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ABSTRACT

Recent video compression studies aim to compress videos in a more optimal space
using deep neural networks. Most of them employ a strategy where they use mo-
tion information to warp the previous frame to align with the current frame, and
then only compress the information newly appearing in the current frame. While
this enhances the compression efficiency of each frame, additional bits are re-
quired to compress the motion information alongside it. In this paper, we explore
a methodology that improves motion compression by warping previous motions
just like frames. However, within the traditional backward warping-based frame-
work, a dilemma arises where the decoded motion is needed to warp the reference
motion. To solve this problem, we propose a forward warping-based framework
for video compression called SVC (Splatting-based Video Compression). While
SVC offers the advantage of enabling the use of motion context, forward warp-
ing has several issues compared to backward warping and we propose additional
tricks to address these challenges. Intensive experiments on the UVG, HEVC, and
MCL-JCV benchmarks demonstrate that motion context encoding through SVC is
indeed more effective compared to various methods based on backward warping,
including traditional codecs.

1 INTRODUCTION

Video compression is a well-established area of research that seeks to represent video content with
fewer bits without compromising its visual quality. The majority of existing video compression
techniques, such as H.264 (Wiegand et al., 2003), H.265 (Sullivan et al., 2012), and H.266 (Bross
et al., 2021), aim to increase the compression rate by compressing only the remaining information
that is not present in the previous frame. In this context, the frame to be compressed is called the
current frame, and the frame referred to for removing redundancy is called the reference frame. To
achieve this, most of the existing techniques follow a three-step process. The first step is motion
estimation, which involves matching the pixels that exist simultaneously in the current and previous
frames. The second step is motion compensation, which involves rearranging the pixels of the
reference frame using various warping methods so that the reference frame can be aligned with the
current frame. Subsequently, only the newly added information in the current frame is encoded
through redundancy reduction step, instead of compressing each frame independently.

The recent application of deep learning for image and video compression has shifted the compres-
sion domain from the conventional Discrete Cosine Transform (DCT) space to a more optimal do-
main learned end-to-end from large datasets. Furthermore, deep learning-based estimators have
replaced traditional block-based motion vectors with dense optical flows (Dosovitskiy et al., 2015;
Ranjan & Black, 2017; Sun et al., 2018). These advancements have greatly improved each step
of the video compression process and demonstrated performance surpassing that of hand-crafted
codecs. Further details on this topic are available in Section 2.

This paper diverges from prior works that mainly have focused on reducing redundancy between
adjacent frames and instead concentrates on reducing the redundancy between adjacent optical flows
caused by inertia and we call this motion context encoding. To minimize redundancy in images, the
reference frame needs to be warped to align with the current frame, for which the optical flow map
from the current frame to the reference frame is required. This causes the necessity of additional
bits for the optical flow map. Fortunately, in the case of motion context encoding, the required
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Figure 2: Edge alignment of the source image and optical flow.

motion vector for warping the reference optical flow map is the optical flow map itself, obviating
the need for additional bits. However, the conventional backward warping-based paradigm presents
a dilemma: to decode the current motion, the motion vector itself obtained from the decoding is
needed to warp the reference optical flow map. In other words, the result of decoding is necessary
for decoding. Detailed information on this issue is further addressed in Section 3.3.

To deal with this issue, we propose the use of forward warping instead of backward warping, as
illustrated in Figure 1. In backward warping, since each motion vector corresponds to a pixel in
the current frame, the target pixel is filled by sampling the pixel value at the location indicated
by the motion vector. In contrast, in forward warping, each motion vector corresponds to a pixel
in the reference frame, and these pixels are directly moved to the target position indicated by the
motion vector to fill the target frame. By using forward warping, it becomes possible to warp the
previous optical flow without problems, reducing redundancy between adjacent motions. This will
be discussed in more detail in Section 3.3. Furthermore, unlike backward motion vectors, forward
motion vectors are aligned with the reference frame (i.e. share the edges as shown in Figure 2),
which allows for more efficient compression by utilizing redundancy between the optical flow map
and the reference frame. Recently, an effective forward warping method called splatting has been
introduced in the field of video frame interpolation (Niklaus & Liu, 2020; Niklaus et al., 2023).

In this context, we propose ”splatting-based video compression (SVC)” that utilizes forward warp-
ing (splatting) to increase the compression efficiency of motion vectors. Unfortunately, unlike back-
ward warping, splatting has some limitations such as the possibility of multiple pixels overlapping
at the same location or creating holes. Therefore, this paper focuses on two main points. One is to
minimize the aforementioned issues that forward warping has compared to backward warping. The
other is to maximize the benefits of motion context encoding which is made possible through for-
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ward warping. To achieve these, we first propose several methods to ensure that the forward warping
module can achieve performance comparable to backward warping. Next, we propose a method to
maximize the effect of motion context encoding.

2 RELATED WORK

While several traditional codecs such as H.263, H.264 (Wiegand et al., 2003), H.265 (Sullivan et al.,
2012), H.266 (Bross et al., 2021), AV1 (Chen et al., 2018) have been well-tuned and continue to be
widely used, there is still a need for efficient and fast video compression methods that can match the
quality of these legacy standards. Recent advances in machine learning (ML) have shown promise
in achieving more efficient and flexible video compression.

One possible approach is to skip frames and then interpolate them back (Wu et al., 2018; Djelouah
et al., 2019; Park & Kim, 2019). Unlike the indirect methods, Ballé et al. (2016) and Ballé et al.
(2018) proposed end-to-end frameworks for image compression, leading to the emergence of various
studies aiming to adapt these for video compression. Some works tried to (Lu et al., 2019; Liu et al.,
2019; 2020) replace each part of the traditional codec with deep learning-based modules, allowing
for the exploration of a more optimal compression domain. Thanks to these studies, the deep video
compression area has also established a standardized framework that follows the three stages of
motion estimation, motion compensation, and redundancy reduction, just like traditional codecs.

Subsequently, various papers have extended different aspects based on this baseline. Most notably,
Agustsson et al. (2020) proposed a method of modeling motion using scale space flow, and various
attempts based on this method have emerged (Yang et al., 2020b; Rippel et al., 2021). An approach
using RNN or ConvLSTM without using CNN has also emerged (Yang et al., 2020a; Golinski et al.,
2020). Hu et al. (2021) proposed Feature-space Video Coding (FVC) that uses warping and de-
formable convolutions in a smaller feature space and Habibian et al. (2019) introduced an approach
using a 3D autoregressive entropy model. On the other hand, Li et al. (2021) suggested a framework
called Deep Contextual Video Compression (DCVC) that concatenates features instead of simple
subtraction of the reference image to find more optimal redundancy reduction and this work is our
baseline.

Various mode prediction methods have been proposed that incorporate many of the tricks used in
traditional codecs (Hu et al., 2022), and generative models are also being studied (Mentzer et al.,
2022a; Yang et al., 2021; Ho et al., 2022). Recently, methods using transformers, which move away
from convolutional operations, have been proposed (Mentzer et al., 2022b).

Research has also been actively conducted to efficiently compress not only images but also motion
information. Lin et al. (2020) employed a method that predicts the next motion using decoded previ-
ous motions across multiple frames. Taking it a step further, Rippel et al. (2021) proposed a strategy
to store only the residuals of the optical flow. However, since they utilize the unwrapped reference
flow rather than aligning the reference flow to the current flow through warping, redundancy may
not be effectively removed. Thus, in this paper, just as warping the reference frame in images has
been proven effective, we propose a method that warps the reference flow to align it with the current
flow.

3 PROPOSED METHOD

3.1 PRELIMINARY

Let us consider compressing the t-th frame It from a video that consists of N frames
{I1, I2, · · · , IN}. Most video compression methods aim to store only the newly appearing informa-
tion in the current frame It by excluding the information that is already present in both the current
frame and the previously decoded reference frame Ît−1. The reason for using the decoded frame
Ît−1 instead of the original frame It−1 is that the decoder cannot access the original frame.

To achieve this, most of the previous works obtain the warped frame It from the decoded reference
frame Ît−1 using backward warping←−ω based on the decoded backward motion vector (optical flow)
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F̂t�t−1 from It to Ît−1, as follows (Please refer to Equation 5 for the mathematical definition of←−ω .).

It =
←−ω (Ît−1, F̂t�t−1) (1)

Various methods can be used to remove redundancy between It and It, but typically, the residual
information ∆It is obtained by subtracting It from It as Equation 2.

∆It = It − It (2)

Then ∆It and the backward optical flow map Ft�t−1 are encoded and transmitted. At the decoder
end, the decoded reference frame Ît−1, the decoded optical flow map F̂t�t−1, and the decoded
residual frame ∆Ît are provided. The restored frame Ît is then obtained through the following
process.

It =
←−ω (Ît−1, F̂t�t−1) (3)

Ît = ∆Ît + It (4)

3.2 BACKWARD WARPING AND FORWARD WARPING

Let us consider two frames, I0 and I1, and warp I0 to align with I1. For backward warping, we need
backward motion F1�0 from I1 to I0, and we rearrange the pixels as follows.

I1(x) =
←−ω (I0, F1�0)(x) = I0(x+ F1�0(x)) (5)

In Equation 5, if x + F1�0(x) does not point to a grid location of I0, the pixel value is sampled
using bilinear interpolation from the closest four pixels.

In the case of forward warping, we utilize the average splatting proposed in (Niklaus & Liu, 2020).
To do this, we first define summation splatting as follows.

β(u = [ui, uj ]) = max(0, 1− |ui|) ·max(0, 1− |uj |) (6)

−→ω sum(I0, F0�1)(x) =
∑

∀p∈I0

β(x− (p+ F0�1(p))) · I0(p) (7)

Then the average splatting −→ω avg is defined as follows (the notation for x is omitted because it is an
independent operation for all locations x in Equation 8. 1 is an array consisting of ones and has the
same resolution as I0.).

I1 = −→ω avg(I0, F0�1) =
−→ω sum(I0, F0�1)
−→ω sum(1, F0�1)

(8)

3.3 MOTION CONTEXT ENCODING

The main purpose of this paper is to minimize redundancy not only between adjacent images but
also between adjacent optical flow maps. To compress the current motion vector Ft�t−1, a reference
motion vector Ft−1�t−2 is required. Therefore, two reference frames Ît−1 and Ît−2 are needed to
compress It using this method. We can obtain the two motion vectors using a motion estimation
network ME as follows.

Ft�t−1 = ME(It, Ît−1), Ft−1�t−2 = ME(Ît−1, Ît−2) (9)
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Then we can get the warped reference motion vector F t�t−1 by backward warping Ft−1�t−2 using
Ft�t−1 as follows (We should warp according to the decoded flow F̂t�t−1, but since it’s before
decoding, let’s assume we use Ft�t−1 for now.).

F t�t−1 =←−ω (Ft−1�t−2, Ft�t−1) (10)

∆Ft�t−1 = Ft�t−1 − F t�t−1 (11)

This part can be confusing, but simply put, FAB has no direct relationship with IB and is just the
same image with a different modality that shares the same structure with IA, such as edges (as shown
in Figure 2).

Obtaining F t�t−1 through backward warping is not a problem in the encoding process, but it causes
a dilemma in the decoding process. During decoding, we cannot use the original flow Ft�t−1, so
we have to use the decoded flow F̂t�t−1; however, this is also unobtainable before decoding (see
Equations 12 and 13.).

F
′
t�t−1 =←−ω (Ft−1�t−2, F̂t�t−1) (12)

F̂t�t−1 = ∆Ft�t−1 + F
′
t�t−1 (13)

A simple solution to this dilemma is to use forward motion instead of backward motion as follows.

Ft−1�t = ME(Ît−1, It), Ft−2�t−1 = ME(Ît−2, Ît−1) (14)

Then, we can obtain F t−1�t by forward warping Ft−2�t−1 using Ft−2�t−1 itself as follows.

F t−1�t =
−→ω avg(Ft−2�t−1, Ft−2�t−1) (15)

∆Ft−1�t = Ft−1�t − F t−1�t (16)

As a result, at the decoding stage, we only need the reference motion Ft−2�t−1 which can be easily
obtained from the two reference frames instead of the current motion Ft−1�t. Therefore we can
decode F̂t−1�t without any problems as shown in Equations 17 and 18.

F t−1�t =
−→ω avg(Ft−2�t−1, Ft−2�t−1) (17)

F̂t−1�t = ∆Ft−1�t + F t−1�t (18)

3.4 BASELINE ARCHITECTURE

The baseline model used in this paper is fundamentally based on DCVC (Li et al., 2021). In other
words, instead of simply subtracting the current and reference frames as in Equation 2, we adopt
an approach that encodes the context obtained from the features extracted from both frames. Con-
sequently, the warping operations (Equations 5 and 8) involve warping their feature maps rather
than directly warping the image or flow map. However, for clarity, we will omit this detail in the
notation. In addition, the obtained context is encoded via Hyperprior (Ballé et al., 2018) method.
Moreover, we improve the baseline by applying several effective tricks recently proposed. The
following changes are applied to our baseline.

Checkerboard Context Module. To utilize the mutual information between feature vectors within
a single frame, DCVC adopts the autoregressive encoding (Minnen et al., 2018) approach. However,
this method has the drawback of slow computation speed since it cannot process all pixels in a frame
simultaneously in parallel. Therefore, instead of this module, we use the checkerboard context
model (He et al., 2021), which can refer to the already decoded surrounding pixels while enabling
parallel processing.

Multiscale Feature. DCVC only uses features extracted from a single scale to extract context.
However, it has been proven that utilizing multi-scale features is more effective in various research
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fields, including video compression (Li et al., 2022). Therefore, our baseline also uses features
extracted from five different scales, each of which is warped to obtain context.

Rate Controllable EASN. DCVC uses Generalized Divisible Normalization (GDN)(Ballé et al.,
2016) as the activation function for the hyperprior encoder and decoder. Instead of GDN, we use
EASN (Shin et al., 2022) which has been proposed and shown to be more stable and perform better
than GDN as the activation function in our model. Additionally, we improve the model by incor-
porating a learnable vector table to EASN and passing the sampled vector along with the encoded
features. This allows us to adjust the rate parameter to control the rate-distortion tradeoff without
retraining the model.

3.5 MINIMIZING THE DRAWBACKS OF FORWARD WARPING

As mentioned in Section 1, although forward warping has the advantage of enabling motion context
encoding, it has some problems compared to backward warping. One of the most typical issues is
that two or more pixels can be projected onto the same location, or no pixels may be projected on
somewhere else, resulting in holes. Fortunately, we do not directly calculate the residual through
subtraction like Equation 2, but instead extract context like DCVC (Li et al., 2021). This allows
us to have some robustness against holes and pixel overlapping. However, forward warping still
has some drawbacks compared to backward warping, and there is room for improvement. In this
section, we propose three effective tricks to minimize the performance degradation of the proposed
forward warping module compared to traditional backward warping.

Reference Image Guidance. As shown in Figure 2, unlike backward motion Ft�t−1, forward
motion Ft−1�t shares the structure with the reference frame It−1, which leads to mutual information.
Therefore, we provide It−1 as guidance to the motion encoder and decoder, enabling them to omit
the flow edge information.

Flow Reversing. The problems of overlapping pixels and holes can also interfere with the smooth
flow of gradients during end-to-end learning. For example, if all pixels are projected to one point and
all other locations are holes, the gradient flows only through one pixel. Therefore, instead of directly
splatting the reference image (or feature map in the case of the DCVC baseline) like Equation 8, we
obtain a pseudo backward flow F̃t�t−1 by reversing and splatting the reversed optical flow−Ft−1�t

like (Niklaus et al., 2023), as follows.

F̃t�t−1 = −→ω avg(−Ft−1�t, Ft−1�t) (19)

Then we can get the forward warped result by backward warping with F̃t�t−1 as follows.

It =
−→ω rev(Ît−1, Ft−1�t) =

←−ω (Ît−1, F̃t�t−1) (20)

Equation 20 is essentially forward warping, but the operation actually applied to Ît−1 is backward
warping, which allows for smooth gradient flow.

Gradient Stopping. While flow reversing enables smooth gradient flow for the images or feature
maps being warped, the gradient of Equation 19 can still affect the optical flow Ft−1�t and per-
formance of motion estimation. To prevent it, we apply a gradient stop S[·] to the second term in
Equation 19, and only allow the gradient to flow through the first term as follows.

F̃t�t−1 = −→ω avg(−Ft−1�t, S[Ft−1�t]) (21)

3.6 MAXIMIZING THE ADVANTAGES OF MOTION CONTEXT ENCODING

In Section 3.3, we obtaine the reference F t−1�t of current motion Ft−1�t by warping Ft−2�t−1

using Equation 17. However, as mentioned in Section 3.5, forward warping operation has several
limitations. Fortunately, unlike in the case of warping images, there exists an excellent alternative
that has a strong correlation with Ft−1�t and does not require warping. It is the reverse of Ft−1�t−2.
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𝑰𝑰𝒕𝒕−𝟏𝟏 𝑭𝑭𝒕𝒕−𝟏𝟏→𝒕𝒕 (current) −𝑭𝑭𝒕𝒕−𝟏𝟏→𝒕𝒕−𝟐𝟐 (reverse) warped

Figure 3: Reference candidates of current motion.

F t−1�t = −Ft−1�t−2 (22)

As can be seen in Figure 3, the reference obtained through warping (4th image of Figure 3) suffers
from artifacts due to pixel overlapping compared to −Ft−1�t−2 (3rd image of Figure 3).

3.7 LOSS FUNCTION

We use Rate-Distortion (RD) trade-off loss following (Ballé et al., 2016; 2018) to train the proposed
model.

L = R+ λD = R+ λd(I, I∗), (23)

where R denotes the bit rate and d denotes distortion function. We use mean squared error (MSE)
loss as d.

4 EXPERIMENTS

4.1 SETTINGS

To demonstrate the effectiveness of the contribution and main idea of this paper, we test various
versions of our method and some comparison algorithms on UVG (Mercat et al., 2020), HEVC (Sul-
livan et al., 2012), and MCL-JCV (Wang et al., 2016) datasets. The UVG and MCL-JCV datasets
consist of frames of size 1920×1024, while the HEVC dataset is Composed of four classes B, C, D,
E with various sizes. All test videos are center-cropped to have a width and height that are multiples
of 64, and the test GOP (Group Of Pictures) size is fixed at 12.

4.2 TRAINING

Training Dataset. We use the Vimoe-90K (Xue et al., 2019) septuplet dataset consisting of 89,800
video clips with 7 frames of size 448× 256 and. For training, we randomly crop each frame to size
256× 256 and use random horizontal/vertical flips and rotations for data augmentation.

Implementation Detail. We implement the proposed model using the PyTorch (Paszke et al.,
2019) library and utilize the Cupy (Okuta et al., 2017) library for splatting operation. We use the
AdamW (Loshchilov & Hutter, 2017) optimizer with a batch size of 4 and a fixed learning rate of
10−4. We train the model for a total of 46 epochs, where the first 6 epochs are dedicated to training
the motion encoder, the next 6 epochs are dedicated to training the image encoder, and the remaining
34 epochs are dedicated to training the entire model simultaneously.

4.3 ABLATION STUDY

This section verifies whether the contributions of the paper, including forward warping framework
and the tricks introduced in Section 3.5 and Section 3.6, are actually effective.
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(a) (b)

Figure 4: (a) Ablation study on forward warping module (BW means backward warping and FW
means forward warping.). (b) Ablation study on motion context encoder.

Figure 4 (a) presents the results of the experiments verifying the tricks introduced in Section 3.5. All
versions in Figure 4 (a) are the results without applying motion context encoding. As mentioned,
the performance of the forward warping operation itself is inferior to that of the backward warping.
To minimize this gap, the version that applies all three tricks in Section 3.5 is FW. It shows that
our forward warping module has succeeded in approaching the performance of backward warping.
In particular, gradient stop and flow reverse can be concluded as essential tricks for stable training,
therefore they are necessary for forward warping.

Figure 4 (b) demonstrates that the version that reverses the backward flow (SVC) performs better
than the version that warps the reference motion vector (Warp) as introduced in Section 3.6. In
addition, despite the drawback of forward warping, the attempt to reduce the redundancy of motion
vectors through motion context encoding shows better performance than the backward warping-
based baseline, proving the effectiveness of the main idea of this paper.

4.4 COMPARISON

We compare our SVC with x265 (Sullivan et al., 2012) veryslow preset, VTM (Bross et al., 2021)
and HM codec with low delay mode, and DCVC (Li et al., 2021), a representative deep learning-
based video compression method. Most of the previous deep learning-based video compression
papers have often compared their models with other state-of-the-art models without standardizing
the intra mode, which cannot be considered a fair comparison. Our model has two characteristics
related to intra frame coding. The first is that it can start compression from the third frame because
it requires two reference frames. The second is that we do not propose a fixed intra method, so
any model can be plugged in without any issues. Therefore if we are comparing its performance
with another codec C, the first and second frames are compressed with C. This method allows
for a fair comparison with any other codec. Figure 5 shows that the proposed model, SVC, clearly
outperforms x265 veryslow, DCVC, and HM, and performs similarly or even slightly better for large
λ values compared to VTM.

5 LIMITATION

The method proposed in this paper is one of many possible forward warping methods. It is not opti-
mal and there are still many issues such as unstable training to be addressed compared to backward
warping. We hope that the forward warping-based paradigm will continue to evolve through future
research in this field.
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Figure 5: The comparisons of rate distortion curves on various test datasets.

6 CONCLUSION

In this paper, we explore the dilemma arising from directly applying the traditional backward warp-
ing, used for compressing frames, to motion. To circumvent this issue, we propose a forward
warping-based method. This allows the reference optical flow map to align with the current mo-
tion, enabling more efficient motion compression. However, some inherent challenges associated
with forward warping become evident. We therefore introduce several tricks to address these chal-
lenges. Through experimentation, we confirm that motion context warping via forward warping is
more effective than existing methods. We anticipate that simply reversing the warping direction, as
demonstrated, could not only benefit video compression but also serve as a game changer in other
motion-related video processing fields.
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