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ABSTRACT

Large Language Models (LLMs) have become foundational in the realm of natu-
ral language processing, demonstrating performance improvements as model sizes
increase. The Mixture-of-Experts (MoE) approach offers a promising way to scale
LLMs more efficiently by using fewer computational FLOPs through sparse ac-
tivation. However, it suffers from significant memory overheads, necessitating
model compression techniques. Post-training quantization, a popular method for
model compression, proves less effective when directly applied to MoE models
due to MoE’s overlooked inherent sparsity. This paper explores several MoE
structure-aware quantization heuristics, ranging from coarse to fine granularity,
from MoE block to individual linear weight. Our investigations reveal critical
principles: different MoE structures (i.e., blocks, experts, linear layers) require
varying numbers of weight bits for effective and efficient quantization. Conclu-
sions are supported by extensive benchmarking across two representative MoE
models and six tasks. We further introduce novel enhancements to more accurately
identify the most critical weights in MoE quantization that necessitate higher bit
allocations, including the linear weight outlier scorer and MoE block scorer. Ad-
ditionally, subsequent experiments validate our findings in the context of both
weight and activation quantization. Our code for reproducing all our experiments
is provided as supplemental material.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success in various natural language pro-
cessing tasks, such as language understanding, reasoning, and generation, demonstrating superior
performance and adaptability Brown et al. (2020); Jiang et al. (2023); Kaplan et al. (2020); OpenAI
et al. (2024); Touvron et al. (2023). However, the rapid growth in model size, with state-of-the-art
LLMs containing billions of parameters, poses significant challenges to computational resources
and memory consumption Aminabadi et al. (2022); Lin et al. (2024); Shoeybi et al. (2020). The
Mixture of Experts (MoE) Shazeer et al. (2017) architecture has emerged as a promising solution
to address these challenges. MoE allows for the scaling up of LLMs while maintaining roughly
constant FLOPs. By incorporating multiple expert networks and employing a sparse gating mech-
anism, MoE achieves efficient computation, enabling the development of larger models within the
constraints of limited computational resources Dai et al. (2024); Fedus et al. (2022); Jiang et al.
(2024).

Despite its advantages, MoE suffers from extensive memory costs, which hinder its practical de-
ployment and widespread adoption. For example, the Mixtral-8x7B Jiang et al. (2024) MoE
model takes around 180 GB memory while only 28 GB parameters are activated for each input
token1. Model compression techniques tailored to MoE architectures are essential to address this is-
sue. Existing MoE compression methods can be categorized into two main approaches: merging and
pruning. Expert merging, such as MC-MoELi et al. (2024), aims to reduce the memory footprint
by combining similar experts based on routing policy and compressing the resulting model using
low-rank decomposition. On the other hand, expert pruning, such as task-specific pruning Chen
et al. (2022), focuses on identifying and removing the least important experts or connections based
on their contribution to a specific task. However, these approaches ① necessitate model retraining,

1This is evaluated in full precision (float32).
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which is both extremely costly and time-consuming, particularly for state-of-the-art MoE LLMs
of billion-size scale, and ② operate under task-specific settings, which limits their practicality for
real-world applications.

Post-training quantization has emerged as a promising compression method widely applied to dense
LLM models. Recent works, such as GPTQ Frantar et al. (2023a), which adapts quantization in-
tervals based on the Hessian information, SmoothQuant Lin et al. (2024), which jointly quantizes
the model weight and activation by offline migrating the activation outliers, have demonstrated the
effectiveness of post-training quantization for LLMs toward 4 bits compression.

However, directly applying existing quantization methods to MoE models in a more extreme quanti-
zation setting, e.g. under 3 bits, leads to suboptimal results, potentially due to the overlooked sparsity
nature of the MoE architecture. The sparse activation patterns and the dynamic routing mechanism
in MoE pose unique challenges and opportunities for quantization, requiring novel approaches to uti-
lize it effectively. The sparse expert activations in MoE models exhibit different statistical properties
methodologies compared to dense activations, making conventional quantization methods difficult.
Moreover, the dynamic routing mechanism, which selects a subset of experts for each input token,
introduces additional complexity in terms of quantizing the routing weights and maintaining the
sparsity pattern during inference. This yields the primary question to be explored:

(Q) Can we leverage the sparsity nature of MoE architecture to establish more efficient and effective
coarse-grained mixed-precision MoE quantization methods?

To answer (Q), we explore a wide range of MoE structure-aware quantization heuristics, ranging
from coarse to fine granularity. We conduct a detailed comparative analysis of each of them, reveal-
ing critical principles: different MoE structures (i.e., blocks, experts, linear layers) require varying
numbers of weight bits for effective and efficient quantization. Extended from the gained insights,
we propose methods to further improve the efficiency and effectiveness of mixed-precision quanti-
zation, including linear weight quantization scorer and MoE block quantization scorer.

In summary, our key contributions are listed below:

1. We establish the first benchmark for post-training quantization specifically designed for
the Mixture-of-Experts architecture. This benchmark encompasses investigations into four
critical MoE-related heuristics, evaluations across two MoE LLMs, six benchmark tasks,
and a combination of both weight and activation quantization.

2. Our benchmark study uncovers a range of previously unexplored quantization principles
and insights for MoE. These insights include empirical rules supporting optimal bit allo-
cation strategies, highlighting the trade-offs such us those between attention and FFNN
layers, and among different experts.

3. Leveraging the insights from our benchmark study, we introduce novel enhancements to
improve existing heuristics. These include the development of linear-weight and MoE
block scorers to identify the most critical components of the MoE model, thereby guiding
more effective quantization bit assignments.

2 RELATED WORKS

Mixture-of-Experts. The Mixture-of-Experts (MoE) approach Shazeer et al. (2017) enhances
neural network scalability by using router networks to activate model segments according to input to-
kens selectively. As the dominant architecture in NLP, numerous efforts have adapted feed-forward
neural networks (FFNNs) within Transformers to incorporate MoE layers, constructing MoE lan-
guage modelsDai et al. (2024); Fedus et al. (2022); Jiang et al. (2024). Additionally, several variants
of the standard MoE architecture exist. For example, DeepSeek-MoE Dai et al. (2024) employs
numerous finely segmented experts and designates a select few as shared experts to capture com-
mon knowledge. MoE’s application in LLMs is widely acknowledged for its superior generative
abilities and remarkable computing efficiency Artetxe et al. (2022); Dai et al. (2024); Fedus et al.
(2022); Jiang et al. (2024); Krajewski et al. (2024); Rajbhandari et al. (2022). The recent work Mix-
tral Jiang et al. (2024) illustrates that MoE can match the performance of equivalent full-parameter
LLMs while utilizing far fewer active parameters. However, MoE suffers from significant memory
overhead issues, posing challenges to its efficient deployment Li et al. (2024).
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MoE Compression. MoE models benefit from reduced FLOPs but are constrained by their sig-
nificant memory overhead. Current works to reduce the memory overhead of MoE models mainly
focus on reducing the number of experts. An earlier approach Chen et al. (2022) involves pruning
non-essential experts for a specific downstream task during fine-tuning, utilizing statistics based on
cumulative usage frequency. Another method, MC-SMoE Li et al. (2024), introduces a pipeline
that identifies and groups similar experts, subsequently merging them and further decomposing the
merged expert into low-rank components within each group. However, these approaches are de-
veloped under task-specific fine-tuning settings and do not explore the development of the MoE
compression towards a general post-training model.

Post-Training Quantization. Post-training quantization reduces computational and storage de-
mands by converting pre-trained models from high-precision to lower-precision formats without
extensive retraining Frantar et al. (2023b;a). It has been widely applied to LLMs, optimizing
them for deployment on resource-constrained devices. Techniques like layer-wise quantization and
mixed-precision schemes are designed for minimal performance degradation while reducing model
size and computational requirements efficiently Liu et al. (2023); Pan et al. (2023); Sharify et al.
(2024). Recent methods such as SmoothQuant Xiao et al. (2024), GPTQ Frantar et al. (2023a),
AWQ Lin et al. (2024), and address specific challenges for LLMs. SmoothQuant Xiao et al. (2024)
ensures smooth precision transitions across layers, reducing quantization errors and maintaining
performance. GPTQ Frantar et al. (2023a) employs layer-wise and mixed-precision quantization
to balance efficiency and accuracy. AWQ Lin et al. (2024) adapts to weight sensitivity, preserving
critical weights’ precision while aggressively quantizing less sensitive ones. These advancements
in PTQ enable significant reductions in computational and storage requirements while preserving
LLM performance.

3 REVIEWING QUANTIZATION AND MOE

3.1 QUANTIZATION METHOD

The primary objective of this work is to benchmark several MoE-related heuristics combined with
established LLM quantization techniques. Given that the substantial memory overhead of MoE
models predominantly originates from their weights, we adopt GPTQ Frantar et al. (2023a), a pop-
ular weight quantization method. GPTQ executes layer-by-layer weight quantization by addressing
a specific reconstruction problem for each layer. Specifically, let W represent the weights of a lin-
ear layer and X denote the input to that layer derived from a small subset of calibration data, the
reconstruction problem is defined as follows:

argmin
Ŵ
, ||WX− ŴX||22. (1)

This objective, being the sum of squared errors, forms a quadratic equation, allowing the greedy-
optimal update of weights to be calculated element-by-element using the Hessian information, H =
2XX⊤. GPTQ further enhances this process by incorporating a lazy-batch update and a Cholesky
reformulation, to improve scalability and numerical stability for LLM quantization.

3.2 MIXTURE-OF-EXPERTS

There are several variants of MoE in the context of LLMs, such as attention MoE and FFNN MoE.
In this work, we explore the quantization of MoE models that utilize router networks to selectively
activate FFNNs for different input tokens. Specifically, for the i-th expert’s feed-forward function
at the l-th transformer layer, denoted as FFNNil(·), the output of the MoE layer for the input hidden
states X is given by:

FFNNlMoE(X) =

l∑
i=1

G(WlX) · FFNNli(X), (2)

where Wl represents a linear routing matrix and G(·) is a routing function that typically employs a
top-k selection mechanism, resulting in a sparse output. Due to the duplication of FFNN layers, the
principal memory overhead in the MoE model is attributed to the FFNN component.
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Figure 1: Visualization of expert usage of the two MoE models used in this work. It is evaluated
on the quantization calibration data, i.e., 512 random 4096 token sequences from the WikiText
dataset Merity et al. (2016).

3.3 EXPERT USAGE AS A HEURISTIC

As the routing of experts in MoE models is not ideally balanced, expert usage frequency and its vari-
ants have emerged as prevalent heuristics for measuring the importance of different experts within an
MoE block Chen et al. (2022); Li et al. (2024). For instance, task-specific expert pruning proposed
by Chen et al. (2022) uses a criterion based on cumulatively calculated expert routing probabilities
for pruning during fine-tuning on a specific task. In this paper, focusing on post-training quantiza-
tion, we utilize the routing distribution from the calibration data as the heuristic for expert usage.
Specifically, for the l-th MoE block, equipped with a routing matrix Wl ∈ Re×d and input hidden
states X ∈ Rb×d from the calibration data, the expert usage heuristic is calculated as follows:

usage = normalize

(∑
i

G(WlXi)

)
, (3)

where G(·) is the routing function employing a top-k selection mechanism that yields a
sparse binary output. We visualize the calculated expert usage of Mixtral-8x7B and
DeepSeek-MoE-16B-base MoE models on the quantization calibration data, as shown in
Figure 1. Note that Mixtral-8x7B demonstrates a more balanced routing distribution than
DeepSeek-MoE-16B-base.

4 BENCHMARK POST-QUANTIZATION METHODS FOR MOE

In this section, we present several heuristics for MoE quantization and the empirical performance of
them. Our benchmarking covers two MoE models and six popular tasks.

4.1 BENCHMARK SETUPS

MoE Models. We select two representative MoE models for our benchmark evaluation, i.e.,
Mixtral-8x7B Jiang et al. (2024) and DeepSeek-MoE-16B-base Dai et al. (2024).
Mixtral-8x7B substitutes every FFNN with a MoE block and has 8 experts per MoE block
with top-2 routing, while DeepSeed-MoE-16B-base uses a fine-grained MoE architecture
by including 64 experts with top-6 routing and 2 shared experts per MoE block. Notably, the
DeepSeek-MoE-16B-basemodel incorporates a dense architecture in its first transformer block
while employing an MoE architecture in subsequent blocks for better training stability.

Quantization. We mainly focus on weight-only grouped mixed-precision quantization, though we
also extend our experiments and conclusions to its combination with activation quantization in Sec-
tion 5. The weight-only experiments utilize GPTQ Frantar et al. (2023a), while those that combine
weight and activation quantization utilize SmoothQuant Xiao et al. (2024), without loss of gener-
ality. Throughout this work, we use a group size of 128. Our experiments emphasize an extreme
quantization scenario, where most weights are quantized to either 2 or 4 bits.

Calibration and Evaluation Details. We use the calibration data consisting of 512 random 4096
token sequences from the WikiText dataset Merity et al. (2016), following GPTQ Frantar et al.
(2023a). Unlike previous literature that focuses on language modeling benchmarks Xiao et al.
(2024); Lin et al. (2024); Frantar et al. (2023a), we evaluate all the methods on six popular LLM
tasks for a practical benchmarking: WinoGrande ai2 (2019), COPA Gordon et al. (2012), Open-
BookQA (OBQA) Mihaylov et al. (2018), HellaSwag Zellers et al. (2019), and MMLU Hendrycks
et al. (2021). We report the performance on MMLU with 5-shot and all others with zero-shot. All ex-
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periments are conducted with PyTorch on 3 NVIDIA H100, and we utilize lm-evaluation-harness 2

for the evaluation of all tasks.

4.2 BENCHMARK RESULTS

We first evaluate several MoE heuristics quantization methods based on GPTQ on Mixtral-8x7B
and DeepSeek-MoE-16B. We present our benchmark conclusions by answering the following
research questions.

Q1: Is expert usage frequency a good quantization heuristic? A: Fairly good. Expert us-
age frequency is a popular heuristic in the compression of MoE models, predicated on the in-
sight that less frequently used experts are likely less crucial. Our experiments, detailed in Ta-
ble 1, corroborate its effectiveness as a quantization heuristic for MoE models. In particular, for
the DeepSeek-MoE-16B-base model, this heuristic markedly outperforms the strategy of ran-
domly allocating more bits to experts, likely due to the model’s unbalanced routing distribution.
However, with the Mixtral-8x7B model, where the routing distribution is more balanced, the
advantage of using expert usage frequency over random allocation is less significant.

Table 1: Comparison of the expert usage frequency heuristic v.s. random allocation. For the
Mixtral-8x7B model, we compare the allocation of 4 bits to the top-{2, 4} most frequently
used experts per MoE block against randomly selecting {2, 4} experts for the same bit allocation.
For the DeepSeek-MoE-16B-basemodel, we keep shared expert {8} bits and compare between
top-{10, 15, 20, 25} most frequently used experts against randomly selecting {10, 15, 20, 25} ex-
perts per MoE block. The remaining experts are quantized to 2 bits, while all attention layers are
uniformly quantized to 4 bits. All random experimental results in the format of a ± b provide the
mean value a and its standard deviation b over 3 independent trials.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

Random 2 2.54 58.59± 2.57 68.00± 11.27 33.00± 1.78 46.60± 18.21 60.14± 9.32 28.26± 4.64 49.10± 7.73
Frequent 2 2.54 58.33 76.00 32.00 56.62 66.21 36.01 54.20

Random 4 3.03 67.77± 0.36 86.33± 3.51 38.47± 0.31 67.48± 0.52 73.99± 0.52 48.13± 2.57 63.70± 0.49
Frequent 4 3.03 68.82 86.00 38.80 67.68 72.20 49.42 63.82

DeepSeek-MoE-16B-base

Random 10 2.53 67.28± 0.04 88.50± 1.50 38.40± 0.80 70.99± 0.50 76.74± 0.84 35.23± 0.09 62.86± 0.60
Frequent 10 2.53 66.46 87.00 39.60 70.31 76.71 37.84 62.99

Random 15 2.68 67.25± 0.47 84.50± 2.50 40.00± 0.60 71.79± 0.43 76.85± 0.08 35.71± 0.82 62.68± 0.71
Frequent 15 2.68 67.17 88.00 39.00 71.09 76.93 40.59 63.80

Random 20 2.83 67.25± 0.47 84.50± 2.50 40.00± 0.60 71.79± 0.43 76.85± 0.08 35.71± 0.82 62.68± 0.71
Frequent 20 2.83 67.25 86.00 40.40 72.06 77.58 40.78 64.01

Random 25 2.97 67.72± 0.24 89.00± 1.00 40.70± 0.10 71.98± 0.19 77.04± 0.05 36.54± 1.55 63.83± 0.04
Frequent 25 2.97 67.72 90.00 39.20 72.83 77.15 41.06 64.66
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Figure 2: Comparison of quan-
tizing more bits for attention vs.
FFNN. It is evaluated on the
Mixtral-8x7B model. FFNN
results show the mean and standard
deviation (error bars) from 3 inde-
pendent trials.

Q2: Attention vs. FFNN: Which Deserves More Bits in
MoE? A: Attention layers are more bit-efficient. Because
of the unique characteristics of the feedforward neural network
(FFNN) within the mixture of experts (MoE) framework. we
explore the attention layer and the feedforward neural network
layer, which deserves more bits. We compare the performance
evaluated by quantizing the attention layers with more bits v.s.
randomly selecting experts in the FFNN layers with more bits,
maintaining the same average bits of the entire MoE model
for a fair comparison. Specifically, we quantize the attention
weight or randomly selected FFNN weight to {2, 4, 8} bits,
while All other weights are quantized to 2 bits by default. As
illustrated in Figure 2, quantizing attention weights to higher
bit levels (i.e., 4 or 8 bits) consistently results in significant
performance gains (over 5%) under each average bit allocation
for the MoE model. This greater efficiency likely stems from
the fact that attention weights are activated for every token,

2https://github.com/EleutherAI/lm-evaluation-harness
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while FFNN weights only engage with a subset of the input tokens. Consequently, increasing the
quantization bits for FFNN weights does not benefit all inputs. Based on these findings, attention
weights are quantized to 4 bits by default in all following experiments.

Table 2: Comparison between quantizing first k v.s. last k MoE blocks with higher (i.e. 4) bits.
All weights in attention layers are quantized to 4 bits, and the other weights are quantized to 2 bits.
In DeepSeek-MoE-16B-base model, we keep the first block that is dense block as 4 bits by
default. We evaluate k of 4 and 8. The higher performance of each comparison pair is marked as
bold.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

First 4 2.30 57.85 72.00 32.80 52.80 61.59 29.65 51.12
Last 4 2.30 53.75 60.00 27.80 46.25 58.87 26.56 45.54

First 8 2.54 62.11 85.00 35.80 62.72 67.74 35.61 58.16
Last 8 2.54 52.09 69.00 29.60 47.87 59.58 26.03 47.36

DeepSeek-MoE-16B-base

First 4 2.29 65.27 85.00 38.40 64.42 72.74 28.88 59.12
Last 4 2.29 62.90 83.00 36.00 64.41 74.65 27.38 58.06

First 8 2.63 64.09 86.00 38.75 67.84 75.35 30.12 60.36
Last 8 2.63 62.83 83.00 37.80 65.94 75.73 31.00 59.38

Q3: Do the model’s first or last MoE blocks deserve more bits in quantization? A: The first
MoE blocks. As more and more Mixture-of-Experts (MoE) architectures emerge, we investigate
which layer of the MoE block is more critical and thus deserves more bits during the quantization
process. As shown in Table 2, we evaluate the performance of allocating more bits to the first k
blocks versus the last k blocks in quantization. The results consistently indicate that higher bit
quantization of the first few blocks yields better performance, suggesting that we can allocate more
bits to the quantization of the first blocks of the model. This observation aligns with prior studies
that have empirically confirmed the greater importance of the first few Transformer blocks Dai et al.
(2024); Ma et al. (2023).
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Average Bits
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Figure 3: Comparison of quantiz-
ing more bits for shared experts
vs. others experts. ”Others” re-
sults show the mean and standard
deviation from 3 independent trials
of random selecting 2 experts from
the non-shared experts.

Q4: Does the shared expert always deserve more bits?
A: Yes. The DeepSeek-MoE-16B-base model includes
two shared experts within each MoE block to obtain common
knowledge across varying domains and alleviate the parameter
redundancy. To evaluate their role in quantization, we com-
pare quantizing these two shared experts with more bits v.s.
randomly selecting two non-shared experts for more bit allo-
cation, maintaining the same average bits for a fair compari-
son. The shared or random non-shared experts are quantized
to 2, 4, 8 bits, while attention weights are set to 4 bits and all
other weights to 2 bits. As depicted in Figure 3, allocating
higher bit levels (i.e., 4 or 8 bits) to shared experts consistently
yields superior performance. This enhanced efficiency and ef-
fectiveness are attributed to the shared experts being activated
for every input token, unlike non-shared experts, which only
engage with specific subsets of the tokens. Allocating more
quantization bits to shared experts thus proves to be both more
efficient and effective.

5 EXTENDED STUDY TO IMPROVE MOE QUANTIZATION

In this section, we expand our benchmark results from weight quantization to include activation
quantization. Additionally, we introduce two novel algorithmic advancements aimed at enhancing
the effectiveness of identifying crucial components within MoE models for improved quantization
performance.
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5.1 QUANTIZING BOTH WEIGHT AND ACTIVATION

We further expand our study by simultaneously including weight and activation quantization
to validate our conclusions. Specifically, we employ SmoothQuant Xiao et al. (2024) com-
bined with our expert-usage-frequency heuristic. It selects the top-2 experts’ weights per MoE
block in the Mixtral-8x7B model and the top-16 experts’ weights per MoE block in the
DeepSeek-MoE-16B-base for quantization to 4 bits, while quantizing all other weights to 2
bits. The evaluation results, presented in Table 3, reveal the marginal performance gap across dif-
ferent activation quantization bits. This demonstrates that our conclusions regarding weight quanti-
zation are robust and can be reliably extended to various activation quantization scenarios as well.

Table 3: Combination of activation quantization with the expert-usage-based heuristic. We evaluate
it on the top-2 most frequently used experts per MoE block in Mixtral-8x7B and the top-16
frequent experts per MoE block in DeepSeek-MoE-16B-base, quantizing these experts to 4
bits. All attention weights are also quantized to 4 bits, while all other weights are quantized to 2
bits. The higher performance of each comparison pair is marked as bold.

Weight Bits Activation Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

2.54
4 50.28 51.00 26.80 25.99 51.90 23.85 38.30
8 50.04 60.00 26.80 26.55 51.58 23.77 39.79
16 49.41 60.00 26.60 26.53 51.85 23.86 39.71

DeepSeek-MoE-16B-base

2.71
4 48.22 53.00 27.20 26.12 50.65 26.86 38.67
8 49.96 51.00 27.60 26.58 53.86 25.91 39.15
16 50.19 51.00 27.60 26.43 53.70 25.16 39.01

5.2 CONCENTRATING LINEAR LAYERS WITH LARGER WEIGHT OUTLIERS

Insight. From the quantization perspective, the larger the range of a weight magnitude group, the
more difficult it will be for quantization. We found that, in MoE, each FFNN linear weight matrix
consists predominantly of values within a narrow range, interspersed with a few significant outliers.
Consequently, we propose a weight-magnitude-based metric to identify those linear layers that are
challenging to quantize effectively, thereby necessitating a higher allocation of quantization bits.

Methodology. We define the metrics to estimate the outliers of weights by the maximum ratio of
the largest to the average absolute magnitude within each column. Specifically, for a weight matrix
W ∈ Rm×n, we compute the metric outlier-score(W) as follows:

outlier-score(W) = maxj

(
max(|W:, j|)
mean(|W:, j|)

)
, (4)

where |W:, j| is the absolute value of W’s j-th column. With this metric, we can identify those
linear layers that require more quantization bits and allocate more to them, providing an effective
trade-off between performance and efficiency. The overall procedure is detailed in Algorithm 1.

Algorithm 1 The Procedure of MoE Mixed-Precision Quantization with outlier-score.
1: Initialize: A MoE model with l linear layers across all the FFNN experts, the number of linear

layers for 4 bit quantization k.
2: LetM and S represent the set of each linear layer matrix in FFNN and its score, respectively.
3: for linear layer i = 1, . . . , l do
4: W←M[i]

5: S[i]← maxj

(
max(|W:,j|)
mean(|W:,j|)

)
6: end for
7: α← sorted(S)[k]
8: 4bits-quantize ({M[i] | S[i] >= α})
9: 2bits-quantize ({M[i] | S[i] < α})

10: Return: A quantized mixed-precision MoE model.

7
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Experiments. We evaluate this metric by comparing its application for the top-p% of lin-
ear layers against randomly selecting linear layers, using percentages of 25% and 50%. In
DeepSeek-MoE-16B-base model, we also involve shared experts using this metric. As il-
lustrated in Table 4, our proposed scorer consistently outperforms the random baseline on both
models and almost all tasks (except HellaSwag and MMLU). This is particularly evident in the
DeepSeek-MoE-16B-base model, where it achieves an average performance improvement of
about 3%, aligning with our expectations.

Table 4: Comparison between using our linear weight scorer vs. random selection of linear layers
for bit allocation in quantization. We evaluate by quantizing 25% of the linear layers across all MoE
blocks (i.e., FFNN) to 4 bits. All attention weights are quantized to 4 bits, and all other weights
are quantized to 2 bits. In each comparison pair, the higher performance is highlighted in bold.
All random experimental results in the format of a ± b provide the mean value a and its standard
deviation b over 3 independent trials.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

Random 25% 2.54 60.74± 0.63 78.67± 4.62 34.07± 1.63 57.36± 0.53 68.19± 0.74 32.49± 1.60 55.25± 0.95
Ours top-25% 2.54 62.19 83.00 35.80 57.04 68.23 30.95 56.20

DeepSeek-MoE-16B-base

Random 25% 2.54 64.04± 0.78 84.67± 4.73 37.53± 0.46 67.39± 0.71 74.61± 0.60 29.43± 1.31 59.61± 0.76
Ours top-25% 2.54 66.14 85.00 38.80 71.65 76.82 36.19 62.43

Visualization. As shown in Figure 4, we visualize the proposed outlier-score for each
FFNN linear weight within the Mixtral-8x7B model. Given that each FFNN expert in-
cludes three linear layers, namely the gate projection, up projection, and down projection, we
visualize these components separately to ensure clarity. Notably, many of the down projection
linear layers, particularly those positioned later in the MoE model, exhibit significantly higher
outlier-scores compared to others.

Figure 4: Visualization of the outlier-score metric applied to each FFNN linear weight matrix
within the Mixtral-8x7B model. For clearer visualization, we present separate components,
including the gate projection (left), up projection (middle), and down projection (right) in FFNN
experts.

5.3 TRAINING BLOCK QUANTIZATION IMPORTANCE SCORE PREDICTOR.

Inspired by Q3 in Section 4.2, which demonstrates that allocating more bits to different MoE blocks
yields variable performance improvements, we propose a novel method to identify and quantize
those critical blocks with additional bits. Specifically, this section outlines our approach to calculat-
ing importance scores for bit allocation using a data-driven method with a lightweight predictor.
Insight. We find an increasing cosine similarity between the tensors generated before and after
the FFN blocks for some of the MoE blocks, indicating less important computation results produced
by these blocks. This observation also aligns with observations on dense models in previous lit-
erature Jaiswal et al. (2024). Therefore, the basic idea is that less accurate output of these blocks
producing tokens with high cosine similarity will not affect the overall model performance much,
thus lower weight bits might not hurt performance much.
Methodology. To capture the generalized hidden states’ dynamic information of each MoE block,
we train a small two-layer FFNN with a tangent activation function. This network predicts the
cosine similarity between the input and output hidden states. We utilize a dataset of 400 random
sequences, each containing 1024 tokens from the WikiText dataset Merity et al. (2016), for training.
The detailed training procedure is in Algorithm 2. During quantization, we employ this predictor

8
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to run inference on the calibration data, computing the average predicted score for each MoE block
across all tokens. A higher predicted score indicates less important and fewer bits for quantization.

Algorithm 2 The Training Procedure of Block Score Predictor.
1: Initialize: A MoE block M , token input and output embedding set at block M {(xi,yi)}i∈[N ].
2: Let BSP denotes the block score predictor.
3: X ← {xi | i ∈ [N ]}
4: S ← {cosine(xi,yi) | i ∈ [N ]}
5: BSP ← train(X ,S)
6: Return: The importance score predictor BSP for MoE Block M .

Experiments. In Table 5, we compare the performance of using our block importance predictor
to select k MoE blocks for 4 bits and others for 2 bits quantization with two other baselines: ①
random selecting k MoE blocks, and ② first k MoE blocks (as it is the best in Q3 in Section 4.2).
Evaluation results on the DeepSeek-MoE-16B-base model are presented in Table 5, showing
the superiority of our method against the other two baselines.
Table 5: Comparison between using our MoE block importance predictor v.s. two baselines:
①random selecting and ②first k MoE blocks. The predicted or selected MoE blocks are quantized
to 4 bits, all attention weights are quantized to 4 bits, and all other weights are quantized to 2 bits. In
each comparison, the highest performance is highlighted in bold. All random experimental results
in the format of a±b provide the mean value a and its standard deviation b over 3 independent trials.

Methodology Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

DeepSeek-MoE-16B-base

Random 4 2.29 61.09± 0.78 83.00± 0.00 37.20± 0.85 64.88± 0.30 74.21± 0.08 27.82± 0.46 58.03± 0.13
First 4 2.29 65.27 85.00 38.40 64.42 72.74 28.88 59.12
Predicted 4 2.29 65.27 83.00 36.60 64.88 74.54 37.75 60.34

Random 8 2.63 64.48± 0.83 85.33± 3.21 38.73± 0.95 67.57± 0.40 75.43± 0.14 31.41± 2.17 60.49± 0.56
First 8 2.63 64.09 86.00 38.75 67.84 75.35 30.12 60.36
Predicted 8 2.63 65.35 86.00 38.00 68.77 75.35 30.01 60.58

Random 12 2.92 64.64± 0.89 83.50± 0.71 39.60± 2.83 69.51± 0.56 75.98± 0.42 32.57± 0.30 60.97± 0.62
First 12 2.92 67.48 88.00 38.60 70.59 75.95 39.25 63.31
Predicted 12 2.92 68.11 88.00 39.20 71.82 76.66 38.45 63.71

4 8 12 16 20 24
MoE Block

0.7

0.8

0.9

1.0

Sc
or

e

Figure 5: Visualization of the predicted MoE
block importance score using our trained predic-
tors.

Visualization. We visualize the predicted
scores of each MoE block using our trained pre-
dictors in the DeepSeek-MoE-16B-base
model, as shown in Figure 5. Notably, MoE
blocks situated in the middle of the model,
which exhibit higher scores, are regarded as
less critical. Consequently, these blocks will
be quantized with fewer bits (specifically, 2
bits), reflecting their lower importance. Be-
sides, Figure 5 also demonstrates that the first
few MoE blocks are more important aligned
with Q3. Interestingly, the last two blocks of
the DeepSeek-MoE-16B-base model are
also crucial, thereby allocating more bits and yielding better performance.

6 CONCLUSION

This work investigates various heuristic-based MoE quantization methods in the post-training set-
ting. While vanilla quantization techniques (e.g., GPTQ) prove less effective and efficient when ap-
plied directly to MoE models, determining which MoE model components should be allocated more
quantization bits remains an open question. We present the first benchmark study on MoE quantiza-
tion, revealing critical heuristic-based principles, such as the importance disparities among different
MoE blocks. Drawing on these insights, we introduce innovative techniques, including a block im-
portance predictor and a linear layer outlier range scorer, to more precisely identify components
that benefit from increased bit quantization. These methods substantially improve the quantization
process’s effectiveness and efficiency for MoE models.
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A APPENDIX

A.1 EVALUATION DATASETS

In this section, we introduce details of the datasets in our evaluation. For a more comprehensive
study, we have selected six popular benchmark tasks: WinoGrande, COPA, OpenBookQA (OBQA),
HellaSwag, and MMLU.

WinoGrande ai2 (2019) is a large-scale dataset designed for commonsense reasoning, consisting
of pronoun resolution problems. Each instance in the dataset presents a sentence with an ambiguous
pronoun that needs to be resolved based on context. This task tests the model’s ability to understand
and reason about everyday situations.

The Choice of Plausible Alternatives (COPA) dataset Gordon et al. (2012) focuses on causal
reasoning. Each question in COPA consists of a premise and two choices, where the model must
select the more plausible alternative. This task evaluates the model’s understanding of cause-and-
effect relationships in natural language.

OpenBookQA Mihaylov et al. (2018) is a multiple-choice question-answering dataset that requires
the model to use both scientific facts and commonsense knowledge. The dataset challenges the
model’s ability to combine factual knowledge with reasoning to answer questions correctly.

HellaSwag Zellers et al. (2019) is a benchmark for commonsense NLI (Natural Language Inference)
that tests the model’s ability to predict the most plausible continuation of a given sentence. The
dataset contains scenarios from various domains, such as cooking and sports, requiring the model to
understand context and plausibility.

The Massive Multitask Language Understanding (MMLU) benchmark Hendrycks et al. (2021)
evaluates models across a wide range of subjects, from elementary mathematics to law. For this
study, we report performance on MMLU with a 5-shot setting, where the model is given five exam-
ples per task before evaluation, allowing us to gauge the model’s few-shot learning capabilities.

We perform a zero-shot evaluation on WinoGrande, COPA, OpenBookQA, and HellaSwag, where
the model is not provided with any task-specific training examples. For MMLU, a 5-shot evaluation
protocol is adopted, providing five examples per task. This setup helps us assess the generalization
ability of the models across different types of reasoning and knowledge-based tasks.

A.2 RANDOM SEED

For all the random selection experiments, we use random seeds {42, 43, 44} to conduct three inde-
pendent trials and then report the standard deviation and mean.
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A.3 FURTHER DISCUSSION

In this section, we present further discussion of the DeepSeek-MoE-16B-base performance
across different bits.

Expert usage frequency. As shown by Q1 in Section 4.2, expert usage frequency is a critical
metric in the compression of MoE models, predicated on the insight that less frequently used experts
are likely less crucial. We present further discussion of ablation on the bits allocation in the expert-
frequency-based methods.

Table 6: Ablation on the allocated bits for the selected top-k experts based on frequency. We com-
pare the allocation of {4, 8} bits of the top-k experts based on frequency, and all other experts are
quantized to 2 bits.

Top Top-k bits Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

1
4 2.29 66.30 83.00 39.00 69.28 75.03 35.02 61.27
8 2.35 66.14 87.00 39.80 69.44 75.30 34.04 61.95

2
4 2.32 66.38 88.00 38.60 69.44 76.06 36.49 62.49
8 2.44 65.98 90.00 38.60 69.77 76.33 35.82 62.75

5
4 2.41 66.54 87.00 38.40 70.13 76.12 38.02 62.70
8 2.70 64.96 89.00 39.40 70.56 75.90 38.56 63.06

10
4 2.55 67.17 86.00 39.20 70.55 76.55 39.11 63.10
8 3.14 66.06 88.00 39.00 70.81 76.71 39.30 63.31

15
4 2.70 67.17 83.00 39.00 71.72 76.93 40.41 63.04
8 3.58 65.75 85.00 41.00 71.34 76.39 40.48 63.33

20
4 2.85 67.88 84.00 40.20 72.35 77.69 41.25 63.90
8 4.02 66.61 89.00 38.00 72.58 77.64 41.25 64.18

25
4 2.99 67.17 87.00 40.00 73.26 78.07 42.38 64.65
8 4.46 68.67 86.00 41.00 73.00 78.67 41.79 64.86

30
4 3.14 69.69 89.00 40.60 73.92 77.53 42.82 65.59
8 4.90 67.56 88.00 40.80 73.88 78.56 41.94 65.12
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Figure 6: Performance of different quantization
bits on DeepSeek-MoE-16B-base model.

In Table 6, we compare the allocation of {4, 8}
bits of the selected top-k experts, while all other
experts are quantized to 2 bits. We quantize the
shared experts and attention weights to 8 bits.
Table 6 indicates that increasing the bit width
of frequently activated experts improves perfor-
mance. However, the gain from increasing the
top-k expert bits from 4 to 8 is minimal.

We summarize all experimental results and il-
lustrate the relationship between bit width and
average performance in Figure 6. Overall, we
observe that as the bit width increases, the per-
formance is improved. As highlighted by the
red cross mark ✕ in the figure, achieving an av-
erage MoE bit width of 2.12 results in a perfor-
mance score of 61.11, which marks a 5% improvement over the model quantized to 2 bits. This
underscores the effectiveness of MoE blocks in settings with limited bit width.

Combination of the weight outlier and expert usage frequency. We conducted additional ex-
periments on the DeepSeek-MoE-16B-base model by integrating bit-width allocation based on
layers with significant weight outliers with allocation based on expert usage frequency to explore the
trade-off between them. Specifically, we aimed for a total average bit budget of 2.97. We selected
portions of the model to be quantized to 4 bits using a combination of the two heuristics, while quan-
tizing all attention weights to 4 bits and all other weights to 2 bits. For selecting the 4-bit weights,
we introduced a hyper-parameter, α (0 ¡ α ¡ 1), representing the proportion of weights chosen based
on expert usage frequency, with the remainder selected based on weight outliers. We varied α to
illustrate the trade-off between these methods, as detailed above. As shown in Table 7, the optimal
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combination of these two methods occurs when alpha is set to 0.1. This means that 20% of the 4-bit
MoE weights are selected based on expert usage frequency, while the remaining 80% are chosen
according to weight outliers.

Table 7: The combination of weight outlier and expert usage frequency, evaluated on the
DeepSeek-MoE-16B-base model.

Bits α WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

2.97

0.0 67.72 90.00 39.20 72.83 77.15 41.06 64.66
0.1 68.11 89.00 41.60 72.88 77.80 41.84 65.21
0.2 69.21 89.00 41.20 72.60 76.93 41.60 65.09
0.3 68.92 88.00 42.00 72.06 76.65 41.21 64.81
0.4 67.48 89.00 41.40 71.88 76.71 40.96 64.57
0.5 67.32 90.00 40.80 71.89 76.93 40.21 64.52
0.6 65.90 87.00 39.40 71.86 76.76 38.67 63.27
0.7 66.21 87.00 41.40 71.45 76.87 36.98 63.32
0.8 66.45 89.00 41.00 70.89 76.60 37.67 63.60
0.9 66.37 84.00 40.20 70.83 76.87 39.84 63.02
1.0 68.19 87.00 41.60 71.01 76.11 40.81 64.12

Baseline results of low-precision quantization. We provide the 16-bit (FP16), 4-bit, and 2-bit
baselines of both Mixtral-8x7B and DeepSeek-MoE-16B-base models in Table 8.

Table 8: Baseline results of the 16-bit (FP16), 4-bit, and 2-bit quantization.

Bits WinoGrande (%) COPA (%) OBQA (%) HellaSwag (%) PIQA (%) MMLU (%) Average (%)

Mixtral-8x7B

16 76.48 93.00 47.00 83.98 82.37 70.35 75.33
4 74.98 92.00 46.20 81.65 80.85 67.65 73.89
2 49.33 63.00 25.40 28.18 52.99 24.29 40.53

DeepSeek-MoE-16B-base

16 70.40 91.00 44.20 77.35 78.72 44.77 67.74
4 71.35 87.00 43.20 76.39 78.51 44.22 66.78
2 53.28 76.00 30.20 45.33 66.54 25.28 49.44

15


	Introduction
	Related Works
	Reviewing Quantization and MoE
	Quantization Method
	Mixture-of-Experts
	Expert Usage as A Heuristic

	Benchmark Post-Quantization Methods for MoE
	Benchmark Setups
	Benchmark Results

	Extended Study to Improve MoE Quantization
	Quantizing Both Weight and Activation
	Concentrating Linear Layers with Larger Weight Outliers
	Training Block Quantization Importance Score Predictor.

	Conclusion
	Appendix
	Evaluation Datasets
	Random Seed
	Further Discussion


