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Abstract

Monte-Carlo Tree Search (MCTS) is an adversarial search
paradigm that first found prominence with its success in the
domain of computer Go. Early theoretical work established
the game-theoretic soundness and convergence bounds for
Upper Confidence bounds applied to Trees (UCT), the most5

popular instantiation of MCTS; however, there remain no-
table gaps in our understanding of how UCT behaves in prac-
tice. In this work, we address one such gap by considering
the question of whether UCT can exhibit lookahead pathol-
ogy — a paradoxical phenomenon first observed in Minimax10

search where greater search effort leads to worse decision-
making. We introduce a novel family of synthetic games that
offer rich modeling possibilities while remaining amenable
to mathematical analysis. Our theoretical and experimental
results suggest that UCT is indeed susceptible to pathological15

behavior in a range of games drawn from this family.

1 Introduction
Monte-Carlo Tree Search (MCTS) is an online planning
framework that first found widespread use in game-playing
applications (Coulom 2007; Finnsson and Björnsson 2008;20

Arneson, Hayward, and Henderson 2010), culminating in
the spectacular success of AlphaGo (Silver et al. 2016,
2017). MCTS-based approaches have since been success-
fully adapted to a broad range of other domains, including
combinatorial search and optimization (Sabharwal, Samu-25

lowitz, and Reddy 2012; Goffinet and Ramanujan 2016),
malware analysis (Sartea and Farinelli 2017), knowledge ex-
traction (Liu et al. 2020), and molecule synthesis (Kajita,
Kinjo, and Nishi 2020).

Despite these high-profile successes, however, there are30

still aspects of the algorithm that remain poorly understood.
Early theoretical work by Kocsis and Szepesvári introduced
the Upper Confidence bounds applied to Trees (UCT) algo-
rithm, now the most widely used variant of MCTS. Their
work established that in the limit, UCT correctly identified35

the optimal action in sequential decision-making tasks, with
the regret associated with choosing sub-optimal actions in-
creasing at a logarithmic rate (Kocsis and Szepesvári 2006).
Coquelin and Munos, however, showed that in the worst-
case scenario, UCT’s convergence could take time super-40

exponential in the depth of the tree (Coquelin and Munos
2007). More recent work by Shah, Xie, and Xu proposes a

“corrected” UCT with better convergence properties (Shah,
Xie, and Xu 2020).

In parallel, there has been a line of experimental work 45

that has attempted to understand the reasons for UCT’s suc-
cess in practice and characterize the conditions under which
it may fail. Ramanujan, Sabharwal, and Selman considered
the impact of shallow traps — highly tactical positions in
games like Chess that can be established as wins for the op- 50

ponent with a relatively short proof tree — and argued that
UCT tended to misevaluate such positions (Ramanujan, Sab-
harwal, and Selman 2010a; Ramanujan and Selman 2011).
Finnsson and Björnsson considered the performance of UCT
in a set of artificial games and pinpointed optimistic moves, 55

a notion similar to shallow traps, as a potential Achilles heel
(Finnsson and Björnsson 2011). James, Konidaris, and Ros-
man studied the role of random playouts, a key step in the
inner loop of the UCT algorithm, and concluded that the
smoothness of the payoffs in the application domain deter- 60

mined the effectiveness of playouts (James, Konidaris, and
Rosman 2017). Our work adds to this body of empirical re-
search, but is concerned with a question that has thus far not
been investigated in the literature: can UCT behave patho-
logically? 65

The phenomenon of lookahead pathology was first dis-
covered and analyzed in the 1980s in the context of planning
in two-player adversarial domains (Beal 1980; Nau 1982;
Pearl 1983). Researchers found that in a family of synthetic
board-splitting games, deeper Minimax searches counter- 70

intuitively led to worse decision-making. In this paper, we
present a novel family of abstract, two-player, perfect infor-
mation games, inspired by the properties of real games such
as Chess, in which UCT-style planning displays lookahead
pathology under a wide range of conditions. 75

2 Background
Monte-Carlo Tree Search
Consider a planning instance where an agent needs to de-
termine the best action to take in a given state. An MCTS
algorithm aims to solve this problem by iterating over the 80

following steps to build a search tree.
• Selection: Starting from the root node, we descend the

tree by choosing an action at each level according to
some policy ⇡. UCT uses UCB1 (Auer, Cesa-Bianchi,



and Fischer 2002), an algorithm that optimally balances
exploration and exploitation in the multi-armed bandit
problem, as the selection policy. Specifically, at each
state s, UCT selects the action a = ⇡(s) that maximizes
the following upper confidence bound:

⇡(s) = argmax
a

 
Q(T (s, a)) + c ·

s
log n(s)

n(T (s, a))

!

Here, T (s, a) is the transition function that returns the
state that is reached from taking action a in state s, Q(s)
is the current estimated utility of state s, and n(s) is the
visit count of state s. The constant c is a tunable ex-85

ploration parameter. In adversarial settings, the negamax
transformation is applied to the UCB1 formula, to ensure
that utilities are alternatingly maximized and minimized
at successive levels of the search tree.

• Evaluation: The recursive descent of the search tree us-90

ing ⇡ ends when a node s0 that is previously unvisited, or
that corresponds to a terminal state (i.e., one from which
no further actions are possible), is reached. If s0 is non-
terminal, then an estimate R of its utility is calculated.
This calculation may take the form of random playouts95

(i.e., the average outcome of pseudorandom completions
of the game starting from s0), handcrafted heuristics, or
the prediction of a learned estimator like a neural net-
work. For terminal nodes, the true utility of the state is
used as R instead. The node s0 is then added to the search100

tree, so that the size of the search tree grows by one after
each iteration.

• Backpropagation: Finally, the reward R is used to up-
date the visit counts and the utility estimates of each state
s that was encountered on the current iteration as follows:

Q(s) n(s)Q(s) +R(s)

n(s) + 1
n(s) n(s) + 1

This update assigns to each state the average reward ac-
cumulated from every episode that passed through it.

We repeat the above steps until the designated computational105

budget is met; at that point, the agent selects the action a =
argmaxa0 Q(T (r, a0)) to execute at the root node r.

Lookahead Pathology
Searching deeper is generally believed to be more beneficial
in planning domains. Indeed, advances in hardware that per-110

mitted machines to tractably build deeper Minimax search
trees for Chess were a key reason behind the success of Deep
Blue (Campbell, Hoane, and hsiung Hsu 2002). However,
there are settings in which this property is violated, such as
the P-games investigated by several researchers in the 1980s115

(Beal 1980; Nau 1982; Pearl 1983). Over the years, many
have attempted to explain the causes of pathology and why
it is not encountered in real games like Chess. Nau et al. rec-
onciled these different proposals and offered a unified ex-
planation that focused on three factors: the branching factor120

of the game, the degree to which the game demonstrates lo-
cal similarity (a measure of the correlation in the utilities of
nearby states in the game tree), and the granularity of the

heuristic function used (the number of distinct values that
the heuristic takes on) (Nau et al. 2010). They concluded 125

that pathology was most pronounced in games with a high
branching factor, low local similarity and low heuristic gran-
ularity.

Synthetic Game Tree Models
There is a long tradition of using abstract, artificial games 130

to empirically understand the behavior of search algorithms.
The P-game model is a notable example, that constructs a
game tree in a bottom-up fashion (Pearl 1980). To create a
P-game instance, the values of the leaves of the tree are care-
fully set to win/loss values (Pearl 1980), though variants us- 135

ing real numbers instead have also been studied (Luštrek,
Gams, and Bratko 2005). The properties of the tree arise
organically from the distribution used to set the leaf node
values. P-games were the subject of much interest in the
1980s, as the phenomenon of lookahead pathology was first 140

discovered in the course of analyzing the behavior of Min-
imax search in this setting (Beal 1980; Nau 1982). While
the model’s relative simplicity allows for rigorous mathe-
matical analysis, P-games also suffer from a couple of draw-
backs. Firstly, computing the value of the game and the min- 145

imax value of the internal nodes requires search, and that all
the leaf nodes of the tree be retained in memory, which re-
stricts the size of the games that may be studied in practice.
Secondly, the construction procedure only models a narrow
class of games, namely, ones where the values of leaf nodes 150

are independent of each other.
Other researchers have proposed top-down models, where

each internal node of the tree maintains some state informa-
tion that is incrementally updated and passed down the tree.
The value of a leaf node is then determined by a function 155

of the path that was taken to reach it. For example, in the
models studied by Nau and Scheucher and Kaindl, values
are assigned to the edges in the game tree and the utility of a
leaf node is determined by the sum of the edge values on the
path from the root node to the leaf (Nau 1983; Scheucher and 160

Kaindl 1998). These models were used to demonstrate that
correlations among sibling nodes were sufficient to elimi-
nate lookahead pathology in Minimax. However, search is
still required to determine the true value of internal nodes,
thereby only allowing for the study of small games. Fur- 165

tak and Buro proposed prefix value trees that extend the
model of Scheucher and Kaindl by observing that the min-
imax value of nodes along a principal variation can never
worsen for the player on move (Furtak and Buro 2009). Set-
ting the values of nodes while obeying this constraint dur- 170

ing top-down tree construction obviates the need for search,
which allowed them to generate arbitrarily large games.

Finally, synthetic game tree models have also been used
to study the behavior of MCTS algorithms like UCT. For
example, Finnsson and Björnsson used variations of Chess 175

to identify the features of the search space that informed
the success and failure of UCT (Finnsson and Björnsson
2011). Ramanujan, Sabharwal, and Selman studied P-games
augmented with “critical moves” — specific actions that an
agent must get right at important junctures in the game to 180

ensure victory (Ramanujan, Sabharwal, and Selman 2010b).



We refine this latter idea and incorporate it into a top-down
model, which we present in the following section.

3 Critical Win-Loss Games
Our goal in this paper is to determine the conditions under185

which UCT exhibits lookahead pathology. To conduct this
study, we seek a class of games that satisfy several proper-
ties. Firstly, we desire a model that permits us to construct
arbitrarily large games to more thoroughly study the impact
of tree depth on UCT’s performance. We note that most of190

the game tree models discussed in Section 2 do not meet
this requirement. The one exception is the prefix value tree
model of Furtak and Buro that, however, fails a different
test: the ability to construct games with parameterizable dif-
ficulty. Specifically, we find that prefix value games are too195

“easy” as evidenced by the fact that a naı̈ve planning algo-
rithm that combines minimal lookahead with purely random
playouts achieves perfect decision-making accuracy in this
setting (see Appendix A for a proof of this claim). In this
section, we describe critical win-loss games, a new gener-200

ative model of extensive-form games, that addresses both
these shortcomings of existing models.

Game Tree Model
Our model generates game trees in a top-down fashion, as-
signing each node a true utility of either +1 or�1. In princi-205

ple, every state in real games like Chess or Go can be labeled
in a similar fashion (ignoring the possibility of draws) with
their true game-theoretic values. Thus, we do not lose any
modeling capacity by limiting ourselves to just win-loss val-
ues. The true minimax value of a state imposes constraints210

on the values of its children as noted by Furtak and Buro —
in our setting, this leads to two kinds of internal tree nodes.
A forced node is one with value �1 (+1) at a maximizing
(minimizing) level. All the children of such a node are con-
strained to also be �1 (+1). A choice node, on the other215

hand, is one with value +1 (�1) at a maximizing (minimiz-
ing) level. At least one child of such a node must have the
same minimax value as its parent. Figure 1 presents exam-
ples of these concepts.

All the variation that is observed in the structures of differ-220

ent game trees is completely determined by what happens at
choice nodes. As noted earlier, exactly one child of a choice
node must share the minimax value of its parent; the val-
ues of the remaining children are unconstrained. We intro-
duce a parameter called the critical rate (�) that determines225

the values of these unconstrained children. We now describe
our procedure for growing a critical win-loss tree rooted at a
node s with minimax value v(s):
• Let S = {s1, s2, . . . , sb} denote the b children of s.
• If s is a forced node, then we set v(s1) = v(s2) = . . . =230

v(sb) = v(s), and continue recursively growing each
subtree.

• If s is a choice node, then we pick an si 2 {s1, . . . , sb}
uniformly at random and set v(si) = v(s), designating
si to be the child that corresponds to the optimal action235

choice at s. For all sj such that j 6= i, we set v(sj) =
�v(s) with probability � and we set v(sj) = v(s) with

Figure 1: An example of a forced node (left) and a choice
node (right). Upward-facing triangles represent maximizing
nodes while downward-facing triangles represent minimiz-
ing nodes.

probability 1 � �, before recursively continuing to grow
each subtree.

We make several observations about the trees grown by 240

this model. Firstly, one can apply the above growth proce-
dure in a lazy manner, so that only those parts of the game
tree that are actually reached by the search algorithm need to
be explicitly generated. Thus, the size of the games is only
limited by the amount of search effort we wish to expend. 245

Secondly, the critical rate parameter serves as a proxy for
game difficulty. At one extreme, if � = 0, then every child
at every choice node has the same value as its parent — in
effect, there are no “wrong” moves for either player, and
planning becomes trivial. At the other extreme, if � = 1, 250

then every sub-optimal move at every choice node leads to
a loss and the game becomes unforgiving. A single blunder
at any stage of the game instantly hands the initiative to the
opponent. Figure 2 gives examples of game trees generated
with different settings of �. For the sake of simplicity, we fo- 255

cus on trees with a uniform branching factor b in this study.

Critical Rates in Real Games
Before proceeding, we pause to validate our model by mea-
suring the critical rates of positions in Chess (see Appendix
E for similar data on Othello). We begin by first sampling 260

a large set of positions that are p plies deep into the game.
These samples are gathered using two different methods:

• Light playouts: each side selects among the legal moves
uniformly at random.



Figure 2: Effect of critical rate (�) on game tree structure. Nodes in red correspond to +1 nodes, while nodes in black correspond
to �1 nodes, with the root node in the center. The tree instances were generated with � = 0.1, � = 0.5, and � = 1.0, from left
to right.

• Heavy playouts: each side runs a 10-ply search using the265

Stockfish 13 Chess engine (Romstad et al. 2017) (freely
available online under a GNU GPL v3.0 license) and then
selects among the top-3 moves uniformly at random.

We approximate v(s) for these sampled states using deep
Minimax searches. Specifically, we use v(s) ⇡ sgn (ṽd(s)),
where ṽd(s) denotes the result of a d-ply Stockfish search.
To compute the empirical critical rate �̃(s) for a particular
choice node s, we begin by computing ṽ20(s) and ṽ19(s0)
for all the children s0 of s and then calculate:

�̃(s) =
1

b� 1

X

s0

1[sgn (ṽ19(s
0)) 6= sgn (ṽ20(s))]

Admittedly, using the outcome of a deep search as a stand-in
for the true game theoretic value of a state is not ideal. How-270

ever, strong Chess engines are routinely used in this manner
as analysis tools by humans, and we thus believe this to be a
reasonable approach. Figure 3 presents histograms of �̃ data
collected for p = 10 and p = 36, using both light and heavy
playouts. Each histogram aggregates data over ⇠ 20, 000275

positions.
We note that about 40–50% of the positions sampled have

�̃ values higher than 0.9, which is consistent with Chess’s
reputation for being a highly tactical game. We also see that
the �̃ values collected for Chess form a distribution that is280

non-stationary with respect to game progression, unlike in
our proposed game tree model where � is fixed to be a con-
stant. Nonetheless, we believe that this simplification in our
modeling is reasonable: at deeper plies, the distribution of
�̃ becomes strikingly bimodal, with most of the mass ac-285

cumulating in the ranges [0.0, 0.1] and [0.9, 1.0]. This clus-
tering means that one could partition Chess game tree into
two very different kinds of subgames (with high and low �),
within each of which the critical rate remains within a nar-
row range.290

Heuristic Design
Before we can run UCT search experiments on critical win-
loss games, we need to resolve one more issue: how should

UCT estimate the utility of non-terminal nodes? One popu-
lar approach to constructing artificial heuristics is the addi- 295

tive noise model — the heuristic estimate h(s) for a node s
is computed as h(s) = v(s)+✏, where ✏ is a random variable
drawn from a standard distribution, like a Gaussian (Luštrek,
Gams, and Bratko 2005; Ramanujan, Sabharwal, and Sel-
man 2011). However, as we will see, static evaluations of 300

positions in real games often follow complex distributions.
To better understand the behavior of heuristic functions

in real games, we once again turn to Chess and the Stock-
fish engine. We sample ⇠ 100, 000 positions each using
light and heavy playouts for p = 10. As before, we use 305

sgn (ṽ20(s)) as a proxy for v(s) for each sampled state s.
We also compute ṽ0(s) for each s, which we normalize to
the range [0, 1] — this is the static evaluation of each s with-
out any lookahead. Figure 4 presents histograms of ṽ0(s),
broken out by v(s). A clearer separation between the or- 310

ange and blue histograms (i.e., between the evaluations of
+1 and �1 nodes) indicates that the heuristic is better at
telling apart winning positions from losing ones. Indeed, the
ideal heuristic would score every +1 position higher than
every �1 position, thus ordering them perfectly. We see in 315

Figure 4 that such clear sorting does not arise in practice in
Chess, particularly for positions that are encountered with
strong play. Moreover, the valuations assigned to positions
do not follow a Gaussian distribution, and attempts to model
them as such are likely too simplistic. However, these his- 320

tograms also suggest an empirical method for generating
heuristic valuations of nodes — we can treat the histograms
as probability density functions and sample from them. For
example, to generate a heuristic estimate for a �1 node s
in our synthetic game, we can draw h(s) 2 [0, 1] according 325

to the distribution described by one of the blue histograms
in Figure 4. Of course, given the sensitivity of the shape of
these histograms to the sampling parameters, it is natural to
wonder which histogram should be used. Rather than make
an arbitrary choice, we run experiments using a diverse set 330

of such histogram-based heuristics, generated from differ-
ent choices of p, different playout sampling strategies, and



Figure 3: Histograms of empirical critical rates (�̃) for Chess positions sampled p = 10 (top row) and p = 36 (bottom row)
plies deep into the game. We sample the positions using both light playouts (left column) and heavy playouts (right column).

different game domains.
Additionally, we note that one can also use random play-

outs as heuristic evaluations, like in the original formulation
of UCT. One advantage of our critical win-loss game tree
model is that we can analytically characterize the density of
+1 and �1 nodes at a depth d from the root node, given a
critical rate � and branching factor b. Specifically, for a tree
rooted at a maximizing choice node, the density of +1 nodes
at depths 2d and 2d + 1 (denoted as f2d and f2d+1 respec-
tively) are given by:

f2d = k2d +
1� k2d+2

1 + k
(1)

f2d+1 = f2d · k (2)
where k = 1��+�/b. We refer the reader to Appendix B for
the relevant derivations. Access to these expressions means335

that we can cheaply simulate random playouts of depth 2d:
the outcome of a single playout (`1) corresponds to sampling
from the set {+1,�1} with probabilities f2d and 1 � f2d
respectively. For lower variance estimates, we can use the
mean of this distribution instead, which would correspond to340

averaging the outcomes of a large number of playouts (`1).
In our experiments, we explore the efficacy of the heuristics
`1 and `1 as well.

4 Results
Theoretical Analysis345

We begin with our main theoretical result and provide a
sketch of the proof.

Theorem 1. In a critical win-loss game with � = 1.0,
UCT with a search budget of N nodes will exhibit looka- 350

head pathology for choices of the exploration parameter
c �

q
N3

2 logN , even with access to a perfect heuristic.

The key observation underpinning the result is that the
densities of +1 nodes in both the optimal and sub-optimal
subtrees rooted at a choice node (given by equations (1) 355

and (2)) begin to approach the same value for large enough
depths. This in turn suggests a way to lead UCT astray,
namely to force UCT to over-explore so that it builds a
search tree in a breadth-first manner. In such a scenario,
the converging +1 node densities in the different subtrees, 360

together with the averaging back-up mechanism in the al-
gorithm, leaves UCT unable to tell apart the utilities of its
different action choices. Notably, this happens even though
we provide perfect node evaluations to UCT (i.e., the true
minimax value of each node) — the error arises purely due 365

to the structural properties of the underlying game tree. All
that remains to be done is to characterize the conditions un-
der which this behavior can be induced, which is presented
in detail in Appendix C. Our experimental results suggest
that the bound in Theorem 1 can likely be tightened, since in 370

practice, we often encounter pathology at much lower val-
ues for c than expected. We further find that the pathology
persists even when we relax the assumption that � = 1.0, as
described in the following sections.



Figure 4: Distribution of Stockfish 13 static evaluations of +1 and �1 positions sampled p = 10 plies deep into Chess. The
positions are sampled using both light playouts (left) and heavy playouts (right).

Experimental Setup375

We now describe our experimental methodology for inves-
tigating pathology in UCT. Without loss of generality, we
focus on games that are rooted at maximizing choice nodes
(i.e., root node has a value of +1). We set the maximum
game tree depth at 50, which ensures that relatively few
terminal nodes are encountered within the search horizon
(other depths are explored in the supplementary material,
see Appendix F). We present results from a 4-factor exper-
imental design: 2 choices of critical rate (�) ⇥ 3 choices of
branching factor (b) ⇥ 2 choices of heuristic models ⇥ 5
choices of the UCT exploration constant (c). A larger set of
results, exploring a wider range of these parameter settings,
is presented in Appendices F–H. For each chosen parameter-
ization, we generate 500 synthetic games using our critical
win-loss tree model. We run UCT with different computa-
tional budgets on each of these trees, as measured by the
number of search iterations (i.e., the size of the UCT search
tree). We define the decision accuracy (denoted as �i) to be
the number of times that UCT chose the correct action at
the root node, when run for i iterations, averaged across the
500 members of each tree family sharing the same parameter
settings. Our primary performance metric is the pathology
index Pj defined as:

Pj =
�j
�10

where j 2 {10, 102, 103, 104, 105}. Values of Pj < 1 in-
dicate that additional search effort leads to worse outcomes
(i.e., pathological behavior), while Pj > 1 indicates that
search is generally beneficial. We ran our experiments on an
internal cluster of Intel Xeon Gold 5128 3.0GHz CPUs with380

512G of RAM. We estimate that replicating the full set of re-
sults presented in this paper, with 96 jobs running in parallel,
would take about three weeks of compute time on a similar
system. The code for reproducing our experiments is hosted
at https://github.com/redacted-for-double-blind-review.385

Discussion

Figure 5 presents our main results. Our chief finding is that
the choice of � is the biggest determinant of pathological be-
havior in UCT. For games generated with � = 1, we find that
UCT exhibits lookahead pathology regardless of all other 390

parameters — the exploration constant, the branching fac-
tor, or how the heuristic is constructed. Appendices F and
H confirm the robustness of this result using additional data
collected for other game tree depths and for heuristics con-
structed using data collected from Othello. For smaller val- 395

ues of �, the effect is not as strong and other factors begin
to play a role. For example, with � = 0.9, pathological be-
havior is most apparent at higher branching factors and with
more uniform exploration strategies (i.e., higher settings of
c), consistent with Theorem 1. For � = 0.5, pathology is al- 400

most completely absent, regardless of other parameters (see
Appendix G).

Poor performance from UCT in a synthetic domain, par-
ticularly when it is forced to over-explore, may seem unsur-
prising at first glance — so we will pause here to address 405

these concerns, clearly elucidate the significance and nov-
elty of these results, and to contextualize them better. Firstly,
we note that lookahead pathology is distinct from poor
planning performance. Practitioners routinely encounter do-
mains where MCTS-style approaches simply fail to produce 410

good results (for example, see (Ramanujan, Sabharwal, and
Selman 2010a,b)), regardless of the size of the computa-
tional budget, but our work demonstrates a subtly different
phenomenon. Namely, there are situations where UCT will
initially make good decisions (when it is allowed to build a 415

tree of size, say, 100 nodes), but that its performance will de-
grade as it is afforded more “thinking” time (on trees of size
10k nodes). Moreover, we have done so in a two-player set-
ting, where winning strategies for a player need to be robust
to any counter-move by the opponent. In practice, this means 420

that there are an exponential number of winning leaf nodes
for both players. Thus, demonstrating degenerate behavior



Figure 5: Measuring pathological behavior in UCT on critical win-loss games of depth 50 with � = 0.9 (left) and � = 1 (right).
The heuristic to guide UCT is constructed from histograms of Stockfish evaluations of positions sampled at depth 10, using
both light and heavy playouts. Each colored line corresponds to an instantiation of UCT with a different exploration constant.
Note that the x-axis is plotted on a log-scale.

using constructions such as those of Coquelin and Munos,
where the optimal leaf node is strategically hidden in the
midst of an exponential number of suboptimal nodes, are not425

possible (Coquelin and Munos 2007). In fact, our model is
symmetric; we use the same critical rate � for both players
so that the game is equally (un)forgiving for both players,
without stacking the deck against one player or the other.
Seeing pathology arise under these conditions is thus more430

unexpected. We also note that more uniform exploration has
been proposed in the past as an antidote to undesirable be-
havior in UCT (Coquelin and Munos 2007). Our results in-
dicate that over-exploration may create new problems of its
own.435

Finally, for the sake of completeness, we also evaluate the
performance of Minimax search with alpha-beta pruning on
our critical win-loss games. These results are presented in
Appendix J. We find that Minimax is similarly susceptible
to lookahead pathology in our setting, particularly in games440

where � � 0.7. Games with high critical rates correspond to
those with a high clustering factor f (Sadikov, Bratko, and
Kononenko 2005), and thus, low local similarity — in such
games, there is a lower degree of correlation among the true
utilities of nodes that are near each other in the game tree, 445

which has been identified as a key driver of pathology (Nau
et al. 2010). Our results are thus consistent with the findings
of Nau et al. (Nau et al. 2010). One point of departure from
their findings, however, is that pathology arises in our ex-
periments even though we use a highly granular heuristic. In 450

their work, Nau et al. create heuristic estimates for node util-
ities via an additive Gaussian noise model (Nau et al. 2010),
whereas ours are derived from binning Stockfish’s evalua-
tion function and treating that as a distribution. This sug-
gests that the manner in which heuristics are modeled may 455

contribute to pathology, in addition to their resolution.



Broader Impacts
This paper highlights a counter-intuitive failure mode for
MCTS that deserves broader appreciation and recognition
from researchers and practitioners. The fact that UCT has460

the potential to make worse decisions when given additional
compute time means that the algorithm needs to be used
with greater care. We recommend that users generate scaling
plots such as those shown in Figure 5 to better understand
whether UCT is well-behaved in their particular application465

domain, before wider deployment.

5 Conclusions
In this paper, we explored the question of whether MCTS al-
gorithms like UCT could exhibit lookahead pathology — an
issue hitherto overlooked in the literature. Due to the short-470

comings of existing synthetic game tree models, we intro-
duced our own novel generative model for extensive-form
games. We used these critical win-loss games as a vehicle for
exploring search pathology in UCT and found it to be par-
ticularly pronounced in high critical rate regimes. Important475

avenues for follow-up work include generalizing the theo-
retical results presented in this paper to games where � 6= 1
and deriving tighter bounds for the exploration parameter c,
as well as investigating whether such pathologies emerge in
real-world domains.480
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