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Abstract

We introduce a new distributed policy gradient001
algorithm and show that it outperforms exist-002
ing reward-aware training procedures such as003
REINFORCE, minimum risk training (MRT)004
and proximal policy optimization (PPO) in005
terms of convergence speed and stability, and006
overall performance at optimising machine007
translation models. Our algorithm, which we008
call MAD (on account of using the mean abso-009
lute deviation in the importance weighting cal-010
culation), has distributed data generators sam-011
pling multiple candidates per source sentence012
on worker nodes, while a central learner up-013
dates the policy. MAD depends crucially on014
two variance reduction strategies: (1) a new015
robust importance weighting scheme that en-016
courages learning from examples that are not017
too likely or unlikely relative to the current018
policy and (2) by learning from balanced num-019
bers of high- and low-reward training exam-020
ples. Additionally, our algorithm has few hy-021
perparameters, making it easy to use on new022
tasks with little or no adaptation. Experiments023
on a variety of translation tasks show the poli-024
cies learned with MAD perform very well with025
both greedy decoding and beam search, and026
the learned policies are sensitive to the specific027
reward used during training.028

1 Introduction029

There is increasing interest in fine-tuning condi-030

tional language models on the basis of feedback031

from task-specific reward models or similarity func-032

tions that compare to human-generated reference033

outputs rather than relying exclusively on super-034

vised learning (Stiennon et al., 2020; Ziegler et al.,035

2019; Wu et al., 2018; Paulus et al., 2018; Rennie036

et al., 2017; Ranzato et al., 2016). Maximising se-037

quence level rewards has several advantages. First,038

it avoids the apparent conflict between the intuitive039

importance of “getting the full sequence right” in040

generation problems and the more conventional041

token-level cross entropy loss. Second, since a042

policy trained to maximize rewards is supervised 043

with its own outputs—both good and bad ones—it 044

mitigates issues arising from “exposure bias,” in 045

which a learned policy that has been trained only 046

on correct examples has no experience recovering 047

from errors and therefore performs poorly at test 048

time (Ranzato et al., 2016). Third, feedback from 049

(learned) rewards can be a cost-effective strategy 050

for incorporating human preferences about how 051

a systems should behave (Stiennon et al., 2020; 052

Christiano et al., 2017). 053

Unfortunately, fine-tuning policies for generat- 054

ing in complex output spaces, such as language, 055

on the basis of sparse rewards is challenging. On 056

one hand, estimating and debugging reliable auxil- 057

iary critic/value functions that are needed by many 058

learning algorithms is challenging (Wu et al., 2018; 059

Bahdanau et al., 2017; Nguyen et al., 2017), and 060

commonly used average or batch-level reward base- 061

lines (Kreutzer et al., 2017) are poor variance re- 062

ducers since they are independent of the input, and 063

input difficulty is a strong determinant of reward 064

magnitude. 065

In this paper, we propose a new distributed pol- 066

icy gradient algorithm (§2) for fine-tuning transla- 067

tion models that addresses these issues. The dis- 068

tributed setup lets us use modest computation to 069

obtain simple and effective empirical reward base- 070

lines (Rennie et al., 2017) rather than using inap- 071

propriate batch-level statistics or relying on brittle 072

auxiliary value models. Our proposed algorithm 073

has two components designed to make learning 074

from the reward signal more effective: an impor- 075

tance weighting strategy that encourages the algo- 076

rithm to pay attention to trajectories that are near 077

to the current policy (i.e., it up-weights trajectories 078

that are neither “too likely” nor “too unlikely”), 079

and, second, an instance selection strategy that en- 080

courages batches to contain a mix of both positive 081

and negative rewards. Thus, our algorithm learns 082

from trajectories that are already relatively likely 083
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under the current policy (meaning any updates to084

the policy will be relatively small), while also learn-085

ing preferentially from instances that have a large086

impact on the reward metric. This enables the algo-087

rithm to make large improvements in reward while088

taking small, conservative (and therefore less risky)089

steps to change the behaviour.090

These changes reduce the policy gradient vari-091

ance and enable the model to improve over many092

training steps without divergence. This results in093

policies that produce high-quality translations, even094

when using greedy decoding. In our main experi-095

ments (§3), we use sentence BLEU as the reward096

and find that the average improvement on held-out097

test sets over the initial cross entropy trained model098

is 1.8 BLEU. Additionally, we carry out a care-099

ful empirical analysis (§4) that shows what impact100

that the various components of the algorithm have,101

and also that the algorithm learns different poli-102

cies depending on the reward function used during103

optimisation, with the resulting policies showing104

reward-specific improvements on held-out data.105

2 Algorithm106

Our algorithm consists of workers generating train-107

ing trajectories and rewards, in parallel, from a108

slightly out-of-date copy of the policy, and a central109

learner that updates the policy. The data generation110

algorithm is shown Alg. 1 and the learner in Alg. 2.111

The learning algorithm has four core components:112

sampling from a range of temperatures (§2.1), con-113

ditional reward normalization on the basis of em-114

pirical means and variances (§2.2), a novel robust115

importance weighting strategy that focuses learning116

efforts on samples that are neither “too likely” nor117

“too unlikely” under the current policy (§2.3), and118

a sample selection strategy that favours extreme119

values of the empirical reward distribution (§2.4).120

We discuss each of these components in turn.121

2.1 Multi-Temperature Sampling122

To obtain suitably diverse candidates to learn from,123

it is conventional to add a temperature hyperparam-124

eter used to generate samples (Shen et al., 2016;125

Papini et al., 2020). We identify two problems with126

this. First, there is the practical matter of needing127

to select a temperature in order to obtain good per-128

formance. Second, it is widely observed that policy129

gradient algorithms result in increasingly peaked130

distributions as training progresses (Kiegeland and131

Kreutzer, 2021; Choshen et al., 2020; Rennie et al.,132

2017), meaning that the amount of “exploration” 133

being considered by the algorithm decreases over 134

time. While some RL tasks are interested in max- 135

imising total accumulated returns over time (mean- 136

ing that “exploitation” is important), we rather seek 137

to learn a policy that is capable of behaving as 138

intelligently as possible in states that are not en- 139

countered during a training phase, and therefore, 140

we seek an exploration-heavy sampling strategy. 141

To avoid the difficulties with drifting entropy, we 142

use a simple approach of generating populations of 143

samples at several different temperatures. 144

Concretely our data generation algorithm (lines 145

5–7) begins by sampling Npop translations for the 146

current policy and source sentence x. Each sam- 147

ple is generated using a different temperature that 148

is determined by finding equally spaced values1 149

between the interval [Tmin, Tmax]. Duplicate trans- 150

lations are removed. The process we use is: 151

Yx = UNIQUE({SAMPLE(x,θ, t); t ∈ T}) 152

where 153

T = {Tmin + δt · (i− 1); i ∈ {1, . . . , Npop}} 154

δt =
Tmax − Tmin

Npop − 1
. 155

If the number of translations is less than the number 156

of training examples we intend to select, |Yx| < N 157

(where N is the number of training trajectories we 158

will train on, discussed below in §2.4), we discard 159

Yx and move on to the next source sentence. In 160

this way, we will only train on examples where 161

suitable diversity exists, and we always obtain the 162

same number of trajectories for a source sentence. 163

2.2 Conditional Reward Normalization 164

Reward normalization is a well known variance re- 165

duction technique for policy gradient methods, with 166

the simplest version being to subtract a constant 167

from the reward (Williams, 1992). Other methods 168

have been proposed such as subtracting a model 169

baseline reward (Weaver and Tao, 2001), the run- 170

ning average of the rewards seen during training 171

(Kreutzer et al., 2017), or z-scoring the rewards in 172

a training batch (Stiennon et al., 2020). As demon- 173

strated by Kiegeland and Kreutzer (2021), using the 174

running reward average b helps to reduce variance 175

when REINFORCE is applied to translation. 176

While empirically effective, these baselines ex- 177

plain less reward variation than we might hope. We 178

1https://numpy.org/doc/stable/
reference/generated/numpy.linspace.html
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LREINFORCE = (∆(y,yref)− b) · log p(y | x)

LPPO = min{u · r̃, clip(u, 1− ε, 1 + ε) · r̃}

LMRT =
∑
y∈Yx

∆(y,yref) ·
p(y | x)∑

y′∈Yx p(y
′ | x)

L−MAD = min{u, 2} · r · log p(y | x)

LMAD = min{u · v, 2} · r · log p(y | x)

Figure 1: Sequence level losses used by the algorithms evaluated in this paper. See §2 for notation.

note that the difficulty of generating a good transla-179

tion is strongly dependent on the intrinsic difficulty180

of the source sentence, not merely the current pol-181

icy. Since the usual reward normalization methods182

do not take this dependency into account, this re-183

sults in a bias toward giving difficult sentences neg-184

ative rewards and easier sentences positive rewards,185

leading to less stable learning.186

We therefore use a standardization method that187

is conditioned on the source sentence. We take the188

set of translations for source sentence x and obtain189

a vector of rewards ri = ∆(yi,yref) ∀ i ∈ [1, |Yx|]190

where ∆(y,yref) is a scalar valued reward indicat-191

ing how well y communicates the contents of the192

reference translation yref.
2 We then standardize193

these rewards by removing the mean and dividing194

by the standard deviation (lines 11–18),195

ri = (ri − µr)/σr ∀ i ∈ [1, |Yx|], where196

µr =
1

|Yx|
∑

ri, σr =

√
1

|Yx|
∑

(ri − µr)2.197

This ensures that every source sentence, irrespec-198

tive of its translation difficulty, has examples with199

positive and negative rewards.200

In contrast, the standard reward used for the PPO201

algorithm is the z-scored reward of the training202

batch, r̃i = (ri − µ̃r)/σ̃r ∀ i ∈ [1, |B|], where B203

is the training batch with randomly sampled (x,y)204

examples and µ̃r and σ̃r are respectively the mean205

and standard deviation of the rewards in B.206

2.3 MAD Importance Weights207

A key feature of our algorithm—and the one that208

gives it its name—is the use of a new importance209

weighting scheme for deciding which sampled tra-210

jectories are most valuable for updating the policy211

and which others should be downweighted. For212

2Except for §4.4, we use sentence BLEU.

trajectory i, our importance sampling correction 213

wi (Eq. 1) consists of two terms: ui, which is the 214

standard importance weighting ratio (Precup et al., 215

2000) to deal with the fact that in a distributed 216

setup, data is generated from a stale policy: 217

ui = exp(pi − qi), where 218

pi = log p(yi | x;θ), qi = log p(yi | x;θold). 219

The second term in Eq. 1, vi, encourages the learner 220

to pay attention to samples that are “relatively 221

likely” under the current policy (as approximated 222

by q, since we want the calculation to be carried out 223

on the worker nodes, and p is only available on the 224

central learner). We operationalize the notion of 225

“relatively likely” as something that is near to the 226

median3 probability under q of the elements in Yx, 227

using the exponentiated negative median absolute 228

deviation (MAD; lines 13–18): 229

vi = exp(−|qi − µ̃q|/σ̃q) 230

µ̃q = MEDIAN(q) 231

σ̃q = MEDIAN(|q− µ̃q|). 232

Why do we want to concentrate learning on these 233

relatively likely trajectories, rather than perhaps 234

other trajectories that have even higher (or lower) 235

rewards? First, this is a strategy for reducing the 236

gradient norms, since gradients associated with 237

smaller changes to the policy will require, on aver- 238

age, less significant updates to the network. This 239

is advantageous since smaller gradient norms can 240

lead to better generalisation error (Kreutzer et al., 241

2017). Second, Choshen et al. (2020) provide evi- 242

dence that RL algorithms can make only relatively 243

modest changes to the starting policies. Therefore, 244

we focus learning effort on instances which are “in 245

3The median was chosen because q can have a long tail.
It is not uncommon for µ̃q ≈ −6 and min(q) < −1000,
see Figure 2. Comparisons to alternative definitions of vi are
reported in Appendix D.
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reach” of the current policy. Finally, the strategy246

of selecting targets on the basis of being close to247

a current policy in online reward-driven learning248

has been proposed previously for linear translation249

models, and found to be more effective than other250

sample selection methods (Chiang, 2012). How-251

ever, rather than doing instance selection on the252

basis of a combined objective as was done in that253

work, we downweight outliers with vi.254

To compute the final importance weight, we mul-255

tiply the two terms and cap the maximum value:256

wi = min{ui · vi, 2}. (1)257

Truncating importance weights is a standard vari-258

ance reduction strategy (Cortes et al., 2010; Schul-259

man et al., 2017).260

2.4 Sample Selection261

One reason we generate multiple samples for a262

given source sentence is to compute the sample263

level statistics described above. However, a further264

reason is that we can subselect from these samples265

to further reduce variance. For our experiments,266

we select N = 12 samples from the pool by taking267

the 6 highest reward and 6 lowest reward examples268

(lines 19–22). This encourages a roughly equal mix269

of positive and negative rewards to be used for train-270

ing, and it keeps the mean reward for the selected271

examples near zero, which helps to reduce gradi-272

ent norms and variance (see Figure 3). Intuitively,273

this mix of examples encourages the learner to re-274

allocate input-conditional probability mass from275

trajectories with poor rewards to trajectories with276

good rewards.277

Using 33% of the total samples per source sen-278

tence provided a reasonable trade off between train-279

ing speed and fresh examples. Training on all of the280

samples speeds up training but does not produce281

as high of a BLEU score as using only a subset of282

them (§4.3).283

3 Experiments284

3.1 Datasets285

We run our model along with all the baselines on286

a total of 9 dataset–language direction translation287

tasks. See Appendix B for dataset details, prepro-288

cessing, and tokenization.289

3.2 Training290

For each task, we pretrain a sequence-to-sequence291

transformer model (Vaswani et al., 2017), using a292

Algorithm 1 Asynchronous data generator
1: function GENERATE(N,Npop,∆, Tmin, Tmax)
2: while True do
3: θold ← θ . Get current global weights
4: (x,yref) ∼ Dtrain

5: for i ∈ [1, Npop] do . Obtain Yx, q, and r
6: T ← Tmin +(i−1)×(Tmax−Tmin)/(Npop−1)
7: yi ← SAMPLE(x,θold, T )
8: qi ← log p(yi | xi;θold)
9: ri ← ∆(yi,yref)

10: end for
11: µr ← 1

|Yx|
∑

i ri

12: σr ←
√∑|Yx|

i=1 (ri − µr)2/|Yx|
13: µ̃q ← MEDIAN(q)
14: σ̃q ← MEDIAN(|q− µ̃q|) . Median abs. dev.
15: for i ∈ [1, |Yx|] do
16: ri ← (ri − µr)/σr

17: vi ← exp(−|qi − µ̃q|/σ̃q)
18: end for
19: sort q, r, v, Yx by r . Order by rewards
20: for i ∈ [1, . . . , N

2
, |Yx| − N

2
+ 1, . . . , |Yx|] do

21: ENQUEUE(x,yi, qi, ri, vi)
22: end for
23: end while
24: end function

Algorithm 2 Learning algorithm
1: function LEARN(S, η,θCE)
2: θ ← θCE
3: for i ∈ [1, S] do
4: x,y, q, r, v ← DEQUEUE()
5: p← log p(y | x;θ)
6: u← exp(p− q)
7: α← SG(min{u× v, 2})
8: L ← α× r × log p(y | x; dropout(θ))
9: θ ← θ + η × ∂L

∂θ
10: end for
11: end function

word level cross entropy loss, until convergence. 293

We refer to this model as the Cross Entropy (CE) 294

model. All treatments for a task are initialized 295

using the same CE checkpoint, which is the check- 296

point that had the highest development set BLEU. 297

The treatments are trained using the same train- 298

ing/development sets for a total of 200K steps with 299

early stopping if the average development BLEU is 300

not improved for the last 20K steps. In the case of 301

PPO and MAD, every 20 training steps the learn- 302

ing node saves a checkpoint which the workers and 303

evaluators load asynchronously. We use a global 304

batch size of 256 training examples per step. See 305

Appendix A for detailed hyperparameter configura- 306

tions and Appendix C for implementation details. 307

3.3 Compared RL Objectives 308

Figure 1 gives the primary RL objectives we 309

compare. These are: the REINFORCE algo- 310

rithm (Williams, 1992) using a moving average 311
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Greedy Decoding
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps µ

Cross Entropy 45.5 30.1 26.7 29.3 25.1 25.0 37.3 6.6 6.0 25.7
REINFORCE 45.5 30.2 26.7 29.3 25.3 25.0 37.1 7.2 5.9 25.8
PPO 45.9 31.0 27.7 29.6 25.2 24.8 37.3 7.3 7.5 26.3
MRT 45.2 30.8 26.7 30.4 25.1 26.4 38.8 8.4 7.5 26.6
−MAD 46.6 31.7 27.6 30.6 25.9 27.0 39.1 8.4 7.7 27.2
MAD 47.7 32.1 28.0 30.8 26.2 26.9 39.3 8.8 7.9 27.5

Beam Search | Beams = 5 | Length Normalization (α) = 1.0
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps µ

Cross Entropy 47.6 31.4 27.9 30.6 25.8 26.4 37.5 7.0 6.0 26.7
REINFORCE 47.5 31.4 28.0 30.6 25.9 26.3 37.8 8.1 6.0 26.8
PPO 47.5 31.3 28.2 30.4 25.8 26.2 37.5 7.7 7.6 26.9
MRT 47.0 31.9 27.9 31.4 25.9 27.4 39.3 9.2 7.9 27.6
−MAD 47.9 32.2 28.1 31.1 26.2 27.5 39.4 9.1 7.5 27.7
MAD 48.4 32.4 28.3 31.1 26.4 27.3 39.6 9.4 8.1 27.9

Table 1: Performance of different algorithms on translation. We report sacreBLEU on the held-out test set between
the detokenized model hypothesis and original (not tokenized) references. Note that for IWSLT’14 and NIST both
the hypotheses and references were lower-cased to keep comparable with prior works. µ is the average BLEU
across all datasets for each method. MAD outperforms other methods by a large margin when greedy decoding is
used. The gap shrinks when beam search is used, but MAD still outperforms the next best method, MRT.

baseline (Weaver and Tao, 2001), a proximal pol-312

icy optimization algorithm (Schulman et al., 2017,313

PPO), minimium risk training (Shen et al., 2016,314

MRT), our algorithm without the MAD importance315

weights (−MAD), and our full algorithm (MAD).316

Since REINFORCE and MRT are on-policy algo-317

rithms, we optimise these objectives on a single318

worker; the distributed infrastructure is only used319

for MAD and PPO.320

3.4 Evaluation and Hyperparameters321

We use the sacreBLEU script (Post, 2018)4 with322

detokenized model hypothesis and the original ref-323

erences.5 When running on the test set, we select324

the checkpoint that had the highest development325

set BLEU under greedy decoding.326

The important hyperparameters of our algo-327

rithm are Npop, N , Tmin, and Tmax. For our328

main results, we used Npop = 36 and N = 12329

while the optimal temperature range was found330

for each model by sweeping over [Tmin, Tmax] ∈331

{[0.2, 0.6], [0.4, 0.8], [0.6, 1.0], [0.8, 1.2]}.6332

4https://github.com/mjpost/sacreBLEU
5See Table 9 in Appendix A for settings.
6See Table 10 in Appendix A for selected temperatures.

3.5 Main Results 333

Table 1 presents the performance of our algorithm 334

compared to other objectives (§3.3) on four differ- 335

ent machine translation datasets. We compare these 336

models on both greedy decoding and beam search. 337

As can be seen, our reinforcement learning algo- 338

rithm outperforms both REINFORCE and PPO by 339

an average of 1 BLEU across all the datasets we 340

tried under both greedy and beam search decoding 341

algorithms. The MAD algorithm is particularly 342

strong when it comes to greedy decoding, where it 343

outperforms the strong MRT baseline by .9 BLEU 344

on average. More test set results using larger beams 345

and other decoding hyperparameters can be found 346

in Table 13 in Appendix D; these results show that 347

MAD continues to outperform other training objec- 348

tives and continues to improve with larger beams, 349

even without any length normalization—in marked 350

contrast to CE (Meister et al., 2020). 351

4 Analysis and Ablation Experiments 352

In this section we report on more detailed exper- 353

iments on the IWSLT’14 German→English task, 354

to show the impact of various components of the 355

MAD algorithm. In particular, we look at the im- 356

5
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Sampling Reward PPO −MAD MAD
U(1)× 12 r̃ 31.7 n/a n/a
U(1)× 12 r 32.5 31.8 31.3
U(12) r 32.6 32.8 33.1

Table 2: PPO benefits from switching to input-
conditional reward standardization, r. −MAD and
MAD benefit from training on more unique samples,
while PPO is better able to reuse data. When using iden-
tical and ideal training conditions, MAD outperforms
PPO by 0.5 BLEU. Results are development set max
BLEU; CE baseline BLEU is 31.3.

pact of source-conditional reward standardization357

and the role of multiple samples (§4.1), more in-358

sight into the empirical behaviour of MAD impor-359

tance weights (§4.2), the impact of the sample se-360

lection strategy (§4.3), the impact of optimizing dif-361

ferent rewards (§4.4), and the training time (§4.5).362

Notation. We briefly introduce some notation to363

help with clarity. We use the syntax Type(n)×m364

to describe various selection methods (§2.4). The365

selection “Type” is either U for uniform random366

without replacement, T for top reward samples, or367

TB for top and bottom reward samples. n is the368

number of examples selected while m is the num-369

ber of times each example is trained upon, which is370

an innovation proposed in Schulman et al. (2017).371

4.1 Reward Standardization and Multiple372

Samples373

The input-conditional reward normalization374

method (§2.2) has a large impact on performance.375

The first two lines of Table 2 compare the PPO376

algorithm with the standard batch-normalized377

reward (r̃) versus the input-conditional normalized378

reward (r). The second two lines compare the379

impact of using 1 sample 12 times or 12 samples 1380

time each. While the PPO algorithm benefits little381

from different samples, our algorithm with and382

without the MAD weighting performs well.383

4.2 MAD Importance Weight384

This section investigates what the MAD importance385

weight is doing and to what extent it helps.386

Data generation example. Figure 2 shows the387

reward, log probability, and MAD weight of the388

36 transaltions sampled for the source sentence389

“rsw : ich habe was ganz beachtliches gefunden.”390

from the IWSLT’14 training dataset. The actual391

sampled translations are available in Table 14 of392
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Figure 2: Plot of data generation for a single source
sentence, see Table 14 in Appendix for sampled trans-
lations. Left column shows the complete sample while
the right column shows only the examples selected for
training. Top row x-axes are the sequence log prob-
abilities q while the bottom row x-axes are the mean
token log probabilities. The color indicates the weight
assigned by our MAD importance weight.

the supplementary material. While several very 393

low-reward samples survive the selection process, 394

the ones with very low q have a low MAD weight 395

(corresponding to very strange translations) and 396

will contribute little to the learning objective. 397

Training dynamics. We expect to see lower vari- 398

ance gradients during training due to the MAD im- 399

portance weight and that is what Figure 3 shows. 400

Regardless of the selection method used, including 401

the MAD weight reduces training variance. We can 402

also see from Table 1 that using MAD provides 403

better generalization performance than not using it 404

(−MAD). 405

4.3 Selection Methods 406

As stated in §2.4, we used TB(6, 6) as the selection 407

method for the main experiments. An alternative 408

choice that provides very similar properties in ex- 409

pectation is U(12) and as Table 3 shows, it works 410

equally well in terms of development set BLEU 411

performance. However, uniform sampling can lead 412

to selections that are imbalanced especially when 413

there are many samples that get a zero reward as is 414

the case in Figure 2. This leads to higher gradient 415

variance and norms during training (Figure 3). 416

An alternative sampling strategy is to take only 417

the highest reward examples (Liang et al., 2006). 418
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Batch Gradient Norms During Training
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Figure 3: Learning curves for {−MAD, MAD} × {TB(6,6), U(12), T(12)} experiment matrix with 3 seeds per
cell. Dataset is IWSLT’14 De-En. Top row is the BLEU score on the development set over the course of training.
Bottom row is the batch level gradient norm. We see that MAD produces smaller and lower variance gradient
updates than−MAD. There is not much difference between Top Bottom sampling and Uniform sampling, however,
only using the Top examples leads to high variance and unstable training.

We explore this option in Table 3 and find that, al-419

though the max development BLEU is reasonably420

high, the min BLEU can be very low. The magni-421

tude and variance of the gradients during training422

reflect this, thus, we recommend a selection method423

that uses a mix of both positive and negative reward424

examples.425

Per Source Selection dev BLEU
total unique Method max min
36 36 All 32.6 31.2
6 1 T(1)× 6 32.4 2.0
6 6 T(6) 32.5 1.7
6 1 U(1)× 6 31.4 3.5
6 6 U(6) 32.9 31.3
12 12 U(12) 33.1 31.3
6 2 TB(1, 1)× 3 32.0 4.1
6 6 TB(3, 3) 33.0 31.3
12 12 TB(6, 6) 33.1 31.3
36 12 TB(6, 6)× 3 32.9 31.3

Table 3: Exploration of different selection methods
when using MAD on the IWSLT’14 De-En dataset.
General findings: using all samples is not optimal, us-
ing unique samples is better than reusing the same ex-
ample, and T(N) < U(N) ≤ TB(N

2 ,
N
2 ).

4.4 Impact of Reward Type 426

In the experiments reported so far, we have used 427

sentence BLEU as a reward function. However, 428

Choshen et al. (2020) have shown that uninforma- 429

tive rewards work as well as informative rewards 430

at improving the BLEU score, conjecturing that 431

the reported improvements in these algorithms are 432

due to training artifacts such as reduced entropy 433

of the predictive distribution rather than reward- 434

driven learning. In this section we look at whether 435

training with MAD on different rewards results in 436

a policy that improve those rewards on held-out 437

test sets.7 We can see in Table 4 that the models 438

are able to generalize on their metric and usually 439

outperform models trained to optimize different 440

metrics. We are able to train a model to optimize 441

multiple metrics and generalize well on all of them. 442

4.5 Training time 443

Because of our distributed algorithm, we are able 444

to obtain faster training times by increasing the 445

number of workers that sample from the current 446

policy (this in contrast to purely “on-policy” REIN- 447

FORCE and MRT algorithms). Table 5 shows that 448

7We note that the constant reward used by Choshen et al.
(2020) would result in no learning in our algorithm on account
of the reward standardisation discussed above in §2.2, so we
do not compare to this condition.
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Reward Optimized BLEU GLEU ChrF TER Token F1 BLEURT µ

sBLEU (Papineni et al., 2002) 32.1 30.0 55.5 50.0 55.9 58.6 30.3
GLEU (Mutton et al., 2007) 32.2 30.5 55.7 49.1 57.0 59.5 31.0
ChrF (Popović, 2015) 32.0 30.0 56.5 49.7 56.0 59.0 30.6
−TER (Snover et al., 2006) 32.2 30.0 55.8 48.8 56.3 59.2 30.8
Token F1 31.9 30.4 55.5 49.5 57.1 59.5 30.8
BLEURT (Sellam et al., 2020) 29.5 28.4 54.9 52.0 54.8 62.3 29.6
ALL (equal weight) 32.2 30.4 56.0 49.0 56.8 59.9 31.1

Table 4: MAD was used to optimize different rewards on the IWSLT’14 De-En dataset. We report test set
results for the checkpoint with the max validation performance on the metric being optimized. For TER, a lower
score is better, so we optimize −TER. The last row, ALL, optimized the equally weighted average of the rewards,
(1/6)(BLEU + GLEU + ChrF + Token F1− TER + BLEURT).

we get near linear scaling as the number of workers449

is increased.450

Training Speed
Algorithm Workers Sec per 1K
REINFORCE n/a 2,038
MRT n/a 1,728

PPO & MAD
4 1,898
8 946

Table 5: We show the training speed as a function of
the number of 2x2 TPU workers used. Speed is mea-
sured in seconds per 1000 training steps.

5 Related Work451

During the era of linear translation models, setting452

parameters to optimise rewards was standard. Al-453

though cross entropy is still widely used, Ranzato454

et al. (2016) inaugurated using RL techniques for455

neural translation models, and Edunov et al. (2018)456

provide a thorough survey of the topic and find457

that RL fine-tuning usually improves the original458

model. Although it has been shown to optimise a459

biased approximation to the expected reward ob-460

jective (Choshen et al., 2020), minimum risk train-461

ing remains extremely effective (Shen et al., 2016;462

Kiegeland and Kreutzer, 2021).463

More complicated policy gradient methods have464

been proposed that rely on auxiliary networks.465

MIXER (Ranzato et al., 2016) predicts a per-token466

reward baseline while actor-critic methods (Bah-467

danau et al., 2017) learn a per-timestep Q function468

concurrently with the translation policy. Although469

not widely used yet in translation, proximal policy470

optimization (PPO) (Schulman et al., 2017) has471

been used to train summarization models from hu-472

man preferences (Stiennon et al., 2020), and this473

algorithm provided inspiration for some of the tech- 474

niques we used here. 475

Another important source of inspiration in the de- 476

velopment of our algorithm was the “hope and fear” 477

online learning algorithm of Chiang (2012), which 478

used a margin-based analysis to argue for a deci- 479

sion rule that selected positive and negative training 480

samples on the basis of a combination of current 481

model score and reward. Additionally, pairwise 482

ranking optimisation (Hopkins and May, 2011) re- 483

duced the parameter learning problem to classi- 484

fying pairs of positively and negatively rewarded 485

trajectories, and our objective can be understood as 486

a weighted variant of that objective. 487

6 Conclusion 488

We introduce a new policy gradient algorithm, 489

MAD, for machine translation and show that it 490

outperforms existing reward-aware training proce- 491

dures such as REINFORCE, minimum risk training 492

(MRT) and proximal policy optimization (PPO). 493

We test these algorithms on a variety of datasets, 494

language pair directions, and reward functions and 495

demonstrate good test set performance. Our al- 496

gorithm excels at producing models that generate 497

quality translations, even when greedy decoding is 498

used. Our analysis shows that our method greatly 499

reduces the variance of training gradients, which 500

can be attributed to our robust importance weight- 501

ing scheme and selecting both positive and negative 502

reward examples for training. We use a distributed 503

setup that enables simple scaling, allowing for fast 504

training time if enough workers are used to gen- 505

erate the data. Finally, our algorithm has few hy- 506

perparameters and is reasonably insensitive to their 507

values, making it easy to use on new tasks. 508
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A Hyperparameters706

We provide the hyperparameters for our Trans-707

former models in Tables 6 and 7. The algorithm708

specific settings are in Table 8. Finally, the setting709

used when calculation sacreBLEU are found in710

Table 9.711

Transformer - Base Settings
Setting Value
embeddings dim 512
feed forward 2048
num layers 6 enc + 6 dec
num heads 8
dropout .3
tied embeddings True
tied softmax True
optimizer Adam
learning rate (η) 1e-5
η warmup steps 1000
η scheduling Constant
gradient clipping global_norm(1)
training steps 200,000
seq length 128
global batch size 256

Table 6: Base settings for our Transformer models.

Transformer - Deltas
Dataset Setting Value
WMT’20 Ps↔En seq length 64
WMT’14 De↔En seq length 144

IWSLT’14 De↔En
feed forward 1024
num heads 4

Table 7: Deviations from Transformer base settings.

B Datasets712

We evaluate all the models on the following transla-713

tion tasks: NIST8 Open MT Chinese→English714

task, IWSLT’149 English↔German translation715

task, WMT’1410 English↔German news trans-716

lation task, and the WMT’2011 Chinese↔English717

and Pashto↔English news translation tasks. The718

sizes of each dataset is avaliable in Table 11.719
8https://www.nist.gov/itl/iad/mig/

open-machine-translation-evaluation
9https://sites.google.com/site/

iwsltevaluation2014/mt-track
10http://statmt.org/wmt14/

translation-task.html
11http://www.statmt.org/wmt20/

translation-task.html

Algorithm Settings
Algorithm Setting Value
PPO ε 0.2
MRT |Yx| 5

MAD
reverb
settings

max times sampled 1
min size to sample 512
max size 4096
sampler Uniform
remover Fifo

Table 8: Settings for sequence level algorithms. Note
that we did run experiments with |Yx| = 12 for MRT
and found no improvement in development set max
BLEU. Given the slow training speed of MRT, we
opted to use the convention of 5 samples.

sacreBLEU Settings
Language Setting Value
De tokenizer intl
En tokenizer 13a
Ps tokenizer intl
Zh tokenizer zh

All
smooth method exp
smooth value 0

Table 9: sacreBLEU settings for each language.

Preprocessing We perform text normalization 720

on the datasets before tokenization. 721

• All languages - Unicode canonicalization 722

(NKFD from), replacement of common mul- 723

tiple encoding errors present in training data, 724

standardization of quotation marks into “di- 725

rectional” variants. 726

• English - Replace non-American spelling vari- 727

ants with American spellings using the aspell 728

library.12 Punctuation was split from English 729

words using a purpose-built library. 730

• Chinese - Convert any traditional Chinese 731

characters into simplified forms and segment 732

into word-like units using the Jieba segmenta- 733

tion tool.13 734

Tokenization We encode text into sub-word 735

units using the sentencepiece tool (Kudo and 736

Richardson, 2018). When generating our own sub- 737

word segmentation, we used the algorithm from 738

Kudo (2018) with a minimum character coverage 739

of 0.9995. 740
12http://wordlist.aspell.net/

varcon-readme/
13https://github.com/fxsjy/jieba
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Temperatures
Dataset Algo Tmin Tmax

IWSLT’14 De→En
PPO 1.0
MRT 0.9
MAD 0.8 1.2

IWSLT’14 En→De
PPO 1.2
MRT 0.6
MAD 0.8 1.2

WMT’14 De→En
PPO 0.2
MRT 0.6
MAD 0.4 0.8

WMT’14 En→De
PPO 1.2
MRT 0.4
MAD 0.4 0.8

WMT’20 Ps→En
PPO 1.2
MRT 1.2
MAD 0.8 1.2

WMT’20 En→Ps
PPO 1.2
MRT 1.0
MAD 0.4 0.8

NIST Zh→En
PPO 1.0
MRT 0.8
MAD 0.6 1.0

WMT’20 Zh→En
PPO 0.8
MRT 0.8
MAD 0.4 0.8

WMT’20 En→Zh
PPO 0.8
MRT 0.6
MAD 0.2 0.6

Table 10: Temperatures used for models in main re-
sults. REINFORCE used same temperatures as PPO.
Only MAD uses a temperature range, other algorithms
use as single temperature.

C Implementation Details741

Software We use Launchpad (Yang et al., 2021)742

to create and launch our DAG computing graph.743

The graph consists of a Reverb table (Cassirer744

et al., 2021) that holds training examples, multiple745

worker nodes that generate and publish examples,746

a learner node that pulls and trains on examples,747

and an evaluator node that loads fresh checkpoints748

to calculate dev set sacreBLEU.749

Compute All of our program nodes run on a 2x2750

TPU configuration. Our hyperparameter sweeps751

for PPO and MAD used 4 data generating workers752

running for 50K steps, while final results used 8753

workers and ran for 200K steps. Table 5 in the body754

of the paper provides the wall clock training speed755

Dataset Train Dev Test
IWSLT’14 De→En 164K 7,466 6,750
IWSLT’14 En→De 173K 1,474 6,750
WMT’20 Ps↔En 516K 5,860 2,719
NIST Zh→En 1.45M 1,664 5,146
WMT’14 De↔En 4.7M 3,000 3,003
WMT’20 Zh→En 21.8M 2,000 2,000
WMT’20 En→Zh 21.8M 1,997 1,418

Table 11: Number of training, development, and test
examples in each dataset.

for each algorithm. 756

D Supplementary Experiments 757

D.1 Additional Beam Search Results 758

Table 13 shows results (on the test set) using larger 759

beams and different decoding hyperparameters. 760

MAD trained with sentenceBLEU continues to out- 761

perform other training objectives, and displays the 762

notable behaviour that decoding without length nor- 763

malization with large beams is effective, whereas 764

performs drops significantly with CE and REIN- 765

FORCE trained models. 766

D.2 Alternative Importance Weightings 767

Our motivation for the particular form of the MAD 768

weight is described in §2.3. However, there are 769

other ways this could have been done. Here we 770

evaluate 2 alternative formulations of the MAD 771

weight. 1) Using the log probability of the greedy 772

translation as µ̃q, this down weights examples that 773

are far from the greedy translation. 2) Z-scoring q 774

rather than using median absolute deviations. We 775

try these alternatives on a subset of the datasets and 776

report the results in Table 12. 777
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IWSLT’14 WMT’14 NIST WMT’20
Importance Weighting De-En En-De Zh-En En-Ps Zh-En En-Zh µ σ

CE 31.3 24.7 47.9 6.8 24.4 32.5 27.9 -
−MAD 32.7 25.7 50.0 8.4 27.1 34.0 29.6 .22
MAD z-score 32.7 25.9 50.1 8.5 27.3 34.3 29.8 .14
MAD greedy 33.2 25.1 50.1 8.4 25.6 33.4 29.3 .15
MAD 33.1 25.7 50.8 8.6 26.9 34.0 29.8 .12

Table 12: Alternative formulations of the MAD importance weight. µ is the average development set max BLEU
across all the datasets in the table while σ is the standard deviation of BLEU when looking at the 10K step window
centered on max BLEU. Using any of the importance weights reduces BLEU variance, but MAD provides the
highest performance (tie) and lowest variance.

Beam Search | Beams = 5 | Length Normalization (α) = None
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps µ

Cross Entropy 47.0 31.1 27.5 29.9 26.3 25.1 34.7 7.8 5.9 26.1
REINFORCE 47.0 31.1 27.5 29.9 26.3 25.0 34.9 7.6 5.8 26.1
PPO 47.1 31.2 28.0 29.9 26.2 25.0 34.7 8.1 7.5 26.4
MRT 47.4 31.7 27.5 31.2 26.3 27.0 38.8 9.2 7.8 27.4
−MAD 48.0 32.2 27.9 31.0 26.3 27.2 39.2 8.9 7.4 27.6
MAD 48.6 32.4 28.2 31.0 26.5 27.0 39.4 9.3 8.0 27.8

Beam Search | Beams = 50 | Length Normalization (α) = None
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps
Cross Entropy 42.8 28.1 26.5 28.8 24.4 22.9 32.3 4.0 1.3 23.4
REINFORCE 43.0 28.0 26.4 28.8 25.0 22.8 32.0 2.5 1.3 23.3
PPO 45.9 31.2 28.0 29.2 24.5 23.1 32.3 6.9 6.3 25.3
MRT 47.1 30.8 26.5 31.0 26.4 26.8 38.4 9.0 7.1 27.0
−MAD 47.9 32.2 27.6 31.0 26.4 27.1 39.1 7.2 6.9 27.3
MAD 48.6 32.4 28.1 30.9 26.6 26.9 39.2 7.9 6.4 27.4

Beam Search | Beams = 50 | Length Normalization (α) = 1.0
NIST IWSLT’14 WMT’14 WMT’20

Model Zh-En De-En En-De De-En En-De Zh-En En-Zh Ps-En En-Ps
Cross Entropy 48.2 31.6 27.9 30.5 24.8 25.9 36.8 5.4 2.9 26.0
REINFORCE 48.3 31.6 28.0 30.5 25.6 25.9 36.9 6.2 2.8 26.2
PPO 47.8 31.3 28.2 30.3 24.8 25.9 36.9 7.1 6.9 26.6
MRT 47.6 32.1 27.9 31.3 25.7 27.5 39.0 9.0 7.2 27.5
−MAD 48.1 31.9 27.1 31.1 26.2 27.4 39.5 8.4 7.2 27.4
MAD 48.5 32.5 28.4 31.1 26.4 27.3 39.5 8.8 7.4 27.8

Table 13: Additional test set results when using different Beam Search hyperparameters. Even when large beams
are used without length normalization, MAD performs well indicating that it is better calibrated.

13



Yx r q v

rsw : i found what was a really remarkable thing . (greedy) 0.91 -3.1 1.7e-01
rsw : i found what was a really remarkable thing . (duplicate) 0.91 -3.1 1.7e-01
rsw : i found what was a remarkable thing . 1.19 -3.2 1.8e-01
rsw : i found what was a remarkable thing . (duplicate) 1.19 -3.2 1.8e-01
rsw : i found something quite remarkable . 0.90 -3.6 2.2e-01
rsw : i found what was quite a point . 0.50 -3.6 2.2e-01
rsw : i found what was quite a point . (duplicate) 0.50 -3.6 2.2e-01
rsw : i found what was a very remarkable thing . 0.91 -3.7 2.3e-01
rsw : i found what was a great thing . 0.73 -3.8 2.4e-01
rsw : i found what was quite a remarkable thing . 0.91 -3.9 2.5e-01
rsw : i ’ve found something quite remarkable . -1.38 -4.5 3.3e-01
rsw : i found what was a real thing . 0.73 -4.7 3.5e-01
rsw : i found something quite substantial . 0.80 -4.9 3.8e-01
rsw : i found something quite a point . 0.75 -5.0 4.0e-01
rsw : i found what was a very substantial thing . 0.50 -5.2 4.4e-01
rsw : i found what was a pretty remarkable thing . 0.91 -5.2 4.5e-01
rsw : i ’ve found what was quite a point . -1.38 -5.4 4.9e-01
rsw : i ’ve found what was quite a point . (duplicate) -1.38 -5.4 4.9e-01
rsw : i ’ve found a remarkable thing . -1.38 -5.9 6.2e-01
rsw : i ’ve found a real thing . -1.38 -6.5 8.2e-01
rsw : i found what was a pretty substantial thing . 0.50 -7.3 8.2e-01
rsw : i found what was a really striking . 0.50 -7.4 7.9e-01
rsw : i found something quite extraordinary . 0.80 -7.8 6.7e-01
rsw : i found what was quite a convincing thing . 0.50 -7.8 6.6e-01
rsw : i found what was a pretty significant one . 0.30 -8.4 5.0e-01
rsw : i ’ve found what ’s quite a remarkable thing . -1.38 -8.6 4.4e-01
rsw : i found what was a pretty substantial point . 0.30 -8.6 4.4e-01
rsw : i found what was really a really remarkable thing . 0.69 -8.7 4.3e-01
rsw : i ’ve found something remarkable . -1.38 -8.8 4.1e-01
rsw : i found what was a substantial amount . 0.50 -9.6 2.8e-01
rsw : i ’ve found a really a point . -1.38 -11.7 1.1e-01
rsw : i found a lot of a point of all . 0.13 -17.4 7.4e-03
rsw : i ’ve found a burk . -1.38 -19.7 2.5e-03
rsw : well , i did find what was most important . -1.38 -19.8 2.4e-03
rsw : but but i found what was the most substantial case . -1.38 -27.4 6.9e-05
rsw : i ’ve figured out what was oder oder oder oder oder oder od... -1.38 -1180.3 0.0e+00
rsw : ich habe was ganz beachtliches gefunden . (source)
rsw : i found the most remarkable thing . (reference)

Table 14: Example of sampling and TB(6,6) selection during training, together with the MAD importance weights,
rewards, and policy log likelihood. Elements in gold represent the top and bottom 6 elements of Yx that will be
presented to the learner.
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