ext(S),

(a) For any i ∈ [n], (si, ai) is α-important for some meta-training MDPMi.

(b) For someMt with t ∈ [T ], if we construct a new MDP M̄t = (S,A, P̄, rt, H) via

P̄(· | s, a) =

{
PMi(· | s, a) (s, a) = (si, ai)

PMt(· | s, a) otherwise
,

i.e. we replace (si, ai) dynamics with those fromMi, then V M̄t,∗(s0) > VMt,∗(s0) + ζ.

Informally, (α, ζ)-coverage ensures that optimistic imagination can borrow dynamics for unknown
exits from other tasks to find a better optimal policy.2 Most reasonable task distributions satisfy
(α, ζ)-coverage with enough tasks – we provide a heuristic explanation in the appendix.

4.2 ALGORITHM OUTLINE

In this section, we outline the algorithm that we use to detect exits. Our procedure can be naturally
divided into three phases: a task-solving phase, a reward-free phase, and an exit detection phase.
Throughout, we illustrate our steps in Figure 5, showing how Phases I and II allow the learner to
find the imagined policy πI . The full details of the algorithm are provided in Section A.1.

4.2.1 PHASE I: TASK-SPECIFIC DYNAMICS LEARNING

Figure 6: Phase I con-
tribution to learning πI
in Figure 5, marked
with an arrow.

First, we solveM1, . . . ,MT with UCBVI. Using UCBVI regret bounds
from Azar et al. (2017) together with Lemma 4.1, we can guarantee that
all α-important exits are sufficiently visited. Thus, during optimistic
imagination, the learner would be able to borrow high-quality estimates
of exit dynamics from other tasks. For example, a learner that has solved
both tasks in Figure 4 can borrow open blue gate dynamics for use in the
first task during optimistic imagination, as in Figure 6.

4.2.2 PHASE II: REWARD-FREE RL

In order to perform optimistic imagination, the learner also needs to sim-
ulate non-borrowed (s, a) dynamics. This is done by fully learning the
dynamics of one of the tasks, proving a template P̂0. Learning P̂0 is
achieved using reward-free RL (Jin et al., 2020).

2Incorporating the preliminary condition into Assumption 4.1 can further weaken the required task diversity.
However, our algorithm handles this extension trivially, and thus we focus on optimistic imagination.
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Figure 7: Phase II con-
tribution. Optimal pol-
icy state coverage (red)
is insufficient for learn-
ing πI , which requires
the green region.

To understand the necessity of Phase II, note that in Figure 7, near-
optimal policies have no coverage over states past the blue gate (as
shown by the red region). Therefore, dynamics estimates from Phase
I are insufficient for optimistic imagination. On the other hand, by learn-
ing the dynamics fully in one of the tasks (and thus learning the green
region), the learner can nevertheless simulate the dynamics if the blue
gate were open and successfully recover πI .

4.2.3 PHASE III: EXIT DETECTION

Having completed the previous two phases, the learner can use optimistic
imagination to detect exits. In particular, we consider a modified value
iteration method where the learner optimistically chooses dynamics esti-
mates from Phases I and II to perform Bellman backups. This implicitly
defines an MDP whose optimal value is at least as large as M̄t in As-
sumption 4.1, as M̄t would have been feasible for this process. Analo-
gously with α-importance, this value gap implies that the corresponding
optimal policy πI for this new MDP must visit an (s, a) pair whose dynamics are borrowed. There-
fore, by playing πI , the learner can determine a new exit.

4.3 META-TRAINING GUARANTEE

We now outline our main result for the algorithm in Section 4.2. We first define a “hierarchy oracle”
that will be used in downstream tasks:

Definition 4.3 (Hierarchy oracle). Let	S and	F denote successful and failed termination, respec-
tively. Consider any tuple (x, f, r, H̃) such that x ∈ Ent(S), f : Ext(S)→ {	S ,	F }, r is a reward
function, and H̃ ≤ H . Such tuple induces an MDPM(x, f, r, H̃) = (S ∪ {	S ,	F } ,A,Pf , r, H̃)
whose starting state is x and whose transition dynamics is given by

Pf (· | s, a) =


δ(f(s, a)) (s, a) ∈ Ext(S)

δ(s) s ∈ {	S ,	F }
Pt(· | s, a) otherwise, for any t ∈ [T ].

An ε-suboptimal hierarchy oracle, when queried with any valid (x, f, r, H̃), returns an ε-suboptimal
policy forM(x, f, r, H̃). �

To motivate Definition 4.3, observe that learning a new MDP with the same latent hierarchy only
requires visiting exits (as reward-free learning has coverage over cluster interiors). This, in turn, can
be achieved by an agent that has a policy for reaching any exit from every entrance in any cluster.
We emphasize that the learner does not need to know the states in the actual clusters themselves.
Formally, for an entrance x in cluster Z and exit e ∈ Ext(Z), we can query the hierarchy oracle with
(x,1 [(·, ·) = e] ,1 [· = 	S ] , H) to obtain the desired reaching policy. Disconnecting the clusters
ensures that the learner cannot use any other exits, and thus the validity of the policy under any MDP
that has the same latent hierarchy.3

Our meta-training guarantee ensures that the hierarchy oracle is implementable:

Theorem 4.1 (Meta-training guarantee, informal). Under Assumption 4.1 and other assumptions in
Section A.2, the data obtained from the algorithm in Section 4.2 allows for:

(a) implementing an ε-suboptimal hierarchy oracle, and

(b) determining, for every s ∈ Ent(S), the reachable exits in the cluster containing s,

simultaneously with probability at least 1− p. Furthermore, this is achieved with query complexity

Õ

[
T

(
KL

αmin(ζ, β)2
+
KS

αζ2
+

SA

min(α, ζ)2
+
KS2A

α

)
+

S4A

min(ε, ζ)
+

S2A

min(ε, ζ)2

]
poly(H).

3As a side effect, the reachability of e from x can be determined from the predicted value for the prior query.
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As a point of comparison, we have the following guarantee on brute-force hierarchy learning:

Theorem 4.2. The brute-force approach outlined in Section A.5, under Assumption 4.1(a), deter-
mines the set of exits with high probability and query complexity

Õ

[
T

(
S2A

αβ2
+
SA

α2
+
S4A

α

)]
poly(H).

When α, β, and ζ are of the same order, we see that the proposed method incurs a smaller query
complexity compared to a brute force learner that has only learned the exits. We provide proofs of
both results in Section A, along with all other necessary assumptions and full algorithm details.

5 META-TEST ANALYSIS

In this section, we provide regret bounds on learning an MDPMTg using the hierarchy oracle. We
first characterize a family of tasks for which one can achieve improved regret bounds. Furthermore,
we provide sufficient conditions ensuring that using the hierarchy incurs low suboptimality.

5.1 ASSUMPTIONS

In this section, we outline the assumptions that we make to prove a regret bound on the meta-test
task. Let MTg = (S,A,PTg, rTg, H) be the meta-test MDP. We assume that PTg(· | s, a) =
Pt(· | s, a) for any (s, a) 6∈ Ext(S) and t ∈ [T ]. Our first assumption restricts our attention to
meta-test tasks which are compatible with the hierarchical structure:

Assumption 5.1 (Task Compatibility). There exists a cluster Z∗ such that rTg is supported on
(Z∗)◦ ∪ Ext(S). Furthermore, there exists an optimal policy π∗ satisfying

(a) Conditioned on sh ∈ Z∗, we have that (sh′ , ah′) 6∈ Ext(Z∗) for h′ ≥ h almost surely.

(b) The number of exits encountered by π∗ is bounded by Heff with probability ζ.

Hierarchical compatibility. Intuitively, Assumption 5.1 suggests that the task can be decom-
posed into a (Z∗)-searching phase and a within-(Z∗) phase. This decomposition captures the goal-
conditioned RL setting, which has been studied extensively in recent empirical works (Nachum
et al., 2019a; Levy et al., 2018; Nachum et al., 2018). We expect the hierarchy oracle to reduce
the complexity of exploration in both phases. Thus, these conditions ensure compatibility with the
learned hierarchy.

Temporal Abstraction. Since a hierarchical learner makes decisions upon entering a new cluster
(to decide which exit to use/whether to stay), hierarchical planning can reduce the planning horizon.
Condition (b) quantifies this reduction. Note that in most practical settings, a learner that has access
to good sub-skills can achieve low failure probability ζ even with modest values of Heff .

Hierarchical Suboptimality. Restricting the learner to executing hierarchical policies can greatly
reduce the search space. While this reduction leads to improved regret bounds, this also incurs
approximation error, as the optimal policy may not lie in this restricted class. We refer to this error
as hierarchical suboptimality. We will show that hierarchical suboptimality is controllable with
appropriate conditions on PT , which require the following notions of reaching times:

Definition 5.1 (Reaching times). Fix a cluster Z, starting and goal states s, g ∈ Z, and planning
horizon H̃ ≤ H . For any policy π, let (s0, s1, . . . , sH̃) be the states visited by π from s, where
s0 = s. Then, we define

Tπ
H̃

(s, g) := min
{
h ∈

{
0, . . . , H̃

} ∣∣∣ sh = g and sh′ ∈ Z for h′ < h
}
∪ {L}

T ∗
H̃

(s, g) := inf
π

E
[
Tπ
H̃

(s, g)
]

Tmin(s, g) := inf
π

min {h ∈ N | P (Tπ(s, g) = h) > 0} .

�
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In words, Tπ
H̃

(s, g) is the time π takes to reach a state g from s while remaining within the same
cluster. By minimizing this quantity in expectation over all policies, we obtain T ∗

H̃
(s, g). Finally,

Tmin(s, g) is the minimum time for which it is possible to reach g from s.
Definition 5.2 (Regular and low-variance dynamics). There exists α, β, γ > 0 such that for any
cluster Z, states s, g ∈ Z, and horizon H̃ < H ,

(a) ((α, β)-unreliability) For any deterministic policy π with E[Tπ
H̃

(s, g)] − T ∗
H̃

(s, g) < α,
Tπ
H̃

(s, g) has a sub-Gaussian upper tail with variance proxy β2E[Tπ
H̃

(s, g)]2.

(b) (γ-goal-reaching suboptimality) T ∗
H̃

(s, g) ≤ (1 + γ)Tmin(s, g). �

To understand (α, β)-unreliability, note that the condition only considers near-optimal deterministic
policies. Therefore, (a) quantifies the randomness in Tπ(s, g) derived from the transition dynamics.
On the other hand, γ-goal-reaching suboptimality quantifies the regularity of the dynamics, measur-
ing whether near-optimal goal-reaching policies nearly achieve the optimal expected reaching time.
Deterministic environments satisfies these conditions with α = ∞ and β = γ = 0. We provide an
extended discussion of why these quantities control hierarchical suboptimality in Section B.5. Note
that the guarantees of Definition 5.2 scales with the cluster width, and thus we have the following
final assumption:
Assumption 5.2. For any cluster Z and s, g ∈ Z with s 6= g, Tmin(s, g) ≤ W . Furthermore,
HeffW � H .

Assumption 5.2 limits the length of the subtasks within each cluster. This is consistent with
hierarchy-based methods in practice, with skills only being executed for a limited amount of time.
This width bound, together with Assumption 5.1, suggests that π∗ requires O(HeffW ) timesteps
with high probability. Therefore, the condition HeffW � H means that the task horizon is much
longer than the minimum time required to complete the task, which often holds in practice.

5.2 META-TEST REGRET GUARANTEE

We note that Assumption 5.1 implies that the hierarchy oracle induces a “high-level” MDP. We have
the following regret bound on applying EULER to this MDP:
Theorem 5.1. We work under Assumptions 5.1 and 5.2. Furthermore, assume that the learner has
access to an ε-suboptimal hierarchy oracle as guaranteed by Theorem 4.1, where ε < α. Then, a
learner that applies the procedure in Section B.2 toMTg incurs regret

Regret(N) .
√
H2HeffWLMN +Nεsubopt

εsubopt := (1 +Heff + β
√
Heff)ε+

[
γHeff + β(1 + γ)

√
Heff

]
W + ζH.

with high probability.

Figure 8: The hard instance in
Theorem 5.2.

Observe that the irreducible hierarchical suboptimality εsubopt (i.e.
when ε = 0) tends to zero as γ, β, ζ → 0. In particular, environ-
ments with deterministic in-cluster dynamics do not incur hierar-
chical suboptimality. We prove this regret bound in Section B.

When does knowing the hierarchy help? Consider the binary
tree environment in Figure 8. All of the leaves take the learner to a
state with exits with probability 1/2, with the exception of a special
leaf `∗ that does so with probability (1/2)+ε. Rewards can only be
collected upon performing one of the exits (blue/purple). To achieve
low regret, a learner has to quickly identity `∗ and the correct exit.

We consider the set of task distributions indexed by `∗ that ran-
domize the reward-granting exit. Knowing the hierarchy amounts
to knowing `∗, reducing the exploration problem to determining the
correct exit. However, a hierarchy-oblivious learner needs to explore the tree, leading to regret that
is exponential in the tree depth. Formally, we have the following result:

8
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Theorem 5.2. There exists a family of task distributions such that any hierarchy-oblivious learner
incurs expected regret lower bounded by Ω(2W/2

√
H2N) on at least one task distribution. In con-

trast, a learner with access to a 0-suboptimal4 hierarchy oracle incurs regret bounded byO(
√
H2N)

with high probability, over any sampled task from any of the task distributions.

We prove this result in Section B.4.3, using recent results by Domingues et al. (2021) which demon-
strate that the set of binary tree subproblems above form a set of minimax instances for any RL
algorithm. This separation result suggests that hierarchy-based learners gain in situations where
temporally extended exploratory behaviors are needed. This corroborates the experimental findings
of Nachum et al. (2019b), which attributes the benefits of hierarchical RL to improved exploration.

6 RELATED WORK

Hierarchical reinforcement learning has been studied extensively (Sutton et al., 1999; Parr & Russell,
1998; Dietterich et al., 1998; Vezhnevets et al., 2017). An early approach formalizing the use of
hierarchies in RL is the options framework (Sutton et al., 1999), which fixes a finite set of available
skills/options. Since then, a large body of work has focused on designing methods for learning and
adapting these options during the learning process (McGovern & Barto, 2001; Menache et al., 2002;
Şimşek & Barto, 2004; Mann et al., 2014). Of particular note is the work of Frans et al. (2018),
which learns a finite set of neural network sub-skills in the meta-RL setting. On the other hand,
Laplacian-based option discovery in Machado et al. (2017; 2018) defines options using proto-value
functions (Mahadevan, 2005), which captures global features of the state space. In more theoretical
directions, Fruit & Lazaric (2017); Brunskill & Li (2014) provide regret and sample complexity
bounds, respectively, for learning with options. Additionally, Mann & Mannor (2014) demonstrate
that options can improve the convergence rate of approximate value iteration.

More recent empirical work has considered the problem of hierarchy learning beyond the options
framework in a wide variety of settings. Nachum et al. (2019a); Levy et al. (2018) provide algo-
rithms for learning hierarchies based on goal-conditioned policies, reducing the learning problem to
choosing subgoals. Nachum et al. (2018) considers a more general case when learned representa-
tions are used to map states to goals. Other works such as Co-Reyes et al. (2018); Eysenbach et al.
(2018); Sharma et al. (2019) provide intrinsic objectives for learning hierarchies without rewards.

Closely related is the work of Wen et al. (2020), which introduces a similar latent structure on the
state space, and provides sufficient conditions ensuring sample-efficient and tractable hierarchy-
based learning. However, their works hinges on prior knowledge of the latent structure, while a
major focus of our work is discovering the structure itself from interactions.

Several heuristics have been proposed in prior work for the detection of useful bottlenecks in MDPs
(McGovern & Barto, 2001; Menache et al., 2002; Şimşek & Barto, 2004; Şimşek et al., 2005). In
particular, Şimşek & Barto (2004) define the notion of access states, states which maximize short-
term novelty of future states. Although exits as defined in Definition 3.1 meet this heuristic, we
note that cluster interiors may also contain bottlenecks also meet these conditions. In contrast, our
algorithm would not detect these bottlenecks; however, this behavior is desirable as such bottlenecks
are unimportant for meta-learning.

7 CONCLUSION

We have demonstrated that certain natural coverage conditions allow for learning useful hierarchies
from tasks. Interesting future directions include analyzing hierarchy-based multi-task RL and ex-
tending the ideas in this work to continuous state and/or action spaces. Another interesting direction
would be to provide sample-efficient algorithms for learning additional structures that can be im-
posed on the learned hierarchy, such as cluster equivalences as in Wen et al. (2020).

4We use a 0-suboptimal hierarchy oracle for the separation result for ease of presentation.
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A META-TRAINING PROOFS

A.1 ALGORITHM

In this section, we provide the complete algorithm for exit detection with optimistic imagination.
For readability, we separate the three phases.

A.1.1 PHASE I: TASK-SPECIFIC LEARNING

Algorithm 1 Exit Detection, Phase I: Task-Specific Learning

Require: TasksM1, . . . ,MT , NUCBVI UCBVI iterations, NTS policy samples, threshold NTS
thresh

1: for all t ∈ [T ] do
2: Dt ← ∅.
3: Obtain policy set Φt ← UCBVI(Mt, NUCBVI).
4: for all n = 1, . . . , NTS do
5: Sample π ∼ Unif (Φt).
6: Play π inMt, add all (s, a, s′) pairs to Dt, get sum of rewards V̂ (n).
7: Form estimated dynamics model P̂t from Dt.

8: Form optimal value estimate V̂t ←
1

NTS

NTS∑
n=1

V̂ (n)

9: Nt(s, a)← |{(x, u, x′) ∈ Dt | x = s, u = a}|.
10: for all (s, a) ∈ S ×A do
11: if Nt(s, a) < NTS

thresh then P̂t(· | s, a)← 0.
12: return dynamics estimates P̂t and value estimates V̂t for t ∈ [T ].

A.1.2 PHASE II: LEARNING REFERENCE DYNAMICS

Algorithm 2 Exit Detection, Phase II: Learning Reference Dynamics

Require: MDPM, NRF
EULER Euler iterations, NRF policy samples

1: Set policy class Ψ← ∅ and dataset DRF ← ∅
2: for all g ∈ S do
3: Create MDPMg fromM with horizon 2H and P (	 | g, a) = 1 for any a.
4: rg(s, a)← 1 [s = g] for any (s, a) ∈ (S ∪ {	})×A.
5: Φg ← EULER(Mg, rg, N

EULER
RF )

6: πh(· | g)← Unif (A) for π ∈ Φg , h ∈ [H].
7: Add policies in Φg to Ψ.
8: for all n = 1, . . . , NRF do
9: Sample π ∼ Unif (Ψ).

10: Play π inM and obtain trajectory (s0, a0, . . . , s2H).
11: Sample h ∼ Unif ([2H]) and add (sh, ah, sh+1) to DRF.
12: return reference dynamics P̂0 formed from DRF.
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A.1.3 PHASE III: EXIT DETECTION

Algorithm 3 Exit Detection, Phase III: Exit Detection

Require: NED, N
ED
thresh, N

EL
EULER, NEL policy samples

1: Initialize ISEXIT[s, a]← FALSE for (s, a) ∈ S ×A.
2: while True do
3: for all t ∈ [T ] do
4: P̂0(· | s, a)← P̂t(· | s, a) for (s, a) ∈ S ×A with ISEXIT[s, a].
5: Ṽ t, Q̃t ← OPTIMGVI(P̂0, (P̂1, . . . , P̂T ), rt, ISEXIT)
6: if Ṽ t0 (s0)− V̂t > (2/3)ζ then
7: Run greedy policy with respect to Q̃ NED times and form estimate P̂ for (s, a) pairs

visited at least N ′thresh times.
8: for all (s, a) ∈ S ×A with P̂(· | s, a) 6≡ 0 do
9: if (∃t ∈ [T ]) P̂t(· | s, a) 6≡ 0 and

∥∥∥P̂(· | s, a)− P̂t(· | s, a)
∥∥∥

TV
> β/2 then

10: ISEXIT[s, a]← True
11: P̂t(· | s, a)← LEARN-EXIT(Mt, (s, a), NEL

EULER, NEL) for all t ∈ [T ]

12: if no new exits found after passing through T tasks since last found exit then
13: return ISEXIT

Algorithm 4 Borrowing Optimistically Across Tasks during Value Iteration (BOAT-VI)

1: procedure BOAT-VI(Reference dynamics P̂0, Estimated dynamics (P̂1, . . . , P̂T ),
Reward function r, Table ISEXIT[S ×A])

2: V̂H(s)← 0 for s ∈ S.
3: for all h = H − 1, . . . , 0 do
4: for all (s, a) ∈ S ×A do
5: if ISEXIT[s, a] then
6: Q̂h(s, a)← r(s, a) + P̂0V̂h+1(s, a)
7: else
8: Q̂h(s, a)← r(s, a) + maxt=0,...,T P̂tV̂h+1(s, a)

9: V̂h(s)← maxa Q̂h(s, a) for s ∈ S.
10: return V̂ , Q̂

Algorithm 5 Exit-learning subroutine

1: procedure LEARN-EXIT(MDPM, exit (s, a), NEL
EULER EULER iterations, NEL policy samples)

2: Create MDP M̃ fromM so P (	 | s, a) = 1.
3: r̃(s′, a′)← 1 [(s′, a′) = (s, a)] for any (s′, a′) ∈ (S ∪ {	})×A.
4: Ψ← EULER(M̃, r̃, NEL

EULER)
5: for all n = 1, . . . , NEL do
6: Sample π ∼ Unif (Ψ).
7: Play π inM and obtain trajectory (s0, a0, . . . , sH).
8: return reference dynamics P̂(· | s, a) formed from all trajectory data.
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A.2 OTHER ASSUMPTIONS AND RELEVANT DEFINITIONS

The remaining assumptions quantify the reachability of certain states. First, we have the following
assumption, which in effect ensures that one can reach most states regardless of exit configuration
in the meta-training tasks:
Assumption A.1 (Non-limiting exit configurations). Let M = (S,A,P, H) be any reward-free
environment with time-varying dynamics

P(h)(· | s, a) = Pt(h,s,a)(· | s, a) for some t : [H]× S ×A → [T ].

Then, there exists C > 1 such that for any s and t ∈ [T ],

max
π

PM(s ∈ τπ) ≤ C max
π

PMt(s ∈ τπ)

Intuitively, the assumption states that the reachability of a state in Mt would not be significantly
improved even under an optimal configuration of the exits. Therefore, running reward-free RL on
one of the meta-training tasks is sufficient for learning all non-exit (s, a) pairs.
Remark A.1. We note that Assumption A.1 is restrictive in that it requires that every state be
roughly reachable in any of the meta-training MDPs. This may not hold in practice, e.g., consider a
four-room environment where one of the rooms is blocked off for one of the tasks. However, this can
be weakened to requiring that s be reachable in at least one of N arbitrarily chosen meta-training
tasks. This would require that the algorithm run Phase II over N meta-training tasks, which results
in a benign increase in the query complexity of the algorithm, so long as N is a constant much
smaller than T . We focus on the N = 1 case for ease of presentation. y

To simplify the presentation of the rest of the assumptions, we recall the following definition of
δ-significance in Jin et al. (2020):
Definition A.1. A state s is δ-significant if maxπ P (s ∈ τπ) ≥ δ. Additionally, we say that (s, a)
is δ-significant if s is δ-significant. �

Note that we have modified the definition to remove the dependence on the timestep h ∈ [H]. This
is because the dynamics are stationary, and thus it does not matter when s is visited in a trajectory.

Note that Assumption A.1 implies that a reachable entrance in one task is reachable in all tasks
(i.e., is significant in the sense of Definition A.1). Therefore, we can quantify the minimum level of
significance:5

Definition A.2 (ρ-significant entrances). For any s ∈ Ent(S), s is ρ-significant for any task. �

Finally, we want to quantify the reachability of every exit from any entrance in the same cluster,
assuming that it is indeed reachable:
Definition A.3 (In-cluster exit reachability). Fix any cluster Z, entry s ∈ Ent(Z), and exit
(g, a) ∈ Ext(Z). Consider the reward-free environment Mt|Z = (Z,A,Pt|Z , H), where Pt|Z
is the restriction of Pt to Z × A and the starting state is s. Then, if g has nonzero significance in
Mt|Z for any t ∈ [T ], then it is ε0-significant. �

The requirement that the assumption hold for any t ∈ [T ] is without loss of generality since non-exit
dynamics do not change.

A.3 VERIFYING EXIT DETECTION

In this section, we demonstrate that the algorithm in Section A.1 can successfully discover Ext(S)
with high probability. Formally, we have the following result:
Theorem A.1 (Provable exit detection). Assume we run the algorithm in Section A.1 with the pa-
rameter choices given in Table 1. Then, with probability at least 1 − p, the algorithm returns an
array ISEXIT satisfying:

{(s, a) | ISEXIT[s, a]} = Ext(S).

To prove this result, we proceed with a phase-by-phase analysis of the algorithm in Section A.1,
which we then compile into proof of the desired result.

5One can weaken this assumption in a way that is compatible with the weakened form of Assumption A.1.
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Parameter Value

NUCBVI
H2SA

min(α, ζ)2
log2 HSAT

p

NTS
thresh Smax

(
H4

ζ2
,

1

β2

)
log

SAHT

pαmin(β, ζ)

NTS Smax

(
H5

αζ2
,
H

αβ2

)
log

SAHT

pαmin(β, ζ)
+

H2

min(α, ζ)2
log

SAT

p

NRF
EULER

H2S4A

min(ρmin(ε, ε0), ζ/C)
log3 HSA

p

NRF
H5S2A

min(ρmin(ε, ε0)2, ζ2/C)
log

A

p

NED
thresh

S

β2
log

SAH

pζβ

NED
HKS

ζβ2
log

SAH

pζβ
+
H2K2

ζ2
log

K

p

NEL
thresh Lmax

(
H4

ζ2
,

1

β2

)
log

CSAHT

pαmin(β, ζ)

NEL
EULER

CH3S2A

α
log3

(
HSAT

p

)

NEL Lmax

(
CH5

αζ2
,
CH

αβ2

)
log

CSAHT

pαmin(β, ζ)
+
C2H2

α2
log

SAT

p

Table 1: Table of parameters for the results in Theorem A.1. Since K ≤ SA and L ≤ S, the agent
does not need to know K or L in advance, at the expense of a worse sample complexity bound.

A.3.1 PHASE I ANALYSIS

First, we prove that during Phase I, Algorithm 1 sufficiently visits all relevant exits and that all value
estimates are sufficiently close. Formally, we have the following result:

Proposition A.1. Set

NTS
thresh = Ω

[
Smax

(
H4

ζ2
,

1

β2

)
log

SAHTNTS

p

]
,

and consider the following procedure applied to one of the meta-training tasksMt:

1. UCBVI is run for

NUCBVI = Ω

(
H2SA

min(α, ζ)2
log2 HSAT

p

)
iterations, generating policies π(t)

1 , . . . , π
(t)
NUCBVI

.
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2. The learner uniformly samples

NTS = Ω

(
H

α
NTS

thresh +
H2

min(α, ζ)2
log

TK

p

)
policies from the previous step, runs each policy inMt, and obtains a dataset of transitions
Dt and returns V̂ (1), . . . , V̂ (NTS).

Then, with probability at least 1− p/3T ,

(a) We have the regret bound

V ∗0 (s0)− 1

NUCBVI

NUCBVI∑
k=1

V
π
(t)
k

0 (s0) <
ζ

6
.

(b) The set of obtained returns satisfy∣∣∣∣∣ 1

NTS

NTS∑
i=1

V̂ (i) − 1

N

NUCBVI∑
k=1

V
π
(t)
k

0 (s0)

∣∣∣∣∣ < ζ

6
.

(c) If (s, a) is α-important forMt, then Nt(s, a) ≥ Nthresh.

(d) For every (s, a) pair such that Nt(s, a) ≥ Nthresh,

sup
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ < min

(
ζ

24H
,
βH

2

)
.

To prove the above result, we first recall the following regret bound on UCBVI, as proven by Azar
et al. (2017):

Lemma A.1 (UCBVI regret bound). For sufficiently large N , with probability at least 1− p/6,

V ∗0 (s0)− 1

N

N∑
k=1

V πk0 (s0) .

√
H2SA

N
log

(
HSAN

p

)
.

As we will see later on, with our choice of NUCBVI, we obtain the desired regret bound in (a).
Additionally, by Hoeffding’s inequality, the average of NTS returns concentrates around the desired
quantity with high probability, proving (b). Thus, all that remains is ensuring that every α-important
exit is sufficiently visited, and thus their dynamics are sufficiently well-estimated.

Recall from the main text that the key step is demonstrating that a near-optimal policy for a task
must visit its α-important states with non-negligible probability:

Lemma A.2. Let (s, a) be α-important forM, and let π be an ε-suboptimal policy for ε < α. Then,

P ((s, a) ∈ τπ) >
1

H
(α− ε).

Proof. By α-importance,

α ≤ VM,∗
0 (s0)− VM

\(s,a),∗
0 (s0) ≤

[
VM,∗

0 (s0)− VM,π
0 (s0)

]
+
[
VM,π

0 (s0)− VM
\(s,a),∗

0 (s0)
]

≤
[
VM,π

0 (s0)− VM
\(s,a),∗

0 (s0)
]

+ ε.

Therefore, by applying Lemma A.17 and noting that {∆ ∩ τπ 6= ∅} = {(s, a) ∈ τπ}, we obtain the
desired result.

Through the prior result, we can relate the UCBVI regret bound to the probability that a randomly
chosen UCBVI-generated policy visits an α-important state:
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Lemma A.3. Let (s, a) be α-important forM. Assume that UCBVI, when run for

NUCBVI = Ω

(
H2SA

α2
log2 HSA

p

)
iterations, generates policies π1, . . . , πN . If we sample π uniformly from these policies and let τ be
the (random) trajectory generated by this randomly selected policy, then

P ((s, a) ∈ τ) >
α

2H
,

conditioned on the high probability event in Lemma A.1.

Proof. By Lemma A.2, for any fixed π, we can write

P ((s, a) ∈ τπ) ≥ 1

H
(α− [V ∗0 (s0)− V π0 (s0)])+,

where x+ = x1 [x > 0]. Then, since π is chosen randomly from the policies generated by UCBVI,

P ((s, a) ∈ τ) =
1

N

N∑
k=1

P ((s, a) ∈ τπk) ≥ 1

HN

N∑
k=1

(α− [V ∗0 (s0)− V πk0 (s0)])+

≥ 1

H

[
α− 1

N

N∑
k=1

V ∗0 (s0)− V πk0 (s0)

]
.

Therefore, by applying the regret bound in Lemma A.1 and the choice of N , we find that

P ((s, a) ∈ τ) >
α

2H
.

With all of the above intermediate results, we can now prove Proposition A.1.

Proof of Proposition A.1. Throughout this proof, we condition on the high-probability event in
Lemma A.1, instantiated to occur with probability at least p/12T .

(a) By the choice of NUCBVI,

NUCBVI &
H2SA

ζ2
log2 HSAT

p
,

and thus, we obtain the desired bound by plugging this value into the regret bound provided
by Lemma A.1.

(b) Note that (V̂ (i)) are i.i.d., bounded in [0, H], and for any i ∈ [NTS],

E
[

ˆV (i)
]

=
1

N

N∑
k=1

V
π
(t)
k

0 (s0).

Therefore, by applying Hoeffding’s inequality, with probability at least 1− p/12T ,∣∣∣∣∣ 1

NTS

NTS∑
i=1

V̂ (i) − 1

NUCBVI

NUCBVI∑
k=1

V
π
(t)
k

0 (s0)

∣∣∣∣∣ .
√

H2

NTS
log

T

p

The result immediately follows from the fact that NTS & (H2/ζ2) log(T/p).

(c) The result simply follows from Lemma A.16 instantiated with failure probability 1 −
p/12T , together with the choice of NTS

thresh.

(d) With the choice of NUCBVI, the conclusion of Lemma A.1 can be made to hold with proba-
bility at least 1− p/24T . Fix an α-important exit (s, a) forMt, so that the probability that
(s, a) is visited by the procedure is at least α/2H . By Lemma A.15, sampling NTS trajec-
tories is sufficient to ensure that Nt(s, a) ≥ NTS

thresh with probability at least 1− p/24TK.
Therefore, by performing a union bound over the set of α-important exits (which contains
at most K elements), Nt(s, a) ≥ NTS

thresh for any α-important exit with probability at least
1− p/24T . Thus, overall, this event occurs with probability at least 1− p/12T .

Since each part fails with probability at most p/12T , the overall failure probability is at most p/3T ,
the desired result.
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A.3.2 PHASE II ANALYSIS

In this section, we provide guarantees on the dataset DRF obtained by performing reward-free RL
in Algorithm 2. Formally, we have the following high-probability result:
Proposition A.2. For any δ > 0 and failure probability p, if Algorithm 2 is run with parameters

NRF
EULER = O

(
H2S2A

δ
log3 HSA

p

)
NRF = O

[
max

(
C

ζ2
,

1

ρmin(ε, ε0)2

)
H5S2A log

A

p

].
Then, with probability at least 1− p/3:

(a) The distribution µ generating each sample in DRF satisfies

s ∈ S is δ-significant inM1(2H) =⇒ max
a,π

P ((s, a) ∈ τπ)

µ(s, a)
≤ 4SAH.

(b) The estimated dynamics model P̂0 satisfies

max
f :S→[0,H]

max
ν:S→A

E(s,a)∼µ

[∣∣∣[(P̂− P)f
]

(s, a)
∣∣∣2 1 [a = ν(s)]

]
. min

(
ζ2

4 · 242C
,
ρmin(ε, ε0)2

16

)
1

H3SA
.

The details of the proof of Proposition A.2 follow that of Jin et al. (2020), which we provide here
for completeness. First, we adapt the regret bound from Zanette & Brunskill (2019) for any MDP
and reward function used in Algorithm 2.
Lemma A.4. For any g ∈ S, running EULER inMg forN iterations returnsN policies π1, . . . , πN
satisfying the regret bound

V ∗0 (s0)− 1

N

N∑
k=1

V πk0 (s0) .

√
4V ∗0 (s0)

SA

N
log

SAHN

p
+
S2AH2

N
log3 SAHN

p

with probability at least 1− p.

Proof. Observe that

1

NH

N∑
k=1

Eπk

(H−1∑
h=1

r(sh, ah)− V πk0 (s0)

)2
∣∣∣∣∣∣ s0


≤ 2

NH

N∑
k=1

Eπk

(H−1∑
h=1

r(sh, ah)

)2

+ (V πk0 (s0))
2

∣∣∣∣∣∣ s0


≤ 2

NH

N∑
k=1

Eπk

[
H−1∑
h=1

r(sh, ah) + V πk0 (s0)

∣∣∣∣∣ s0

]

≤ 4

H
V ∗0 (s0).

Therefore, by applying the regret bounds from Zanette & Brunskill (2019), we obtain the regret
bound

V ∗0 (s0)− 1

N

N∑
k=1

V πk0 (s0) .

√
4V ∗0 (s0)

SA

N
log

SAHN

p
+
S2A2H2

N
log3 SAHN

p

with probability at least 1− p.
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With the regret bound above, we now proceed to prove Proposition A.2.

Proof of Proposition A.2. (a) Fix a δ-significant g ∈ S . Note that for rg , V π0 (s0) = P (g ∈ τπ) for
any policy π. Therefore, via the regret bound from Lemma A.4 and the choice of NRF

EULER, we obtain

max
π

P (g ∈ τπ)− 1

NRF
EULER

NRF
EULER∑
k=1

P (g ∈ τπ) ≤ 1

2
max
π

P (g ∈ τπ)

=⇒ max
π

P (g ∈ τπ) ≤ 2

NEULER
RF

∑
π∈Φg

P (g ∈ τπ)

with probability at least 1− p/2S. Now, since π(· | g) ∼ Unif (A), we have that for any a,

max
π

P ((g, a) ∈ τπ) ≤ 2A

NEULER
RF

∑
π∈Φg

P ((g, a) ∈ τπ).

Finally, by applying the same argument above across all δ-significant g ∈ S , we have that for any
(g, a),

max
π

P ((g, a) ∈ τπ) ≤
∑
g∈S

max
a,π

P ((g, a) ∈ τπ) ≤ 2SA

[
1

SNEULER
RF

∑
π∈Ψ

P ((g, a) ∈ τπ)

]

with probability at least 1− p/2. To complete the proof of (a), observe that

1

SNEULER
RF

∑
π∈Ψ

1

2H
P ((g, a) ∈ τπ) ≤ µ(s, a) =⇒ max

s,a,π

P ((s, a) ∈ τπ)

µ(s, a)
≤ 4SAH,

since conditioned on (g, a) ∈ τπ , the probability that (g, a) is sampled is at least 1/2H .

(b) The result follows by following the same proof of Lemma C.2 in Jin et al. (2020), with failure
probability p/2. Note that the dynamics are stationary, and thus we do not need to perform a union
bound over the time step h ∈ [H].

A.3.3 PHASE III ANALYSIS

Having analyzed the previous two phases, we now show that Algorithm 3 successfully finds all exits
during Phase III. As part of this, we prove the following guarantee:

Proposition A.3. Assume that Algorithm 3 is at Line 3, having just arrived at this step for the first
time, or after finding a new exit. Let E = {(s, a) | ISEXIT[s, a]}. We assume:

(a) E ⊆ Ext(S).

(b) The high-probability events in Proposition A.1 (for any t ∈ [T ]) and Proposition A.2 (for
δ ≤ ζ/24CH2S) both hold, providing estimators P̂0, P̂1, . . . , P̂T .

(c) For every (s, a) ∈ E and t ∈ [T ], we have access to an estimator P̂t(· | s, a) for Pt(· | s, a)
satisfying

max
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ min

(
ζ

24H
,
βH

2

)
.

Then, if E = Ext(S), the algorithm terminates after passing through T tasks. Otherwise, if E 6=
Ext(S), the following events hold simultaneously with probability at least 1− p/3K:

(a) For one of the next T tasks that the algorithm inspects, there exists at least one t ∈ [T ] such
that ∣∣∣Ṽ t − V̂t∣∣∣ > 2

3
ζ.
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(b) For the task in (a), running Lines 7–11 finds at least one (s, a) ∈ Ext(S) \ E (and only
(s, a) pairs in this set), and learns an estimator P̂t(· | s, a) for Pt(· | s, a) satisfying

max
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ min

(
ζ

24H
,
βH

2

)
.

To prove the above result, we will consider the following special set of MDPs:
Definition A.4 (Imaginable MDPs). Fix a taskMt. Furthermore, letE ⊆ Ext(S). For any function
I : S ×A× [H]→ {0, . . . , T}, we can construct an associated MDPMI = (S,A,PI , rt, H) via

P(h)
I (· | s, a) = PI(s,a,h)(· | s, a).

We define the set of imaginable MDPs to be the set Mt(E) to be the set of MDPs generated by any
I satisfying

I(s, a, h) ∈
{
{t} (s, a) ∈ E
{0} ∪

{
k
∣∣ Nk(s, a) ≥ Nthresh

}
otherwise

. �

Informally, Mt(E) is the set of obtainable MDPs by borrowing dynamics for (s, a) pairs that are
not known to be exits. This set is of particular interest in our analysis, since BOAT-VI performs a
maximization over the MDPs in this set:
Lemma A.5 (Optimism). Assume the preconditions of Proposition A.3. Over the course of running
Algorithm 4, the algorithm implicitly defines an index function I : S×A× [H]→ {0, . . . , T}. This
function I satisfiesMI ∈Mt(E), andMI is a maximizer of

max
M∈Mt(E)

max
π

V̂M,π
0 (s0).

Proof. To see that MI ∈ Mt(E), note that if (s, a) ∈ E, then Ih(s, a) = t for any h ∈ [H].
Otherwise, note that although the maximum is over all indices, P̂k(s′ | s, a) = 0 for any s′ if
Nt(s, a) < Nthresh. Therefore, since the estimated value function is always positive, the maximum
is effectively only over any k with Nk(s, a) ≥ 0. Thus,MI ∈Mt(E).

Now, we prove thatMI = M is a maximizer of the estimated value function, which we prove by
induction. Let I ′ be another index function satisfyingM′ =MI′ ∈ Mt(E). Clearly, V̂M,∗

H (s) =

0 ≤ V̂M
′,∗

H (s). Then, for any h ∈ [H] and (s, a),

Q̂M,∗
h (s, a) = r(s, a) + P̂I(s,a,h)V̂

M,∗
h+1 (s, a)

≥ r(s, a) + P̂I′(s,a,h)V̂
M,∗
h+1 (s, a) ≥ r(s, a) + P̂I′(s,a,h)V̂

M′,∗
h+1 (s, a)

= Q̂M
′,∗

h (s, a),

where the first inequality follows from the definition of I, and the second follows from the inductive
hypothesis. Therefore, for any s,

V̂M,∗
h (s) = max

a
Q̂M,∗
h (s, a) ≥ max

a
Q̂M

′,∗
h (s, a) = V̂M

′,∗
h (s)

Thus, by induction, V̂M,∗
0 (s0) ≥ V̂M

′,∗
0 (s0). Since the argument applies for any I ′, we have shown

the desired optimality result.

Note that M̄ is contained in Mt(E) via our assumed preconditions, suggesting that the BOAT-
VI should find an MDP with a sufficiently over-optimistic value. However, the maximization above
makes use of estimated dynamics, and thus we need to prove that every MDP in Mt(E) is sufficiently
well-estimated. We now show that the preconditions of Proposition A.3 are sufficient for estimation.
To this end, we recall the performance difference lemma:
Lemma A.6 (Performance Difference). Fix two MDPs M = (S,A, r,P, H) and M′ =
(S,A, r,P′, H). Then, for any policy π,

VM
′,π

0 (s0)− VM,π
0 (s0) = EM,π

[
H−1∑
h=0

[(P′h − Ph)V̂h+1](sh, ah)

∣∣∣∣∣ s0

]
.
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We now present the estimation result:
Lemma A.7. For any π and t ∈ [T ], let VM,π

0 (s0) be the value of a policy π inM ∈ Mt(E), and
V̂M,π

0 (s0) an estimate using available quantities from the preconditions of Proposition A.3. Then,

sup
t∈[T ]

sup
π

M∈Mt(E)

∣∣∣V̂M,π
0 (s0)− VM,π

0 (s0)
∣∣∣ < ζ

6
.

Proof. Fix a t ∈ [T ], M ∈ Mt(E) and policy π, with associated index function I. Lemma A.6
implies that∣∣∣V̂M,π

0 (s0)− VM,π
0 (s0)

∣∣∣ ≤ H−1∑
h=0

EM,π

[∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(sh, ah)

∣∣∣]
≤
H−1∑
h=0

∑
(s,a)

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a).

We now define the following sets:
Uδ = {(s, a) is δ-insignificant forM1}
Bh = {(s, a) | Ih(s, a) 6= 0} \ (E ∪ Uδ)
Rh = {(s, a) | Ih(s, a) = 0} \ Uδ.

Note that Rh is estimated via reference dynamics from Phase II, while Bh is estimated using task-
specific dynamics from Phase I. Then, for a fixed h, we can decompose the inner sum above as∑

(s,a)

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

≤
∑

(s,a)∈E

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

︸ ︷︷ ︸
=:(I)

+
∑

(s,a)∈Rh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

︸ ︷︷ ︸
=:(II)

+
∑

(s,a)∈Bh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

︸ ︷︷ ︸
=:(III)

+
∑

(s,a)∈Uδ

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

︸ ︷︷ ︸
=:(IV)

Note the inequality since E ∩ Uδ is not necessarily disjoint. We now bound the four terms above
separately.

Bounding (I): Dynamics Error from Known Exits. We first bound (I), which we note derives from
errors in estimating the dynamics of known exits. Recall that by precondition (c) in Proposition A.3,

sup
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ ζ

24H
.

Therefore,

(I) =
∑

(s,a)∈E

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

=
∑

(s,a)∈E

∣∣∣[(P̂t − Pt)V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ ζ

24H

∑
(s,a)∈E

PM,π
h (s, a)

≤ ζ

24H
.
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Bounding (II): Reference Dynamics Error. Note that within Rh, Ph = P0, which we estimate via
P̂0. Therefore, we bound the error resulting from using DRF to estimate P0. This part of the proof
follows that of Jin et al. (2020). First, by Cauchy-Schwarz,

(II) =
∑

(s,a)∈Rh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

=
∑

(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

≤

 ∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 PM,π
h (s, a)

1/2

.

Observe that V̂ πh+1 only depends on π through timesteps h+ 1, . . . ,H − 1. Therefore,∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 PM,π
h (s, a)

≤ max
ν:S→A

∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 PM,π
h (s)1 [ν(s) = a] .

By applying Assumption A.1,

PM,π
h (s) ≤ PM(s ∈ τπ) ≤ max

π
PM(s ∈ τπ) ≤ C max

π
PM1(s ∈ τπ)

≤ C max
π

PM1(2H)(s ∈ τπ) ≤ 4CHSAµ(s, a),

where we have applied Assumption 4.1 to move from M to M1. Substituting into the earlier
expression,

max
ν:S→A

∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 PM,π
h (s)1 [ν(s) = a]

≤ 4CHSA max
ν:S→A

∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 1 [a = ν(s)]µ(s, a)

≤ 4CHSA max
ν:S→A

∑
s,a

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 1 [a = ν(s)]µ(s, a)

= 4CHSA max
ν:S→A

E(s,a)∼µ

[∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 1 [a = ν(s)]

]
.

Thus, by applying the bound on the right-hand side provided by Proposition A.2,

(II) =
∑

(s,a)∈Rh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ ζ

24H
.

Bounding (III): Error from Task-Specific Dynamics. Recall that on Bh, Ph = Pk for some
k 6= 0. Thus, (III) is the error resulting from dynamics estimation in Algorithm 1. By following the
same argument as that used to bound (I) and applying Proposition A.1, we find that∑

(s,a)∈Bh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ ζ

24H
.

Bounding (IV): Error from δ-Insignificance. The remaining set of (s, a) pairs are those such that
s is δ-insignificant inM1. Note that

(IV) =
∑

(s,a)∈Uδ

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ H

∑
(s,a)∈Uδ

PM,π
h (s, a)

= H
∑
s∈Uδ

PM,π
h (s).
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As a result,

PM,π
h (s) ≤ PM(s ∈ τπ) ≤ max

π
PM(s ∈ τπ) ≤ C max

π
PM1(s ∈ τπ)

≤ Cδ.

By setting δ = ζ/24CH2S when performing reward-free RL in Phase II, we thus find that∑
(s,a)∈Uδ

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ ζ

24H
.

Concluding. By combining the bounds on (I) through (IV) and summing across h = 0, . . . ,H − 1,
we find that ∣∣∣V̂0

M,π
(s0)− VM,π

0 (s0)
∣∣∣ ≤ ζ

6
.

Note that this argument simultaneously applies to any such M; therefore, the desired conclusion
follows.

The prior estimation result, together with Assumption 4.1, suggests that BOAT-VI should find an
MDP that sufficiently overestimates the value of the task so long as not all exits have been found.
This ensures that the exit-finding routine is triggered. Formally,

Lemma A.8. Assume the preconditions of Proposition A.3, and that E 6= Ext(S). Additionally, let
t ∈ [T ] be the task with a ζ-overoptimistic value when borrowing exits Ext(S) \ E. Finally, let Ṽ t
be the value function returned by Algorithm 4 onMt. Then,

Ṽ t0 (s0)− V̂t >
2

3
ζ.

Proof. Throughout this proof, we omit the timestep 0 and the initial state s0 for brevity. DefineM∗
and π∗ to be the maximizers of

max
M∈Mt(E)

max
π

VM,π.

Furthermore, let M̄ be the imagined MDP guaranteed by Assumption 4.1 on top ofMt, such that
V M̄,∗ > VMt,∗ + ζ. Then, we have that

V̂M,π − VMt,∗ = (V̂M,π − V̂M
∗,π∗)︸ ︷︷ ︸

≥0

+ (V M̂
∗,π∗ − VM

∗,π∗)︸ ︷︷ ︸
>−ζ/6

+ (VM
∗,π∗ − V M̄,π̄)︸ ︷︷ ︸
≥0

+ (V M̄,π̄ − VMt,∗)︸ ︷︷ ︸
>ζ

>
5

6
ζ.

Furthermore,

VMt,∗ − V̂t =

(
VMt,∗ − 1

NUCBVI

NUCBVI∑
k=1

VMt,π
(t)
k

)
︸ ︷︷ ︸

≥0

+

(
1

NUCBVI

NUCBVI∑
k=1

VMt,π
(t)
k − V̂t

)
︸ ︷︷ ︸

≥−ζ/6

,

where the first follows from optimality, while the second follows from Proposition A.2. Thus,
putting the two inequalities together,

Ṽ t − V̂t >
2

3
ζ.

While the prior algorithm ensures that at least one of the tasks will trigger the exit condition, the
actual task that triggers the condition may not be the same one invoked in the proof above. Never-
theless, we can prove that the trigger condition ensures that the algorithm will find a new exit.
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Lemma A.9. Assume the preconditions of Proposition A.3, and that E 6= Ext(S). Let t ∈ [T ] be a
task such that the value estimate Ṽ t returned by Algorithm 4 satisfies Ṽ t0 (s0) − V̂t > (2/3)ζ, and
let π be the optimal policy for Ṽ . Then, there exists (s, a) ∈ Ext(S) \ E such that for some t′ 6= t,

(a) Nt′(s, a) ≥ NTS
thresh and Pt(· | s, a) 6= Pt′(· | s, a).

(b) PMt((s, a) ∈ τπ) > ζ/6KH .

Proof. Let M be the implicit MDP defined by Algorithm 4 in the process of computing Ṽ t. We
will prove a value gap betweenM andMt, which implies that π must visit state-action pairs with
imagined dynamics.

Note that

VM,π
0 (s0)− VMt,∗

0 (s0) =
[
VM,π

0 (s0)− Ṽ t0 (s0)
]

︸ ︷︷ ︸
≥−ζ/6

+
[
Ṽ t0 (s0)− V̂t

]
︸ ︷︷ ︸
≥(2/3)ζ

+

[
V̂t −

1

NUCBVI

NUCBVI∑
k=1

V
Mt,π

(t)
k

0 (s0)

]
︸ ︷︷ ︸

≥−ζ/6

+

[
1

NUCBVI

NUCBVI∑
k=1

V
Mt,π

(t)
k

0 (s0)− VMt,∗
0 (s0)

]
︸ ︷︷ ︸

≥−ζ/6

,

where the first inequality comes from Lemma A.7 and the last two inequalities come from Proposi-
tion A.1. Thus, VM,π

0 (s0)− VMt,∗
0 (s0) ≥ ζ/6.

We now leverage this value gap to show that π must use some exit (s, a) whose dynamics
in M have been modified from Mt with some probability. Formally, define the set ∆ ={

(s, a, h)
∣∣ Pt(· | s, a) 6= PMh (· | s, a)

}
. By construction, ∆ ⊆ Ext(S)×[H], and for any (s, a, h) ∈

∆, there exists t′ such that Nt′(s, a) ≥ NTS
thresh and Pt′(· | s, a) = PMh (· | s, a). Furthermore, ∆

must be non-empty, as otherwise, Pt = PMh for all h, and thus VM,π
0 (s0) ≤ VMt,∗

0 (s0), a contra-
diction. Therefore, by applying Lemma A.17, we find that

ζ

6H
< PMt(τπ ∩∆ 6= ∅) ≤

∑
{(s,a) | (s,a,h)∈∆}

PMt((s, a) ∈ τπ),

which implies the desired result, as {(s, a) | (s, a, h) ∈ ∆} has at most K elements.

Because of Lemma A.9, we simply need to run π enough times and threshold at the number of sam-
ples needed to reliably determine which (s, a) pairs have an O(β) change in TV distance between
tasks.
Lemma A.10. We work in the setting of Lemma A.9. Set

NED
thresh = Ω

(
S

β2
log

SAHNED

p

)
and NED = Ω

(
HK

ζ
NED

thresh +
H2K2

ζ2
log

K

p

)
.

Then, if we execute π withinMt NED and let N(s, a) be the number of times that (s, a) is played
in this process, then with probability at least 1− p/6K, the following hold:

(a) For the (s, a) pair and task t′ in Lemma A.9, N(s, a) ≥ NED
thresh and∥∥∥P̂(· | s, a)− P̂t′(· | s, a)

∥∥∥
TV

>
β

2
.

(b) For any (s, a) 6∈ Ext(S) with N(s, a) ≥ NED
thresh and t′ with Nt′(s, a) ≥ 0,∥∥∥P̂t(· | s, a)− P̂t′(· | s, a)

∥∥∥
TV
≤ β

2
.
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Proof. By the choice of NED and the lower bound PMt((s, a) ∈ τπ) > ζ/6KH from Lemma
A.9, we guarantee that N(s, a) ≥ NED

thresh with probability at least 1 − p/12K. Furthermore, due
to the choice of NED

thresh, with probability at least 1 − p/12K, we have that for any (s, a) with
N(s, a) ≥ NED

thresh, ∥∥∥P̂(· | s, a)− Pt(· | s, a)
∥∥∥

TV
<
β

4
,

by applying Lemma A.16. We condition on these two events simultaneously for the rest of the proof,
which occurs with probability at least 1− p/6K.

We now prove each part separately. For brevity, we omit (s, a) wherever it is understood.

(a) By applying the triangle inequality,

‖Pt − Pt′‖TV ≤
∥∥∥Pt − P̂

∥∥∥
TV

+
∥∥∥P̂− P̂t′

∥∥∥
TV

+
∥∥∥P̂t′ − Pt′

∥∥∥
TV
≤
∥∥∥P̂− P̂t′

∥∥∥
TV

+
β

2
.

Therefore, by lower bounding the left-hand side using β-dynamics separation in Definition
4.1, we find that ∥∥∥P̂(· | s, a)− P̂t′(· | s, a)

∥∥∥
TV

>
β

2
.

(b) The triangle inequality implies that∥∥∥P̂− P̂t′
∥∥∥

TV
≤
∥∥∥P̂− Pt

∥∥∥
TV︸ ︷︷ ︸

≤β/4

+ ‖Pt − Pt′‖TV︸ ︷︷ ︸
=0

+
∥∥∥Pt′ − P̂t′

∥∥∥
TV︸ ︷︷ ︸

≤β/4

≤ β

2
,

where the bound on the first term is provided by Proposition A.1.

The prior result demonstrates that if the exit-finding condition is detected at any point by the al-
gorithm, then the algorithm finds a previously undiscovered exit in Ext(S). At this point, all that
remains is to ensure that the algorithm sufficiently learns the dynamics of the newly-found exit in
all of the meta-training tasks.
Lemma A.11. Fix an (s, a) ∈ Ext(S), which was found via exit detection, and let

NEL
thresh = Ω

[
Lmax

(
H4

ζ2
,

1

β2

)
log

SAHNELT

p

]
Assume we run the exit-learning subroutine with

NEL
EULER = Ω

[
CS2AH3

α
log3

(
SAHT

p

)]
and NEL = Ω

(
CH

α
NEL

thresh +
C2H2

α2
log

SAT

p

)
.

in each of the tasks. Then, with probability at least 1− p/6K,

max
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ min

(
ζ

24H
,
βH

2

)
for every t ∈ [T ].

Proof. Fix a task t ∈ [T ]. Note that Assumption 4.1 implies that (s, a) is (α/H)-significant for
some task. Then, (s, a) must be (α/CH)-significant for all of the other tasks by Assumption A.1.

By applying Lemma A.4, the set of policies found by the exit-learning subroutine for every task
t ∈ [T ] satisfies

max
π

P ((s, a) ∈ τπ)− 1

NEL
EULER

NEL
EULER∑
k=1

P ((s, a) ∈ τπk)

.

√
max
π

P ((s, a) ∈ τπ)
SA

NEL
EULER

log
SAHTNEL

EULER

p
+
S2AH2

NEL
EULER

log3 SAHTN
EL
EULER

p
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with probability at least 1− p/18TK. By setting

NEL
EULER &

CS2AH3

α
log3

(
HSAT

p

)
,

we thus find that for any t ∈ [T ],

α

2CH
≤ 1

2
max
π

P ((s, a) ∈ τπ) ≤ 1

NEL
EULER

∑
π∈Φt(s,a)

P ((s, a) ∈ τπ) .

Note that the right-hand side is exactly the probability that the trajectory of a randomly chosen policy
in Φt(s, a) contains (s, a) in the trajectory. Therefore, by applying Lemma A.15, playing

NEL = Ω

(
CH2NEL

thresh

α
+
C2H4

α2
log

SAT

p

)
is sufficient to guarantee that we obtain at least NEL

thresh samples from Pt(· | s, a) with probability at
least 1 − p/18TK. Since (s, a) ∈ Ext(S), Pt(· | s, a) (and by extension, P̂t(· | s, a)) is supported
on Ent(S). Therefore, we can modify the proof in Lemma A.16 so that with probability at least
1− p/18TK we get the bound

max
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ max

f :Ent(S)→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣

≤ min

(
ζ

24H
,
βH

2

)
with NEL

thresh depending linearly on L instead of S.

Note that by performing a union-bound, all events occur with probability at least 1 − p/6TK.
Performing a second union-bound over all of the available tasks results in the desired failure proba-
bility.

At this point, we have effectively proven the second half of our Phase III guarantee. All that remains
is to prove that if {(s, a) | ISEXIT[s, a]} = Ext(S), then the algorithm terminates without triggering
the exit-finding condition.

Lemma A.12. Assume that E = {(s, a) | ISEXIT[s, a]} = Ext(S). Then, under the preconditions
of Proposition A.3, every task satisfies ∣∣∣Ṽ t(s0)− V̂t

∣∣∣ ≤ 2

3
ζ.

Proof. Fix a task t ∈ [T ]. Once E = Ext(S), then Mt(E) = {Mt}, since the only (s, a)-dynamics
that can be substituted from other tasks are those of non-exits, which do not change between tasks.
Therefore, by Lemma A.5, Ṽ t(s0) = V̂M,∗

0 (s0). Finally, by applying Lemma A.7, we thus find that

Ṽ t(s0)− V̂t =
[
V̂M,∗

0 (s0)− VM,∗
0 (s0)

]
+
[
VM,∗

0 (s0)− V̂t
]
<
ζ

3
.

The desired result follows since the argument holds for any task t.

A.3.4 PROOF OF THEOREM A.1

In this section, we compile the guarantees provided by each of the three phases into a proof of
Theorem A.1.

Proof of Theorem A.1. We condition on the following high-probability events:

(a) Proposition A.1 guarantees for allMt with t ∈ [T ].

(b) Proposition A.2.
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Via a union-bound, this holds with probability at least 1− (2/3)p.

To prove the theorem, we provide an induction-based analysis of Phase III. In particular, we will
show that while E = {(s, a) | ISEXIT[s, a]} ( Ext(S), Phase III will add at least one state-action
pair to E that belongs to Ext(S) \ E.

Formally, let Fk denote the internal state of the algorithm after it has added k state-action pairs.
Note that with k = 0, {(s, a) | ISEXIT[s, a]} in Fk is empty. Thus, Fk satisfies the preconditions of
Proposition A.3, which in turn implies that the algorithm adds a new state-action pair in Ext(S) and
sufficiently learns its dynamics for all tasks with probability at least 1− p/3K. In short, the internal
state of the algorithm at time F1 also satisfies the preconditions of Proposition A.3 with probability
at least 1− p/3K. More generally, Proposition A.3 ensures that if Fk satisfies the preconditions of
Proposition A.3, then so does Fk+1. Therefore, with probability at least 1 − p/3, FK satisfies the
preconditions of Proposition A.3, which necessarily implies that {(s, a) | ISEXIT[s, a]} = Ext(S)
in FK , and thus the algorithm exits as desired. By performing a union bound, all this occurs with
probability at least 1− p.

A.4 PROVING THE META-TRAINING GUARANTEE

Having demonstrated that Ext(S) can be successfully recovered by interacting with the environ-
ment, we now show that the data can also be used to determine exit reachability and implement the
hierarchy oracle.

We formally state our main result here:
Theorem A.2. Assume that M1, . . . ,MT have a latent hierarchy with respect to
({Zc} ,Ent(·),Ext(·)), and assume that these tasks satisfy the (α, ζ)-coverage condition in
Assumption 4.1. Furthermore, we assume the additional assumptions in Section A.2. Then, by
running the algorithm in Section A.1 with the parameters in Table 1, with probability at least 1− p,
the collected data can be used to implement the following:

(a) An ε-suboptimal hierarchy oracle.

(b) A function AvExt(s) : Ent(S) → P(Ext(S)) such that, given s ∈ Ent(Zs), returns
Ext(Zs).

The algorithm achieves both of these with query complexity

Õ

[
S4A

min(ρmin(ε, ε0), ζ/C)
+

S2A

min(ρmin(ε, ε0)2, ζ2/C)

+ T

(
SA

min(α, ζ)2
+
KS

ζβ2
+
K2

ζ2
+
CKS2A

α
+

CKL

αmax(ζ, β)2

)]
poly(H).

A.4.1 IMPLEMENTING THE HIERARCHY ORACLE

We first show that we can implement the hierarchy oracle in this section. In particular, we have the
following result:

Proposition A.4. LetM be the MDP corresponding to the index (x, f, r, H̃) as described in Defi-
nition 4.3. Then, given (x, f, r, H̃), we can form the following estimator for Pf :

P̂f (· | s, a) =


δ(f(s, a)) (s, a) ∈ Ext(S)

δ(s) s = 	S or s = 	F
P̂0(· | s, a) otherwise

,

where P̂0 is the estimator obtained from Phase II in Section A.1. Assuming that the high-probability
event in Proposition A.2 holds for δ ≤ ρε/2SH2, value iteration using P̂f returns a policy π such
that VM,∗

0 (x)− VM,π
0 (x0) ≤ ε.

Throughout the rest of this section, we fix the tuple (x, f, r, H̃) and the corresponding MDP M.
Furthermore, we write Z for the cluster containing x.
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To prove Proposition A.4, we will show that M can be sufficiently simulated so that the value of
any policy can be reasonably estimated. Given this simulation result, we can then show that value
iteration finds the desired policy. This simulation result depends on the following intermediate result,
which provides insight as to why Phase II data is sufficient:

Lemma A.13. For any s∗ ∈ Z,[
max
π

PM1(x ∈ τπ)
] [

max
π

PM(s∗ ∈ τπ)
]
≤ max

π
PM1(2H)(s∗ ∈ τπ)

Proof. First, we note that there exists an MDP such that PM1(2H)(s∗ ∈ τπ) is the corresponding
value function. In particular, modifyingM1(2H) so that any action from s∗ leads to a terminal state
and defining r(s, a) = 1 [s = s∗] results in such an MDP.

Now, let πx and πs∗ be the policies achieving

max
π

PM1(x ∈ τπ) and max
π

PM(s∗ ∈ τπ),

respectively. Consider the concatenation of πx and πs∗ into a history-dependent policy that runs πx
until the agent reaches s, and switches to πs∗ thereafter. This policy reaches s with probability at
least [

max
π

PM1(x ∈ τπ)
] [

max
π

PM(s∗ ∈ τπ)
]
.

within the modified MDP described above. Since the optimal value among all policies is achieved
by a history-independent policy, we obtain the desired inequality.

Informally, the prior result states that if x is reachable within horizon H , then any state reachable
from x within Z is also reachable in M1 within a 2H horizon. Therefore, performing reward-
free RL with horizon 2H during Phase II provides coverage over all clusters. Now, we prove the
simulation result.

Lemma A.14. Assume that the Phase II guarantee in Proposition A.2 is instantiated for δ ≤
ρε/4SH2. Then, if V π is the value of π under M, and V̂ π is its corresponding estimate under
P̂f , then ∣∣∣V̂ π0 (x)− V π0 (x)

∣∣∣ ≤ ε

2
.

Proof. The proof follows similarly to that of Lemma A.7. By the performance difference lemma,

∣∣∣V̂ π0 (s)− V π0 (s)
∣∣∣ ≤ H̃−1∑

h=0

EM,π

[∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(sh, ah)

∣∣∣]

≤
H̃−1∑
h=0

∑
(s,a)

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a).

Observe that if s ∈ S \ Z, Pπh (s, a) = 0 for any π. Furthermore, since the dynamics within
{	S ,	F } are known, (P̂f − Pf )V̂ πh+1(s, a) = 0 for s ∈ {	S ,	F }. Therefore, we can restrict the
sum to be over Z ×A.

Now, let Zδ denote the set of δ-significant (s, a) pairs in Z×A from x, for some δ to be determined.
For a fixed h ∈ [H̃], we can decompose the inner sum as∑
(s,a)

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a)

≤
∑

(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a)

︸ ︷︷ ︸
(I)

+
∑

(s,a)6∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a)

︸ ︷︷ ︸
(II)

.
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Bounding (II): Error from δ-Insignificance By the definition of δ-significance,

(II) =
∑

(s,a) 6∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a) ≤ H
∑
s 6∈Zδ

Pπh (s) ≤ HSδ ≤ ε

4H
,

where the last inequality follows from setting δ = ε/4SH2.

Bounding (I): Reference Dynamics Error. By the Cauchy-Schwarz inequality,

(I) =
∑

(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a)

≤

 ∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 Pπh (s, a)

1/2

.

Then, ∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 Pπh (s, a)

≤ max
ν:S→A

∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 Pπh (s)1 [ν(s) = a] .

Since x is ρ-significant inM1(2H) by Definition A.2, Lemma A.13 together with δ-significance in
M implies ρδ-significance inM1(2H). Therefore,

Pπh (s) ≤ max
π

PM(s ∈ τπ) ≤ 1

ρ
max
π

PM1(2H)(s ∈ τπ) ≤ 4HSA

ρ
µ(s, a),

where the last inequality follows by part (a) of the Phase II guarantee in Proposition A.2. Substituting
into the prior expression,

max
ν:S→A

∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 Pπh (s)1 [ν(s) = a]

≤ 4HSA

ρ
max
ν:S→A

∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 1 [ν(s) = a]µ(s, a)

≤ 4HSA

ρ
max
ν:S→A

E(s,a)∼µ

[∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 1 [ν(s) = a]

]
.

Thus by applying part (b) of the Phase II guarantee in Proposition A.2, we have that

(I) ≤

√
4HSA

ρ
max
ν:S→A

E(s,a)∼µ

[∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 1 [ν(s) = a]

]
≤ ε

4H
.

Concluding. By combining the bounds on (I) and (II), we obtain the desired result.

With this estimation result, we can now prove Proposition A.4.

Proof of Proposition A.4. Let π be the policy found by value iteration using P̂f , which achieves the
maximal value in the corresponding MDP. Then, by Lemma A.14

V ∗0 (x)− V π0 (x) ≤
[
V ∗0 (s0)− V̂ π

∗

0 (s0)
]

︸ ︷︷ ︸
≤ε/2

+
[
V̂ π
∗

0 (s0)− V̂ π̂0 (s0)
]

︸ ︷︷ ︸
≤0

+
[
V̂ π̂0 (s0)− V π̂0 (s0)

]
︸ ︷︷ ︸

≤ε/2

≤ ε.
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A.4.2 DETERMINING AVAILABLE EXITS

In this section, we prove that we can determine the set of available exits. We have the following
formal result:

Proposition A.5. Assume access to the ε-suboptimal hierarchy oracle from the previous section
and that the guarantee in Theorem A.1 holds. Then, we can implement the function AvExt(s) :
Ent(S) → P(Ext(S)) which, given s ∈ Ent(Zs), returns the subset of Ext(Zs) that is reachable
from s.

Proof. Fix an input x ∈ Ent(S), which we assume belongs to some cluster Zx. It suffices to
demonstrate that we can implement 1 [e ∈ Zx] for any fixed e ∈ Ent(S). Define

fe(s, a) =

{
	S (s, a) = e

	F otherwise

and re(s, a) = 1 [(s, a) = e]. By Definition A.3, the MDP M corresponding to the tuple
(x, fe, re, H) has optimal value V ∗ = ε01 [e ∈ Zx ∧ e reachable from x]. Additionally, by Lemma
A.14, |V π0 (s) − V̂ π0 (x)| ≤ ε/2. We now proceed by cases. If e 6∈ Zx or e is not reachable
from x, then V π0 (x) = 0 for any policy π, and thus value iteration can only find a policy π with
V̂ π0 (x) ≤ ε0/3. Otherwise, for e ∈ Zx, V ∗0 (x) = ε0, and thus value iteration necessarily must find
a π with V̂ π0 (x) ≥ 2ε0/3. Putting these together, if V̂ is the optimal estimated value inM, then

1 [e ∈ Zx] = 1

[
V̂ ≥ 2

3
ε0

]
.

Note that this is implementable for all e ∈ Ext(S) (and returns a subset of Ext(Zx) for the query
above) since the set of exits are already known.

A.4.3 FINALIZING THE GUARANTEE: QUERY COMPLEXITY

In this section, we finalize the proof of the meta-training guarantee by computing the query com-
plexity.

Proof of Theorem A.2. As demonstrated by Proposition A.4 and Proposition A.5, running the algo-
rithm in Section A.1 with the parameters in Table 1 provides the desired guarantees with probability
at least 1− p.

To compute the query complexity, observe that we perform the following number of trajectories
while executing the algorithm in Section A.1.

O
[
T (NUCBVI +NTS) +NRF

EULER +NRF +KNED + TK(NEL
EULER +NEL)

]
.

Ignoring terms that do not depend on T or ε, we obtain the claim.

A.5 BRUTE-FORCE LEARNING OF THE HIEARCHY

Theorem A.3. Assume that Algorithm 6 is run with parameters satisfying

NEULER = Ω

(
CH3S2A

α
log3 SAHT

p

)
and

Nthresh = Ω

(
S

β2
log

SAHNT

p

)
and N = Ω

(
CH

α
Nthresh +

C2H2

α2
log

SAT

p

)
Then, the set returned by the algorithm is exactly Ext(S) with probability at least 1 − p. Further-
more, the algorithm achieves this result with query complexity

Õ

[
T

(
CS4A

α
+
CS2A

αβ2

)]
poly(H).
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Algorithm 6 Brute-force learning of the latent hierarchy.

1: procedure LEARNHIERARCHY((M1, . . . ,MT ), NEULER iterations, N policy samples, thresh-
old Nthresh)

2: for all t ∈ [T ], s ∈ S do
3: Create MDPMs

t so P (	 | s, a) = 1 for any a.
4: r̃s(s

′, a′)← 1 [s′ = s].
5: Ψs

t ← EULER(Ms
t , r,NEULER)

6: for all t ∈ [T ], s ∈ S, a ∈ A do
7: Modify policies in Ψs

t to play a on s.
8: for all n ∈ [N ] do
9: Sample π ∼ Unif (Ψs

t ).
10: Play π inMt, collect sample (s, a, s′n) if (s, a) is encountered
11: Nt(s, a)← number of times (s, a) is encountered above.
12: P̂t(· | s, a)← estimate of (s, a) dynamics in t.
13: return

{
(s, a)

∣∣∣ (∃t 6= t′)
∥∥∥P̂t − P̂t′

∥∥∥
TV

> β/2,min(Nt(s, a), Nt′(s, a)) ≥ Nthresh

}
.

Proof. For any (s, a) ∈ Ext(S), Lemma A.2 implies that s is α/H-significant for some task t ∈ [T ].
Therefore, s is α/CH-significant for any task t ∈ [T ], by Assumption A.1.

Now, by an argument similar to that used in the proof of Lemma A.2, we have that with probability
at least 1− p/3T , the choice of NEULER implies

1

NEULER

∑
π∈Ψst

PMt(s ∈ τπ) ≥ α

2CH

for any exit (s, a) ∈ Ext(S) and a fixed task t ∈ [T ]. Therefore, by a union-bound over the tasks,
the same guarantee holds for all tasks simultaneously with probability at least 1− p/3.

Now, for any fixed (α/CH)-significant (s, a) pair, sampling from Ψs
t at least N times guarantees

that with probability at least 1 − p/3SAT , Nt(s, a) ≥ Nthresh. Therefore, once again performing
the necessary union-bound, we obtain the same result uniformly over any (α/CH)-significant (s, a)
and t ∈ [T ] with probability at least 1− p/3.

Finally, for a fixed (s, a) and t, the estimator for Pt(· | s, a) satisfies the property that when
N(s, a) > 0,∥∥∥P̂t(· | s, a)− Pt(· | s, a)

∥∥∥
TV
≤

√
H2S

Nt(s, a)
log

SAHNT

p
+

HS

Nt(s, a)
log

SAHNT

p

with probability at least 1−p/3SAT , using an argument similar to that used in Lemma A.16. Again,
by a union bound, the same guarantee holds for any (s, a) and t ∈ [T ]. In particular, for any (s, a)
with Nt(s, a) ≥ Nthresh, ∥∥∥P̂t(· | s, a)− Pt(· | s, a)

∥∥∥
TV
≤ β

4
.

Therefore, by a similar argument to Lemma A.10, the following are true:

(a) If (s, a) ∈ Ext(S), then there exists t, t′ for which∥∥∥P̂t(· | s, a)− P̂t′(· | s, a)
∥∥∥

TV
>
β

2
.

(b) If (s, a) 6∈ Ext(S), then for any t 6= t′ with Nt(s, a), Nt′(s, a) ≥ Nthresh,∥∥∥P̂t(· | s, a)− P̂t(· | s, a)
∥∥∥

TV
≤ β

2
,

Putting everything together, we see that the set returned by Algorithm 6 is exactly Ext(S), with
probability at least 1− p.
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A.6 TECHNICAL LEMMAS

Lemma A.15. Let X1, . . . , XM be i.i.d. Ber (p) random variables. Then, if

M = Ω

(
N

p
+

1

p2
log

1

δ

)
,

then with probability at least 1− δ,
M∑
i=1

1 [Xi = 1] ≥ N.

Proof. By applying Hoeffding’s inequality,

P

(
M∑
i=1

1 [Xi = 1] < N

)
= P

(
1

M

M∑
i=1

1 [Xi = 1]− p < N

M
− p

)

= P

(
1

M

M∑
i=1

1 [Xi = 0]− (1− p) > p− N

M

)

≤ exp

[
−2M

(
p− N

M

)2
]

Setting the final expression to the failure probability δ and solving, we obtain the quadratic inequality

p2M2 −
(

2Np+
1

2
log

1

δ

)
M +N2 ≥ 0.

Finally, via solving this inequality for M , we find that

M ≥ 2N

p
+

1

2p2
log

1

δ

is sufficient to guarantee the desired event with failure probability δ, as desired.

Lemma A.16 (Dynamics estimation error bound). Fix a policy π, MDP with stationary dynamics
M = (S,A,P, r,H), and N ∈ N. Assume that π is played N times inM, and all transitions are
used to form an estimator P̂(· | s, a) using empirical averages. For any (s, a) ∈ S ×A, let N(s, a)
be the number of times (s, a) is encountered in this process. Then, with probability at least 1 − p,
any (s, a) with N(s, a) > 0 satisfies

sup
f :S→[0,H]

∣∣∣[(P̂− P
)
f
]

(s, a)
∣∣∣ ≤√ H2S

N(s, a)
log

SAHN

p
+

HS

N(s, a)
log

SAHN

p
.

Proof. Assume that the obtained samples are given by {(sk, ak, s′k) | k ∈ [HN ]}, so that
(sHn+r, aHn+r, s

′
Hn+r+1) is the rth time step in the nth execution of π inM for any 0 ≤ n ≤ N−1

and 0 ≤ r ≤ H − 1.

Fix any (s, a) ∈ S × A, and assume that (s(j), a(j), s
′
(j)) is the jth sample from P(· | s, a). Fur-

thermore, let mj(s, a) denote the index at which the jth sample is obtained. We claim that for any
s∗ ∈ S and 0 < M ≤ HT ,∣∣∣∣∣∣ 1

M

M∑
j=1

1 [mj(s, a) ≤ HT ]
(
1

[
s′(j) = s∗

]
− P(s∗ | s, a)

)∣∣∣∣∣∣
≤
√

P(s′ | s, a)

M
log

S

δ
+

1

M
log

S

δ
.

Let Fi be defined as the σ-algebra induced by the set of random variables{(
mj(a),1

[
s′(j) = s∗

]) ∣∣∣ j ≤ i} .
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Clearly, (Fi) is a filtration such that the jth term in the sum above is measurable with respect to Fj .
Furthermore, observe that

E
[
1 [mj(s, a) ≤ HT ]

(
1

[
s′(j) = s∗

]
− P(s∗ | s, a)

) ∣∣∣ Fj−1

]
= E

[
1

[
s′(j) = s∗

]
− P(s∗ | s, a)

∣∣∣ Fj−1,mj(s, a) ≤ HT
]
P (mj(s, a) ≤ HT )

= 0.

Therefore, the random variables in the sum forms martingale difference sequence. Furthermore, the
sequence is bounded in [−1, 1], and satisfies

Var
[
1 [mj(s, a) ≤ HT ]

(
1

[
s′(j) = s∗

]
− P(s∗ | s, a)

) ∣∣∣ Fj−1

]
= E

[
Var

[
1

[
s′(j) = s∗

]
− P(s∗ | s, a)

∣∣∣ Fj−1,mj(s, a) ≤ HT
] ∣∣∣ Fj−1

]
≤ P(s∗ | s, a).

Therefore, by applying Azuma-Bernstein, we have that∣∣∣∣∣∣ 1

M

M∑
j=1

1 [mj(s, a) ≤ HT ]
(
1

[
s′(j) = s∗

]
− P(s∗ | s, a)

)∣∣∣∣∣∣
≤
√

2P(s′ | s, a)

M
log

SAHN

δ
+

2

M
log

SAHN

δ
.

with probability at least 1− p/SAHN .

By applying a union bound on (s, a, s∗) and M , we thus have that with probability at least 1− p,∣∣∣∣∣∣ 1

M

M∑
j=1

1 [mj(s, a) ≤ HT ]
(
1

[
s′(j) = s∗

]
− P(s∗ | s, a)

)∣∣∣∣∣∣
≤
√

2P(s′ | s, a)

M
log

SAHN

δ
+

2

M
log

SAHN

δ

holds for any (s, a, s∗) and M . Conditioned on this event, we thus have that for any (s, a) with
N(s, a) > 0,∥∥∥P̂t(· | s, a)− Pt(· | s, a)

∥∥∥
TV

=
1

2

∑
s′∈S

∣∣∣P̂t(s′ | s, a)− Pt(s′ | s, a)
∣∣∣

.
∑
s′∈S

√
P(s′ | s, a)

N(s, a)
log

SAHN

δ
+

S

N(s, a)
log

SAHN

δ

.

√
S

N(s, a)
log

SAHN

δ
+

S

N(s, a)
log

SAHN

δ
.

The final result follows simply by noting that∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ . ∥∥∥P̂t(· | s, a)− Pt(· | s, a)

∥∥∥
TV
‖f‖∞ .

Lemma A.17. Fix two MDPsM = (S,A,P, r,H) andM′ = (S,A,P′, r,H). Let ∆ denote the
subset of S ×A× [H] for which Ph(· | s, a) 6= P′h(· | s, a). Then, for any policy π,

VM
′,π

0 (s0)− VM,∗
0 (s0) > ρ =⇒ PM (τπ ∩∆ 6= ∅) = PM′ (τπ ∩∆ 6= ∅) >

ρ

H
.
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Proof. Write q = PM′ (τπ ∩∆ 6= ∅). Note that VM
′,π

0 (s0) can be decomposed as

VM
′,π

0 (s0) = qEM′
[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ 6= ∅

]

+ (1− q)EM′
[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ = ∅

]

≤ qH + (1− q)EM′
[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ = ∅

]
.

Since P and P′ agree on (S ×A× [H]) \∆, the dynamics ofM andM′ agree up until π performs
an action in ∆, and thus

PM (τπ ∩∆ 6= ∅) = PM′ (τπ ∩∆ 6= ∅)

EM

[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ = ∅

]
= EM′

[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ = ∅

]

Furthermore,

(1− q)E

[
h−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩ δ = ∅

]
≤ VM,π

0 (s0) ≤ VM,∗
0 (s0).

Putting everything together,

VM
′,π

0 (s0) ≤ qH + VM,∗
0 (s0) =⇒ q >

ρ

H
.

A.7 WHY SHOULD OPTIMISTIC IMAGINATION HOLD?

In this section, we provide a heuristic explanation as for why optimistic imagination can be expected
to hold in most scenarios for which Definition 3.1 holds.

Recall from the main text that if an exit e satisfies the preliminary coverage condition, then e can
be detected using only Phase I data. Therefore, we can restrict our discussion of Assumption 4.1 to
subsets of exits that only have nonzero importance for a task t if Pt(· | e) is some distribution de. In
other words, we can only guarantee that near-optimal policies for the source tasks observe de. We
will provide a heuristic reason as to why we can then expect to find an MDP such that condition (b)
of Assumption 4.1 holds for such a subset S.

State visitation measures. Recall that the value function in an MDP with a stationary reward
function is given by

VM,π
0 (s0) =

H−1∑
h=0

EM,π [r(sh, ah) | s0] .

Now, if we assume that the reward is only a function of the state (as in goal-conditioned RL), and
view r as a vector in R|S|, then we can write VM,π

0 (s0) = Hρ>M,πr, where

ρM,π(s) =
1

H

H−1∑
h=0

PM,π(sh = s | s0).

That is, ρM,π is the state visitation measure of π withinM with horizon H . This geometric view-
point was explored by Eysenbach et al. (2021) in the context of unsupervised RL in the discounted
infinite-horizon setting. We note that for any fixedM, {ρM,π} is a convex subset of the probability
simplex.
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Constructing the desired reward function. Let M be any source task such that the set T ={
e ∈ S

∣∣ PM(· | e) 6= de
}

is non-empty. Furthermore, let M̃ be the corresponding MDP described
in Assumption 4.1(b) after borrowing dynamics, so that

P̃(· | s, a) =

{
P(· | s, a) (s, a) 6∈ S
d(s,a) otherwise

is the dynamics of M̃. Since
∥∥PM(· | e)− de

∥∥
TV

> β for any e ∈ S, heuristically, we expect the
following to be true:
Assumption A.2. There exists a π∗ such that ρM̃,π∗ 6∈ {ρM,π}.

Stated less formally, we expect there to be states that π∗ can reach better in M̃ compared to any
policy inM.
Example A.1. In the four-room example, this intuition is captured by the fact that the agent can
spend more time in states past open gates compared to if they were closed. y

Under Assumption A.2 above, since {ρM,π} is convex, we can find a reward direction separating
{ρM,π} and ρM̃,π∗ , or more formally,

ρ>M̃,π∗
r > sup

π
ρ>M̃,π∗

r.

Then, the MDP M with reward function r satisfies the desired condition in Assumption 4.1(b).
Thus, under Assumption A.2, the coverage condition can indeed hold with sufficiently diverse source
tasks.
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B META-TEST PROOFS

We now provide an analysis of the regret incurred by a learner using an approximately learned
hierarchy at meta-test time. We first show that the hierarchy oracle from the source tasks can provide
useful temporally extended behavior. We then show that using these policies results in bounded
suboptimality and achieves a better regret bound compared to standard UCB-VI.

Throughout this section, we fix an optimal π∗ satisfying the conditions of Assumption 5.1. Further-
more, we assume that we have access to a hierarchy oracle that provides ε-suboptimal policies as
defined in Definition 4.3.

B.1 USING THE HIERARCHY ORACLE

In this section, we show that the hierarchy oracle can be used to implement two useful behaviors:
(1) reaching exits and (2) behaving optimally within a cluster.

B.1.1 NEAR-OPTIMAL GOAL REACHING

Assume that the agent is currently at a state z ∈ {s0}∪Ent(S) at time step h, and intends to exit the
current cluster Z via exit g = (s∗, a∗) ∈ Ext(Z). We obtain a policy implementing the high-level
intent as follows:

(1) Define the termination for any (s, a) ∈ Ext(S) as:

fg(s, a) :=

{
	S (s, a) = g

	F otherwise

(2) Define reward as r	S (s, a) := 1 [s = 	S ]

(3) Provide (z, fg, r	S , H − h) to the hierarchy oracle and obtain a policy πz,g,h.

For simplicity, we will write T hier
H−h(z, g) for Tπz,g,hH−h (z, g) throughout our analysis. The following

proposition quantifies the performance of the obtained policy:

Proposition B.1. T hier satisfies the following inequality:

E
[
T hier
H−h(z, g)

]
≤ T ∗H−h(z, g) + ε.

Proof. Due to the definition of Pfg and r, observe that for any π,

V π0 (z) = E

[
H−h∑
h=0

r(sh, ah)

∣∣∣∣∣ s0 = z

]
= (H − h)− E

[
TπH−h(z, g)

]
.

Therefore,

(H − h)− T ∗H−h(z, g)− ε ≤ (H − h)− E
[
T hier
H−h(z, g)

]
=⇒ E

[
T hier
H−h(z, g)

]
≤ T ∗H−h(z, e) + ε.

B.1.2 NEAR-OPTIMAL WITHIN-CLUSTER BEHAVIOR

Assume that the agent is currently at a state z ∈ {s0} ∪ Ent(S) at time h, and intends to remain
in the current cluster Z while maximizing a given reward function r. We obtain a policy for this
high-level intent as follows:

(1) Define transition dynamics for any (s, a) ∈ Ext(Z) as P(· | s, a) = δ(	F ).

(2) Provide P, r, and planning horizon H − h to the hierarchy oracle, and obtain a policy π.
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B.2 FORMAL LEARNING PROCEDURE

In this section, we describe the procedure for learning a policy using the oracle-provided policies
described in the previous section. Formally, we construct a surrogate MDP whose dynamics are
determined byM and the oracle. We can then apply any tabular learning method to this new MDP
(in our case, EULER), obtaining a policy in the surrogate MDP that readily translates into a policy
inM.

The components defining the surrogateMhl = (Z,G,Phl, Rhl, Heff) are as follows:

Meta-state space Z . We set

Z :=
(
Ent(S)×

{
0, . . . , H̄ + 1

})
∪ {	} ,

where H̄ is a high-probability bound on the time to move through Heff exits (to be determined
later). We incorporate the time step into the meta-state to ensure that both the dynamics and reward
are computable from the state information (ensuring thatMhl is indeed an MDP).

Meta-action space G. Given a current meta-state (s, h) where s ∈ Z, the available meta-actions
G can be identified with Ext(Z) ∪ {	}.

Algorithm 7 Performing a Meta-Transition

1: procedure PERFORMMETATRANSITION((z, g) ∈ Z × G)
. Executes the desired meta-transition in the original MDPM.

2: if z = 	 then
3: return 	
4: else if z = (s, h) then
5: if h ≤ H̄ then
6: if s ∈ Z∗ or g = 	 then
7: Execute within-cluster policy from oracle until termination.
8: return 	
9: else

10: Execute πz,g,h obtained from oracle until g is performed or h = H̄ .
11: s′, h′ ← current state and time step
12: if g was performed then
13: return (s′, h′)
14: else
15: return (s, H̄ + 1)

16: else
17: if s ∈ Z∗ or g = 	 then
18: return 	
19: else
20: return (s, h)

Meta-dynamics Phl. Fix (z, g) ∈ Z × G for some z 6= 	, so that z = (s, h). We consider the
procedure in Algorithm 7 for generating the meta-dynamics. Intuitively, we execute a meta-action
g 6= 	 by running the oracle-provided policy until the learner encounters g, or has acted for H̄
timesteps in the current episode. On the other hand, if g = 	, the agent executes the oracle-provided
ε-suboptimal policy that remains within the current cluster and acts for H − h timesteps.

Formally, the next state z′ is given by

z′ =


	 s ∈ Z∗ or g = 	
(s′, h′) h ≤ H̄
(s, h) otherwise

,
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where s′ and h′ are generated given T hier
H−h(s, g) as

h′ | T hier
H−h(s, g) = min(h+ T hier

H−h(s, g), H̄ + 1)

s′ | h′ ∼
{
P(· | g) h′ ≤ H̄
δ(s) otherwise

.

Note that the learner can only execute meta-actions while h ≤ H̄ . Furthermore, given access toM,
one can easily simulate the dynamics ofMhl.

Meta-reward Rhl. Fix ((s, h), g) ∈ Z × G. Recall that the reward function ofM is supported
on Ext(S) ∪ (Z∗)◦. Thus, this reward function can be lifted onto Mhl. Formally, we define the
following reward function:

Rhl(z, g) =


Wh(s) z = (s, h), s ∈ Z∗ and h ≤ H̄
r(g) z = (s, h), s 6∈ Z∗ and h′ ≤ H̄
0 otherwise

,

whereWh(s) is the random sum of rewards obtained by playing a within-cluster policy starting from
s′ for the rest of the episode. Note that Rhl depends on Phl and is thus random. Furthermore, this
reward function is consistent with how meta-transitions are performed in Algorithm 7.

Meta-horizon Heff . Recall that there exists an optimal policy that encounters at most Heff exits
with high probability. Accordingly, we limit the learner to being able to choose Heff high-level
actions, which recall can be choices of exits.

Solving Mhl. To obtain the desired policy, we apply EULER to Mhl. By the construction in
Algorithm 7, the policy set returned by EULER easily translates into policies onM. Furthermore,
the value of this policy is the same on both MDPs.

B.3 PROVING THE REGRET BOUND

Having defined the procedure for learning a policy using the hierarchy, we now proceed with the
regret analysis. Our analysis proceeds by constructing a policy expressible in Mhl that achieves
near-optimal returns by imitating the high-level decisions made by π∗. We then use this policy as a
comparator policy when applying EULER regret bounds toMhl.

To formally construct the desired comparator policy, we need to first define the notion of a meta-
history, which contains the set of high-level decisions made by any policy:

Definition B.1. Fix a policy π, which given some horizon L, generates a (random) trajectory
(s0, a0, . . . , sL). Let Ext(π) be the number of exits performed in the trajectory, i.e.

Ext(π) =

L−1∑
h=0

1 [(sh, ah) ∈ Ext(S)] .

The meta-historyHhl(π) corresponding to this trajectory is the sequence

(z0, g0, z1, g1, . . . , zExt(π)) = (si0 , (sj0 , aj0), si1 , (sj1 , aj1) . . . , siExt(π)
),

where

in :=

{
0 n = 0

jn−1 + 1 otherwise

jn := min
h=in,...,L−1

1 [(sh, ah) ∈ Ext(S)] .

Note that zi ∈ Ent(S) and gi ∈ Ext(S) for all i = 0, . . . ,Ext(π). We omit π in writing Hhl when
the underlying policy π is understood. �

Informally, Hhl tracks all entrances and exits contained in a trajectory generated by π. We define
the length of a meta-historyHhl, denoted as |Hhl|, as the number of exits contained inHhl.
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B.3.1 POLICY CONSTRUCTION

We now proceed with constructing the desired policy. Intuitively, the comparator imitates the dis-
tribution over Hhl(π

∗), conditioned on |Hhl(π
∗)| ≤ Heff . To see why this is sufficient for near-

optimality, recall that the reward on MTg is supported on Ext(Z∗) ∪ (Z∗)◦. Consequently, by
imitating the distribution over meta-histories, the policy is expected to obtain roughly the same sum
of rewards in expectation from the exits. Therefore, all that remains is to ensure that the learner
collects roughly the same sum of rewards from Z∗, which is the same as ensuring that this policy
does not take too long to reach Z∗.

Construction. LetH be the running meta-history, containing k ≤ Heff actions. The optimal policy
induces a distribution q(· | H) over Ahl representing the next exit it takes6. We then define π as

π(· | z,H) =

{
q(· | H) z = (s, h), h < H̄

	 otherwise.

Observe that π terminates the episode upon reaching H̄ . Furthermore, this policy is dependent on
the meta-history. However, sinceMhl is an MDP, there exists a stationary policy that achieves at
least the same value.

B.3.2 SUBOPTIMALITY ANALYSIS

In this section, we prove that π achieves bounded suboptimality. Rather than analyzing π directly
inMhl, we construct a new M̃hl and π̃ to better track the meta-history. In particular, conditioned
on the event that π requires more than H̄ time steps to execute, then the agent would not be able to
imitate the full meta-history generated by π∗, even after having performed less than Heff exits.

Constructing a surrogate for analysis. We now formalize the construction of the surrogate MDP
M̃hl and the policy π̃ corresponding to π in this MDP. To obtain M̃hl, we redefine the dynamics
fromMhl so that s′ | h′ ∼ P(· | g) in M̃hl. In effect, we allow the policy to continue performing
transitions beyond H̄ , although without any reward. Accordingly, we define π̃ as π̃(· | z,H) =

q(· | H). The following lemma formalizes how π̃ and M̃hl have desirable properties for the analysis:
Lemma B.1 (Surrogate Policy Characterization). Let µ∗ denote the distribution of
Hhl(π

∗) | |Hhl(π
∗)| ≤ Heff inMTg, and µ̃ the distribution ofH(π̃) in M̃hl. Then, (1− ζ)µ∗ ≤ µ̃.

Proof. Let ν∗ be the distribution induced by the following procedure:

(1) Sample a meta-history from the distributionHhl(π
∗) | |Hhl(π

∗)| > Heff .

(2) Truncate the obtained meta-history to length Heff .

It is easy to see from the definition of π̃ that µ̃ = (1− ζ)µ∗ + ζν∗. The desired result follows.

Thus, we have indeed shown the desired property that π̃ properly tracks the (truncated) meta-history
generated by π∗. To justify performing our analysis on (M̃hl, π̃), we have the following result,
which shows that any result on the value of the pair above applies to the value of π inMhl.

Lemma B.2. As constructed above, V M̃hl,π̃
0 (s0) = VMhl,π

0 (s0).

Proof. We writeM :=Mhl andM′ := M̃hl. Similarly, we write π′ := π̃. We proceed by proving
a chain of equalities.

(V π
′,M′(s0) = V π,M

′
(s0)). We omitM′ in this part of the argument for clarity. By the perfor-

mance difference lemma, we have that for any k ∈ [Heff ] and z ∈ Shl,

V π0 (s0)− V π
′

0 (s0) =

Heff−1∑
j=0

Ez∼dπj
[
Aπ
′

j (z, π)
]
.

6The distribution q can return 	 if the learner stays in the cluster until episode termination.
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Let ∆ :=
{
z ∈ Shl

∣∣ z = (s, h), s 6∈ Z∗, h ≥ H̄
}

, which is the set on which π and π′ disagree.
Observe that for any π and k, V πk (z) = 0 for any z ∈ ∆, and thus Aπ

′

k (z, π) = 0 for all such states.
For any other z, Aπ

′

k (z, π) is clearly 0. Thus, we obtain the desired result.

(V π,M
′
(s0) = V π,M(s0)) We omit π in this part of the argument for clarity. Using the simulation

lemma,

VM0 (s0)− VM
′

0 (s0) =

Heff−1∑
j=0

E(z,g)∼dM′j

[
[(PM − PM′)VMj+1](z, g)

]
.

Observe that the behavior of the two MDPs are identical conditioned on h′ ≤ H̄ . On the other hand,
conditioned on h′ > H̄ , π can no longer receive rewards from either MDP. Therefore, [(PM −
PM′)VMj ](z, g) = 0 for any j, z, g by decomposing the relevant expectations along the two events.
We thus obtain the desired result.

Analyzing the surrogate. With the results above, we now proceed to analyze the difference in
values

V
MTg,∗
0 (s0)− V M̃hl,π̃

0 (s0),

which then implies the desired suboptimality result. First, we have the following lemma character-
izing the time π̃ requires to fully execute a given meta-history in the base MDPM:
Lemma B.3. Fix anyHhl = (z0, g0, . . . ) such that |Hhl| ≤ Heff . Furthermore, define the sequence
of reaching times

T0 := 0 and Tk := Tk−1 + T hier
H−Tk−1

(zk−1, uk−1).

We define T hier(Hhl) to be the time required by the hierarchy to execute Hhl, which is formally
given by T|Hhl| in the sequence above. Then,

(a) E
[
T hier(Hhl)

]
≤ [1 + (1 + γ)W + ε]Heff .

(b) Let σ2 := β2[(1 + γ)W + ε]2Heff . Then, for any t > 0,

P
(
T hier(Hhl) ≥ [1 + (1 + γ)W + ε]Heff + t

)
≤ e−t

2/2σ2

.

Proof. We prove the two parts separately:

(a) We will prove via induction that E [Tk] ≤ k [1 + (1 + γ)W + ε]. For any k and Tk−1,

E
[
T hier
H−Tk−1

(zk−1, gk−1)
∣∣∣ Tk−1

]
≤ E

[
T ∗H−Tk−1

(zk−1, gk−1)
∣∣∣ Tk−1

]
+ ε

= 1 + E
[
T ∗H−Tk−1

(zk−1, s(gk−1))
∣∣∣ Tk−1

]
+ ε

≤ 1 + (1 + γ)W + ε,

where the first inequality uses properties of the hierarchy oracle, while the final inequality
follows by combining Definition 5.2(b) and Assumption 5.2. Therefore, by linearity and
the tower property of expectation,

E [Tk] = E [Tk−1] + E
[
T hier
H−Tk−1

(zk−1, gk−1)
]

= E [Tk−1] + E
[
E
[
T hier
H−Tk−1

(zk−1, gk−1)
∣∣∣ Tk−1

]]
≤ E [Tk−1] + 1 + (1 + γ)W + ε.

The desired result then follows by induction.

(b) Let Bk := k [1 + (1 + γ)W + ε] and fk(t) := E
[
T hier
H−t(zk, gk)

]
. Note that for any k and

t, Bk−1 + fk−1(t) ≤ Bk, by following the argument in (a). Therefore, for any λ > 0,

E [exp {λ (Tk −Bk)}]
= E [E [exp {λ (Tk −Bk)} | Tk−1]]

≤ E
[
E
[
exp

{
λ
(
Tk−1 + T hier

H−Tk−1
(zk−1, gk−1)−Bk−1 − fk−1(Tk−1)

)} ∣∣∣ Tk−1

]]
,
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where the last inequality uses the monotonicity of the exponential function. Therefore, by
applying the sub-Gaussian condition given in Definition 5.2,

E [exp {λ (Tk −Bk)}]

≤ E
[
exp {λ (Tk−1 −Bk−1)}

E
[
exp

{
λ
(
T hier
H−Tk−1

(zk−1, gk−1)− fk−1(Tk−1)
)} ∣∣∣ Tk−1

]]
≤ E [exp {λ(Tk−1 −Bk−1)}] exp

[
λ2C2/2

]
,

where we have used the fact that T hier
H−Tk−1

(zk−1, s(gk−1)) has a sub-Gaussian upper tail
with variance proxy

C2 = β2E
[
TπH−Tk−1

(zk−1, s(gk−1))
∣∣∣ Tk−1

]2
≤ β2 [(1 + γ)W + ε]

2
.

Note that we have once again used the properties of the hierarchy oracle, and Assumption
5.2. Therefore, by induction, E [exp {λ (Tk −Bk)}] ≤ E

[
λ2(
√
kC)2/2

]
, from which the

desired tail bound follows by making use of Chernoff’s inequality.

As we have shown that π̃ closely tracks the meta-history of π∗ and have analyzed the distribution of
time it takes to execute a given meta-history, we can now analyze its suboptimality:
Lemma B.4. There exists a policy π expressible inMhl such that

V
MTg,∗
0 (s0)− VMTg,π

0 (s0) . (1 +Heff + β
√
Heff)ε+

[
γHeff + β(1 + γ)

√
Heff

]
W + ζH.

Proof. Assume that π∗ generates a (random) meta-history of length N given by Hhl =
(z0, g0, z1, g1, . . . , zN ). Furthermore, let T ∗ denote the (random) time π∗ takes to reach zN . Then,
givenHhl and T ∗, observe that we can write

V ∗0 (s0) = E [R∗T∗(Hhl)] , where R∗T (Hhl) := V ∗T (zN )1 [zN ∈ Z∗] +

N−1∑
k=0

r(gk),

using the assumptions on the reward function and condition (a) in Assumption 5.1. Subsequently,
letting E be the event {N ≤ Heff}, we can bound the right-hand side as

V ∗0 (s0) = E [R∗T∗(Hhl)] ≤ (1− ζ)E [R∗T∗(Hhl) | E] + ζH,

where we have used Assumption 5.1 to bound the probability that N > Heff .

Our goal for the rest of this proof is to transform the expectation on the right-hand side into a form
that lower bounds V π0 (s0). To this end, we define

Rhier
T (Hhl) := V hier

T (zN )1 [zN ∈ Z∗] +

N−1∑
k=0

r(gk),

and the sequence of times

T0 = 0 and Tk := Tk−1 + T hier
H−Tk−1

(zk, gk).

Note that Rhier and TN are analogous to R∗ and T ∗, respectively. Then, letting F be the event{
TN ≤ H̄

}
, note that

V ∗0 (s0) ≤ (1− ζ)E [R∗T∗ | E] + ζH

= (1− ζ)E
[
R∗T∗ −Rhier

TN +Rhier
TN

∣∣ E]+ ζH

≤ E
[(
R∗T∗ −Rhier

TN

)
1 [F ]

∣∣ E]︸ ︷︷ ︸
(I)

+ (1− ζ)E
[
Rhier
TN 1 [F ]

∣∣ E]︸ ︷︷ ︸
(II)

+
[
ζ + P

(
FC

∣∣ E)]H.
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We bound (I) and (II) separately.

Bounding (I). Let G be the event E ∩ {zN ∈ Z∗}. Then, if we define

Tmin =

N−1∑
k=0

Tmin(zk, uk) ≤ N(W + 1)

as the minimum time needed to executeHhl, we then have that
E
[(
R∗T∗ −Rhier

TN

)
1 [F ]

∣∣ E] ≤ E
[
R∗T∗ −Rhier

TN

∣∣ E]
≤ E

[
V ∗T∗(zN )− V hier

TN (zn)
∣∣ G]

≤ E
[
V ∗Tmin

(zN )− V hier
TN (zN )

∣∣ G]
≤
∫ H

0

P
(
V ∗Tmin

(zN )− V hier
TN (zN ) > α

∣∣ G) dα.

Note that the bound on Tmin follows from Assumption 5.2. To convert the different in values into a
difference of times, observe that if TN − Tmin ≤ α− ε, then

V ∗Tmin
(zN )− V hier

TN (zN ) = V ∗Tmin
(zN )− V ∗TN (zN ) + V ∗TN (zN )− V hier

TN (zN )

≤ (T̄ − Tmin) + ε

≤ α.
Therefore,∫ H

0

P
(
V ∗Tmin

(zN )− V hier
TN (zN ) > α

∣∣ G) dα

≤
∫ H

0

P (TN − Tmin > α− ε | G) dα

≤ E

[∫ H

0

P (TN − Tmin > α− ε | Hhl) dα

∣∣∣∣∣ G
]

≤ E

[∫ H

0

P (TN − [1 + (1 + γ)W + ε]Heff > α− ε−Heff(γW + ε) | Hhl) dα

∣∣∣∣∣ G
]

≤ ε+Heff(γW + ε) + E
[∫ ∞

0

P (TN − [1 + (1 + γ)W + ε]Heff > α | Hhl) dα

∣∣∣∣ G]
. ε+Heff(γW + ε) + β[(1 + γ)W + ε]

√
Heff ,

where the final inequality integrates the tail bound provided in Lemma B.3. Overall, we have that
by rearranging,

(I) . (1 +Heff + β
√
Heff)ε+

[
γHeff + β(1 + γ)

√
Heff

]
W.

Bounding (II). By the characterization of π̃ in Lemma B.1,
(1− ζ)E

[
Rhier
TN (Hhl(π

∗))1 [F ]
∣∣ E] ≤ E

[
Rhier
TN (Hhl(π̃))1 [F ]

]
≤ V π̃0 (s0),

where the final inequality uses the fact that R̄T̄ (Hhl(π̃)) is the return of π̃ in M̃hl, given F .

Concluding. Putting all of the previous bounds together, we find that

V ∗0 (s0) ≤ V π̄0 (s0) + (1 +Heff + β
√
Heff)ε+

[
γHeff + β(1 + γ)

√
Heff

]
W

+
[
ζ + P

(
FC

∣∣ E)]H.
By setting H̄ to

H̄ = Heff [1 + (1 + γ)W + ε] + β[(1 + γ)W + ε]

√
2Heff log

1

ζ
� H,

sub-Gaussian tail bounds on TN implies that P
(
FC

∣∣ E) ≤ ζ. Finally, by Lemma B.2,

V M̃hl,π̃
0 (s0) = VMhl,π

0 (s0) = V
MTg,π
0 ,

where the last equality follows by the construction ofMhl. We thus obtain the desired suboptimality
bound.
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B.3.3 REGRET ANALYSIS

As earlier suggested, we now make use of π̃ as a comparator policy in order to prove a regret bound
on a learner making use of the procedure outlined in Section B.2.
Theorem B.1. Assume that EULER generates policies π1, . . . , πN onMhl, as constructed in Sec-
tion B.2. Then, we have the following regret bound:

N∑
k=1

V ∗0 (s0)− V πk0 (s0) .
√
H2H̄LMN +Nεsubopt,

where
εsubopt := (1 +Heff + β

√
Heff)ε+

[
γHeff + β(1 + γ)

√
Heff

]
W + ζH.

Proof. Throughout the proof, we consider applying EULER toMhl where the rewards are scaled by
1/H to ensure that rewards are bounded in [0, 1]. As a result, we can bound G ≤ 1 in the EULER
regret bound in Zanette & Brunskill (2019), since the sum of rewards in Mhl is also the sum of
rewards inM, and scaling by 1/H gives the desired bound on G. Therefore,

N∑
k=1

V ∗,Mhl

0 (s0)− V πk0 (s0) . H

√
1

Heff
H̄LMHeffN =

√
H2H̄LMN.

Furthermore,

V ∗0 (s0)− V ∗,Mhl

0 (s0) ≤ V ∗0 (s0)− V π0 (s0) + V π,Mhl

0 (s0)− V ∗,Mhl

0 (s0) ≤ εsubopt.

We thus obtain the desired result.

B.4 AN EXPONENTIAL REGRET SEPARATION FOR A HIERARCHY-OBLIVIOUS LEARNER

In this section, we provide proof of the exponential regret separation between a hierarchical learner
and a learner oblivious to the hierarchy. The overall idea behind our proof is the reduction of solving
the family of minimax instances described in Domingues et al. (2021) to a particular family of task
distributions.

B.4.1 THE HARD TASK DISTRIBUTION FAMILY

In this section, we describe the family of task distributions that forces any meta-training-oblivious
learner to incur exponential regret. For any string s, we write |s| for its length.

We now define the family of binary tree room MDPs MW of depth W . We index a member of this
family by a tuple (`∗, a∗, e∗), where `∗ is a binary string of length W − 1, and a∗, e∗ ∈ {0, 1}. The
MDPM(`∗,a∗,e∗) = (S,A,P(`∗,a∗,e∗), r,H) corresponding to this tuple is constructed as follows:

State Space S. We create a root state sroot, 2W − 1 states indexed by binary strings of length at
most W − 1 collected into a set T = {s0, s1, s00, s01, . . . }, a gate state sgate, and terminal states
	trap,	S ,	F .

Action Space A. The set of available actions at every state is the set {0, 1}.

Transition Dynamics P(`∗,a∗,e∗). We define the dynamics as follows:

P(`∗,a∗,e∗)(· | s, a) =



δ(sa) s = sroot

δ(sta) s = st ∈ T, |t| < W − 1

bδ(sgate) + (1− b)δ(	trap) s = st ∈ T, |t| = W − 1,

s 6= s`∗ , b ∼ Ber (1/2)

bδ(sgate) + (1− b)δ(	trap) s = s`∗ , b ∼ Ber (1/2 + ε1 [a = a∗])

δ(	S) s = sgate, a = e∗

δ(	F ) s = sgate, a 6= e∗.
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Reward Function r. The reward function is r(s, a) = 1 [s = 	S ] + 1 [s = sgate, a = a∗].

Having described all the components of every member of MW , all that remains is to construct the
family of task distributions TW . Each member of this family will be indexed by (`∗, a∗), where `∗
and a∗ are as described above. Then, the task distribution T(`∗,a∗) ∈ TW chooses uniformly within
the set

{
M(`∗,a∗,0),M(`∗,a∗,1)

}
. Note that this implicitly defines the latent hierarchy so that the

clusters are {sroot, sgate,	trap} ∪ T , {	S}, and {	F }. Furthermore, the set of exits for the first
cluster is {(sgate, 0), (sgate, 1)}.

B.4.2 A FAMILY OF HARD INSTANCES

In this section, we describe the family of hard instances which we reduce to solving the task distri-
bution above. Intuitively, if an algorithm incurs low regret throughout MW , then it must be able to
quickly find a policy to reliable reach the gate state sgate for any MDP in the family.

Constructing the hard instances. Accordingly, we define a new MDP family NW , which now is
only indexed by (`∗, a∗), and is constructed similarly as any member of MW , but ignoring states
outside {sroot, sgate,	trap}∪T . Additionally, we redefine the reward function r for any member to
be r(s, a) := 1 [s = sgate]. We note that this is exactly the set of hard tasks used to prove a minimax
regret bound in Domingues et al. (2021).

The lower bound. We state the lower bound result from Domingues et al. (2021), in a slightly
more restricted form for ease of proof and presentation. In particular, we consider the following
more restricted definition of an algorithm:
Definition B.2. Let Hn be the trajectory data generated by playing a policy πn in an MDP M.
That is, Hn = ((s0, a0, r0, s1), (s1, a1, r1, s2), . . . , (sH−1, aH−1, rH−1, sH)), where s0 and a0 are
fixed, rh = r(sh, ah), and sh+1 ∼ PM(· | sh, ah). Additionally, we setH0 = ∅.

Then, a valid algorithmA for our purposes is one which, for the nth episode, outputs a deterministic,
non-stationary policy π that is solely a function of the current state and action and

⋃n−1
i=1 Hi. That

is, A does not output policies that adapt to the current running episode. �

We again emphasize that this restriction is not necessary but that many algorithms nevertheless
satisfy this condition (including UCBVI and EULER). We then have the following hardness result:
Theorem B.2 (Domingues et al. (2021), Theorem 9, restated). Assume that W ≥ 2 and H ≥ 3W .
Then, for every algorithm A, there exists an MDPM∈ NW such that

EM,A

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
& 2W/2

√
H2N.

Algorithm 8 The reduction of learning NW to learning MW in Section B.4.3.

1: procedure PA(M∈ NW )
2: InitializeH0 = ∅
3: for all n ∈ [N ] do
4: Obtain πn = A(H0, . . . ,Hn−1).
5: Play πn inM, get history Gn = ((s0, a0, r0, s1), . . . , (sH−1, aH−1, rH−1, sH)).
6: if sW+1 = sgate then
7: s′W+1 ← sW+1

8: for all h = W + 1, . . . ,H − 1 do
9: if h = W then

10: s′h+1 ← 	S if ah = 1 else 	F .
11: r′h ← 1 [ah = 1]
12: else
13: s′h+1 ← s′h, r′h ← rh

14: Replace (sh, ah, rh, sh+1) with (s′h, ah, r
′
h, s
′
h+1) in Gn

15: Hn ← Gn.
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B.4.3 PROVING THE HARDNESS RESULT

We now use the hardness result in the previous section to demonstrate that no algorithm can incur
sub-exponential regret in W on all tasks in MW . We do so by proving that an algorithm solving all
tasks in MW can be used to construct an algorithm for solving all tasks in NW .

Formally, letA be any algorithm for learning any MDP in MW . We then construct an algorithm PA
for learning any MDP in NW as in Algorithm 8.

Given this reduction, we aim to prove the following result:
Proposition B.2. For anyM(`∗,a∗) ∈ NW , we have that

EM(`∗,a∗),PA

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
≤ EM(`∗,a∗,1),A

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
.

To prove this result, we first prove that PA can simulateM(`∗,a∗,1):

Lemma B.5. For any n, the distribution over (H0, . . . ,Hn) induced by running Algorithm 8 over
M(`∗,a∗) ∈ NW is equal to that induced by running A overM(`∗,a∗,1) ∈MW .

Proof. We proceed by induction. The result holds trivially for n = 0.

Now, assume that the result holds for some n. We condition on the histories (H0, . . . ,Hn) Then,
note that both algorithms play the same policy πn+1, since PA uses A to obtain the next policy. As
a result, by the construction ofM(`∗,a∗) andM(`∗,a∗,1), the distribution over (sh, ah, rh, sh+1) are
equal for h ≤ W . Furthermore, Lines 6 − 14 simulates the dynamics of M(`∗,a∗,1) conditioned
on sW+1 = sgate, while conditioned on sW+1 = 	trap, the dynamics of the two MDPs are the
same. Therefore, conditioned on any (H0, . . . ,Hn), the distribution overHn+1 induced by the two
algorithms are also the same. Thus, the claim holds by induction.

Finally, we can prove Proposition B.2.

Proof of Proposition B.2. Throughout this proof, we omit the starting state sroot and the timestep 0
in the value. We prove the result by induction. Clearly, the result holds for N = 0.

Assume that the bound holds for some N . Then, we have that

EM(`∗,a∗),PA

[
N+1∑
n=1

V ∗ − V πn
]

= EM(`∗,a∗),PA

[
N∑
n=1

V ∗ − V πn
]

+ EM(`∗,a∗),PA [V ∗ − V πN+1 ]

≤ EM(`∗,a∗,1),A

[
N∑
n=1

V ∗ − V πn
]

+ EM(`∗,a∗),PA [E [V ∗ − V πN+1 | (H0, . . . ,HN )]] ,

where the final inequality uses the inductive hypothesis and the tower property of expectation. Now,
recall from Lemma B.5 that

EM(`∗,a∗),PA [E [V ∗ − V πN+1 | (H0, . . . ,HN )]]

= EM(`∗,a∗,1),A [E [V ∗ − V πN+1 | (H0, . . . ,HN )]] .

We emphasize that the value functions are still with respect toM(`∗,a∗). However, for any policy π
output by A,

V ∗ − V π = EM(`∗,a∗),π [(H −W − 1)1 [sW+1 6= sgate]]

≤ EM(`∗,a∗),π [(H −W − 1)1 [sW+1 6= sgate or aW+1 6= 1]]

≤ EM(`∗,a∗,1),π [(H −W − 1)1 [sW+1 6= sgate or aW+1 6= 1]] .

Note that the right-hand side is the regret in M(`∗, a∗, 1) for playing π. Therefore, since both
algorithms play the same policy πN+1, we thus obtain the desired result by induction.
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With Proposition B.2, we can now formally state and prove the separation result:
Theorem B.3. There exists a task distribution T(`∗,a∗) ∈ TW such that an algorithm A, without
access to the meta-training tasks (and thus without access to the hierarchy), incurs expected regret
lower bounded as

EM∼T(`∗,a∗) [RegretN (M,A)] & 2W/2
√
H2N.

On the other hand, for any task distribution in the family, the hierarchy-based learner P in Section
B.2, with access to a 0-suboptimal hierarchy oracle, achieves regret bounded by

√
H2N with high

probability on any sampled task.

Proof. Fix any algorithm A. Using Theorem B.2, there existsM(`∗,a∗) such that

EM(`∗,a∗),PA

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
& 2W/2

√
H2N

Thus, by Proposition B.2,

EM(`∗,a∗,1),A

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
& 2W/2

√
H2N.

Note that the proof in Proposition B.2 can be extended forM(`∗,a∗,0) with appropriate modifications
to PA, and thus the same inequality holds. Consequently,

EM∼T(`∗,a∗) [RegretN (A)] & 2W/2
√
H2N.

On the other hand, with access to the 0-suboptimal hierarchy oracle, observe that the learner only
has to plan at timesteps 0 and W + 1, allowing us to obtain tighter bounds (as Shl is smaller than the
construction in Section B.2). Furthermore, the suboptimality of planning with the hierarchy oracle
is 0 for any task distribution in the family. We thus obtain the desired bound.

B.5 A DISCUSSION OF DEFINITION 5.2

In this section, we discuss why the values defined in Definition 5.2 control the suboptimality of the
hierarchical learner. In particular, we provide examples of MDPs that satisfy Assumption 5.1, and
are thus in a sense tasks that are “compatible with the hierarchy”, but nevertheless force a hierarchy-
based learner to incur O(H) suboptimality.

B.5.1 (α, β)-UNRELIABILITY

Consider the MDP in Figure 9 with horizon H + 2 and two actions a∗ and a1. The optimal policy
chooses a∗ at every step, achieving a value of H −O(1), since

V ∗H+1(s0) =
1

2
H +

1

2
V ∗H(s1) =

1

2
H +

1

4
(H − 1) +

1

4
V ∗H−1(s2)

= H

H∑
h=1

1

2h
− 1

2

H∑
h=1

h

2h
= H −O(1).

Now, assume that the MDP has a latent hierarchy so that the set of exits are given by (ti, a) for any
i ∈ [H] and a ∈ A. Clearly, the optimal hierarchy-based learner would always choose (t0, a

∗) or
(t0, a1) as its high-level action. However, if the agent fails to transition to t0 at the first timestep due
to stochasticity, it will go to the end of the chain, back to s0 and try a∗ once more. This is because
it already has set a meta-action, and does not replan until an exit is performed. Thus, the optimal
agent on the meta-MDP achieves a value of H/2, and is therefore O(H)-suboptimal, even with a
0-suboptimal hierarchy oracle.

Intuitively, hierarchy-based learners as formulated in Section B.2 fail on the MDP in Figure 9 be-
cause such learners commit to a skill until completion. Thus, when such skills exhibit high variance
in completion times, hierarchy-based learners fare worse than other learners which are able to replan
based on the current state (e.g., in this case, choose another exit if a∗ fails to take the agent to the
current subgoal). Thus, (α, β)-reliability serves to eliminate such MDPs, ensuring that the skills
corresponding to reaching exits are reliable.
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Figure 9: An MDP that does not satisfy low (α, β)-unreliability, where a∗ is in
blue, and a1 is in red (and purple for both actions). State shading represents

state clusters, and rewards are 0 unless indicated otherwise.

B.5.2 γ-GOAL-REACHING SUBOPTIMALITY

In this section, we show that even when a hierarchy-based learner has access to highly reliable skills
as in the previous section, the learner may still incur high hierarchical sub-optimality. Consider the
MDP in Figure 10, where we focus on a single room for simplicity. Furthermore, assume that there
are two exits, one from lH/2 and one from rH/2. Note that a 0-suboptimal hierarchy oracle has
highly reliable goal-reaching policies for reaching both of these exit states, requiring exactly H/2
timesteps with no stochasticity.

However, given the values assigned to lH/2 and rH/2, the optimal policy would opt to take the
state t, which transitions to either state with probability at least 1/2 in only two environment steps.
Therefore, the optimal policy achieves an optimal value of H −O(1). However, the optimal policy,
in having to commit to exactly one of the exits, will achieve a value of H/2, and thus be O(H)-
suboptimal despite having a perfect hierarchy oracle.

Hierarchy-based learners fail on the MDP in Figure 10 because an optimal policy for goal-reaching
does not necessarily reach a goal as quickly as possible. Thus, γ-goal-reaching suboptimality is a
regularity condition that ensures that this is indeed the case.

s0 r1 · · · rH/2l1· · ·lH/2

t

V ∗h (rH/2) = H − hV ∗h (lH/2) = H − h

0.5 0.5

Figure 10: An MDP that does not satisfy low γ-goal-reaching suboptimality,
with three actions indicated by red, blue, and purple, and exits lh and rh. The
MDP satisfies (∞, 0)-unreliability, yet nevertheless exhibits high hierarchical

suboptimality.
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