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Abstract

Recent advances in Large Language Models001
(LLM) have led to substantial interest in their002
application to commonsense reasoning tasks.003
Despite their potential, LLMs are susceptible to004
reasoning errors and hallucinations that may be005
harmful in use cases where accurate reasoning006
is critical. This challenge underscores the need007
for verifiable, debuggable, and repairable LLM008
reasoning. Recent works have made progress009
toward verifiable reasoning with LLMs by us-010
ing them as either (i) a reasoner over an ax-011
iomatic knowledge base, or (ii) a semantic012
parser for use in existing logical inference sys-013
tems. However, both settings are unable to014
extract commonsense axioms from the LLM015
that are not already formalized in the knowl-016
edge base, and also lack a reliable method to017
repair missed commonsense inferences. In this018
work, we present LLM-TRes, a logical reason-019
ing framework based on the notion of “theory020
resolution” that allows for seamless integration021
of the commonsense knowledge from LLMs022
with a verifiable logical reasoning framework023
that mitigates hallucinations and facilitates de-024
bugging of the reasoning procedure as well as025
repair. We crucially prove that repaired axioms026
are theoretically guaranteed to be given prece-027
dence over flawed ones in our theory resolution028
inference process. We conclude by evaluat-029
ing on three diverse language-based reasoning030
tasks – preference reasoning, deductive reason-031
ing, and causal commonsense reasoning – and032
demonstrate the superior performance of LLM-033
TRes vs. state-of-the-art LLM-based reasoning034
methods in terms of both accuracy and reason-035
ing correctness.036

1 Introduction037

The rise of Large Language Models (LLMs) has038

marked a pivotal moment in the real-world de-039

ployment of AI, particularly due to the excep-040

tional ability of LLMs to handle complex reason-041

ing tasks (Chang et al., 2024; Huang and Chang,042

2023). Research has shown that LLMs have ac- 043

quired significant commonsense knowledge (Zhao 044

et al., 2024; Bian et al., 2023), which is crucial 045

for engaging with real-world users in tasks such as 046

question answering (Singhal et al., 2023) and rec- 047

ommendation (Sanner et al., 2023). Unfortunately, 048

LLMs are prone to a variety of reasoning errors; 049

for example, they commonly incorporate superfi- 050

cially plausible but factually incorrect information 051

into their reasoning in a phenomenon known as 052

hallucination (Zhang et al., 2023b; Ji et al., 2023). 053

Furthermore, since the underlying reasoning pro- 054

cess of the LLM is latent and hence largely opaque, 055

validating reasoning soundness and identifying er- 056

rors remains an open research problem. Such issues 057

present a significant challenge to the reliability of 058

using LLMs as reasoning systems, which impedes 059

their practical utility (Mallen et al., 2023). 060

In light of these obstacles, recent research has 061

proposed methodologies for extracting verifiable 062

reasoning from LLMs by leveraging formal reason- 063

ing procedures. Such works fall under two main 064

categories: (i) Using the LLM as a reasoner across 065

an axiomatic knowledge base, while organizing the 066

reasoning process into simpler subgoals to facili- 067

tate soundness of the overall reasoning (Kazemi 068

et al., 2023). (ii) Leveraging the LLM as a se- 069

mantic parser that translates natural language state- 070

ments into logical axioms, followed by the use of 071

an off-the-shelf theorem prover to perform logical 072

reasoning (Pan et al., 2023; Olausson et al., 2023). 073

While these seminal works have made progress 074

towards verifiable LLM reasoning, their applica- 075

tion in real-world tasks requiring commonsense 076

reasoning is limited since they all suffer from the 077

inability to extract verifiable commonsense axioms 078

from the LLM that are not already formalized in 079

the provided knowledge base axioms. Hence, these 080

existing methodologies critically lack the ability 081

to leverage the LLM as a verifiable commonsense 082

reasoner to fill-in inevitable knowledge base gaps. 083
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Figure 1: Preference reasoning is used as an illustrative example to show the LLM-TRes workflow. Top:
LLM-based theory resolution is performed to calculate proof scores of two candidate Recipes entailing the
Query. The proof begins from the negated query, and for each resolvent clause, a priority score tuple:
(proof plausibility score, proof length) is calculated and pushed to a priority queue (only Recipe 2 clauses are
shown here). At each step, the clause with the highest priority in the queue becomes the active clause. Here, due
to a flawed low probability assigned to “catfish” entailing “seafood”, the proof score of Recipe 2 is mistakenly
calculated lower than it should be. Bottom: After insertion of the Repair Axiom, the erroneous reasoning is repaired,
leading to a higher score for the correct Recipe 2.

Furthermore, these methods lack any mechanism084

for repairing reasoning mistakes after detection.085

To address these challenges, we propose LLM-086

TRes, a formal reasoning framework using LLMs.087

LLM-TRes satisfies three key desiderata that we088

illustrate through the worked example in Figure 1:089

(i) Verifiability: allowing for verification of every090

step in the reasoning process (i.e., from each suc-091

cessful refutation resolution ⊥, one can backtrace092

the entire proof of the Query). (ii) Debuggability:093

being able to identify the incorrect inferences that094

led to a reasoning mistake (i.e., we observe an in-095

correct low probability LLM inference that “catfish”096

entails “seafood” for Recipe 2). (iii) Repairability:097

enabling a deterministic and reliable mechanism098

for rectifying the identified errors to produce cor-099

rect inference (e.g., once we add the the explicit Re-100

pair Axiom ∀y “catfish”(y) ⇒ “seafood”(y), we101

arrive at a much higher proof plausibility for the102

correct preference match of the query to Recipe 2).103

Formally, LLM-TRes is based on the concept104

of theory resolution (Stickel, 1985; Baumgartner,105

1992), drawn from classical logical reasoning that106

enables the integration of specialized reasoners 107

into the resolution theorem-proving inference rule. 108

Leveraging theory resolution, LLM-TRes seam- 109

lessly incorporates LLMs as specialized reasoners 110

equipped with commonsense knowledge into veri- 111

fiable logical reasoning. This integration enables 112

extraction of relevant commonsense axioms from 113

the LLM that cannot otherwise be obtained from 114

the knowledge base. Finally, by capitalizing on a 115

specially defined selection rule in our resolution 116

framework, we formally prove that repairing flawed 117

reasoning by the LLM is possible by providing cor- 118

rect axioms that are theoretically guaranteed to 119

override the LLM’s flawed reasoning. 120

In summary, we contribute the following: 121

• We propose LLM-TRes, a formal reasoning 122

framework founded on theory resolution that 123

allows for incorporating the internal knowl- 124

edge of the LLMs in a formal reasoning pro- 125

cess to mitigate their hallucinations. 126

• We demonstrate that LLM-TRes provides 127

a fully verifiable and debuggable reasoning 128
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scheme by granting access to all reasoning129

steps at an atomic level.130

• We provide a mechanism for correcting errors131

in the reasoning process with a theoretical132

guarantee of prioritizing correct Repair Ax-133

ioms over incorrect LLM inferences.134

• We experiment with LLM-TRes on three dis-135

tinct tasks – preference reasoning, deductive136

reasoning, and causal commonsense reason-137

ing – demonstrating superior accuracy and138

reasoning correctness compared to Chain of139

Thought (CoT) (Wei et al., 2022) prompting140

in LLMs (much larger in size) and LAM-141

BADA (Kazemi et al., 2023), a state-of-the-art142

formal reasoning framework.143

2 Related Works144

Reasoning with LLMs While their primary de-145

sign was for text generation, LLMs exhibit re-146

markable performance in many other NLP tasks147

that require a variety of reasoning skills (Chang148

et al., 2024; Xu et al., 2023). Despite such im-149

pressive capabilities, errors and hallucinations that150

can commonly occur in LLM reasoning have mo-151

tivated research on obtaining dependable reason-152

ing from LLMs while leveraging their intrinsic153

knowledge. In this regard, several approaches154

have been proposed to elicit stronger reasoning per-155

formance from LLMs such as Chain-of-Thought156

prompting (Wei et al., 2022; Kojima et al., 2022),157

Self-Consistency (Wang et al., 2022), Least-to-158

Most prompting (Zhou et al., 2022), and Selection-159

Inference (Creswell et al., 2022). Despite being160

effective in improving reasoning performance, all161

these methods follow an informal reasoning proce-162

dure in which the LLM is in charge of performing163

reasoning and thus does not guarantee the faithful-164

ness of the reasoning process (Shanahan, 2024; Pan165

et al., 2023). For instance, the reasoning ability of166

these methods may be unreliable for tasks requir-167

ing out-of-domain reasoning (Saparov et al., 2024;168

Liang et al., 2022), tasks involving negation (Anil169

et al., 2022), and often degrades with an increase170

in the length of reasoning steps (Dziri et al., 2024).171

Formal Reasoning with LLMs To obtain reli-172

able and verifiable reasoning from LLMs, a number173

of works have proposed the idea of using LLMs174

in a formal reasoning framework — a systematic175

and logical process governed by a set of rules and176

principles (Galotti, 1989). Two main approaches177

have been proposed in this regard. In the first ap-178

proach, the LLM is utilized to perform different 179

sub-tasks of a formal logical inference rule to rea- 180

son over an axiomatic knowledge base. For ex- 181

ample, LAMBADA (Kazemi et al., 2023) uses the 182

LLM to perform goal decomposition, rule selection, 183

and fact-checking in a backward chaining process. 184

In a related vein, SymBa (Lee and Hwang, 2024) 185

introduces a top-down solver to control the proof 186

process and uses the LLM as an aide to the solver. 187

In the second approach, LLMs are used as a se- 188

mantic parser to translate natural language axioms 189

and facts to a specific logical format; here the re- 190

sponsibility of inference is delegated to a symbolic 191

theorem prover. LogicLM (Pan et al., 2023) uses 192

this idea with a self-refinement mechanism to al- 193

low the LLM to refine its symbolic conversions. 194

Since LLMs commonly make syntactic and seman- 195

tic errors in the parsing process, LINC (Olausson 196

et al., 2023) performs majority voting over multiple 197

solutions to obtain the final result. 198

These works have made significant progress in 199

increasing the reliability and verifiability of LLM 200

reasoning. However, they only utilize axioms that 201

are explicitly provided in the knowledge base, and 202

lack the ability to leverage the intrinsic common- 203

sense knowledge of the LLM by extracting com- 204

monsense axioms. This prevents existing methods 205

from incorporating verifiable LLM-derived com- 206

monsense knowledge in their reasoning, which is 207

often critical in practical deployed usage. More- 208

over, these existing methods do not support a reli- 209

able mechanism for rectifying incorrect reasoning 210

steps. We aim to address all of these limitations 211

with our contribution of the LLM-TRes framework. 212

3 Methodology: LLM-based Theory 213

Resolution (LLM-TRes) 214

We first introduce the resolution rule and the con- 215

cept of theory resolution and then explain our LLM- 216

based Theory Resolution (LLM-TRes) methodol- 217

ogy. For the logical knowledge representation in 218

this work, we assume a function- and equality-free 219

first-order logical (FOL) syntax (Chang and Lee, 220

2014) with all FOL sentences translated to clausal 221

normal form as demonstrated in Figure 1. 222

Resolution Rule Resolution is a sound inference 223

rule that performs inference by deriving a resol- 224

vent clause from two premise clauses containing 225

complementary literals. Given two FOL sentences 226

in clausal form, a new clause can be derived via 227
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resolution of their complementary literals, e.g.,228

A(x) ∨B(x) ¬B(y) ∨ C(y)

A(x) ∨ C(x)
,

(1)229

under the unification θ = {x/y}. Following this230

procedure, new clauses are derived until either231

a contradiction ⊥ is found (e.g., deriving both232

clauses A(x) and ¬A(x) that resolve to ⊥), or no233

further resolutions are possible. Finding a contra-234

diction implies that the original set of clauses is235

inconsistent. Therefore, given the knowledge base236

K and a query q, to prove thatK ⊢ q, one can apply237

the resolution inference rule to show that K ∧ ¬q238

leads to a contradiction ⊥.239

Theory Resolution Theory resolution (Stickel,240

1985) is a methodology that enables the integra-241

tion of special purpose reasoning theories into res-242

olution theorem proving. Based on theory reso-243

lution, given two clauses c1 = A(x) ∨ B(x) and244

c2 = C(x)∨D(x), if a theorem prover T identifies245

B(x) and ¬C(y) under unification θ = {x/y} to246

be unsatisfiable (i.e., ∀xB(x) ∧ ¬C(x) ⊢T ⊥), de-247

spite lacking complementary literals with identical248

predicates, the two clauses can still be resolved:249

A(x) ∨B(x) ¬C(y) ∨D(y)

A(x) ∨D(x)
.

(2)250

Theory resolution considerably broadens the appli-251

cability of the resolution inference rule by lifting252

the condition of resolving only complementary lit-253

erals. In this work, we use an LLM as the theory254

that identifies the unsatisfiable natural language255

predicates to do reasoning via theory resolution.256

Natural Language Logic Natural language en-257

compasses a significant amount of information that258

cannot be easily represented using symbolic logic.259

Although one can represent functions and predi-260

cates in symbolic logic, it may be hard to fully261

axiomatize their real-world meaning, which is a262

substantial limitation of the semantic parsing ap-263

proaches. For instance, being “spicy” and having264

“a kick to it” are assigned completely different predi-265

cates, and pure symbolic reasoning cannot identify266

the intuitive entailment relationship between them267

without specific axioms. Moreover, representing268

commonsense knowledge in symbolic logic is very269

challenging (Davis, 2014). However, LLMs are270

capable of understanding the semantic relationship271

between such predicates and also encompass sub-272

stantial commonsense knowledge, which can be273

used for reasoning in real-world applications.274

As mentioned earlier, theory resolution offers the 275

capability to resolve non-complementary literals if 276

they are deemed unsatisfiable by a theorem prover. 277

By employing an LLM as the theorem prover, we 278

can leverage the theory resolution framework to 279

conduct resolution within an extended version of 280

First-Order Logic, where predicates and functions 281

are no longer symbols but natural language texts, a 282

system we call Natural Language (NL) Logic. 283

Using the LLM theorem prover in the NL 284

logic, the unsatisfiability condition of the the- 285

ory resolution reduces to natural language en- 286

tailment. In other words, if an LLM identifies 287

a natural language predicate B to entail predi- 288

cate D, i.e., B(x) ⊢LLM D(x), and therefore, 289

B(x) ∧ ¬D(x) ⊢LLM ⊥, then literals B(x) and 290

D(x) can be resolved. For instance, given clauses 291

c1 =“kick to it”(x) and c2 = ¬“spicy” (x)∨Q(x), 292

in which Q(x) is another literal with a natural lan- 293

guage predicate, since the LLM identifies the natu- 294

ral language entailment “kick to it” ⊢LLM “spicy”, 295

a theory resolution step can be performed as 296

“kick to it”(x) ¬“spicy”(x) ∨Q(x)

Q(x)
.

(3) 297

3.1 LLM-TRes Algorithm 298

This section presents LLM-TRes, an algorithm for 299

efficient logical commonsense reasoning based on 300

theory resolution using LLMs. The workflow of 301

LLM-TRes is shown through a worked example in 302

Figure 1, and formalized in Algorithm 1. 303

Problem Definition Consider a set of queries Q 304

and a knowledge base (KB) denoted by K which 305

comprises a set of axioms A and a set of facts F , 306

all represented in natural language logic in clausal 307

form. In this work, we aim to propose an inference 308

rule i that for each q ∈ Q, finds a set of proofs 309

denoted by proofs, such that each proof f ∈ proofs 310

consists of a subset of clauses in K, and is assigned 311

a priority score ρ reflecting the priority of the proof. 312

Algorithm To prove thatK entails the query q via 313

resolution, we must demonstrate that iteratively ap- 314

plying resolution to derive new clauses fromK∧¬q 315

leads to a contradiction, thereby proving its unsat- 316

isfiability. The first question that arises is which 317

clause should be chosen to begin the resolution 318

proof. Two major paradigms are used in perform- 319

ing resolution: (i) starting from the clauses in K 320

to derive q from them and resolve it with ¬q, an 321
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approach known as forward chaining, or (ii) start-322

ing from ¬q and resolving it with clauses in K to323

reach a contradiction, known as backward chaining.324

Since backward chaining employs a goal-driven325

approach, which is shown to improve efficiency326

in reasoning over natural language (Kazemi et al.,327

2023), we begin the resolution process from ¬q.328

Therefore, ¬q becomes our first active clause that329

we need to resolve with a clause from K.330

The potentially enormous size of K poses a ma-331

jor challenge. Also, as the resolution process pro-332

gresses, new clauses are created, leading to a fur-333

ther expansion in the size of the search space. To334

perform resolution efficiently in this combinatorial335

search space, LLM-TRes employs two strategies:336

(i) prioritizing the resolvent clauses to continue the337

resolution process, and (ii) restricting the theory338

resolution search space using semantic similarity.339

Resolution Priority Definition and Ordering: The340

first mechanism employed in LLM-TRes to enable341

efficient resolution is prioritizing candidate clauses.342

Using this prioritization scheme, resolvent clauses343

that have a higher potential for being part of a plau-344

sible proof will be given precedence over clauses345

generated from less plausible resolution steps. The346

plausibility of a theory resolution step, in which347

an active clause c is resolved with a clause ctarget348

to generate the resolvent clause cres, denoted by349

ρentail
cres

, is determined by calculating the probability350

that the LLM assigns to ctarget entailing c.351

ρentail
cres

= p(ctarget ⊢LLM c). (4)352

These plausibility scores can help us prioritize353

the resolvent clauses. For instance, in the exam-354

ple provided in Figure 1, since resolving “shrimp”355

with “seafood” yields a higher entailment score356

than resolving “garlic” with “seafood”, it is in-357

tuitive to prioritize the first resolvent as it is more358

likely to be part of the final proof. Since we are359

interested in identifying the most plausible proofs,360

i.e., the sequences of theory resolution steps with361

the highest entailment scores, we define the first362

entry of our priority score for each resolvent clause363

cres as the overall entailment score of all resolution364

steps beginning from the original negated query365

that led to its derivation. Denoting the set of parent366

clauses of cres as Pcres , we can inductively define367

the overall proof entailment score of cres as368

ρe(cres) =

( ∏
c′∈Pcres

ρe(c′)

)
· ρentail

cres
. (5)369

Algorithm 1 LLM-TRes Algorithm
1: Input: K, q, max_proofs, max_iters, b
2: proofs← ∅
3: PQ ← ∅ // PQ is an initially empty priority

queue.
4: PQ.push(¬q, (1, 0)) // Negation of the initial

query q has priority (1, 0), PQ is ordered by
Equation 7

5: while i < max_iters do
6: while PQ ̸= ∅ ∧ i < max_proofs do
7: c← PQ.pop()
8: if c = ⊥ then
9: max_proofs++

10: proofs← proofs ∪ {c}
11: else
12: βc ← b most likely candidates in K to

resolve with c
13: for ctarget ∈ βc do
14: Compute resolvent cres of c and

ctarget using Equation 2
15: PQ.push(cres, (ρ

e(cres), ρ
l(cres)) //

cf. Equations 5 and 6
16: Output: proofs

When choosing between equally plausible 370

proofs, we are interested in shorter proofs that 371

avoid redundant steps. We assign a second priority 372

score to reflect this preference which is considered 373

only when the entailment proof scores are equal. 374

As for the proof entailment score, we can obtain 375

the proof length score of cres inductively from the 376

maximum proof length of its parent clauses as 377

ρl(cres) = 1 + max
c′∈Pcres

ρl(c′). (6) 378

The final priority score for each resolvent clause 379

cres is formed as the tuple (ρe(cres), ρ
l(cres)) and 380

all resolvents are pushed to a priority queue PQ. A 381

total order of clauses in PQ is then determined as 382

c1 ⪯ c2 ⇐⇒ [ρe(c1) > ρe(c2)] (7) 383

∨ [(ρe(c1) = ρe(c2)) ∧ (ρl(c1) < ρl(c2))]. 384

Restricting Theory Resolution with Embeddings: 385

The knowledge base may contain various axioms 386

and facts, many of which are irrelevant to the ac- 387

tive clause. To enhance efficiency and maintain the 388

growth of the resolution space tractable, we restrict 389

the size of our resolution search space by a branch- 390

ing factor b and select candidate target clauses for 391

performing resolution based on their semantic rele- 392

vance to the current active clause. Concretely, we 393
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use the similarity scores between zc, the word em-394

bedding vector of the active clause c, and zc′ , word395

embedding vectors of each candidate clause c′ to396

find βc, the set of b most relevant clauses to c as397

βc = {c′|(c′ ∈ K)∧ (c′ ̸= c)∧ (zTc zc′ ≥ τ)}, (8)398

in which τ is set to the bth highest inner product399

score between embeddings of c and other clauses,400

thus resulting in top-b theory resolution candidates.401

Next, theory resolution can be performed between402

c and each clause in βc as in Equation 2.403

These two mechanisms together enable an effi-404

cient inference via LLM-based theory resolution.405

At the beginning of each iteration of LLM-TRes,406

the clause holding the foremost position in PQ407

becomes the active clause. Once a resolution step408

leads to contradiction, the proof and its respective409

priority score are added to the set of found proofs410

by backtracing the ancestor clauses up to the query.411

This algorithm continues until either a certain412

number of proofs are found or the maximum num-413

ber of iterations is exceeded. Notably, LLM-TRes414

is not limited to proving a single query; instead, it415

finds a set of proofs with each assigned a strength416

score. This functionality allows it to assess the417

likelihood of each query being entailed, which is418

beneficial for applications requiring ranking, such419

as answering multiple-choice questions. In appli-420

cations where a binary truth value is considered421

for the query, the proof scores of q and ¬q are422

compared. Our experiments cover both cases.423

4 Repairability of Erroneous Resolution424

Since LLM-TRes provides access to atomic infer-425

ence steps in the resolution process, it facilitates426

verifiability and debuggability. Although the entail-427

ment probabilities assigned by the LLMs may be428

erroneous, the exact resolution step at which the429

failure occurs is discernible. Furthermore, it can430

be easily corrected by introducing a rectifying rule431

into the knowledge base. 1 presents an example.432

The LLM’s mistake in assigning a low entailment433

score for “catfish” to entail “seafood” leads to434

incorrect reasoning. However, introducing the cor-435

rect axiom ∀y“catfish”(y) =⇒ “seafood”(y) to436

the KB repairs this mistake. The following propo-437

sition formalizes this property and is proven in438

Appendix A.439

Proposition 1. Consider proof P ϕ
c using axiom ϕ440

that derives clause c. For any incorrect LLM rea-441

soning axiom ϕ, a Repair Axiom ϕ′ can be inserted 442

such that P ϕ′
c will be produced before P ϕ

c . 443

5 Experiments 444

We evaluate LLM-TRes on three different tasks 445

involving commonsense reasoning on natural lan- 446

guage data: preference reasoning, deductive rea- 447

soning, and causal commonsense reasoning. We 448

release our implementation and data1. 449

5.1 Tasks and Datasets 450

Preference Reasoning Understanding user prefer- 451

ences from natural language statements is a com- 452

plex but essential task in applications requiring 453

personalization. For this task, we use Recipe- 454

MPR (Zhang et al., 2023a), a dataset consisting 455

of 500 user queries stating their preference toward 456

recipes, e.g., “I would like meat lasagna but I’m 457

watching my weight” with five-way recipe options 458

that requires a range of commonsense inference 459

including temporal and analogical reasoning. 460

Deductive Reasoning We use ProntoQA (Saparov 461

and He, 2022), a widely used dataset for evaluat- 462

ing the deductive reasoning ability of LLMs. This 463

dataset consists of natural language queries about 464

KBs including facts and axioms generated from on- 465

tologies. We use 500 queries of the true ontology as 466

they are consistent with the real world and are use- 467

ful to evaluate commonsense reasoning. We select 468

the most challenging 5-hop subset of the dataset. 469

Causal Commonsense Reasoning We use COPA- 470

SSE (Brassard et al., 2022), a dataset for reason- 471

ing about event causes and effects using a semi- 472

structured KB. In the “effect” split of this dataset, 473

an event is provided such as “The pen ran out of 474

ink.”, together with semi-structured explanations 475

with assigned quality scores, and the task is to de- 476

termine the more plausible candidate effect, e.g., 477

“I used a pencil.” or “I signed my name.”. 478

5.2 Baselines and Evaluation 479

We use LAMBADA2, a seminal work in formal 480

reasoning with LLMs, and zero-shot Chain-of- 481

Thought (CoT) prompting (Kojima et al., 2022) as 482

our comparison baselines. Semantic parsing meth- 483

ods are inherently unable to perform commonsense 484

reasoning and do not apply to our tasks. We use 485

1https://anonymous.4open.science/r/
LLM-TRes-678C/

2Since the original paper did not release code, we use the
implementation in (Lee and Hwang, 2024).
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Table 1: Reasoning performance of methods across the three datasets. Gemma fails to provide explanations for
Recipe-MPR, so reasoning scores cannot be calculated for it (Fail). LAMBADA requires a rule set that is not
provided in Recipe-MPR, and cannot rank proofs which is necessary for COPA-SSE. Pure entailment does not
generate proofs, so the reasoning scores do not apply to it (NA).

Method Recipe-MPR ProntoQA COPA-SSE

Accuracy RS Macro RS Micro Accuracy RS Macro RS Micro Accuracy RS Macro RS Micro

CoT (GPT-3.5-Turbo) 0.844 0.850 0.900 0.738 0.600 0.878 0.860 0.800 0.921

CoT (Llama3 8B) 0.768 0.550 0.742 0.718 0.250 0.802 0.839 0.800 0.916

CoT (Gemma 7B) 0.460 Fail Fail 0.588 0.250 0.657 0.818 0.520 0.450

CoT (Mistral 7B) 0.689 0.850 0.946 0.902 0.600 0.890 0.643 0.850 0.892

LAMBADA (GPT-3.5-Turbo) NA NA NA 0.580 0.800 0.900 NA NA NA

Pure Entailment (BART 406M) 0.682 NA NA 0.740 NA NA 0.825 NA NA

LLM-TRes (BART 406M) 0.822 1.000 1.000 0.990 1.000 1.000 0.888 0.900 0.958

GPT-3.5 Turbo as the LLM for LAMBADA and for486

converting the natural language axioms and queries487

to the clausal form in our method, and obtain the488

entailment probabilities for theory resolution using489

BART large (Lewis et al., 2020) model3 trained490

on MNLI (Williams et al., 2018) dataset. We com-491

pare against CoT prompting with GPT-3.5 Turbo,492

Llama3 8B, Mistral 7B, and Gemma 7B. To en-493

sure that the difference in the performance of our494

model and the baselines is not due to using differ-495

ent LLMs, we also use pure BART-large entailment496

scores between facts and query as a baseline.497

We evaluate the reasoning performance of the498

models considering the correctness of the final an-499

swers, measured by the accuracy, and correctness500

of the reasoning process measured by the reasoning501

score (RS) which we manually assess for the first502

20 queries the models answer correctly. RS is com-503

monly evaluated as a binary judgment on whether504

the predicted proof is supported by the ground truth505

proof (Kazemi et al., 2023; Lee and Hwang, 2024).506

However, RS does not assess the number of er-507

rors. Therefore, in addition to this metric which508

we call macro RS, to provide a more fine-grained509

evaluation of the provided proofs, based on the idea510

provided in Min et al. (2023), we use a new metric511

which we name micro RS. Given a provided proof512

P and the ground truth proof P ∗, and denoting the513

indicator function as I, the micro RS for each query514

is defined as RSMicro =
1
|P |
∑

p∈P I(p ∈ P ∗).515

5.3 Results516

RQ1: Comparison of Reasoning Performance517

Results of the reasoning performance are provided518

in Table 1. On deductive and causal commonsense519

reasoning tasks, LLM-TRes achieves higher ac-520

curacies than the baselines although the language521

3https://huggingface.co/facebook/bart-large-mnli

models they use are multiple times larger. On pref- 522

erence reasoning, LLM-TRes achieves the second- 523

highest accuracy after CoT prompting with GPT3.5 524

Turbo with a rather small margin. On ProntoQA, 525

since the high-quality conversion of the query and 526

the knowledge base to the clausal format is straight- 527

forward, LLM-TRes can prioritize complementary 528

literals to perform exact resolution, resulting in 529

a near-ideal performance. The failure cases of 530

LLM-TRes are due to the LLM’s limitation in 531

understanding contraposition as noted in previous 532

work (Zhang et al., 2024). Nonetheless, LLM-TRes 533

maintains consistently high performance, unlike 534

other baselines which vary across tasks. For in- 535

stance, while CoT with GPT-3.5 excels on Recipe- 536

MPR and COPA-SSE, it is outperformed by Mis- 537

tral on ProntoQA, which in turn performs rather 538

poorly on Recipe-MPR and COPA-SSE. On RS, 539

LLM-TRes outperforms all baselines across the 540

three datasets at both the macro and micro level, 541

showcasing its capability to provide proofs that 542

are consistent with the ground truth proof. LAM- 543

BADA is unable to reason on Recipe-MPR as it 544

performs backward chaining on explicit rule sets, 545

which Recipe-MPR does not provide. Also, since 546

LAMBADA can only prove or refute a query based 547

on a KB and cannot score and rank the plausibil- 548

ity of proofs, it cannot choose the more plausible 549

effects on the COPA-SSE dataset. Since CoT us- 550

ing Gemma refrained from providing any proof for 551

preference reasoning despite being prompted to do 552

so, the reasoning score could not be calculated for 553

it. Finally, pure entailment does not provide proofs 554

so RS cannot be evaluated. 555

RQ2: Robustness to Incompleteness of the KB 556

Assuming access to a complete KB in which all 557

required axioms are provided is often unrealistic 558
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Figure 2: Reasoning performance of different models on ProntoQA with an incomplete KB. We mask out a number
of rules to vary the degree of incompleteness of KB.
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Figure 3: Reasoning performance of different models on ProntoQA with larger KB. We sample random axioms
from other queries to increase the size of KB.

in practical applications. Therefore, a common-559

sense reasoning methodology must be able to ex-560

tract the intrinsic commonsense knowledge of the561

LLMs to overcome the incompleteness of the KB.562

We assess this capability by repeatedly running563

experiments on ProntoQA each time removing a564

number of randomly chosen rules from the KB.565

We chose ProntoQA for this study as it is the only566

dataset with large rule sets that enables experiments567

with various ablated rules. Results of this experi-568

ment are provided in Figure 2. Although ablating569

rules from the KB decreases the accuracies of both570

LLM-TRes and the best baseline, CoT with Mis-571

tral, LLM-TRes often maintains higher accuracy.572

Moreover, the consistently higher reasoning score573

of LLM-TRes proves its superior ability to generate574

valid proofs.575

RQ3: Robustness to Increase in Size of the KB576

In this experiment, we evaluate the robustness of577

LLM-TRes and other baselines to increases in the578

KB size. We form a large KB consisting of 75579

distinct rules across different ProntoQA queries580

and each time add a fraction of this KB to the581

original rule set of the query while randomly mask-582

ing 2 rules of the original KB. This experiment583

mainly aims to determine if the restricting resolu-584

tion search space of LLM-TRes using semantic sim-585

ilarity can identify the relevant clauses to the active586

clause. In all tests, LLM-TRes uses the similarity587

between GPT-3 embeddings of the clauses with a588

branching factor of 15. Meanwhile, other baselines 589

include the entire KB in the prompt which is costly 590

and inefficient. Results of this test, shown in Fig- 591

ure 3 depict that LLM-TRes and the best baseline, 592

CoT with Mistral, sustain their performance, but 593

LLM-TRes consistently obtains higher reasoning 594

scores while using a more efficient methodology 595

for pruning the reasoning search space. 596

6 Conclusion 597

We presented LLM-TRes, a novel framework for 598

formal reasoning with LLMs based on theory reso- 599

lution that allowed us to integrate LLMs into reso- 600

lution logical reasoning seamlessly. By providing 601

access to every atomic reasoning step, LLM-TRes 602

enabled verifiability and debuggability of the pro- 603

cess. It also offered a reliable repairing mecha- 604

nism for correcting flaws in the LLM reasoning by 605

asserting the particular missed axiom which was 606

theoretically guaranteed to override the mistakenly 607

low-probability resolution step. The promising per- 608

formance of LLM-TRes on preference reasoning, 609

deductive reasoning, and causal commonsense rea- 610

soning tasks demonstrates its efficacy in providing 611

accurate answers and correct proofs. These capabil- 612

ities make LLM-TRes a robust foundation for coun- 613

teracting hallucination and pave the way for more 614

trustworthy deployment of LLM-based common- 615

sense reasoners in applications where correctness, 616

verifiability, and repairability are paramount. 617

8



Limitations618

While we believe this work has made substantial619

progress in verifiable, debuggable, and repairable620

commonsense reasoning, it naturally has limita-621

tions that we hope will encourage further inves-622

tigation and future work. As mentioned in the623

paper, we provided a reliable mechanism for er-624

roneous reasoning processes; however, determin-625

ing a flawed step requires expert judgment. In our626

work, we do not focus on evaluating the reasoning627

steps and how the repair axioms are introduced.628

Proposing an automated mechanism for evaluat-629

ing the reasoning steps can be a direction of future630

research. Furthermore, as in all LLM-based reason-631

ing methodologies, obtaining high reasoning per-632

formances requires an apt LLM. As we discussed633

in Section 5.3, limitations of the utilized LLM such634

as their shortcomings in understanding contraposi-635

tion can pose challenges to the overall performance636

of the method. Finally, as we mentioned in the637

paper, LLM-TRes focuses on the natural language638

extension of First Order Logic (FOL) which we639

introduced, and extending it to Higher-Order Logic640

(HOL) could be considered as a future research641

direction given the prior uses of HOL in formaliz-642

ing natural language semantics and complex modal643

constructs (van Eijck and Unger, 2010).644

Ethics Statement645

Our contribution of LLM-TRes aims to enable646

transparent reasoning with LLMs such that cor-647

rectness of every reasoning step can be verified and648

potentially repaired if incorrect. However, it is im-649

portant for us to note that a correct proof or line of650

argument from premises neither presupposes that651

the premises are ethical nor that the conclusion de-652

rived from the premises and line of reasoning is653

ethical. In this sense, practical use of LLM-TRes654

still requires ethical oversight to monitor ethical655

and bias considerations for any axioms entered by656

the user as well as to verify that unintended reason-657

ing hallucinations by the underlying LLM have not658

led to incorrect, biased, or unethical conclusions.659
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A Proof of Repairability of LLM-TRes851

Proposition 2. Consider proof P ϕ
c using axiom ϕ852

that derives clause c. For any incorrect LLM rea-853

soning axiom ϕ, a Repair Axiom ϕ′ can be inserted854

such that P ϕ′
c will be produced before P ϕ

c .855

Proof. A proof P ϕ
c = Pc ∪ {ϕ} can be viewed856

as the combined set of clauses Pc and ϕ that857

derive clause c. We can define the proof score858

ρe(P ϕ
c ) of clause c by inductively unrolling Equa-859

tion 5 for ρe(c) over all ancestor clauses P ϕ
c that860

derive it. This yields a simple product form:861

ρe(P ϕ
c ) = ρentail

ϕ ·
∏

c′∈Pc
ρentail
c′ . Now, compar-862

ing two different derivations P ϕ
c and P ϕ′

c of c,863

we can easily show that ρe(P ϕ′
c ) > ρe(P ϕ

c ) since864

ρe(Pϕ′
c )

ρe(Pϕ
c ))

=
ρentail
ϕ′ ·

∏
c′∈Pc

ρentail
c′

ρentail
ϕ ·

∏
c′∈Pc

ρentail
c′

=
ρentail
ϕ′

ρentail
ϕ

> 1 given that865

the explicit Repair Axiom has ρentail
ϕ′ = 1 (by defi-866

nition) while the LLM entailment score ρentail
ϕ < 1867

(necessarily). Hence, the proof P ϕ′
c containing the868

Repair Axiom ϕ′ will always be given precedence869

over P ϕ
c according to the total ordering of Equa-870

tion 7 used to prioritize proofs in the LLM-TRes871

Algorithm 1.872

B Anecdotal Examples873

To offer deeper insight into the responses and874

proofs generated by LLM-TRes and the compar-875

ison baselines, this section presents anecdotal ex-876

amples illustrating each model’s performance on877

the evaluated tasks. Specifically, we showcase the878

outputs from the following models:879

• LLM-TRes880

• Chain of Thought prompting with Mistral881

• Chain of Thought prompting with Llama3882

• Chain of Thought prompting with Gemma883

• Chain of Thought prompting with GPT-3.5884

• LAMBADA885

We apply these models to three distinct tasks,886

offering a comparative analysis of their responses.887

Detailed anecdotal examples are provided to elu-888

cidate the models’ capabilities and limitations. In889

each anecdotal example, we present the query, the890

rule set (on datasets that contain it), and the ground891

truth proof, followed by the response that each892

model provides. We also indicate correct proof893

steps with green color and highlight incorrect ones 894

in red. 895

An example of the Deductive reasoning task, as 896

evaluated on the ProntoQA dataset, is detailed in 897

Section B.1. Additionally, we explore the models’ 898

performance on causal commonsense reasoning 899

using the COPA-SSE dataset and on preference 900

reasoning using the Recipe-MPR dataset, with ex- 901

amples discussed in Sections B.2 and B.3, respec- 902

tively. 903
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B.1 Deductive Reasoning904

Query: is x imaginary?
Rule set: Real numbers are numbers. Every real number is not imaginary. Each integer is a real number.
Natural numbers are integers. Each natural number is not negative. Every prime number is a natural
number. Each prime number is prime. Mersenne primes are prime numbers. Every Mersenne prime is
not composite. Complex numbers are imaginary. x is a Mersenne prime.
Ground Truth Proof: x is a Mersenne prime. Mersenne primes are prime numbers. Every prime number
is a natural number. Natural numbers are integers. Each integer is a real number. Every real number is
not imaginary. Answer: False.
LLM-TRes:

Proof for query imaginary(x):
Negated query: ¬imaginary(x)
Step 1-

¬imaginary(x) ¬complex(x) ∨ imaginary(x)
¬complex(x)

.

Step 2-
¬complex(x) ¬real(x) ∨ ¬imaginary(x)

¬real(x)
.

Step 3-
¬real(x) ¬integer(x) ∨ real(x)

¬integer(x)
.

Step 4-
¬integer (x) ¬natural number(x) ∨ integer(x)

¬natural number(x)
.

Step 5-
¬natural number(x) ¬prime number(x) ∨ natural number(x)

¬prime number(x)
.

Step 6-
¬prime number(x) ¬mersenne prime number(x) ∨ prime number(x)

¬mersenne prime number(x)
.

Step 7-
¬mersenne prime number(x) mersenne prime number(x)

⊥
.

Proof score: ρquery = (0.923, 7)
∗ ∗ ∗

Proof for negation of query ¬imaginary(x):
Negated query: imaginary(x)
Step 1-

imaginary(x) ¬real(x) ∨ ¬imaginary(x)
¬real(x)

.

Step 2-
¬real(x) ¬integer(x) ∨ real(x)

¬integer(x)
.
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Step 3-
¬integer (x) ¬natural number(x) ∨ integer(x)

¬natural number(x)
.

Step 4-
¬natural number(x) ¬prime number(x) ∨ natural number(x)

¬prime number(x)
.

Step 5-
¬prime number(x) ¬mersenne prime number(x) ∨ prime number(x)

¬mersenne prime number(x)
.

Step 6-
¬mersenne prime number(x) mersenne prime number(x)

⊥
.

Proof score: ρ¬query = (1, 6)
∗ ∗ ∗

Since ρe¬query > ρequery, the answer is False.
CoT with Mistral: 1. Rule 1: Every real number is not imaginary.
2. Rule 11: Complex numbers are imaginary.
3. Given:x is a Mersenne prime.
4. Rule 1: Every Mersenne prime is a real number (since it is a prime number and a prime number is a
real number).
5. Since x is a Mersenne prime and a real number, it is not imaginary by definition.
Therefore, the answer to the query is False.
CoT with Llama3: From the Knowledge Base, we know that “x is a Mersenne prime” (Rule 9).
From Rule 8, we know that “Every Mersenne prime is not composite”.
From Rule 7, we know that “Each prime number is prime”.
From Rule 6, we know that “Every prime number is a natural number”.
From Rule 5, we know that “Each natural number is not negative”.
From Rule 4, we know that “Natural numbers are integers”.
From Rule 3, we know that “Each integer is a real number”.
From Rule 2, we know that “Every real number is not imaginary”.
From Rule 1, we know that “Real numbers are numbers”.
Since x is a Mersenne prime, and Mersenne primes are not composite, and prime numbers are natural
numbers, and natural numbers are integers, and integers are real numbers, and real numbers are not
imaginary, we can conclude that x is not imaginary. Therefore, the answer to the query is False.
CoT with Gemma: I used the following rules from the Knowledge Base to answer the query:
“Real numbers are numbers”
“Every real number is not imaginary”
“Mersenne primes are prime numbers”
“Every Mersenne prime is not composite”
Answer: Therefore, the answer to the query is False.
CoT with GPT3.5: To answer this query, we will use the following rules from the Knowledge Base:
1. Each prime number is prime. 2. Each prime number is not composite. 3. x is a Mersenne prime. 4.
Every Mersenne prime is not composite. 5. Complex numbers are imaginary.
Proof: From rule 3 and rule 4, we can conclude that x is not a composite number. Since x is a Mersenne
prime, and every Mersenne prime is not composite (rule 4), we can infer that x is a prime number. From
rule 1, “Each prime number is prime”. Finally, from rule 5, “Complex numbers are imaginary”, we can
conclude that if x is a prime number and all prime numbers are prime, then x is not imaginary.
Therefore, the answer to the query is False.
LAMBADA: Begin proof from “x is imaginary.”
Fact selection: No fact proves this rule.
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Goal decomposition by selecting the next rule: “Complex numbers are imaginary.”
Goal decomposed to: x is a complex number.
Fact selection: found fact: Every Mersenne prime is not composite.
Fact verification failed. (the fact does not prove the subgoal.)
Goal decomposition by selecting the next rule: Complex numbers are imaginary.
Goal decomposed to: x is an imaginary number.
Fact selection: found fact: x is a Mersenne prime.
Fact verification failed. (the fact does not prove the subgoal.)
Goal decomposition by selecting the next rule: Complex numbers are imaginary.
Goal decomposition failed.
Since the query cannot be proven, it is False.
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B.2 Causal Commonsense Reasoning905

Query: The crowd intensified.
Options: 1- The father handed his son some money., 2- The father grabbed his son’s hand.
Answer: The father grabbed his son’s hand.
Rules: 1- (an intense crowd, capable of, making your son hard to find), 2- (making your son hard to
find, causes desire, keep an eye on son), 3- (keeping an eye on son, results in, grabbing son’s hand), 4-
(handing money to son, causes, son having money), 5- (father, capable of, handing money to son)
Ground Truth Proof: 1, 2, 3.
LLM-TRes:

Proof for Option 1:
Negation of query: ¬handing his son money(father)
Step 1-

¬handing his son money(father) ¬making son hard to find(x) ∨ keep an eye on son(x)
¬making son hard to find(man)

θ = [x/father].

Step 2-

¬making son hard to find(x) ¬intense crowd(x) ∨ could make finding son hard(x)
¬intense crowd(x)

θ = [x/father].

Step 3-

¬instense crowd(x) intensified crowd(x)
⊥

.

Proof score: ρoption1 = (0.005, 3)
∗ ∗ ∗

Proof for Option 2:
Negation of query: ¬grabbed son’s hand(father)
Step 1-

¬grabbed son’s hand(father) ¬making son hard to find(x) ∨ keep an eye on son(x)
¬making son hard to find(man)

θ = [x/father].

Step 2-

¬making son hard to find(x) ¬intense crowd(x) ∨ could make finding son hard(x)
¬intense crowd(x)

θ = [x/father].

Step 3-

¬instense crowd(x) intensified crowd(x)
⊥

.

Proof score: ρoption2 = (0.883, 3)
∗ ∗ ∗

Since ρeoption2 > ρeoption1, the answer is Option2.
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CoT with Mistral: Based on the given knowledge base, the consequence “The father grabbed his son’s
hand” is the more probable one.
Proof: According to the knowledge base, an intense crowd can make your son hard to find. This situation
would likely cause a desire in the father to keep a close eye on his son (rule: [“making your son hard to
find”, “causes desire”, “keep an eye on son”]). The rule [“keeping an eye on son”, “results in”, “grabbing
son’s hand”] states that keeping an eye on his son results in the father grabbing his son’s hand. Therefore,
the father grabbing his son’s hand is a more probable consequence given the knowledge base.
Additionally, the rule [“father”, “capable of”, “handing money to son”] states that a father is capable
of handing money to his son. However, there is no rule directly linking an intense crowd to the father
handing money to his son. Therefore, the probability of the father handing his son some money is lower
than the father grabbing his son’s hand.
CoT with Llama3: Consequence: The father handed his son some money.
Proof: The rules used from the Knowledge Base are:
1. [“father”, “CapableOf”, “handing money to son”] 2. [“handing money to son”, “Causes”,“son having
money”]
From the event “The crowd intensified”, we can infer that the crowd was intense, which is related to the
first rule. This rule states that a father is capable of handing money to his son. The second rule states that
handing money to son causes son having money. Therefore, we can conclude that the father handed his
son some money.
CoT with Gemma: The father handed his son some money.
(Gemma did not provide any proof for this query.)
CoT with GPT3.5: The father handed his son some money.
Proof: 1. “handing money to son”, “causes”, “son having money” (KB)
2. “father”, “capable of”, “handing money to son” (KB)
3. Therefore, the father handing money to his son can be inferred from the KB.
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B.3 Preference Reasoning906

Query: I’d like a seafood recipe with a kick to it.
Options: 1- Garlic shrimp., 2- Cajun catfish stew.
Answer: 2- Cajun catfish stew.
LLM-TRes: Please refer to Figure 1.
CoT with Mistral: The query asks for a seafood recipe with a kick to it. Option 1, Garlic shrimp, is a
classic seafood recipe that is known for its strong garlic flavor, but it doesn’t necessarily have a "kick" to
it. Option 2, Cajun catfish stew, on the other hand, is a spicy seafood dish that is known for its bold and
fiery flavors, which would provide the desired kick.
Therefore, the selected option is: 2. Cajun catfish stew.
CoT with Llama3: I think the most suitable option for a seafood recipe with a kick is the Cajun catfish
stew because it combines the bold flavors of Cajun cuisine with the richness of seafood, which is likely
to provide a spicy and savory experience.
Therefore, the selected option is: 2- Cajun catfish stew.
CoT with Gemma: The query calls for a seafood recipe with a kick. Garlic shrimp is a popular seafood
recipe that is known for its bold flavor and spicy kick.
Therefore, the selected option is: 1- Garlic shrimp.
CoT with GPT3.5: The query asks for a seafood recipe with a kick, which implies a dish with bold and
spicy flavors. While garlic shrimp is delicious, Cajun cuisine is known for its spicy and flavorful dishes,
making Cajun catfish stew a more suitable option for someone looking for a seafood recipe with a kick.,
the selected option is: 2. Cajun catfish stew.
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C Prompts Used for Language Models907

In this section, we provide prompts used in908

performing experiments with language models in909

this paper. They are also included in the repository910

containing our code and data.911

912

Prompt for Deductive Reasoning with Baselines913

Task: You will be given a query about an914
object x. You are a helpful and smart915
assistant trying to answer this query.916
In order to do this, a fact about x917
and a set of rules are provided to you918
in a Knowledge Base. Using these919
rules, you must both provide an answer920
to the query (the answer has to be921
"True" or "False") and give a proof of922
your answer by using the rules from923
Knowledge Base. Think step-by-step and924
try to use the rules one-by-one to925
answer the query. Begin your response926
by providing the proof and stating the927
rules you used from the knowledge base928
to give the answer. Then, give your929
final answer to the query by saying930
either "Therefore, the answer to the931
query is True" or "Therefore, the932
answer to the query is False" and not933
saying anything else.934

Query: {{ QUERY }}935
KB: {{ KB }}936

Prompt for Causal Commonsense Reasoning937

with Baseline LLMs938

Task: You will be given a sentence939
about an event. Also, a number of940
rules in the form of a Knowledge941
Base are presented to you. For942
this event, two possible943
consequences are given. You need944
to determine which of these945
consequences can be inferred from946
the event and the rules in the947
Knowledge Base. You must provide a948
proof for your answer by using the949
rules from the Knowledge Base.950
First, copy the consequence you951
think can be inferred. Then, in952
the next line, provide your proof953
by stating the rules you used from954
the Knowledge Base. Let's think955
step by step.956

957
Event: {{ EVENT }}958
KB: {{ KB }}959
Consequence1: {{ CONSEQUENCE1 }}960
Consequence2: {{ CONSEQUENCE2 }}961

Prompt for Preference Reasoning with Baseline962

LLMs963

Task: Consider the provided query and the964
set of options. You must pick the965
option that is most suitable for the966
query. Think step by step. First,967
explain your reason for why you968
think this recipe is the most969

proper. Remember that you have to 970
state the reason first. Then, 971
mention the most proper recipe by 972
saying: Therefore, the selected 973
option is: <option number>. 974

Query: {{ QUERY }} 975
Options: {{ OPTIONS }} 976

Prompt for Conversion of Natural Language KB 977

to Clausal Form 978

Task: you are a First-Order Logic expert. 979
A sentence written in Natural 980
Language will be presented to you. 981
Convert that sentence to First-Order 982
Logic. In this conversion, follow 983
these syntactic rules: 984

1- Instead of universal quantifier, write 985
FOR_ALL. 986

2- Write all predicates for the variable 987
(x) , even if the sentence refers to 988
a specific object. For example, "127 989
is an integer" must be converted to 990
"integer(x)" or "Bob is a cat" must 991
be converted to "cat(x)". 992

3- If the predicate name has multiple 993
parts, use _ instead of in the 994
name. 995

4- Instead of the implication symbol, use 996
=> . 997

5- Use ~ as the symbol of negation. 998
6- Only use lowercase letters for 999

predicate names. 1000
7- Even if the sentence is incorrect in 1001

your opinion, convert it to FOL 1002
given the stated rules without any 1003
further explanation. 1004

8- If the sentence is not in the format 1005
of a universal statement, just state 1006
it as a predicate. For example, "Bob 1007
is a cat" must be converted to 1008
"cat(x)". 1009

[few-shot examples] 1010
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