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Abstract

Existing observational approaches for learning human preferences, such as inverse
reinforcement learning, usually make strong assumptions about the observability
of the human’s environment. However, in reality, people make many important
decisions under uncertainty. To better understand preference learning in these
cases, we study the setting of inverse decision theory (IDT), a previously proposed
framework where a human is observed making non-sequential binary decisions
under uncertainty. In IDT, the human’s preferences are conveyed through their
loss function, which expresses a tradeoff between different types of mistakes.
We give the first statistical analysis of IDT, providing conditions necessary to
identify these preferences and characterizing the sample complexity—the number
of decisions that must be observed to learn the tradeoff the human is making to
a desired precision. Interestingly, we show that it is actually easier to identify
preferences when the decision problem is more uncertain. Furthermore, uncertain
decision problems allow us to relax the unrealistic assumption that the human is an
optimal decision maker but still identify their exact preferences; we give sample
complexities in this suboptimal case as well. Our analysis contradicts the intuition
that partial observability should make preference learning more difficult. It also
provides a first step towards understanding and improving preference learning
methods for uncertain and suboptimal humans.

1 Introduction

The problem of inferring human preferences has been studied for decades in fields such as inverse
reinforcement learning (IRL), preference elicitation, and active learning. However, there are still
several shortcomings in existing methods for preference learning. Active learning methods require
query access to a human; this is infeasible in many purely observational settings and may lead to
inaccuracies due to the description-experience gap [1]. IRL is an alternative preference learning tool
which requires only observations of human behavior. However, IRL suffers from underspecification,
i.e. preferences are not precisely identifiable from observed behavior [2]. Furthermore, nearly
all IRL methods require that the observed human is optimal or noisily optimal at optimizing for
their preferences. However, humans are often systematically suboptimal decision makers [3], and
accounting for this makes IRL even more underspecified, since it is hard to tell suboptimal behavior
for one set of preferences apart from optimal behavior for another set of preferences [4].

IRL and preference learning from observational data are generally applied in situations where a human
is acting under no uncertainty. Given the underspecification challenge, one might expect that adding
in the possibility of uncertainty in decision making (known as partial observability) would only make
preference learning more challenging. Indeed, Choi and Kim [5] and Chinaei and Chaib-Draa [6],
who worked to apply IRL to partially observable Markov decision processes (POMDPs, where agents
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Decisions without uncertainty Decisions under uncertainty

(a) Should I quarantine a traveler with a 100%
accurate negative test for a dangerous dis-
ease?

Should I quarantine a traveler with some
symptoms of a dangerous disease but no test
results?

(b) Should a person with irrefutable evidence of
and confession to a crime be convicted?

Should a person with circumstantial evi-
dence of a crime be convicted?

Figure 1: One of our key findings is that decisions made under uncertainty can reveal more preferences
than clear decisions. Here we give examples of decisions made with and without uncertainty. (a) In
the case without uncertainty, nobody would choose to quarantine the traveler, so we cannot distinguish
between different people’s preferences. However, in the case with uncertainty, people might decide
differently whether to quarantine the traveler depending on their preferences on the tradeoff between
individual freedom and public health. This allows us to identify those preferences by observing
decisions. (b) Similarly, observing decisions on whether to convict a person under uncertainty reveals
preferences about the tradeoff between convicting innocent people and allowing criminals to go free.

act under uncertainty), remarked that the underspecification of IRL combined with the intractability
of POMDPs made for a very difficult task.

In this work, we find that, surprisingly, observing humans making decisions under uncertainty actually
makes preference learning easier (see Figure 1). To show this, we analyze a simple setting, where a
human decision maker observes some information and must make a binary choice. This is somewhat
analogous to supervised learning, where a decision rule is chosen to minimize some loss function
over a data distribution. In our formulation, the goal is to learn the human decision maker’s loss
function by observing their decisions. Often, in supervised learning, the loss function is simply the
0-1 loss. However, humans may incorporate many other factors into their implicit “loss functions”;
they may weight different types of mistakes unequally or incorporate fairness constraints, for instance.
One might call this setting “inverse supervised learning,” but it is better described as inverse decision
theory (IDT) [7, 8], since the objective is to reverse-engineer only the human’s decision rule and not
any learning process used to arrive at it. IDT can be shown to be a special case of partially observable
IRL (see Appendix B) but its restricted assumptions allow more analysis than would be possible for
IRL in arbitrary POMDPs. However, we believe that the insights we gain from studying IDT should
be applicable to POMDPs and uncertain decision making settings in general. We introduce a formal
description of IDT in Section 3.

While we hope to provide insight into general reward learning, IDT is also a useful tool in its own right;
even in this binary, non-sequential setting, human decisions can reveal important preferences. For
example, during a deadly disease outbreak, a government might pass a law to quarantine individuals
with a chance of being sick. The decision rule the government uses to choose who to quarantine
depends on the relative costs of failing to quarantine a sick person versus accidentally quarantining
an uninfected one. In this way, even human decisions where there is a “right” answer are revealing
if they are made under uncertainty. This example could distinguish a preference for saving lives
versus one for guaranteeing freedom of movement. These preferences on the tradeoff between costs
of mistakes are expressed through the loss function that the decision maker optimizes.

In our main results on IDT in Section 4, we find that the identifiability of a human’s loss function is
dependent on whether the decision we observe them making involves uncertainty. If the human faces
sufficient uncertainty, we give tight sample complexity bounds on the number of decisions we must
observe to identify their loss function, and thus preferences, to any desired precision (Theorem 4.2).
On the other hand, if there is no uncertainty—i.e., the correct decision is always obvious—then we
show that there is no way to identify the loss function (Theorem 4.11 and Corollary 4.12). Technically,
we show that learning the loss function is equivalent to identifying a threshold function over the
space of posterior probabilities for which decision is correct given an observation (Figure 2). This
threshold can be determined to precision ε in Θ(1/(pcε)) samples, where pc is the probability density
of posterior probabilities around the threshold. In the case where there is no uncertainty in the
decision problem, pc = 0 and we demonstrate that the loss function cannot be identified.

These results apply to optimal human decision makers—that is, those who completely minimize their
expected loss. When a decision rule or policy is suboptimal, in general their loss function cannot be
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learned [4, 9]. However, we show that decisions made under uncertainty are also helpful in this case;
under certain models of suboptimality, we can still exactly recover the human’s loss function.

We present two such models of suboptimality (see Figure 3). In both, we assume that the decision
maker is restricting themselves to choosing a decision rule h in some hypothesis classH, which may
not include the optimal decision rule. This framework is similar to that of agnostic supervised learning
[10, 11], but solves the inverse problem of determining the loss function given a hypothesis class
and decision samples. If the restricted hypothesis classH is known, we show that the loss function
can be learned similarly to the optimal case (Theorem 4.7). Our analysis makes a novel connection
between Bayesian posterior probabilities and binary hypothesis classes. However, assuming thatH is
known is a strong assumption; for instance, we might suspect that a decision maker is ignoring some
data features but we may not know exactly which features. We formalize this case by assuming that
the decision maker could be considering the optimal decision rule in any of a number of hypothesis
classes in some family H. This case is more challenging because we may need to identify which
hypothesis class the human is using in order to identify their loss function. We show that, assuming a
smoothness condition on H, we can still obtain the decision maker’s loss function (Theorem 4.10).

We conclude with a discussion of our results and their implications in Section 5. We extend IDT
to more complex loss functions that can depend on certain attributes of the data in addition to the
chosen decision; we show that this extension can be used to test for the fairness of a decision rule
under certain criteria which were previously difficult to measure. We also compare the implications
of IDT for preference learning in uncertain versus clear decision problems. Our work shows that
uncertainty is helpful for preference learning and suggests how to exploit this fact.

2 Related Work

Our work builds upon that of Davies [8] and Swartz et al. [7], who first introduced inverse decision
theory. They describe how to apply IDT to settings in which a doctor makes treatment decisions
based on a few binary test outcomes, but provide no statistical analysis. In contrast, we explore
when IDT can be expected to succeed in more general cases and how many observed decisions are
necessary to infer the loss function. We also analyze cases where the decision maker is suboptimal
for their loss function, which are not considered by Davies or Swartz et al.

Inverse reinforcement learning (IRL) [2, 12, 13, 14, 15], also known as inverse optimal control, aims
to infer the reward function for an agent acting in a Markov decision process (MDP). Our formulation
of IDT can be considered as a special case of IRL in a partially observable MDP (POMDP) with
two states and two actions (see Appendix B). Some prior work explored IRL in POMDPs [5, 6] by
reducing the POMDP to a belief-state MDP and applying standard IRL algorithms. Our main purpose
is not to present improvements to IRL algorithms; rather, we give an analysis of the difference
between observable and partially observable settings for preference learning. We begin with the
restricted setting of IDT but hope to extend to sequential decision making in the future. We also
consider cases where the human decision maker is suboptimal, which previous work did not explore.

Performance metric elicitation (ME) aims to learn a loss function (aka performance metric) by
querying a human [16, 17, 18]. ME and other active learning approaches [19, 20, 21, 22] require the
ability to actively ask a user for their preference among different loss or reward functions. In contrast,
IDT aims to learn the loss function purely by observing a decision maker. Active learning is valuable
for some applications, but there are many cases where it is infeasible. Observed decisions are often
easier to obtain than expert feedback. Also, active learning may suffer from the description-experience
gap [1]; that is, it may be difficult to evaluate in the abstract the comparisons that these methods give
as queries to the user, leading to biased results. In contrast, observing human decision making “in the
wild” with IDT could lead to a more accurate understanding of human preferences.

Preference and risk elicitation aim to identify people’s preferences between different uncertain or
certain choices. A common tool is to ask a person to choose between a lottery (i.e., uncertain payoff)
and a guaranteed payoff, or between two lotteries, varying parameters and observing the resulting
choices [23, 24, 25]. In our analysis of IDT, decision making under uncertainty can be cast as a
natural series of choices between lotteries. If we observe enough different lotteries, the decision
maker’s preferences can be identified. On the other hand, if there is no uncertainty, then we only
observe choices between guaranteed payoffs and there is little information to characterize preferences.
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0 ĉ 1

(a) Uncertain decision

c−ε c c+ε 1
Probability that the ground truth Y = 1

pc

0 1

(b) Clear decision

0 1

(c) Suboptimal decision

Observed decisions
Ŷ = 0

Ŷ = 1

PDF of q(X)

Figure 2: A visualization of three settings for inverse decision theory (IDT), which aims to estimate
c, the parameter of a decision maker’s loss function, given observed decisions ŷ1, . . . , ŷm ∈ {0, 1}.
Here, each decision ŷi is plotted against the probability q(xi) = P(Y = 1 | X = xi) that the ground
truth (correct) decision Y is 1 given the decision maker’s observation xi. Lemma 4.1 shows that
an optimal decision rule assigns ŷi = 1{q(xi) ≥ c}. (a) For uncertain decision problems, IDT
can estimate c as the threshold of posterior probabilities q(xi) where the decision switches from 0
to 1 (Section 4.1). If the distribution of q(X) has probability density at least pc on [c − ε, c + ε],
Theorem 4.2 shows we can learn c to precision ε with m ≥ O(1/(pcε)) samples. (b) When there is
no uncertainty in the decision problem, IDT cannot characterize the loss parameter c because the
threshold between positive and negative decisions could be anywhere between 0 and 1 (Section 4.4).
(c) A suboptimal human decision maker does not use an optimal decision rule for any loss parameter
c, but we can often still estimate their preferences (Sections 4.2 and 4.3).

3 Problem Formulation

We formalize inverse decision theory using decision theory and statistical learning theory. Let D be a
distribution over observations X ∈ X and ground truth decisions Y ∈ {0, 1}. We consider an agent
that receives an observation X and must make a binary decision Ŷ ∈ {0, 1}. While many decision
problems include more than two choices, we consider the binary case to simplify analysis. However,
the results are applicable to decisions with larger numbers of choices; assuming irrelevance from
independent alternatives (i.e. the independence axiom [26]), a decision among many choices can be
reduced to binary choices between pairs of them. We generally assume that D is fixed and known
to both the decision maker and the IDT algorithm. Unless otherwise stated, all expectations and
probabilities on X and Y are with respect to the distribution D.

We furthermore assume that the agent has chosen a decision rule (or hypothesis) h : X → {0, 1}
from some hypothesis class H that minimizes a loss function which depends only on the decision
Ŷ = h(X) that was made and the correct decision Y :

h ∈ arg min
h∈H

E(X,Y )∼D [`(h(X), Y )] .

In general, the loss function ` might depend on the observation X as well; we explore this extension
in the context of fair decision making in Section 5.1. Assuming the formulation above, since
Y, Ŷ ∈ {0, 1} we can write the loss function ` as a matrix C ∈ R2×2 such that `(ŷ, y) = Cŷy. We
denote by RC(h) = E(X,Y )∼D [`(h(X), Y )] the expected loss or “risk” of the hypothesis h with
cost matrix C. This cost matrix has four entries, but the following lemma shows that it effectively has
only one degree of freedom.

Lemma 3.1 (Equivalence of cost matrices). Any cost matrix C = (C00 C01

C10 C11
) is equivalent to a cost

matrix C ′ = ( 0 1−c
c 0 ) where c = C10−C00

C10+C01−C00−C11
as long as C10 +C01 −C00 −C11 6= 0. That is,

there are constants a, b ∈ R such thatRC(h) = aRC′(h) + b for all h.

See Appendix A.1 for this and other proofs. Based on Lemma 3.1, from now on, we assume the
cost matrix only has one parameter c, which is the cost of a false positive; 1 − c is the cost of a
false negative. Intuitively, high values of c indicate a preference for erring towards the decision
Ŷ = 0 under uncertainty while low values indicate a preference for erring towards the decision
Ŷ = 1. Finally, we assume that making the correct decision is always better than making an incorrect
decision, i.e. C00 < C10 and C11 < C01. This implies that 0 < c < 1.
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All decision rules

hc
Optimal
decision
rule for loss
parameter c hc̃

Optimal
rule for c̃

(a) Optimal

H

hc

Optimal
decision
rule inH
for c

hc̃

(b) Known suboptimal

H̃

H

h̃cOptimal in
H̃ for c

h̃c̃

hc
Optimal in
H for c hc̃

(c) Unknown suboptimal

Figure 3: We analyze IDT for optimal decision makers and two cases of suboptimal decision makers.
(a) In the optimal case (Section 4.1), the decision maker chooses the optimal decision rule h for their
loss parameter c from all possible rules. (b) In the known suboptimal case (Section 4.2), the decision
maker chooses from a restricted hypothesis classH which may not contain the overall best decision
rule. (c) In the unknown suboptimal case (Section 4.3), the decision maker chooses any of several
hypothesis classes H ∈ H and then uses the optimal rule within that class, which may not be the
optimal rule amongst all classes. This case is more difficult than (b) because we often need to identify
the hypothesis classH in addition to the loss parameter c.

We write `c andRc to denote the loss and risk functions using this loss parameter c. Thus, we can
formally define a binary decision problem:

Definition 3.2 (Decision problem). A (binary) decision problem is a pair (D, c), where D is a
distribution over pairs of observations and correct decisions (X,Y ) ∈ X × {0, 1} and c ∈ (0, 1) is
the loss parameter. The decision maker aims to choose a decision rule h : X → {0, 1} that minimizes
the riskRc(h) = E(X,Y )∼D[`c(h(X), Y )].

As a running example, we consider the decision problem where an emergency room (ER) doctor
needs to decide whether to treat a patient for a heart attack. In this case, the observation X might
consist of the patient’s medical records and test results; the correct decision is Y = 1 if the patient
is having a heart attack and Y = 0 otherwise; and the made decision is Ŷ = 1 if the doctor treats
the patient and Ŷ = 0 if not. In this case, a higher value of c indicates that the doctor places higher
cost on accidentally treating a patient not having a heart attack, while a lower value of c indicates the
doctor places higher cost on accidentally failing to treat a patient with a heart attack.

In inverse decision theory (IDT), our goal is to determine the loss function the agent is optimizing,
which here is equivalent to the parameter c. We assume access to the true distribution D of observa-
tions and labels and also a finite sample of observations and decisions S = {(x1, ŷ1), . . . , (xm, ŷm)}
where xi ∼ D i.i.d. and the decisions are made according to the decision rule, i.e. ŷi = h(xi).

Some of our main results concern the effects on IDT of whether or not a decision is made under
uncertainty. We now formally characterize such decision problems.

Definition 3.3 (Decision problems with and without uncertainty). A decision problem (D, c)
has no uncertainty if P(X,Y )∼D(Y = 1 | X) ∈ {0, 1} almost surely. The decision problem has
uncertainty otherwise.

That is, if it is always the case that, after observing and conditioning on X , either Y = 1 with 100%
probability or Y = 0 with 100% probability, then the decision problem has no uncertainty.

4 Identifiability and Sample Complexity

We aim to answer two questions about IDT. First, under what assumptions is the loss function
identifiable? Second, if the loss function is identifiable, how large must the sample S be to estimate
c to some precision with high probability? We adopt a framework similar to that of probably
approximately correct (PAC) learning [27], and aim to calculate a ĉ such that with probability at
least 1 − δ with respect to the sample of observed decisions, |ĉ − c| ≤ ε. While PAC learning
typically focuses on test or prediction error, we instead focus on the estimation error for c. This
has multiple advantages. First, it allows for better understanding and prediction of human behavior
across distribution shift or in unseen environments [28]. Second, there are cases where we care about
the precise tradeoff the decision maker is optimizing for; for instance, in the ER doctor example,
there are guidelines on the tradeoff between different types of treatment errors and we may want
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to determine if doctors’ behavior aligns with these guidelines [3]. Third, if the decision maker is
suboptimal for their loss function (explored in Sections 4.2 and 4.3), we may not want to simply
replicate the suboptimal decisions, but find a better decision rule according to the loss function.

We consider three settings where we would like to estimate c, illustrated in Figure 3. First, we assume
that the decision maker is perfectly optimal for their loss function. This is similar to the framework
of Swartz et al. [7]. However, moving beyond their analysis, we present properties necessary for
identifiability and sample complexity rates. Second, we relax the assumption that the decision maker
is optimal, and instead assume that they only consider a restricted set of hypotheses H which is
known to us. Finally, we remove the assumption that we know the hypothesis class that the decision
maker is considering. Instead, we consider a family of hypothesis classes; the decision maker could
choose the optimal decision rule within any class, which is not necessarily the optimal decision rule
across all classes.

4.1 Optimal decision maker

First, we assume that the decision maker is optimal. In this case, the form of the optimal decision
rule is simply the Bayes classifier [29].
Lemma 4.1 (Bayes optimal decision rule). An optimal decision rule h for a decision problem
(D, c) is given by h(x) = 1{q(x) ≥ c} where q(x) = P(X,Y )∼D(Y = 1 | X = x) is the posterior
probability of class 1 given the observation x.

That is, any optimal decision rule corresponds to a threshold function on the posterior probability
q(x), where the threshold is at the loss parameter c. Thus, the strategy for estimating c from a sample
of observations and decisions is simple. For each observation xi, we calculate q(xi). Then, we
choose any ĉ such that q(xi) ≥ ĉ ⇔ ŷi = 1; that is, ĉ is consistent with the observed data. From
statistical learning theory, we know that a threshold function can be PAC learned in O(log(1/δ)/ε)
samples. However, such learning only guarantees low prediction error of the learned hypothesis. We
need stronger conditions to ensure that ĉ is close to the true loss function parameter c. The following
theorem states conditions which allow estimation of c to arbitrary precision.
Theorem 4.2 (IDT for optimal decision maker). Let ε > 0 and δ > 0. Say that there exists pc > 0
such that P(q(X) ∈ (c, c + ε]) ≥ pcε and P(q(X) ∈ [c − ε, c)) ≥ pcε. Let ĉ be chosen to be
consistent with the observed decisions as stated above, i.e. q(xi) ≥ ĉ⇔ ŷi = 1. Then |ĉ− c| ≤ ε

with probability at least 1− δ as long as the number of samples m ≥ log(2/δ)
pcε

.

The parameter pc can be interpreted as the approximate probability density of q(X) around the
threshold c. For instance, the requirements of Theorem 4.2 are satisfied if the random variable q(X)
has a probability density of at least pc on the interval [c− ρ, c+ ρ] for some ρ ≥ ε; the requirements
of Theorem 4.2 are more general to allow for cases when q(X) does not have a density. The lower the
density pc, and thus the probability of observing decisions close to the threshold c, the more difficult
inference becomes. Because of this, Theorem 4.2 requires that the decision problem has uncertainty.
If the decision problem has no uncertainty according to Definition 3.3, then q(X) ∈ {0, 1} always,
i.e. the distribution of posterior probabilities has mass only at 0 and 1. In this case, pc = 0 for small
enough ε and Theorem 4.2 cannot be applied. In fact, as we show in Section 4.4, it is impossible
to tell what the true loss parameter c when the decision problem lacks uncertainty. Figure 2(a-b)
illustrates these results.

4.2 Suboptimal decision maker with known hypothesis class

Next, we consider cases where the decision maker may not be optimal with respect to their loss
function. Our model of suboptimality is that the agent only considers decision rules within some
hypothesis classH, which may not include the optimal decision rule. This formulation is similar to
that of agnostic PAC learning [10, 11]. It can also be considered a case of a restricted “choice set” as
defined in the preference learning literature [30, 31]. It can encompass many types of irrationality
or suboptimality. For instance, one could assume that the decision maker is ignoring some of the
features in x; thenH would consist of only decision rules depending on the remaining features. In
the ER doctor example, we might assume thatH consists of decision rules using only the patient’s
blood pressure and heart rate; this models a suboptimal doctor who is unable to use more data to
make a treatment decision.
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While there are many possible models of suboptimality, this one has distinct advantages for preference
learning with IDT. One alternative model is that the decision maker has small excess risk, i.e.
Rc(h) ≤ Rc(h∗) + ∆ for some small ∆ where h∗ is the optimal decision rule. However, this
definition precludes identifiability even in the infinite sample limit (see Appendix C). Another form
of suboptimality could be that the decision maker chooses a decision rule to minimize a surrogate
loss rather than the true loss. However, we show in Appendix F that for reasonable surrogate losses
this is no different from minimizing the true loss. A final alternative model of suboptimality is that
the human is noisily optimal; this assumption underlies models like Boltzmann rationality or the
Shephard-Luce choice rule [32, 26, 33, 14]. However, these models assume stochastic decision
making and also cannot handle systematically suboptimal humans.

In this section we begin by assuming that the restricted hypothesis classH is known; this requires
some novel analysis but the resulting identifiability conditions and sample complexity are very similar
to the optimal case in Section 4.1. In the next section, we consider cases where we are unsure about
which restricted hypothesis class the decision maker is considering.
Definition 4.3. A hypothesis classH is monotone if for any h, h′ ∈ H, either h(x) ≥ h′(x) ∀x ∈ X
or h(x) ≤ h′(x) ∀x ∈ X .
Definition 4.4. The optimal subset of a hypothesis classH for a distribution D is defined as

optD(H) = {h ∈ H | ∃c such that h ∈ arg minh∈HRc(h)}

In this section, we consider hypothesis classes whose optimal subsets are monotone. That is, changing
the parameter c has to either flip the optimal decision rule’s output for some observations from 0 to
1, or flip some decisions from 1 to 0. It cannot both change some decisions from 0 to 1 and some
from 1 to 0. This assumption is mainly technical; many interesting hypothesis classes naturally have
monotone optimal subsets. Any hypothesis class formed by thresholding a function is monotone, i.e
H = {h(x) = 1{f(x) ≥ b} | b ∈ R}. Also, the set of decision rules based on a particular subset of
the observed features satisfies this criterion, since optimal decision rules in this set are thresholds on
the posterior probability that Y = 1 given the subset of features.

For hypothesis classes with monotone optimal subsets, we can prove properties that allow for similar
analysis to that we introduced in Section 4.1. Let hc denote a decision rule which is optimal for loss
parameter c in hypothesis class H. That is, hc ∈ arg minh∈HRc(h). A key lemma allows us to
define a value similar to the posterior probability we used for analyzing the optimal decision maker.
Lemma 4.5 (Induced posterior probability). Let optD(H) be monotone and define

qH(x) , sup
(
{c ∈ [0, 1] | hc(x) = 1}∪{0}

)
and qH(x) , inf

(
{c ∈ [0, 1] | hc(x) = 0}∪{1}

)
.

Then for all x ∈ X , qH(x) = qH(x). Define the induced posterior probability of H as qH(x) ,
qH(x) = qH(x).

Corollary 4.6. Let hc be any optimal decision rule inH for loss parameter c. Then for any x ∈ X ,
hc(x) = 1 if qH(x) > c and hc(x) = 0 if qH(x) < c.

Using Lemma 4.5, the problem of IDT again reduces to learning a threshold; this time, any optimal
classifier in H is a threshold function on the induced posterior probability qH(X), as shown in
Corollary 4.6. Thus, to estimate ĉ, we calculate an induced posterior probability qH(xi) for each
observation xi and choose any estimate ĉ such that qH(xi) ≥ ĉ⇔ ŷi = 1. This allows us to state a
theorem equivalent to Theorem 4.2 for the suboptimal case.
Theorem 4.7 (Known suboptimal decision maker). Let ε > 0 and δ > 0, and let optD(H) be
monotone. Say that there exists pc > 0 such that P(qH(X) ∈ (c, c+ ε]) ≥ pcε and P(qH(X) ∈ [c−
ε, c)) ≥ pcε. Let ĉ be chosen to be consistent with the observed decisions, i.e. qH(xi) ≥ ĉ⇔ ŷi = 1.
Then |ĉ− c| ≤ ε with probability at least 1− δ as long as the number of samples m ≥ log(2/δ)

pcε
.

4.3 Suboptimal decision maker with unknown hypothesis class

We now analyze the case when the decision maker is suboptimal but we are not sure in what manner.
We model this by considering a family of hypothesis classes H. We assume that the decision maker
considers one of these hypothesis classes H ∈ H and then chooses a rule h ∈ arg minh∈HRc(h).
This case is more challenging because we may need to identifyH to identify c.
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One natural family H consists of hypothesis classes which depend only on some subset of the features:

Hfeat , {HS | S ⊆ {1, . . . , n}} where HS ,
{
h(x) = f(xS) | f : R|S| → {0, 1}

}
(1)

where xS denotes only the coordinates of x which are in the set S. This models a situation where we
believe the decision maker may be ignoring some features, but we are not sure which features are
being ignored. Another possibility for H is thresholded linear combinations of the features in x, i.e.

Hlinear , {Hw | w ∈ Rn} where Hw ,
{
h(x) = 1{w>x ≥ b} | b ∈ R

}
.

In this case, we assume that the decision maker chooses some weights w for the features arbitrarily
but then thresholds the combination optimally. This could model the decision maker under- or
over-weighting certain features, or also ignoring some (if wj = 0 for some j).

In the high pressure and hectic environment of the ER example, we might assume that the doctor is
using only a few pieces of data to decide whether to treat a patient. Here, Hfeat would consist of a
hypothesis class with decision rules that depend only on blood pressure and heart rate, a hypothesis
class with decision rules that rely on these and also on an ECG, and so on. The difficulty of this
setting compared to that of Section 4.2 is that the doctor could be using an optimal decision rule
within any of these hypothesis classes. Thus, we may need to identify what data the doctor is using in
their decision rule in order to identify their loss parameter c.

Estimating the loss parameter c in the unknown hypothesis class case requires an additional assump-
tion on the family of hypothesis classes H, in addition to the monotonicity assumption from Section
4.2.
Definition 4.8. Consider a family of hypothesis classes H. Let h ∈ H ∈ H and H̃ ∈ H. Then the
minimum disagreement between h and H̃ is defined as MD(h, H̃) , inf h̃∈H̃ P

(
h̃(X) 6= h(X)

)
.

Definition 4.9. A family of hypothesis classes H and hypothesis hc ∈ H ∈ H such that hc ∈
arg minh∈HRc(h) is α-MD-smooth if optD(H̃) is monotone for every H̃ ∈ H and

∀H̃ ∈ H ∀c′ ∈ (0, 1) MD(hc′ , optD(H̃)) ≤ (1 + α|c′ − c|)MD(hc, optD(H̃)).

While MD-smoothness is not particularly intuitive at first, it is necessary in some cases to ensure
identifiability of the loss parameter c. We present a case in Appendix D.2 where a lack of MD-
smoothness precludes identifiability.
Theorem 4.10 (Unknown suboptimal decision maker). Let ε > 0 and δ > 0. Suppose we observe
decisions from a decision rule hc which is optimal for loss parameter c in hypothesis classH ∈ H.
Let hc and H be α-MD-smooth. Furthermore, assume that there exists pc > 0 such that for any
ρ ≤ ε, P(qH(X) ∈ (c, c+ ρ)) ≥ pcρ and P(qH(X) ∈ (c− ρ, c)) ≥ pcρ. Let d ≥ VCdim (∪H∈HH)
be an upper bound on the VC-dimension of the union of all the hypothesis classes in H.

Let ĥĉ ∈ arg minĥ∈ĤRĉ(ĥ) be chosen to be consistent with the observed decisions, i.e. ĥĉ(xi) = ŷi
for i = 1, . . . ,m. Then |ĉ− c| ≤ ε with probability at least 1− δ as long as the number of samples

m ≥ Õ
[(
α
ε + 1

ε2

) (d+log(1/δ)
pc

)]
.

Theorem 4.10 requires more decision samples to guarantee low estimation error |ĉ − c|. Unlike
Theorems 4.2 and 4.7, the number of samples needed grow with the square of the desired precision
1/ε2. There is also a dependence on the VC-dimension of the hypothesis classesH ∈ H, since we
are not sure which one the decision maker is considering.

Since our results in this section are highly general, it may be difficult to see how they apply to
concrete cases. In Appendix E, we explore the specific case of IDT in the unknown hypothesis class
setting for Hfeat as defined in (1). We give sufficient conditions for MD-smoothness to hold and show
that the sample complexity grows only logaramithically with n, the dimension of the observation
space X , if the decision maker is relying on a sparse set of features.

4.4 Lower bounds

Is there any algorithm which can always determine the loss parameter c to precision ε with high
probability using fewer samples than required by Theorems 4.2 and 4.7? We show that the answer
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is no: our previously given sample complexity rates are minimax optimal up to constant factors.
We formalize this by considering any generic IDT algorithm, which we represent as a function
ĉ : (X × {0, 1})m → (0, 1). The algorithm maps the sample of observations and decisions S
to an estimated loss parameter ĉ(S). The algorithm also takes as input the distribution D and in
the suboptimal cases the hypothesis class H or family of hypothesis classes H, but we leave this
dependence implicit in our notation. First, we consider the optimal (Theorem 4.2) and known
suboptimal (Theorem 4.7) cases; since these are nearly identical, we focus on the optimal case.
Theorem 4.11 (Lower bound for optimal decision maker). Fix 0 < ε < 1/4, 0 < δ ≤ 1/2, and
0 < pc ≤ 1/8ε. Then for any IDT algorithm ĉ(·), there exists a decision problem (D, c) satisfying the
conditions of Theorem 4.7 such that m < log(1/2δ)

8pcε
implies that P(|ĉ(S)− c| ≥ ε) > δ.

Corollary 4.12 (Lack of uncertainty precludes identifiability). Fix 0 < ε < 1/4 and suppose
a decision problem (D, c) has no uncertainty. Then for any IDT algorithm ĉ(·), there is a loss
parameter c and hypothesis classH such that for any sample size m, P(|ĉ(S)− c| ≥ ε) ≥ 1/2.

Corollary 4.12 shows that a lack of uncertainty in the decision problem means that no algorithm
can learn the loss parameter c to a non-trivial precision with high probability. Thus, uncertainty is
required for IDT to learn the loss parameter c. Since c represents the preferences of the decision
maker, decisions made under certainty do not reveal precise preference information. In Appendix D,
we explore lower bounds for the unknown suboptimal case (Section 4.3 and Theorem 4.10).

5 Discussion

Now that we have thoroughly analyzed IDT, we explore its applications, implications, and limitations.

5.1 IDT for fine-grained loss functions with applications to fairness

First, we discuss an extension of IDT to loss functions which depend not only on the chosen decision
Ŷ = h(X) and the ground truth Y , but on the observation X as well. In particular, we extend the
formulation of IDT from Section 3 to include loss functions which depend on the observations via a
“sensitive attribute” A ∈ A. We denote the value of the sensitive attribute for an observation x by
a(x). We again assume that the decision maker chooses the optimal decision rule for this extended
loss function:

h ∈ arg minh E(X,Y )∼D[`(h(X), Y, a(X))]. (2)
This optimal decision rule h ∈ H is equivalent to a set of decision rules for every value of A, each of
which is chosen to minimize the conditional risk for observations with that attribute value:

h(x) = ha(x)(x) where ha ∈ arg min
h

E(X,Y )∼D[`(h(X), Y, a) | a(X) = a].

In this formulation, each attribute-specific decision rule ha minimizes an expected loss which only
depends on the made and correct decisions h(X) and Y over a conditional distribution. Thus, we
can split a sample of decisions into samples for each value of the sensitive attribute and perform IDT
separately. This will result in a loss parameter estimate ĉa for each value of a.

Once we have estimated loss parameters for each value of A, we may ask if the decision maker is
applying the same loss function across all such values, i.e. if ca = ca′ for any a, a′ ∈ A. If the loss
function is not identical for all values of A, i.e. if ca 6= ca′ , then one might conclude that the decision
maker is unfair or discriminatory against observations with certain values of A. For instance, in the
ER example, we might be concerned if the doctor is using different loss functions for patients with
and without insurance. Concepts like these have received extensive treatment in the machine learning
fairness literature, which studies criteria for when a decision rule can be considered “fair.” One such
fairness criterion is that of group calibration, also known as sufficiency [34, 35, 36]:
Definition 5.1. A decision rule h : X → {0, 1} for a distribution (X,Y ) ∼ D satisfies the group
calibration/sufficiency fairness criterion if there is a function r : X → R and threshold t ∈ R such
that h(x) = 1{r(x) ≥ t} and r satisfies Y ⊥⊥ A | r(X).

Testing for group calibration is known to be difficult because of the problem of infra-marginality [37].
While complex Bayesian models have previously been used to perform a “threshold test” for group
calibration, we can use IDT to directly test this criterion in an observed decision maker:
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Lemma 5.2 (Equal loss parameters imply group calibration). Let h be chosen as in (2) where
`(ŷ, y, a) = ca if ŷ = 1 and y = 0, `(ŷ, y, a) = 1 − ca if ŷ = 0 and y = 1, and `(ŷ, y, a) = 0
otherwise. Then h satisfies group calibration (sufficiency) if ca = ca′ for every a, a′ ∈ A.

Conversely, if there exist a, a′ ∈ A such that ca 6= c′a and P(q(X) ∈ (ca, ca′)) > 0, then h does not
satisfy group calibration.

If we can estimate ca for a decision rule h for each a ∈ A, then Lemma 5.2 allows us to immediately
determine if h satisfies sufficiency. The minimax guarantees on the accuracy of IDT may make this
approach more attractive than the Bayesian threshold test in many scenarios.

5.2 Suboptimal decision making with and without uncertainty

We have so far compared the effect of decisions made with and without uncertainty on the identifia-
bility of preferences; here, we argue that uncertainty also allows for much more expressive models
of suboptimality in decision making. In decisions made with certainty, suboptimality can generally
only take two forms: either the decision maker is noisy and sometimes randomly makes incorrect
decisions, or the decision maker is systematically suboptimal and always makes the wrong decision.
Neither seems realistic in the ER doctor example: we would not expect to the doctor to randomly
choose not to treat some patients who are clearly having heart attacks, and certainly not expect them
to never treat patients having heart attacks. In contrast, the models of suboptimality we have presented
for uncertain decisions allow for much more rich and realistic forms of suboptimal decision making,
like ignoring certain data or over-/under-weighting evidence. We expect that there are similarly more
rich forms of suboptimality for uncertain sequential decision problems.

5.3 Limitations and future work

While this study sheds significant light on preference learning for uncertain humans, there are some
limitations that may be addressed by future work. First, while we assume the data distribution
D of observations X and ground truth decisions Y is known, this is rarely satisfied in practice.
However, statistics is replete with methods for estimating properties of a data distribution given
samples from it. Such methods are beyond the scope of this work, which focuses on the less-studied
problem of inferring a decision maker’s loss function. Our work also lacks computational analysis of
algorithms for performing IDT. However, such algorithms are likely straightforward; we decide to
focus on the statistical properties of IDT, which are more relevant for preference learning in general.
Finally, we assume in this work that the decision maker is maximizing expected utility (EU), or
equivalently minimizing expected loss. In reality, human decision making may not agree with EU
theory; alternative models of decision making under uncertainty such as prospect theory are discussed
in the behavioral economics literature [38]. Some work has applied these models to statistical learning
[39], but we leave their implications for IDT to future work.

6 Conclusion and Societal Impact

We have presented an analysis of preference learning for uncertain humans through the setting of
inverse decision theory. Our principle findings are that decisions made under uncertainty can reveal
more preference information than obvious ones; and, that uncertainty can alleviate underspecification
in preference learning, even in the case of suboptimal decision making. We hope that this and other
work on preference learning will lead to AI systems which better understand human preferences and
can thus better fulfill them. However, improved understanding of humans could also be applied by
malicious actors to manipulate people or invade their privacy. Additionally, building AI systems
which learn from human decisions could reproduce racism, sexism, and other harmful biases which
are widespread in human decision-making. Despite these concerns, understanding human preferences
is important for the long-term positive impact of AI systems. Our work shows that uncertain decisions
can be a valuable source of such preference information.
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