MAD for Robust Reinforcement Learning in Machine Translation

Anonymous ACL submission

Abstract

We introduce a new distributed policy gradient
algorithm and show that it outperforms exist-
ing reward-aware training procedures such as
REINFORCE, minimum risk training (MRT)
and proximal policy optimization (PPO) in
terms of convergence speed and stability, and
overall performance at optimising machine
translation models. Our algorithm, which we
call MAD (on account of using the mean abso-
lute deviation in the importance weighting cal-
culation), has distributed data generators sam-
pling multiple candidates per source sentence
on worker nodes, while a central learner up-
dates the policy. MAD depends crucially on
two variance reduction strategies: (1) a new
robust importance weighting scheme that en-
courages learning from examples that are not
too likely or unlikely relative to the current
policy and (2) by learning from balanced num-
bers of high- and low-reward training exam-
ples. Additionally, our algorithm has few hy-
perparameters, making it easy to use on new
tasks with little or no adaptation. Experiments
on a variety of translation tasks show the poli-
cies learned with MAD perform very well with
both greedy decoding and beam search, and
the learned policies are sensitive to the specific
reward used during training.

1 Introduction

There is increasing interest in fine-tuning condi-
tional language models on the basis of feedback
from task-specific reward models or similarity func-
tions that compare to human-generated reference
outputs rather than relying exclusively on super-
vised learning (Stiennon et al., 2020; Ziegler et al.,
2019; Wu et al., 2018; Paulus et al., 2018; Rennie
et al., 2017; Ranzato et al., 2016). Maximising se-
quence level rewards has several advantages. First,
it avoids the apparent conflict between the intuitive
importance of “getting the full sequence right” in
generation problems and the more conventional
token-level cross entropy loss. Second, since a

policy trained to maximize rewards is supervised
with its own outputs—both good and bad ones—it
mitigates issues arising from “exposure bias,” in
which a learned policy that has been trained only
on correct examples has no experience recovering
from errors and therefore performs poorly at test
time (Ranzato et al., 2016). Third, feedback from
(learned) rewards can be a cost-effective strategy
for incorporating human preferences about how
a systems should behave (Stiennon et al., 2020;
Christiano et al., 2017).

Unfortunately, fine-tuning policies for generat-
ing in complex output spaces, such as language,
on the basis of sparse rewards is challenging. On
one hand, estimating and debugging reliable auxil-
iary critic/value functions that are needed by many
learning algorithms is challenging (Wu et al., 2018;
Bahdanau et al., 2017; Nguyen et al., 2017), and
commonly used average or batch-level reward base-
lines (Kreutzer et al., 2017) are poor variance re-
ducers since they are independent of the input, and
input difficulty is a strong determinant of reward
magnitude.

In this paper, we propose a new distributed pol-
icy gradient algorithm (§2) for fine-tuning transla-
tion models that addresses these issues. The dis-
tributed setup lets us use modest computation to
obtain simple and effective empirical reward base-
lines (Rennie et al., 2017) rather than using inap-
propriate batch-level statistics or relying on brittle
auxiliary value models. Our proposed algorithm
has two components designed to make learning
from the reward signal more effective: an impor-
tance weighting strategy that encourages the algo-
rithm to pay attention to trajectories that are near
to the current policy (i.e., it up-weights trajectories
that are neither “too likely” nor “too unlikely”),
and, second, an instance selection strategy that en-
courages batches to contain a mix of both positive
and negative rewards. Thus, our algorithm learns
from trajectories that are already relatively likely

under the current policy (meaning any updates to
the policy will be relatively small), while also learn-
ing preferentially from instances that have a large
impact on the reward metric. This enables the algo-
rithm to make large improvements in reward while
taking small, conservative (and therefore less risky)
steps to change the behaviour.

These changes reduce the policy gradient vari-
ance and enable the model to improve over many
training steps without divergence. This results in
policies that produce high-quality translations, even
when using greedy decoding. In our main experi-
ments (§3), we use sentence BLEU as the reward
and find that the average improvement on held-out
test sets over the initial cross entropy trained model
is 1.8 BLEU. Additionally, we carry out a care-
ful empirical analysis (§4) that shows what impact
that the various components of the algorithm have,
and also that the algorithm learns different poli-
cies depending on the reward function used during
optimisation, with the resulting policies showing
reward-specific improvements on held-out data.

2 Algorithm

Our algorithm consists of workers generating train-
ing trajectories and rewards, in parallel, from a
slightly out-of-date copy of the policy, and a central
learner that updates the policy. The data generation
algorithm is shown Alg. 1 and the learner in Alg. 2.
The learning algorithm has four core components:
sampling from a range of temperatures (§2.1), con-
ditional reward normalization on the basis of em-
pirical means and variances (§2.2), a novel robust
importance weighting strategy that focuses learning
efforts on samples that are neither “too likely”” nor
“too unlikely” under the current policy (§2.3), and
a sample selection strategy that favours extreme
values of the empirical reward distribution (§2.4).
We discuss each of these components in turn.

2.1 Multi-Temperature Sampling

To obtain suitably diverse candidates to learn from,
it is conventional to add a temperature hyperparam-
eter used to generate samples (Shen et al., 2016;
Papini et al., 2020). We identify two problems with
this. First, there is the practical matter of needing
to select a temperature in order to obtain good per-
formance. Second, it is widely observed that policy
gradient algorithms result in increasingly peaked
distributions as training progresses (Kiegeland and
Kreutzer, 2021; Choshen et al., 2020; Rennie et al.,

>

2017), meaning that the amount of “exploration’
being considered by the algorithm decreases over
time. While some RL tasks are interested in max-
imising total accumulated returns over time (mean-
ing that “exploitation” is important), we rather seek
to learn a policy that is capable of behaving as
intelligently as possible in states that are not en-
countered during a training phase, and therefore,
we seek an exploration-heavy sampling strategy.
To avoid the difficulties with drifting entropy, we
use a simple approach of generating populations of
samples at several different temperatures.
Concretely our data generation algorithm (lines
5-7) begins by sampling N, translations for the
current policy and source sentence . Each sam-
ple is generated using a different temperature that
is determined by finding equally spaced values'
between the interval [T}y, Tinay]. Duplicate trans-
lations are removed. The process we use is:

Yo = UNIQUE({SAMPLE(x, 0,t); t € T'})
where
T={Twin+6-G—1);ie{l,...,Npp}}
Tinax — Timin

5 = —max — min
T Ny — 1

If the number of translations is less than the number
of training examples we intend to select, | Vg| < N
(where N is the number of training trajectories we
will train on, discussed below in §2.4), we discard
Y. and move on to the next source sentence. In
this way, we will only train on examples where
suitable diversity exists, and we always obtain the
same number of trajectories for a source sentence.

2.2 Conditional Reward Normalization

Reward normalization is a well known variance re-
duction technique for policy gradient methods, with
the simplest version being to subtract a constant
from the reward (Williams, 1992). Other methods
have been proposed such as subtracting a model
baseline reward (Weaver and Tao, 2001), the run-
ning average of the rewards seen during training
(Kreutzer et al., 2017), or z-scoring the rewards in
a training batch (Stiennon et al., 2020). As demon-
strated by Kiegeland and Kreutzer (2021), using the
running reward average b helps to reduce variance
when REINFORCE is applied to translation.
While empirically effective, these baselines ex-
plain less reward variation than we might hope. We

"https://numpy.org/doc/stable/
reference/generated/numpy.linspace.html

https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html

LREINFORCE =

yeyz

(A(y7 yref)
Lppo = min{u - 7, clip(u,1 —

LMRrT = Z A(Y, Yep) -

—b) -logp(y | x)

e,1+¢) 7}

ply |z
> yey, Py |)

L map = min{u, 2} -7 -logp(y | x)
Lvap = min{u - v, 2} -7 -logp(y | x)

Figure 1: Sequence level losses used by the algorithms evaluated in this paper. See §2 for notation.

note that the difficulty of generating a good transla-
tion is strongly dependent on the intrinsic difficulty
of the source sentence, not merely the current pol-
icy. Since the usual reward normalization methods
do not take this dependency into account, this re-
sults in a bias toward giving difficult sentences neg-
ative rewards and easier sentences positive rewards,
leading to less stable learning.

We therefore use a standardization method that
is conditioned on the source sentence. We take the
set of translations for source sentence x and obtain
a vector of rewards 7; = A(Y;, Yyop) Vi € [1,[|Va]]
where A(y, y,.) is a scalar valued reward indicat-
ing how well y communicates the contents of the
reference translation yref.2 We then standardize
these rewards by removing the mean and dividing
by the standard deviation (lines 11-18),

T —(— pr)/or Vi € [1,|Vg|], where

D}w’ Z T'is \/D} ‘ _,U/T)Q'

This ensures that every source sentence, irrespec-
tive of its translation difficulty, has examples with
positive and negative rewards.

In contrast, the standard reward used for the PPO
algorithm is the z-scored reward of the training
batch, 7, = (r; — pir) /0 Vi € [1,|B]], where B
is the training batch with randomly sampled (x, y)
examples and /i, and &, are respectively the mean
and standard deviation of the rewards in B.

pr =

2.3 MAD Importance Weights

A key feature of our algorithm—and the one that
gives it its name—is the use of a new importance
weighting scheme for deciding which sampled tra-
jectories are most valuable for updating the policy
and which others should be downweighted. For

2Except for §4.4, we use sentence BLEU.

trajectory ¢, our importance sampling correction
w; (Eq. 1) consists of two terms: u;, which is the
standard importance weighting ratio (Precup et al.,
2000) to deal with the fact that in a distributed
setup, data is generated from a stale policy:

u; = exp(p; — ¢;), where
=logp(y, | ;0), ¢ =logp(y; | x;004).

The second term in Eq. 1, v;, encourages the learner
to pay attention to samples that are “relatively
likely” under the current policy (as approximated
by g, since we want the calculation to be carried out
on the worker nodes, and p is only available on the
central learner). We operationalize the notion of

“relatively likely” as something that is near to the

median® probability under ¢ of the elements in),
using the exponentiated negative median absolute
deviation (MAD; lines 13-18):

v; = exp(—|qi — fig|/Fq)
fiqg = MEDIAN(q)
— MEDIAN(|q — fig)).

Why do we want to concentrate learning on these
relatively likely trajectories, rather than perhaps
other trajectories that have even higher (or lower)
rewards? First, this is a strategy for reducing the
gradient norms, since gradients associated with
smaller changes to the policy will require, on aver-
age, less significant updates to the network. This
is advantageous since smaller gradient norms can
lead to better generalisation error (Kreutzer et al.,
2017). Second, Choshen et al. (2020) provide evi-
dence that RL algorithms can make only relatively
modest changes to the starting policies. Therefore,
we focus learning effort on instances which are “in

3The median was chosen because q can have a long tail.
It is not uncommon for fi; &~ —6 and min(q) < —1000,
see Figure 2. Comparisons to alternative definitions of v; are
reported in Appendix D.

reach” of the current policy. Finally, the strategy
of selecting targets on the basis of being close to
a current policy in online reward-driven learning
has been proposed previously for linear translation
models, and found to be more effective than other
sample selection methods (Chiang, 2012). How-
ever, rather than doing instance selection on the
basis of a combined objective as was done in that
work, we downweight outliers with v;.

To compute the final importance weight, we mul-
tiply the two terms and cap the maximum value:

w; = min{w; - v;, 2}. (D

Truncating importance weights is a standard vari-
ance reduction strategy (Cortes et al., 2010; Schul-
man et al., 2017).

2.4 Sample Selection

One reason we generate multiple samples for a
given source sentence is to compute the sample
level statistics described above. However, a further
reason is that we can subselect from these samples
to further reduce variance. For our experiments,
we select NV = 12 samples from the pool by taking
the 6 highest reward and 6 lowest reward examples
(lines 19-22). This encourages a roughly equal mix
of positive and negative rewards to be used for train-
ing, and it keeps the mean reward for the selected
examples near zero, which helps to reduce gradi-
ent norms and variance (see Figure 3). Intuitively,
this mix of examples encourages the learner to re-
allocate input-conditional probability mass from
trajectories with poor rewards to trajectories with
good rewards.

Using 33% of the total samples per source sen-
tence provided a reasonable trade off between train-
ing speed and fresh examples. Training on all of the
samples speeds up training but does not produce
as high of a BLEU score as using only a subset of
them (§4.3).

3 Experiments

3.1 Datasets

We run our model along with all the baselines on
a total of 9 dataset—language direction translation
tasks. See Appendix B for dataset details, prepro-
cessing, and tokenization.

3.2 Training

For each task, we pretrain a sequence-to-sequence
transformer model (Vaswani et al., 2017), using a

Algorithm 1 Asynchronous data generator

1: function GENERATE(N, Npop, A, Thnin, Tinax)
2 while True do
3 O — 0 > Get current global weights
4 (213, yn{/") ~ D/ra[n

5: for i € [1, N,op] do > Obtain Vs, q, and r
6: T < Tin+ (1 —1) X (Tnaxr — Tonin) / (Npop — 1)
7: Yy, < SAMPLE(x, 004, T)

8 i < logp(y; | Ti; Oow)

9 T <

0 end for

1 L 4— ﬁ DT

12: Or < \/ngl‘(h = Hr)? /| Vel

A(ym yref)

13: fiq < MEDIAN(Qq)

14: G4 < MEDIAN(|q — fiq|) > Median abs. dev.
15: fori € [1,|Vz]|] do

16: Ti < (ri — pr)/or

17: v; < exp(—la: — figl [32)

18: end for

19: sortq, T, v, Ve byT > Order by rewards
20: foric[l,.... 5 Vol = 5 +1,...,| V] do

21: ENQUEUE(T, y;, ¢i, Ti, Vi)

22: end for

23: end while
24: end function

Algorithm 2 Learning algorithm

1: function LEARN(S, 77, OcE)
2 0 +— OCE

3 fori € [1,5] do

4: x,y,q,T,v < DEQUEUE()

5: p < logp(y | z;0)

6: u < exp(p — q)

7 a < SG(min{u x v, 2})

8: L+ axT xlogp(y | ; dropout(0))
9: 0+ 0+nx %

10: end for

11: end function

word level cross entropy loss, until convergence.
We refer to this model as the Cross Entropy (CE)
model. All treatments for a task are initialized
using the same CE checkpoint, which is the check-
point that had the highest development set BLEU.
The treatments are trained using the same train-
ing/development sets for a total of 200K steps with
early stopping if the average development BLEU is
not improved for the last 20K steps. In the case of
PPO and MAD, every 20 training steps the learn-
ing node saves a checkpoint which the workers and
evaluators load asynchronously. We use a global
batch size of 256 training examples per step. See
Appendix A for detailed hyperparameter configura-
tions and Appendix C for implementation details.

3.3 Compared RL Objectives

Figure 1 gives the primary RL objectives we
compare. These are: the REINFORCE algo-
rithm (Williams, 1992) using a moving average

Greedy Decoding

NIST IWSLT’ 14 WMT’ 14 WMT20
Model Zh-En | De-En En-De | De-En En-De | Zh-En En-Zh Ps-En En-Ps I
Cross Entropy | 45.5 30.1 26.7 29.3 25.1 25.0 37.3 6.6 6.0 | 257
REINFORCE | 45.5 30.2 26.7 29.3 253 25.0 37.1 7.2 59 | 258
PPO 459 31.0 27.7 29.6 25.2 24.8 37.3 7.3 7.5 |263
MRT 45.2 30.8 26.7 30.4 25.1 26.4 38.8 8.4 7.5 | 26.6
—MAD 46.6 31.7 27.6 30.6 25.9 27.0 39.1 8.4 7.7 | 272
MAD 47.7 321 28.0 30.8 26.2 26.9 39.3 8.8 79 | 275

Beam Search | Beams =5 | Length Normalization () = 1.0

NIST IWSLT’ 14 WMT’ 14 WMT’20
Model Zh-En | De-En En-De | De-En En-De | Zh-En En-Zh Ps-En En-Ps n
Cross Entropy | 47.6 314 27.9 30.6 25.8 26.4 37.5 7.0 6.0 | 26.7
REINFORCE | 47.5 314 28.0 30.6 25.9 26.3 37.8 8.1 6.0 | 26.8
PPO 47.5 31.3 28.2 304 25.8 26.2 37.5 7.7 7.6 | 269
MRT 47.0 31.9 27.9 314 25.9 27.4 39.3 9.2 79 | 276
—MAD 479 322 28.1 31.1 26.2 27.5 394 9.1 7.5 | 277
MAD 48.4 324 28.3 31.1 264 27.3 39.6 94 81 | 279

Table 1: Performance of different algorithms on translation. We report sacreBLEU on the held-out test set between
the detokenized model hypothesis and original (not tokenized) references. Note that for IWSLT’ 14 and NIST both
the hypotheses and references were lower-cased to keep comparable with prior works. p is the average BLEU
across all datasets for each method. MAD outperforms other methods by a large margin when greedy decoding is

used. The gap shrinks when beam search is used, but MAD still outperforms the next best method, MRT.

baseline (Weaver and Tao, 2001), a proximal pol-
icy optimization algorithm (Schulman et al., 2017,
PPO), minimium risk training (Shen et al., 2016,
MRT), our algorithm without the MAD importance
weights (—MAD), and our full algorithm (MAD).
Since REINFORCE and MRT are on-policy algo-
rithms, we optimise these objectives on a single
worker; the distributed infrastructure is only used
for MAD and PPO.

3.4 Evaluation and Hyperparameters

We use the sacreBLEU script (Post, 2018)* with
detokenized model hypothesis and the original ref-
erences.” When running on the test set, we select
the checkpoint that had the highest development
set BLEU under greedy decoding.

The important hyperparameters of our algo-
rithm are Npop, N, Tpin, and 15,4, For our
main results, we used N,,, = 36 and N = 12
while the optimal temperature range was found
for each model by sweeping over [T,in, Tnax] €
{[0.2,0.6], [0.4,0.8], [0.6,1.0],[0.8,1.2] }.°

*https://github.com/mjpost/sacreBLEU
3See Table 9 in Appendix A for settings.
®See Table 10 in Appendix A for selected temperatures.

3.5 Main Results

Table 1 presents the performance of our algorithm
compared to other objectives (§3.3) on four differ-
ent machine translation datasets. We compare these
models on both greedy decoding and beam search.
As can be seen, our reinforcement learning algo-
rithm outperforms both REINFORCE and PPO by
an average of 1 BLEU across all the datasets we
tried under both greedy and beam search decoding
algorithms. The MAD algorithm is particularly
strong when it comes to greedy decoding, where it
outperforms the strong MRT baseline by .9 BLEU
on average. More test set results using larger beams
and other decoding hyperparameters can be found
in Table 13 in Appendix D; these results show that
MAD continues to outperform other training objec-
tives and continues to improve with larger beams,
even without any length normalization—in marked
contrast to CE (Meister et al., 2020).

4 Analysis and Ablation Experiments

In this section we report on more detailed exper-
iments on the IWSLT’ 14 German—English task,
to show the impact of various components of the
MAD algorithm. In particular, we look at the im-

https://github.com/mjpost/sacreBLEU

Sampling Reward | PPO —MAD MAD
U(l) x 12 T 31.7 n/a n/a
U(1) x 12 T 32.5 31.8 31.3
U(12) T 32.6 32.8 33.1
Table 2: PPO benefits from switching to input-

conditional reward standardization, 7. —MAD and
MAD benefit from training on more unique samples,
while PPO is better able to reuse data. When using iden-
tical and ideal training conditions, MAD outperforms
PPO by 0.5 BLEU. Results are development set max
BLEU; CE baseline BLEU is 31.3.

pact of source-conditional reward standardization
and the role of multiple samples (§4.1), more in-
sight into the empirical behaviour of MAD impor-
tance weights (§4.2), the impact of the sample se-
lection strategy (§4.3), the impact of optimizing dif-
ferent rewards (§4.4), and the training time (§4.5).

Notation. We briefly introduce some notation to
help with clarity. We use the syntax Type(n) x m
to describe various selection methods (§2.4). The
selection “Type” is either U for uniform random
without replacement, T for top reward samples, or
TB for top and bottom reward samples. n is the
number of examples selected while m is the num-
ber of times each example is trained upon, which is
an innovation proposed in Schulman et al. (2017).

4.1 Reward Standardization and Multiple
Samples

The input-conditional reward normalization
method (§2.2) has a large impact on performance.
The first two lines of Table 2 compare the PPO
algorithm with the standard batch-normalized
reward (7) versus the input-conditional normalized
reward (7). The second two lines compare the
impact of using 1 sample 12 times or 12 samples 1
time each. While the PPO algorithm benefits little
from different samples, our algorithm with and
without the MAD weighting performs well.

4.2 MAD Importance Weight

This section investigates what the MAD importance
weight is doing and to what extent it helps.

Data generation example. Figure 2 shows the
reward, log probability, and MAD weight of the
36 transaltions sampled for the source sentence
“rsw : ich habe was ganz beachtliches gefunden.”
from the IWSLT’ 14 training dataset. The actual
sampled translations are available in Table 14 of

Sample Subsample
o -0.8
1 ® (@)
° g -0.7
g 0
o - 0.6
-1
o © O (S '0-52;*;
—-1000 -500 0 -1000 =500 0 'g
-0.4
q q 9(
o
1 i o | -03%
. £
g 0 (@) -0.2
&
-0.1
-1
(0] oam O o @ ~0.0
-1 0 -1 0
allyl allyl

Figure 2: Plot of data generation for a single source
sentence, see Table 14 in Appendix for sampled trans-
lations. Left column shows the complete sample while
the right column shows only the examples selected for
training. Top row x-axes are the sequence log prob-
abilities ¢ while the bottom row x-axes are the mean
token log probabilities. The color indicates the weight
assigned by our MAD importance weight.

the supplementary material. While several very
low-reward samples survive the selection process,
the ones with very low ¢ have a low MAD weight
(corresponding to very strange translations) and
will contribute little to the learning objective.

Training dynamics. We expect to see lower vari-
ance gradients during training due to the MAD im-
portance weight and that is what Figure 3 shows.
Regardless of the selection method used, including
the MAD weight reduces training variance. We can
also see from Table 1 that using MAD provides
better generalization performance than not using it
(—MAD).

4.3 Selection Methods

As stated in §2.4, we used TB(6, 6) as the selection
method for the main experiments. An alternative
choice that provides very similar properties in ex-
pectation is U(12) and as Table 3 shows, it works
equally well in terms of development set BLEU
performance. However, uniform sampling can lead
to selections that are imbalanced especially when
there are many samples that get a zero reward as is
the case in Figure 2. This leads to higher gradient
variance and norms during training (Figure 3).

An alternative sampling strategy is to take only
the highest reward examples (Liang et al., 2006).

Batch Gradient Norms During Training

TB(6,6) u(12) T(12)
33 Method
) i W —— MAD
m32 ~MAD
o 31 gy 1
S *",IW
30 \“ 1l
£ 80 |
[e]
Z 60
c
]
T 40
o
S |
< 20 1
=
s w W«LM
30 40 50 O

0
0 10 20 30 40 50 0

Training Step
x1000

10

20

Training Step
x1000

10

20 30
Training Step
x1000

40

Figure 3: Learning curves for { —MAD, MAD} x {TB(6,6), U(12), T(12)} experiment matrix with 3 seeds per
cell. Dataset is IWSLT’ 14 De-En. Top row is the BLEU score on the development set over the course of training.
Bottom row is the batch level gradient norm. We see that MAD produces smaller and lower variance gradient
updates than —MAD. There is not much difference between Top Bottom sampling and Uniform sampling, however,
only using the Top examples leads to high variance and unstable training.

We explore this option in Table 3 and find that, al-
though the max development BLEU is reasonably
high, the min BLEU can be very low. The magni-
tude and variance of the gradients during training
reflect this, thus, we recommend a selection method
that uses a mix of both positive and negative reward
examples.

Per Source | Selection dev BLEU
total unique | Method max — min
36 36 All 326 31.2
6 1 T(1) x 6 324 2.0
6 6 T(6) 32.5 1.7
6 1 U(l) x 6 314 35
6 6 U(6) 329 313
12 12 U(12) 331 313
6 2 TB(1,1) x 3 | 32.0 4.1
6 6 TB(3, 3) 33.0 313
12 12 TB(6,6) 331 313
36 12 TB(6,6) x 3 | 329 31.3
Table 3: Exploration of different selection methods

when using MAD on the IWSLT’ 14 De-En dataset.
General findings: using all samples is not optimal, us-
ing unique samples is better than reusing the same ex-
ample, and T(N) < U(N) < TB(%, §).

4.4 TImpact of Reward Type

In the experiments reported so far, we have used
sentence BLEU as a reward function. However,
Choshen et al. (2020) have shown that uninforma-
tive rewards work as well as informative rewards
at improving the BLEU score, conjecturing that
the reported improvements in these algorithms are
due to training artifacts such as reduced entropy
of the predictive distribution rather than reward-
driven learning. In this section we look at whether
training with MAD on different rewards results in
a policy that improve those rewards on held-out
test sets.” We can see in Table 4 that the models
are able to generalize on their metric and usually
outperform models trained to optimize different
metrics. We are able to train a model to optimize
multiple metrics and generalize well on all of them.

4.5 Training time

Because of our distributed algorithm, we are able
to obtain faster training times by increasing the
number of workers that sample from the current
policy (this in contrast to purely “on-policy”” REIN-
FORCE and MRT algorithms). Table 5 shows that

"We note that the constant reward used by Choshen et al.
(2020) would result in no learning in our algorithm on account

of the reward standardisation discussed above in §2.2, so we
do not compare to this condition.

Reward Optimized BLEU GLEU ChrF TER TokenF1 BLEURT | pu

sBLEU (Papineni et al., 2002) 32.1 30.0 555 50.0 55.9 58.6 30.3
GLEU (Mutton et al., 2007) 32.2 30.5 557 49.1 57.0 59.5 31.0
ChrF (Popovié, 2015) 32.0 30.0 56.5 49.7 56.0 59.0 30.6
—TER (Snover et al., 2006) 322 30.0 558 48.8 56.3 59.2 30.8
Token F1 31.9 304 555 495 57.1 59.5 30.8
BLEURT (Sellam et al., 2020) | 29.5 284 549 520 54.8 62.3 29.6
ALL (equal weight) 322 304 56.0 49.0 56.8 59.9 31.1

Table 4: MAD was used to optimize different rewards on the IWSLT 14 De-En dataset. We report fest set
results for the checkpoint with the max validation performance on the metric being optimized. For TER, a lower
score is better, so we optimize —TER. The last row, ALL, optimized the equally weighted average of the rewards,
(1/6)(BLEU + GLEU + ChrF + Token F1 — TER + BLEURT).

we get near linear scaling as the number of workers
is increased.

Training Speed

Algorithm Workers | Sec per 1K
REINFORCE n/a 2,038
MRT n/a 1,728

4 1,898
PPO & MAD 2 946

Table 5: We show the training speed as a function of
the number of 2x2 TPU workers used. Speed is mea-
sured in seconds per 1000 training steps.

5 Related Work

During the era of linear translation models, setting
parameters to optimise rewards was standard. Al-
though cross entropy is still widely used, Ranzato
et al. (2016) inaugurated using RL techniques for
neural translation models, and Edunov et al. (2018)
provide a thorough survey of the topic and find
that RL fine-tuning usually improves the original
model. Although it has been shown to optimise a
biased approximation to the expected reward ob-
jective (Choshen et al., 2020), minimum risk train-
ing remains extremely effective (Shen et al., 2016;
Kiegeland and Kreutzer, 2021).

More complicated policy gradient methods have
been proposed that rely on auxiliary networks.
MIXER (Ranzato et al., 2016) predicts a per-token
reward baseline while actor-critic methods (Bah-
danau et al., 2017) learn a per-timestep Q function
concurrently with the translation policy. Although
not widely used yet in translation, proximal policy
optimization (PPO) (Schulman et al., 2017) has
been used to train summarization models from hu-
man preferences (Stiennon et al., 2020), and this

algorithm provided inspiration for some of the tech-
niques we used here.

Another important source of inspiration in the de-
velopment of our algorithm was the “hope and fear”
online learning algorithm of Chiang (2012), which
used a margin-based analysis to argue for a deci-
sion rule that selected positive and negative training
samples on the basis of a combination of current
model score and reward. Additionally, pairwise
ranking optimisation (Hopkins and May, 2011) re-
duced the parameter learning problem to classi-
fying pairs of positively and negatively rewarded
trajectories, and our objective can be understood as
a weighted variant of that objective.

6 Conclusion

We introduce a new policy gradient algorithm,
MAD, for machine translation and show that it
outperforms existing reward-aware training proce-
dures such as REINFORCE, minimum risk training
(MRT) and proximal policy optimization (PPO).
We test these algorithms on a variety of datasets,
language pair directions, and reward functions and
demonstrate good test set performance. Our al-
gorithm excels at producing models that generate
quality translations, even when greedy decoding is
used. Our analysis shows that our method greatly
reduces the variance of training gradients, which
can be attributed to our robust importance weight-
ing scheme and selecting both positive and negative
reward examples for training. We use a distributed
setup that enables simple scaling, allowing for fast
training time if enough workers are used to gen-
erate the data. Finally, our algorithm has few hy-
perparameters and is reasonably insensitive to their
values, making it easy to use on new tasks.

References

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Albin Cassirer, Gabriel Barth-Maron, Eugene Brevdo,
Sabela Ramos, Toby Boyd, Thibault Sottiaux, and
Manuel Kroiss. 2021. Reverb: A framework for ex-
perience replay.

David Chiang. 2012. Hope and fear for discriminative
training of statistical translation models. Journal of
Machine Learning Research, 13(40):1159-1187.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri
Abend. 2020. On the weaknesses of reinforcement
learning for neural machine translation. In Interna-
tional Conference on Learning Representations.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Corinna Cortes, Yishay Mansour, and Mehryar Mobhri.
2010. Learning bounds for importance weighting.
In Advances in Neural Information Processing Sys-
tems, volume 23. Curran Associates, Inc.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2018. Classical
structured prediction losses for sequence to se-
quence learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
355-364, New Orleans, Louisiana. Association for
Computational Linguistics.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1352-1362, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

Samuel Kiegeland and Julia Kreutzer. 2021. Revisiting
the weaknesses of reinforcement learning for neu-
ral machine translation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1673—1681, Online.
Association for Computational Linguistics.

Julia Kreutzer, Artem Sokolov, and Stefan Riezler.
2017. Bandit structured prediction for neural
sequence-to-sequence learning. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1503-1513, Vancouver, Canada. Association
for Computational Linguistics.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of ACL.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of EMNLP.

Percy Liang, Alexandre Bouchard-C6té, Dan Klein,
and Ben Taskar. 2006. An end-to-end discriminative
approach to machine translation. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 761-768,
Sydney, Australia. Association for Computational
Linguistics.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020.
If beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2173-2185, Online. Association for Computa-
tional Linguistics.

Andrew Mutton, Mark Dras, Stephen Wan, and Robert
Dale. 2007. GLEU: Automatic evaluation of
sentence-level fluency. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 344-351, Prague, Czech Repub-
lic. Association for Computational Linguistics.

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-
Graber. 2017. Reinforcement learning for bandit
neural machine translation with simulated human
feedback. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1464—1474, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matteo Papini, Andrea Battistello, and Marcello
Restelli. 2020. Balancing learning speed and stabil-
ity in policy gradient via adaptive exploration. In
The 23rd International Conference on Artificial In-
telligence and Statistics, AISTATS 2020, 26-28 Au-
gust 2020, Online [Palermo, Sicily, Italy], volume
108 of Proceedings of Machine Learning Research,
pages 1188-1199. PMLR.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations.

Maja Popovi¢. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,

https://openreview.net/forum?id=SJDaqqveg
https://openreview.net/forum?id=SJDaqqveg
https://openreview.net/forum?id=SJDaqqveg
http://arxiv.org/abs/2102.04736
http://arxiv.org/abs/2102.04736
http://arxiv.org/abs/2102.04736
http://jmlr.org/papers/v13/chiang12a.html
http://jmlr.org/papers/v13/chiang12a.html
http://jmlr.org/papers/v13/chiang12a.html
https://openreview.net/forum?id=H1eCw3EKvH
https://openreview.net/forum?id=H1eCw3EKvH
https://openreview.net/forum?id=H1eCw3EKvH
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/59c33016884a62116be975a9bb8257e3-Paper.pdf
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://aclanthology.org/D11-1125
https://aclanthology.org/D11-1125
https://aclanthology.org/D11-1125
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/P17-1138
https://doi.org/10.18653/v1/P17-1138
https://doi.org/10.18653/v1/P17-1138
https://doi.org/10.3115/1220175.1220271
https://doi.org/10.3115/1220175.1220271
https://doi.org/10.3115/1220175.1220271
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://aclanthology.org/P07-1044
https://aclanthology.org/P07-1044
https://aclanthology.org/P07-1044
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://proceedings.mlr.press/v108/papini20a.html
http://proceedings.mlr.press/v108/papini20a.html
http://proceedings.mlr.press/v108/papini20a.html
https://openreview.net/forum?id=HkAClQgA-
https://openreview.net/forum?id=HkAClQgA-
https://openreview.net/forum?id=HkAClQgA-
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049

pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Doina Precup, Richard S. Sutton, and Satinder Singh.
2000. Eligibility traces for off-policy policy evalua-
tion. In In Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning (ICML-00),
pages 759-766.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1179-1195.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881-7892, Online. Association for Computa-
tional Linguistics.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1683-1692, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the As-
sociation for Machine Translation in the Americas:
Technical Papers, pages 223-231, Cambridge, Mas-
sachusetts, USA. Association for Machine Transla-
tion in the Americas.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3008-3021. Curran Associates,
Inc.

10

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Lex Weaver and Nigel Tao. 2001. The optimal reward
baseline for gradient-based reinforcement learning.
In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, UAI’01, page
538-545, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229-256.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018. A study of reinforcement learning
for neural machine translation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3612-3621, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Fan Yang, Gabriel Barth-Maron, Piotr Staiczyk,
Matthew Hoffman, Siqi Liu, Manuel Kroiss, Aedan
Pope, and Alban Rrustemi. 2021. Launchpad: A
programming model for distributed machine learn-
ing research. arXiv preprint arXiv:2106.04516.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1109/CVPR.2017.131
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/P16-1159
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1397
https://arxiv.org/abs/2106.04516
https://arxiv.org/abs/2106.04516
https://arxiv.org/abs/2106.04516
https://arxiv.org/abs/2106.04516
https://arxiv.org/abs/2106.04516
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593

A Hyperparameters

We provide the hyperparameters for our Trans-
former models in Tables 6 and 7. The algorithm
specific settings are in Table 8. Finally, the setting
used when calculation sacreBLEU are found in
Table 9.

Transformer - Base Settings

Setting Value
embeddings dim 512
feed forward 2048
num layers 6 enc + 6 dec
num heads 8
dropout 3
tied embeddings True
tied softmax True
optimizer Adam
learning rate (7)) le-5
7 warmup steps 1000
7 scheduling Constant
gradient clipping | global_norm(1)
training steps 200,000
seq length 128
global batch size 256

Table 6: Base settings for our Transformer models.

Transformer - Deltas

Dataset Setting Value
WMT’20 Ps <+ En seq length 64
WMT’ 14 De <+ En seq length 144
IWSLT’ 14 De < En feed forward | 1024

num heads 4

Table 7: Deviations from Transformer base settings.

B Datasets

We evaluate all the models on the following transla-
tion tasks: NIST® Open MT Chinese — English
task, IWSLT’14° English +> German translation
task, WMT’14!0 English <+ German news trans-
lation task, and the WMT 20! Chinese <+ English
and Pashto <> English news translation tasks. The
sizes of each dataset is avaliable in Table 11.
$https://www.nist.gov/itl/iad/mig/
open—-machine-translation—-evaluation
*https://sites.google.com/site/
iwsltevaluation2014/mt-track
Ohttp://statmt.org/wmtl4/
translation—task.html

"http://www.statmt .org/wmt20/
translation—-task.html

11

Algorithm Settings

Algorithm Setting Value
PPO € 0.2
MRT | Ve 5

max times sampled 1
MAD min size to sample 512
reverb max size 4096
settings sampler Uniform

remover Fifo

Table 8: Settings for sequence level algorithms. Note
that we did run experiments with |V, | = 12 for MRT
and found no improvement in development set max
BLEU. Given the slow training speed of MRT, we
opted to use the convention of 5 samples.

sacreBLEU Settings

Language Setting Value
De tokenizer intl
En tokenizer 13a
Ps tokenizer intl
Zh tokenizer zh

smooth method exp
All

smooth value 0

Table 9: sacreBLEU settings for each language.

Preprocessing We perform text normalization
on the datasets before tokenization.

o All languages - Unicode canonicalization
(NKFD from), replacement of common mul-
tiple encoding errors present in training data,
standardization of quotation marks into “di-
rectional” variants.

English - Replace non-American spelling vari-
ants with American spellings using the aspell
library.!? Punctuation was split from English
words using a purpose-built library.

Chinese - Convert any traditional Chinese
characters into simplified forms and segment
into word-like units using the Jieba segmenta-
tion tool.'?

Tokenization We encode text into sub-word
units using the sentencepiece tool (Kudo and
Richardson, 2018). When generating our own sub-
word segmentation, we used the algorithm from
Kudo (2018) with a minimum character coverage
of 0.9995.

12http://wordlist.aspell.net/

varcon-readme/
Bhttps://github.com/fxsjy/jieba

https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation
https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation
https://sites.google.com/site/iwsltevaluation2014/mt-track
https://sites.google.com/site/iwsltevaluation2014/mt-track
http://statmt.org/wmt14/translation-task.html
http://statmt.org/wmt14/translation-task.html
http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt20/translation-task.html
http://wordlist.aspell.net/varcon-readme/
http://wordlist.aspell.net/varcon-readme/
https://github.com/fxsjy/jieba

Temperatures Dataset Train Dev Test
Dataset Algo | Thin Tax IWSLT’14 De — En 164K 7,466 6,750
PPO 1.0 IWSLT'14 En—De | 173K 1,474 6,750
IWSLT'14 De -En MRT | 0.9 WMT’20 Ps <+ En 516K 5,860 2,719
MAD | 0.8 1.2 NIST Zh — En 1.45M 1,664 5,146
PPO 1.2 WMT’14 De <+ En 47M 3,000 3,003
IWSLT’ 14 En—De MRT | 0.6 WMT’20Zh—En | 21.8M 2,000 2,000
MAD | 0.8 1.2 WMT20En—Z7h | 21.8M 1,997 1418
PPO 0.2 -
WMT’ 14 De —s En MRT 0.6 Table 11: . Number of training, development, and test
MAD | 04 08 examples in each dataset.
PPO 1.2
WMT 14 En—De MRT | 04 for each algorithm.
MAD | 04 0.8
PPO 12 D Supplementary Experiments
WMT20Ps —En MRT | 1.2 D.1 Additional Beam Search Results
II\D/LAOD ?2 1.2 Table 13 show's results (on th'e test set) using larger
WMT20 En — Ps MRT | 1.0 beams apd dlfferent decoding hyper_parameters.
MAD | 04 0.8 MAD trained with sentenceBLEU continues to out-
perform other training objectives, and displays the
PPO 1.0 . . .
NIST Zh — En MRT | 08 nota.ble .behav.lour that decodlqg w1th01‘1t length nor-
MAD | 06 1.0 malization with le.lrge.: beams is f:ffectlve, whereas
performs drops significantly with CE and REIN-
PPO 0.8 FORCE trained models.
WMT20Zh—En MRT | 0.8
MAD | 04 0.8 D.2 Alternative Importance Weightings
FPO 0.8 Our motivation for the particular form of the MAD
WMT'20 En—Zh MRT | 0.6 weight is described in §2.3. However, there are
MAD | 02 0.6 other ways this could have been done. Here we

Table 10: Temperatures used for models in main re-
sults. REINFORCE used same temperatures as PPO.
Only MAD uses a temperature range, other algorithms
use as single temperature.

C Implementation Details

Software We use Launchpad (Yang et al., 2021)
to create and launch our DAG computing graph.
The graph consists of a Reverb table (Cassirer
et al., 2021) that holds training examples, multiple
worker nodes that generate and publish examples,
a learner node that pulls and trains on examples,
and an evaluator node that loads fresh checkpoints
to calculate dev set sacreBLEU.

Compute All of our program nodes run on a 2x2
TPU configuration. Our hyperparameter sweeps
for PPO and MAD used 4 data generating workers
running for S0K steps, while final results used 8
workers and ran for 200K steps. Table 5 in the body
of the paper provides the wall clock training speed

12

evaluate 2 alternative formulations of the MAD
weight. 1) Using the log probability of the greedy
translation as /i, this down weights examples that
are far from the greedy translation. 2) Z-scoring q
rather than using median absolute deviations. We
try these alternatives on a subset of the datasets and
report the results in Table 12.

IWSLT’ 14 | WMT’14 | NIST WMT’20
Importance Weighting De-En En-De | Zh-En | En-Ps Zh-En En-Zh | pu o
CE 31.3 24.7 479 6.8 24.4 325 | 279 -
—MAD 32.7 25.7 50.0 8.4 27.1 340 | 29.6 .22
MAD z-score 32.7 259 50.1 8.5 27.3 343 | 298 .14
MAD greedy 33.2 25.1 50.1 8.4 25.6 334 | 293 .15
MAD 33.1 25.7 50.8 8.6 26.9 34.0 | 29.8 .12

Table 12: Alternative formulations of the MAD importance weight. p is the average development set max BLEU
across all the datasets in the table while o is the standard deviation of BLEU when looking at the 10K step window
centered on max BLEU. Using any of the importance weights reduces BLEU variance, but MAD provides the
highest performance (tie) and lowest variance.

Beam Search | Beams =5 | Length Normalization () = None

NIST IWSLT’ 14 WMT’ 14 WMT’20
Model Zh-En | De-En En-De | De-En En-De | Zh-En En-Zh Ps-En En-Ps |
Cross Entropy | 47.0 31.1 27.5 29.9 26.3 25.1 34.7 7.8 59 | 261
REINFORCE | 47.0 31.1 27.5 29.9 26.3 25.0 34.9 7.6 58] 26.1
PPO 47.1 312 28.0 29.9 26.2 25.0 34.7 8.1 75 | 264
MRT 474 31.7 27.5 31.2 26.3 27.0 38.8 9.2 7.8 | 274
—MAD 48.0 322 27.9 31.0 26.3 27.2 39.2 8.9 74 | 276
MAD 48.6 324 28.2 31.0 26.5 27.0 394 9.3 8.0 | 278

Beam Search | Beams = 50 | Length Normalization () = None

NIST IWSLT’ 14 WMT’ 14 WMT’20
Model Zh-En | De-En En-De | De-En En-De | Zh-En En-Zh Ps-En En-Ps
Cross Entropy | 42.8 28.1 26.5 28.8 244 22.9 323 4.0 1.3 | 234
REINFORCE | 43.0 28.0 26.4 28.8 25.0 22.8 32.0 2.5 1.3 233
PPO 459 31.2 28.0 29.2 24.5 23.1 323 6.9 63 | 253
MRT 47.1 30.8 26.5 31.0 26.4 26.8 38.4 9.0 71 | 270
—MAD 47.9 32.2 27.6 31.0 26.4 271 39.1 7.2 69 |273
MAD 48.6 324 28.1 30.9 26.6 26.9 39.2 7.9 64 | 274

Beam Search | Beams = 50 | Length Normalization («) = 1.0

NIST IWSLT’ 14 WMT’ 14 WMT’20
Model Zh-En | De-En En-De | De-En En-De | Zh-En En-Zh Ps-En En-Ps
Cross Entropy | 48.2 31.6 27.9 30.5 24.8 259 36.8 5.4 29 1260
REINFORCE | 48.3 31.6 28.0 30.5 25.6 25.9 36.9 6.2 2.8 | 262
PPO 47.8 31.3 28.2 30.3 24.8 259 36.9 7.1 69 | 266
MRT 47.6 32.1 27.9 31.3 25.7 27.5 39.0 9.0 72 | 275
—MAD 48.1 319 27.1 31.1 26.2 274 39.5 8.4 72 | 274
MAD 48.5 32.5 28.4 31.1 26.4 27.3 39.5 8.8 74 | 278

Table 13: Additional test set results when using different Beam Search hyperparameters. Even when large beams
are used without length normalization, MAD performs well indicating that it is better calibrated.

13

ym r q v
rsw : i found what was a really remarkable thing . (greedy) 0.91 -3.1 | 1.7e-01
rsw : i found what was a really remarkable thing . (duplicate) 0.91 -3.1 | 1.7e-01
rsw : i found what was a remarkable thing . 1.19 -3.2 | 1.8e-01
rsw : i found what was a remarkable thing . (duplicate) 1.19 -3.2 | 1.8e-01
rsw : 1 found something quite remarkable . 0.90 -3.6 | 2.2e-01
rsw : i found what was quite a point . 0.50 -3.6 | 2.2e-01
rsw : 1 found what was quite a point . (duplicate) 0.50 -3.6 | 2.2e-01
rsw : i found what was a very remarkable thing . 0.91 -3.7 | 2.3e-01
rsw : i found what was a great thing . 0.73 -3.8 | 2.4e-01
rsw : i found what was quite a remarkable thing . 0.91 -3.9 | 2.5¢-01
rsw : i 've found something quite remarkable . -1.38 -4.5 | 3.3e-01
rsw : i found what was a real thing . 0.73 -4.7 | 3.5e-01
rsw : i found something quite substantial . 0.80 -4.9 | 3.8e-01
rsw : i found something quite a point . 0.75 -5.0 | 4.0e-01
rsw : i found what was a very substantial thing . 0.50 -5.2 | 4.4e-01
rsw : 1 found what was a pretty remarkable thing . 0.91 -5.2 | 4.5e-01
rsw : i 've found what was quite a point . -1.38 -5.4 | 4.9e-01
rsw : 1 ’ve found what was quite a point . (duplicate) -1.38 -5.4 | 4.9e-01
rsw : i 've found a remarkable thing . -1.38 -5.9 | 6.2e-01
rsw : i 've found a real thing . -1.38 -6.5 | 8.2e-01
rsw : i found what was a pretty substantial thing . 0.50 -7.3 | 8.2e-01
rsw : i found what was a really striking . 0.50 -7.4 | 7.9e-01
rsw : i found something quite extraordinary . 0.80 -7.8 | 6.7e-01
rsw : i found what was quite a convincing thing . 0.50 -7.8 | 6.6e-01
rsw : i found what was a pretty significant one . 0.30 -84 | 5.0e-01
rsw : i 've found what ’s quite a remarkable thing . -1.38 -8.6 | 4.4e-01
rsw : 1 found what was a pretty substantial point . 0.30 -8.6 | 4.4e-01
rsw : i found what was really a really remarkable thing . 0.69 -8.7 | 4.3e-01
rsw : i ’ve found something remarkable . -1.38 -8.8 | 4.1e-01
rsw : i found what was a substantial amount . 0.50 -9.6 | 2.8e-01
rsw : i ’ve found a really a point . -1.38 -11.7 | 1.1e-01
rsw : i found a lot of a point of all . 0.13 -17.4 | 7.4e-03
rsw : i ’ve found a burk . -1.38 -19.7 | 2.5e-03
rsw : well , i did find what was most important . -1.38 -19.8 | 2.4e-03
rsw : but but i found what was the most substantial case . -1.38 -27.4 | 6.9e-05
rsw : i ’ve figured out what was oder oder oder oder oder oder od... -1.38 | -1180.3 | 0.0e+00
rsw : ich habe was ganz beachtliches gefunden . (source)

rsw : i found the most remarkable thing . (reference)

Table 14: Example of sampling and TB(6,6) selection during training, together with the MAD importance weights,
rewards, and policy log likelihood. Elements in gold represent the top and bottom 6 elements of), that will be
presented to the learner.

14

