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Abstract

One of the central goals of neuroscience is to gain a mechanistic understanding
of how the dynamics of neural circuits give rise to their observed function. A
popular approach towards this end is to train recurrent neural networks (RNNs)
to reproduce experimental recordings of neural activity. These trained RNNs are
then treated as surrogate models of biological neural circuits, whose properties
can be dissected via dynamical systems analysis. How reliable are the mechanistic
insights derived from this procedure? While recent advances in population-level
recording technologies have allowed simultaneous recording of up to tens of thou-
sands of neurons, this represents only a tiny fraction of most cortical circuits. Here
we show that observing only a subset of neurons in a circuit can create mecha-
nistic mismatches between a simulated teacher network and a data-constrained
student, even when the two networks have matching single-unit dynamics. Our
results illustrate the challenges inherent in accurately uncovering neural mech-
anisms from single-trial data, and suggest the need for new methods of validating
data-constrained models for neural dynamics.

1 Introduction

In recent years, advances in recording techniques have brought forth a deluge of neural data. Simul-
taneous measurements of the activity of hundreds to thousands of neurons can now be obtained at
high spatiotemporal resolution [1–3]. These methods are increasingly deployed to perform longitudi-
nal recordings in animals executing quasi-naturalistic behaviors or complex tasks [2–7], meaning
that one may not have recourse to repeatable trial structure when analyzing these data [8]. A critical
question for contemporary systems neuroscience then arises: How can mechanistic insights about the
neural dynamics underlying animal behavior be extracted from large-scale recordings [3, 5, 7, 9, 10]?

A popular approach to this problem is to optimize a recurrent neural network (RNN) to mimic the
recorded neural activity, and then analyze that RNN to generate hypotheses about the corresponding
biological neural populations [9, 11–20]. However, data-driven models of neural dynamics are
constructed under a number of less-than-ideal conditions, including partial observation of the target
neural population, neuronal and measurement noise, and significant architecture mismatch between
model and biology. Even in the unrealistic scenario where the activity of every relevant neuron
is recorded, exactly inferring synaptic weights from dynamical measurements alone is extremely
challenging [21]. A more modest hope is that data-constrained models should be able to capture the
mechanistic dynamical properties of ground-truth circuits at a qualitative level—that is, to recapitulate
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slow time scales, unstable directions, oscillatory dynamics, and attractors [9, 12–14, 17, 19, 22, 23].
These macroscopic dynamical properties are of substantial neuroscientific interest, as low-dimensional
attractors are believed to underlie observed neural activity across a variety of neural circuits and
tasks [12, 13, 22, 24–26]. Indeed, several recent papers have used data-constrained models with low-
dimensional latent RNN dynamics to propose that line attractors underlie the accumulation of internal
drives and of external reward [12, 13, 27, 28].

However, despite some positive examples [14, 19], previous works have not mapped out how partial
observation affects whether data-driven modeling can accurately recover low-dimensional attractor
structure. To address this question, in this paper, we consider a teacher-student setup in which activity
from one RNN is imitated by another, and show that partial observation can induce mechanistic
mismatches even under relatively ideal conditions where the input to a circuit is either perfectly known
or white noise, and where the single-unit dynamics of the student match the teacher. Our results
begin to illuminate the inductive biases of data-constrained RNNs trained under partial observation
towards particular mechanisms of generating long timescales. They suggest that caution is warranted
in inferring mechanism from data-constrained models, and underscore the primacy of direct activity
perturbations for validating putative attractor dynamics [23].

2 A motivating example: data-constrained modeling of integrator circuits

The circuit basis for temporal integration of scalar sensory inputs is a longstanding question in systems
neuroscience [12, 22, 24, 25, 29–38]. Though many models for integrator circuits have been proposed
[24, 33, 34, 37, 39], two linear RNN models are perhaps the most prominent: the line attractor
[24, 37], and the feedforward chain [33, 34]. Both of these models have extremely simple dynamics

τ ż = −z+ Jz+ bu

for state z ∈ RD, recurrent weights J ∈ RD×D, and input u(t) ∈ R encoded through b ∈ RD.
However, they posit structurally distinct mechanisms for how memories can be maintained beyond
the single-unit time constant τ . In classic line attractor networks, the recurrent weights are chosen to
be symmetric, and one eigenvalue of J is tuned to be precisely equal to one, with the rest being less
than one. Then, by choosing the input weights b to align with the corresponding eigenvector, one
obtains a perfect integrator of the signal u(t) [24] (App. A). In contrast, a functionally feedforward
chain maintains a memory by iteratively passing signals from one mode of activity to the next (Fig.
1; App. A) [33, 34]. Such networks are more robust to mistuning of synaptic strengths than line
attractor networks, but they can only sustain a memory over O(τD) time. Importantly, the dynamics
of such a network are highly non-normal; the recurrent connectivity matrix J has all eigenvalues
equal to zero. Here, inspired by [32], we add skip connections from each mode to the last mode in
the chain (Fig. 1; App. A). This guarantees that, like the line attractor network, the activity produced
by the functionally feedforward network is approximately low-dimensional.

Given the simplicity and ubiquity of these models, we first asked whether data-constrained modeling
could robustly distinguish between them. We constructed a model sensory integration task, which
networks of both architectures could effectively solve (Fig. 1). Using standard variational inference
methods [13, 18], we fit recordings of 5% of the neurons from each network with a latent linear
dynamical system (LDS), which models the neural activity as a linear projection of a low-dimensional
latent RNN [18] (App. F).

Though the data-constrained models do an excellent job of capturing the activity recorded from both
the line attractor and the feedforward chain, analyzing the latent dynamics matrices reveals that
both networks are interpreted as approximate line attractors (Fig. 1). In particular, the spectrum of
eigenvalues λ̂i of each LDS dynamics matrix induces a spectrum of decay time constants τ̂i = τ/|1−
ℜλ̂i| (in continuous time; see App. A and B.3) [13, 40]. Previous works have identified networks
with large gaps between the top two timescales as approximate line attractors [13, 40]. As a simple
metric, Nair et al. [13] defined a “line attractor score” log2(τ̂1/τ̂2), and interpreted scores greater
than 1 as indicative of approximate line attractors. The LDS models fitted to these mechanistically
different integrator circuits each have a single slow direction, with a line attractor score in excess
of 6 (Fig. 1). However, visualising the flow fields of the ground truth and data-constrained models
shows that the dynamics of the line attractor are qualitatively recovered well, while the model fit to
recordings of the feedforward chain shows a strong mismatch as it discovers a spurious line attractor
(Fig. 1). Therefore, data-driven modeling fails to distinguish circuit hypotheses for this simple task.

2



a
i) ii)

iii) iv)

v) vi)

Time

Ac
tiv

ity

...

. . .
mode 1 mode 2 mode D

b
i) ii)

iii) iv)

v) vi)

Time

Ac
tiv

ity

...

. . .
mode 1 mode 2 mode D

Figure 1: Data-constrained models fail to distinguish between mechanistically different sensory
integration circuits. a. Recovery of a line attractor through data-constrained modeling. i). Schematic
of integrator network, showing the subsampled neurons (blue), and its interpretation as a set of
independent self-excitatory modes. ii). Input signal (top) and its integral (bottom) as estimated by the
network (green) and computed exactly (black). iii). Example activity traces from the true network
(top) and an LDS fit to observations of 5% of its neurons (bottom). iv). Spectrum of time constants
for the data-constrained LDS model (main figure) and for the top five time constants of the true circuit
(inset). Both show a single large time constant, indicating approximate line attractor dynamics. v-vi).
Flow field in the space of the top two principal components of activity for the LDS model (v) and
line attractor network (vi). Shading indicates the magnitude of the flow, while arrows indicate its
direction. Observed activity is shown by dots colored by their time. The learned flow field shows
good qualitative agreement with the ground truth; both networks have a slow line along which the
observed activity is driven. b. As in a, but for a functionally-feedforward integrator circuit. As
diagrammed in (i), this network can be thought of as a set of non-self-exciting modes which are
connected in a feedforward chain. Though this network solves the integration task (ii) and the LDS
fit is good (iii), the LDS identifies a single long time constant that is not present in the true dynamics
(iv). The learned (v) and ground-truth (vi) flow fields correspondingly do not match, with the activity
lying off the slow line of the true dynamics. See Appendix F for detailed experimental methods.

3 A tractable model setting: noise-driven linear networks

Motivated by the observations of the previous section, we now seek a setting in which we can
analytically study the structure of the student RNN’s weight matrix. Whereas in §2 we assumed the
teacher networks were driven by a known low-dimensional signal, here we consider the case in which
the teacher and student are driven by isotropic Gaussian noise. This is an optimistic assumption, as it
means that the teacher network will explore all directions in its phase space evenly over the course of
a single long trial [34].

Concretely, we consider a teacher-student setup in which both networks are rate-based linear RNNs
driven by isotropic Gaussian noise. The teacher has D neurons and a recurrent weight matrix B, such
that the dynamics of its firing rate vector z(t) ∈ RD is

τ ż = −z+Bz+ ξ(t)

where ξ(t) is white Gaussian noise. The student’s dynamics are identical, except that it has d neurons,
recurrent weights A, and driving noise η(t), such that its rate x(t) ∈ Rd evolves as

τ ẋ = −x+Ax+ η(t).
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Figure 2: Partial observation of symmetric teacher networks does not lead to spurious attractor
dynamics in a data-constrained student network. a. Ground truth teacher (red) and learned student
(blue) dynamics matrix eigenvalues. (i),(ii): symmetric teacher without attractor structure. (iii),(iv):
symmetric teacher that is an approximate line attractor. (i),(iii): for infinite observation time. (ii),(iv):
for a finite observation time window. b. Flow fields of learned (student) and ground truth (teacher)
networks for a finite observation window. (i),(ii): symmetric teacher without attractor structure.
(iii),(iv): symmetric teacher that is an approximate line attractor. All plots correspond to 5% partial
observation. See Appendix F for detailed experimental methods.

Then, the task is to estimate the student’s dynamics matrix A given access only to partial observations
of the teacher’s activity. For simplicity, we assume that we observe the first d neurons of the teacher
network for time T , i.e., we observe

xobs(t) = Pz(t) for t ∈ [0, T ] and P = (Id, 0d×(D−d)).

Assuming an isotropic Gaussian prior Aij ∼i.i.d. N (0, 1/(ρT )) scaled such that the long-time limit
is well-defined, we show in Appendix B that the maximum a posteriori (MAP) estimate of A can
be computed explicitly in terms of empirical covariances of xobs(t) [41–44]. We focus on the limit
T → ∞, where these covariances can be computed using classical results on stationary states of
Ornstein-Uhlenbeck processes (see App. B) [45, 46]. In the fully-observed case, the zero-ridge limit
of the MAP recovers the teacher dynamics matrix, i.e., limρ↓0 Â∞|d=D = B. Our task is then to
analyze the spectrum of Â∞ for various choices of B, as for linear networks the eigenspectrum fully
determines the (approximate) attractor structure [24].

3.1 Normal dynamics

We begin by considering teacher networks with normal connectivity matrices (BB⊤ = B⊤B).
This includes attractor networks like the idealized line attractor, which have symmetric connectivity
(B = B⊤), and when driven by noise have an equilibrium stationary state [45, 46]. For such teachers,
we show in Appendix C that partial observation does not lead to overestimation of timescales
under MAP inference. Ordering the eigenvalues of B in descending order of their real parts as
1 > ℜ(λ1) ≥ ℜ(λ2) ≥ · · · ≥ ℜ(λD), the eigenvalues λ̂i of the student’s dynamics matrix Â∞
satisfy ℜ(λ1) ≥ ℜ(λ̂i) ≥ ℜ(λD) for all 1 ≤ i ≤ d. However, this positive recovery result does not
exclude the possibility that the spectrum of the student’s dynamics matrix will have qualitatively
distinct gap structure, which would lead to incorrect inference of approximate attractor mechanisms.

In the special case of an ideal line attractor, this does not happen: if the teacher is a symmetric
approximate line attractor, then the student will be as well. Concretely, suppose that B is symmetric,
with eigenvalues satisfying λ1 = 1 − ε, ε ≪ 1, and λi ≪ 1 for i ≥ 2, and that the eigenvector
u1 corresponding to the leading eigenvalue (the direction of the approximate line attractor) is
randomly oriented or delocalized. Then, the eigenvalues of the student dynamics matrix satisfy
λ̂1 ≥ λ1 −O(εD/d) and λ̂2 ≤ λ2 (App. C.3). This implies that approximate line attractors can be
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Figure 3: Heavily subsampling a feedforward chain leads to line-attractor-like student dynamics.
a. Line attractor score as a function of subsampling fraction d/D for teacher networks of varying
sizes D. b. Real parts of the top two eigenvalues of a d = 25 student’s dynamics matrix for varying
teacher network size D. c. As in b., but showing the time constants corresponding to the top two
eigenvalues. Beyond a threshold value of D, the separation increases rapidly. Thus, the student shows
two mechanistic mismatches: First, it learns a dynamics matrix with non-vanishing eigenvalues.
Second, at sufficiently low subsampling fraction the top two eigenvalues are separated by a substantial
gap, yielding line-attractor-like dynamics. See Appendix F for detailed experimental methods.

recovered even under heavy partial observation so long as the deviation ε of the teacher dynamics
from a perfect line attractor is small. In Figure 2, we illustrate this successful recovery, and show
that it is not qualitatively affected even if the observation time is finite. This successful recovery is
consistent with what we found in the driven setting in Figure 1.

3.2 Non-normal dynamics: Feedforward amplification

Our results for normal teacher dynamics in §3.1 show that the student can correctly recover line
attractor dynamics, matching our motivating observation in Figure 1. However, we recall that we
found that a non-normal network performing integration through feedforward amplification was
incorrectly recognized as also being a line attractor. While it is challenging to analyze general non-
normal teacher matrices in the noise-driven setting [45, 46], we can show that this mismatch again
emerges for feedforward chains. In particular, we show in Appendix D that the dynamics of a student
of fixed size approach that of a line attractor as teacher size increases. Assume that the teacher is a
perfect feedforward chain with connectivity Bij = δi+1,j . Then, as D →∞ for fixed d, the student
dynamics matrix Â∞ in the limit of long observation time and vanishing regularization approaches
δi+1,j + δidδij , hence its leading eigenvalue approaches 1, while the others tend to zero (App. D).
We remark that the fact that the student becomes closer and closer to a line attractor as D increases is
consistent with the intuitive argument given at the end of Section 2: if the number of observed neurons
is fixed and small, the only way for the student network to capture the long integration window of
the feedforward chain is through tuning its eigenvalues to create long timescales. In Figures 3 and
F.1, we substantiate this intuition by showing how the estimated timescales depend on the size of the
teacher network relative to the student.

3.3 Low-rank non-normal dynamics

As a second neuroscience-inspired example of non-normal teacher dynamics, we consider low-rank
connectivity. In recent years, low-rank RNNs have emerged as popular models for cortical dynamics
[15, 16, 23, 47, 48]. Importantly, they yield low-dimensional population activity, and hence are again
a relatively ideal scenario for data-constrained modeling under partial observation [7, 48].

As a particularly simple example of low-rank teacher dynamics, we consider the case in which
B = MN⊤ is rank r ≪ D, with M,N ∈ RD×r having null overlap M⊤N = 0r×r and orthogonal
columns M⊤M = N⊤N = γ2Ir. Then, B is a non-normal matrix with all-zero eigenvalues. In
the large-γ regime where the teacher’s activity is approximately low-dimensional, the student’s
learned dynamics matrix has r eigenvalues approaching 1, with the rest approaching zero (App. E).
Therefore, the student learns an r-dimensional hyperplane attractor. In simulations, we observe a
finite observation time effect whereby only r − 1 of the learned eigenvalues are near 1 when process
noise is small. Consequently, fitting a student network to a non-normal teacher with null overlap
connectivity of rank r as described above can result in the spurious discovery of approximate (r− 1)-
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Figure 4: Spurious slow directions in data-constrained student models for low-rank teacher dynamics.
a. Learning from a rank-2 teacher. i). Schematic of teacher weights. ii). Ground truth teacher (red)
and learned student (blue) dynamics matrix eigenvalues at 5% subsampling. Note the presence of
a single learned outlier eigenvalue with real part near 1. iii). Activity traces for the teacher (red)
and student (blue) networks. iv). Example student network dynamics for 5% and 50% subsampling
compared to the ground truth (GT). Here, points along the trajectory are colored by their time. The
student dynamics rapidly converge to a line and then decay slowly towards the origin, consistent with
the outlier eigenvalue observed in (ii). b. As in a, but for a rank-3 teacher network. Correspondingly,
the student learns two outlier eigenvalues, and two slow directions. See Appendix F for detailed
experimental methods.

dimensional hyperplane attractors. We illustrate this explicitly for the cases r = 2 and r = 3,
where observing only 5% of the neurons in the teacher network leads to the spurious discovery
of approximate line attractor and plane attractor dynamics, respectively, despite nearly perfectly
recapitulating the observed activity (Fig. 4).

4 Discussion

In this paper, we have shown partial observation can lead data-constrained models to incorrectly
identify the mechanistic basis for slow recorded neural dynamics. We found that, while attractor-
like networks can be faithfully recovered even when only a small fraction of neurons are recorded,
data-constrained models can learn spurious attractor structure from non-normal transient dynamics.

An intuitive explanation of our results is that low-dimensional dynamical systems are limited in the
longest timescales they could generate through functionally feedforward integration, and thus are
inherently biased towards line-attractor-like mechanisms when fit to observations of slow dynamics.
Though our focus has been on partial observation as a driver for this dimensional restriction, most
approaches to data-constrained modeling with latent dynamics explicitly bias model selection towards
smaller latent spaces. In particular, it is standard to select the smallest latent space dimension
that captures more than a certain threshold fraction of the variance in the data [13, 18]. This will
necessarily favor approximate-attractor-like solutions. Indeed, if one applied such a model selection
procedure to the integrator models studied in Figure 1, one would select at most a two-dimensional
latent space, and thus fall victim to the failure mode noted there. This bias in model selection
procedures illustrates a wider issue: benchmarking and model selection based on explained variance
for a restricted set of measured dynamics alone are not necessarily sufficient to diagnose mechanistic
mismatches [21, 49]. It highlights a tension between the desire to recapitulate mechanism and our
intuitive conception of low dimensionality as a signature of model parsimony.
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A Introduction to integrator models

In this appendix, we provide a brief, pedagogical introduction to the integrator models used as
motivating examples in §2. We recall from the main text that both models have dynamics

τ ż = −z+ Jz+ bu

for state z ∈ RD, recurrent weights J ∈ RD×D, and input u(t) ∈ R encoded through a vector
b ∈ RD. They differ only in the choice of weight matrix J . These linear dynamics are of course
exactly solvable, yielding

z(t) = e(J−ID)t/τz(0) +

∫ t

0

ds

τ
e(J−ID)(t−s)/τbu(s).

A.1 Line attractor

The construction of the classic line attractor network as popularized by Seung [24] starts by assuming
that J is symmetric, such that it admits an orthogonal eigendecomposition with real eigenvalues

J = OΛO⊤

for OO⊤ = O⊤O = ID and Λ = diag(λ1, . . . , λD) for λj ∈ R. We assume that the eigenvalues are
ordered as λ1 ≥ λ2 ≥ · · · ≥ λD. For the system to be stable, we must of course have λj ≤ 1 for all
j. Then, letting

z̃(t) = O⊤z(t)

and
b̃ = O⊤b

be the projections of the state and encoding vector into the eigenvector basis, we have

z̃j(t) = e−t/τj z̃j(0) + b̃j

∫ t

0

ds

τ
e−(t−s)/τju(s),

where we have introduced the timescales

τj =
τ

1− λj
.

Then, it is easy to see that if for some j we have λj = 1, the corresponding timescale τj will be
infinite and the activity z̃j(t) along that dimension will perfectly integrate u(t). If integrating u(t)
in a way that is stable to perturbations of the network is our only goal, then activity along other
dimensions should decay in time, meaning that we should have all other eigenvalues be strictly less
than one, i.e., 1 = λ1 > λ2 ≥ · · · ≥ λD. Moreover, we should have b̃k = 0 for all k > 1, i.e., the
input should be aligned to the top eigenvector of J . For the decay to be fast, we want the gap between
λ1 and λ2 to be large. The classic line attractor network achieves this very simply, choosing

Jij =

{
0 i = j

1/(D − 1) i ̸= j
,

such that it has eigenvalue 1 with multiplicity 1, corresponding to an eigenvector proportional to 1D,
and eigenvalue −1/(D − 1) with multiplicity D − 1 [24, 37].

However, in a realistic setting, it will not be possible to fine-tune the top eigenvalue exactly to 1, and
there will be some decay along the integration dimension. Therefore, one must consider approximate
line attractor dynamics, for which λ1 = 1− ε for some error ε > 0, while the other eigenvalues are
far smaller, i.e., λ1 ≫ λ2 ≥ · · · ≥ λD [13, 24, 37, 40]. This network is exceptionally sensitive to
the error ε, as with λ1 = 1− ε one has τ1 = τ/ε, and the error between the true integral of u(t) and
the readout from the approximate attractor network is exponentially large in time. Yet, so long as
λ1 ≫ λ2, perturbations along the approximate integration dimension will still decay exponentially
more slowly than those along other dimensions.
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In Figure 1, we generated connectivity J such that the largest eigenvalue is close to 1, and all other
eigenvalues are < 1. Specifically, we used J = QΛQ−1 for

Λij =


1− 10−3 i = j = 1

0.2 i = j ≥ 2

0 i ̸= j

,

and Q a matrix generated with entries Qij ∼ N (0, 1√
D
). Note that for realism, we have relaxed the

symmetry constraint, and instead use connectivity that can be related to a corresponding symmetric
approximate line attractor via a similarity transform. We use D = 500 as the size of the network.

A.2 Functionally-feedforward integrator

The exquisite sensitivity of the line attractor network to small perturbations of the synaptic weights
has motivated theoretical investigation of a panoply of alternative integrator circuits. Restricting our
attention to simple linear networks, the most prominent proposal is approximation integration through
functionally-feedforward non-normal integration [33, 34]. This model starts with the following
linear-algebraic observation: if J is non-normal (i.e., JJ⊤ ̸= J⊤J), though one loses orthogonal
diagonalizability, one can still consider the Schur decomposition

J = OTO⊤,

where O is orthogonal and T is upper triangular. As proposed by Goldman [33], the Schur decom-
position is a more conceptually useful tool for interpreting non-normal dynamics than the eigende-
composition, as it preserves the orthogonality of the modes. In particular, while if the dynamics are
normal T is diagonal and each mode only excites itself, if J is non-normal a given mode may interact
‘later’ modes in a hidden feedforward structure, revealing a circuit basis for non-normal amplification.

As the simplest example of this structure, Goldman [33] considered a hidden chain structure
Tij = δi+1,j .

As T is strictly upper triangular, all eigenvalues of J vanish. Considering the mode decomposition

z̃(t) = O⊤z(t)

and
b̃ = O⊤b

as we did in the symmetric case, we have the mode-wide dynamics

τ ˙̃zj+1(t) = −z̃j+1(t) + z̃j(t) + b̃j+1u(t).

This gives sequential low-pass filtering of the input, which allows approximate maintenance of a
memory over O(τD) time [33, 34]. Importantly, this mechanism is inherently far less sensitive to
small variations in the weights than the line attractor.

For the functionally feedforward network in Figure 1, we use
Tij = δi+1,j + βδi,1(1− δ1,j).

Here, β controls the strength of skip connections that further amplify the output mode of activity.
We select β = 0.5 so that, like the line attractor network, the activity produced by the functionally
feedforward network is approximately low-dimensional. We generate O as an orthonormal matrix
uniformly at random with respect to the Haar measure, and use D = 500 as the size of the network.
For input weights, we use the sum of the Schur modes b =

∑D
i=1 O:,i, where O:,i denotes the ith

Schur mode. Then, any readout proportional to the mean Schur mode will then solve the integration
task up to a constant rescaling. To achieve the correct readout scale for β = 0.5, we used readout
weights 0.7 ·O, where O = 1

D

∑D
i=1 O:,i denotes the mean Schur mode.

B MAP inference of connectivity in noise-driven RNNs

In this Appendix, we lay out the procedure sketched in §3 for maximum a posteriori (MAP) inference
of connectivity in noise-driven RNNs that underlies our analytical results. We first consider the
continuous-time setting directly, and then the discretized case.
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B.1 Continuous time

We first consider the continuous-time setting. We recall from the main text that we consider a teacher-
student setup, where the teacher has D neurons and a recurrent weight matrix B, such that the
dynamics of its firing rate vector z(t) ∈ RD is

τ ż = −z+Bϕ(z) + ξ(t)

where ξ(t) is uncorrelated Gaussian noise with E[ξ(t)] = 0 and E[ξ(t)ξ(s)⊤] = 2σ2
ξδ(t − s)ID,

and ϕ is a possibly nonlinear transfer function, which we take to act elementwise. Again, we assume
a d-dimensional student with recurrent weights A, such that its rate x(t) ∈ Rd evolves as

τ ẋ = −x+Aϕ(x) + η(t),

where η(t) is d-dimensional white noise with E[η(t)] = 0 and E[η(t)η(s)⊤] = 2σ2
ηδ(t − s)Id.

Assuming d < D, we observe the first d neurons of the teacher:
xobs(t) = Pz(t) for t ∈ [0, T ] and P = (Id, 0d×(D−d)).

Our goal is to infer the student’s weight matrix A given these observations.

To do so, we use MAP inference. Our starting point is the likelihood of observing a trajectory
{xobs(t) : t ∈ [0, T ]} given a particular weight matrix A, which using the path integral representation
of an Itô process can be written non-rigorously as

p({xobs(t) : t ∈ [0, T ]} |A) ∝ exp

[
− 1

2σ2
η

∫ T

0

dt ∥τ ẋobs(t) + xobs(t)−Aϕ(xobs(t))∥2
]
.

Here, we have used that
ϕ(xobs) = ϕ(Pz) = Pϕ(z)

to simplify the notation. To make the problem analytically tractable, we choose an isotropic Gaussian
prior over the elements of A:

Aij ∼i.i.d. N

(
0,

σ2
η

Tρ

)
where ρ > 0. We have chosen this parameterization of the prior variance because it makes the log-
posterior density particularly simple:

L = −
σ2
η

T
log p(A | {xobs(t) : t ∈ [0, T ]})

=

∫ T

0

dt

T
∥τ ẋobs(t) + xobs(t)−Aϕ(xobs(t))∥2 + ρ∥A∥2F .

We remark that we have proceeded rather cavalierly in our treatment of the functional density, but
this procedure can equally well be viewed as ridge-regularized least-squares estimation. We will also
arrive at the same characterization of the log-posterior density as the continuous-time limit of the
discrete setting in the subsequent subsection.

As the log-posterior density is quadratic, it is easy to read off that the MAP estimate of A is

ÂT =

[∫ T

0

dt

T
[τ ẋobs(t) + xobs(t)]ϕ(xobs(t))⊤

][∫ T

0

dt

T
ϕ(xobs(t))ϕ(xobs(t))⊤ + ρId

]−1

,

where we add a subscript T to emphasize the observation window. Using the dynamics of xobs(t) =
Pz(t), we can re-write this in terms of the teacher’s dynamics as

ÂT = P

[
BCT +

∫ T

0

dt

T
ξ(t)ϕ(z(t))⊤

]
P⊤ [PCTP

⊤ + ρId
]−1

(B.1)

where

CT =

∫ T

0

dt

T
ϕ(z(t))ϕ(z(t))⊤

is the empirical covariance of the teacher network activity.
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So far, we have let ϕ be general. However, we now specialize to the linear setting ϕ(z) = z, in
which the student and the teacher are Ornstein–Uhlenbeck (OU) processes. Then, we have the formal
solution

z(t) = e(−ID+B)tz(0) +

∫ t

0

ds e(−ID+B)(t−s)ξ(s),

and, at least in the long-time limit, we can leverage the classical theory of such processes [45, 46].

Provided that all eigenvalues of the dynamics matrix −ID +B have negative real part, this process
will converge to a Gaussian stationary state with equal-time covariance

Es[z(t)z(t)
⊤] = S

which solves the Lyapunov equation
(ID −B)S + S(ID −B) = 2σ2

ξID,

or equivalently is given by the matrix integral

S = 2σ2
ξ

∫ ∞

0

dt e−(ID−B)te−(ID−B)⊤t.

In the stationary state, the time-lagged correlation

C(τ) = Es[z(t)z(t+ τ)⊤]

is given by

C(τ) = e−(ID−B)τS

Moreover, if one adds infinitesimal linear perturbations to the dynamics as
ż(t) = (−ID +B)z+ η(t) + h(t),

one has that the linear response to perturbations of the system in the stationary state is given by

Rij(τ) =
δEs[zi(t+ τ)]

δhj(t)
= e−(ID−B)τ

so that
C(τ) = R(τ)S.

Thus, we will have
lim

T→∞
CT = S,

and we claim that

lim
T→∞

∫ T

0

dt

T
ξ(t)z(t)⊤ = 0.

The vanishing of this term follows from the observation that

E

[∫ T

0

dt

T
ξ(t)z(t)⊤

]
= 0

while by the Itô isometry

E

(∫ T

0

dt

T
ξ(t)z(t)⊤

)
ij

(∫ T

0

dt

T
ξ(t)z(t)⊤

)
i′j′

 =
1

T
δii′σ

2
ξ

∫ T

0

dt

T
E[zj(t)zj′(t)].

Thus, from (B.1), we conclude that the MAP estimated student dynamics matrix in the long time
limit takes the form

Â∞ = PBSP⊤ (PSP⊤ + ρId
)−1

. (B.2)

As an aside, if B is a symmetric matrix, the process will be reversible, and the stationary state an
equilbrium. In this case, setting σ2

ξ = 1 for brevity, the stationary covariance takes the relatively
simple form

S =

∫ ∞

0

dt e−(ID−B)t = (ID −B)−1. (B.3)

In this case, we can gain some intution for the effect of partial observation directly from considering
the stationary covariance. Consider a generic symmetric weight matrix, partitioned according to the
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observed and non-observed neurons:

B =

(
Boo Bon

B⊤
on Bnn

)
We can then write the marginal covariance matrix of the observed neurons as

Soo = [Id −Boo −Bon(ID−d −Bnn)
−1B⊤

on]
−1.

We can then interpret

Boo +Bon(ID−d −Bnn)
−1B⊤

on

as a sort of effective weight matrix that accounts for the effect of feedback through the unobserved
neurons on the stationary state.

B.2 Discrete time

We now consider the discrete-time setting, in which the teacher and student are both AR(1) processes.
Our goal here is to show that taking the continuum limit of the resulting estimate of the dynamics
matrix recovers the result obtained directly in continuous time. Letting

α =
∆t

τ
be the discretization scale, the teacher’s dynamics are now

zt = (1− α)zt−1 + αBϕ(zt−1) +
√
2αξt, (B.4)

where ξt ∼ N (0, σ2
ξID) is isotropic Gaussian noise, while those of the student are

xt = (1− α)xt−1 + αAϕ(xt−1) +
√
2αηt.

where ηt ∼ N (0, σ2
ηId) is isotropic Gaussian noise. The likelihood of some observed data

{xobs
t }t∈[T ] is then given by

P ({xobs
t }t∈[T ]|A) ∝

T∏
t=1

exp

(
− 1

2σ2
ηα
||(1− α)xobs

t−1 + αAϕ(xobs
t−1)− xobs

t ||22
)
,

which is precisely the time-sliced analogue of the functional density considered above. Again
assuming an isotropic Gaussian prior on the entries of A, we obtain the corresponding loss function

L =
1

T

T∑
t=1

||(1− α)xo
t−1 + αAϕ(xo

t−1)− xo
t ||22 + ρ||A||22

where ρ corresponds to the strength of the prior/regularization. We then can arrive at the MAP
estimate of the dynamics matrix

ÂT = α

(
1

T

T∑
t=1

(xo
t − (1− α)xo

t−1)ϕ(x
o
t−1)

⊤

)(
ρI + α2 1

T

T∑
t=1

ϕ(xo
t−1)ϕ(x

o
t−1)

⊤

)−1

.

Again assuming that the observed data {xobs
t }t∈[T ] are produced via partial observations of the teacher

activity
xobs
t = Pzt, P =

(
Id×d 0d×(D−d)

)
,

we can then describe the learned dynamics matrix solely in terms of properties of the teacher RNN:

ÂT = α2P

(
BCT +

1

T

T∑
t=1

ξtϕ(zt−1)
⊤

)
P⊤ (ρId + α2PCTP

⊤)−1
,

where

CT =
1

T

T∑
t=1

ϕ(zt−1)ϕ(zt−1)
⊤.

It is now easy to see that the continuum limit of this discrete-time estimate converges in distribution
to the continuous-time result.
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In discrete time, it is easy to see that

E

[
1

T

T∑
t=1

ξtϕ(zt−1)
⊤

]
= 0

and

E

( 1

T

T∑
t=1

ξtϕ(zt−1)
⊤

)
ij

(
1

T

T∑
t=1

ξtϕ(zt−1)
⊤

)
i′j′


=

1

T 2

T∑
t=1

E[ξt,iϕ(zt−1,j)ξt,i′ϕ(zt−1,j′)] +
1

T 2

T∑
t=1

∑
s̸=t

E[ξt,iϕ(zt−1,j)ξs,i′ϕ(zs−1,j′)]

= δii′σ
2
ξ

1

T 2

T∑
t=1

E[ϕ(zt−1,j)ϕ(zt−1,j′)]

+
1

T 2

T∑
t=1

∑
s>t

E[ξt,iϕ(zt−1,j)ϕ(zs−1,j′)]E[ξs,i′ ]

+
1

T 2

T∑
t=1

∑
s<t

E[ϕ(zt−1,j)ξs,i′ϕ(zs−1,j′)]E[ξt,i]

= δii′σ
2
ξ

1

T 2

T∑
t=1

E[ϕ(zt−1,j)ϕ(zt−1,j′)]

=
1

T
δii′σ

2
ξ (CT )jj′ ,

as zt−1 is independent of ξt. Then, so long as CT remains bounded, this correlator tends in probability
to zero as T →∞.

We thus arrive at the MAP estimate of the student dynamics matrix in the long time limit:

Â∞ = α2PBC∞P⊤ (ρId + α2PC∞P⊤)−1
,

the discrete time analog of (B.2). If we specialize to the linear case, letting
J = (1− α)ID + αB

such that
zt = Jzt−1 +

√
2αξt,

we have the formal solution

zt = J tz0 +
√
2α

t∑
k=1

J t−kξk.

B.3 A note on time constants

We note an equivalence between the time constants

τi =
τ

|1−ℜλi|
used in this work and the discrete time analog used in previous work [13, 27, 40],

τ ′i =

∣∣∣∣ 1

ln |λ′
i|

∣∣∣∣ ,
where λ′

i are the eigenvalues of the discrete-time dynamics matrix J = (1 − α)ID + αB,
which in terms of the eigenvalues λi of B has eigenvalues λ′

i = 1 − α + αλi. Thus, |λ′
i| =√

(1− α+ αℜλi)2 + (αℑλi)2. Taylor-expanding the logarithm yields

(∆t)τ ′i =

∣∣∣∣ τ

(1−ℜλi) +O(α)

∣∣∣∣
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or, in the true continuous-time limit,

lim
∆t↓0

(∆t)τ ′i =
τ

|1−ℜλi|
,

which matches the continuous-time time constants. For α ≪ 1 − ℜλi, we therefore may use the
continuous-time result with negligible error.

C Normal teacher

In this Appendix, we derive the two results on normal teachers claimed in §3.1 of the main text:
that the student eigenvalues are contained within the support of the teacher spectrum, and that an
approximate line attractor is recovered by MAP inference even under severe partial observation.

Assuming that BB⊤ = B⊤B, for large T , we can simplify the teacher covariance as follows:

CT =
1

T

T∑
t=1

zt−1z
⊤
t−1

≈ 1

T

T∑
t=1

J t−1z0z
⊤
0 (J

⊤)t−1 +
2ασ2

ξ

T

T∑
t=2

t−1∑
τ=1

J t−1−τ (J⊤)t−1−τ ,

as only the diagonal noise terms should contribute. Further, the first sum above should also tend to 0
assuming that J only has eigenvalues with modulus < 1. Note that if α is small, this condition is
equivalent to the real parts of eigenvalues of B being < 1. Simplifying the remaining term, we have

2ασ2
ξ

T

T∑
t=2

t−1∑
τ=1

J t−1−τ (J⊤)t−1−τ =
2ασ2

ξ

T

T∑
t=2

t−1∑
τ=1

(JJ⊤)t−1−τ

=
2ασ2

ξ

T

T∑
t=2

(JJ⊤)t−1
t−1∑
τ=1

(JJ⊤)−τ ,

where the first equality above follows from normality of B. Summing this Neumann series, this
simplifies to

=
2ασ2

ξ

T

T∑
t=2

(JJ⊤)t−1((ID − (JJ⊤)−1)−1(ID − (JJ⊤)−t)− ID)

=
2ασ2

ξ

T

[(
((ID − (JJ⊤)−1)−1 − ID)

T∑
t=2

(JJ⊤)t−1

)
− (ID − (JJ⊤)−1)−1(JJ⊤)−1(T − 2)

]
.

The only term that remains in the limit T →∞ is

−
2ασ2

ξ

T
(ID − (JJ⊤)−1)−1(JJ⊤)−1T = 2ασ2

ξ (ID − JJ⊤)−1,

yielding
C∞ = 2ασ2

ξ (ID − JJ⊤)−1.

Expanding,

JJ⊤ = (1− α)2ID + (1− α)α(B +B⊤) + α2BB⊤

= ID + 2α(Bs − ID) + α2(BB⊤ − 2Bs),

where we have defined Bs =
B+B⊤

2 as the symmetric part of B. This yields the simplification

C∞ = σ2
ξ

[
ID −Bs + α

(
Bs −

1

2
BB⊤

)]−1

.

For α≪ 1, we recover the continuous time result for symmetric B stated in (B.3).

Thus, we arrive at the expression

Â∞ = PB(ID −Bs)
−1P⊤(ρ̃Id + P (ID −Bs)

−1P⊤)−1

where the regularization ρ̃ has been re-scaled appropriately to absorb constants.
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Since B is normal, it can be diagonalized over C as B = UΛU∗. Observe that B+B⊤

2 = B+B∗

2 =
Uℜ(Λ)U∗ where ℜ denotes the real part. We then have that

Â∞ = PUΛ(ID −ℜ(Λ))−1U∗P⊤
(
ρ̃Id + PU(ID −ℜ(Λ))−1U∗P⊤

)−1

=

(
D∑
i=1

λi

1−ℜ(λi)
ui
1:d(u

i
1:d)

∗

)(
ρ̃Id +

D∑
i=1

1

1−ℜ(λi)
ui
1:d(u

i
1:d)

∗

)−1

(C.1)

where ui
1:d represents the truncated/projected ith eigenvector of B. For brevity, define K =(

ρ̃Id +
∑D

i=1
1

1−ℜ(λi)
ui
1:d(u

i
1:d)

∗
)

.

We first analyze the symmetric case B = B⊤, where the argument is slightly simpler. The more
general normal case is addressed in C.1. In this case, we have:

Â∞ =

(
D∑
i=1

λi

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1 (C.2)

Using the fact that for general matrices P and Q, PQ and QP have the same eigenvalues, we can
instead analyze the spectrum of

Â′
∞ = K−1/2

(
D∑
i=1

λi

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1/2.

Using that λ1 ≥ λi for all i, we have

Â′
∞ ⪯ K−1/2

(
D∑
i=1

λ1

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1/2

where P ⪯ Q denotes that P −Q is negative semidefinite.

If we further suppose that ρ̃λ1 ≥ 0, we have the relation

K−1/2

(
D∑
i=1

λ1

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1/2 ⪯ K−1/2

(
ρ̃λ1Id +

D∑
i=1

λ1

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1/2

= K−1/2(λ1K)K−1/2

= λ1Id

Thus, if ρ̃λ1 ≥ 0, all eigenvalues of Â∞ satisfy λ̂i ≤ λ1. Similarly, if ρ̃λD ≤ 0, all eigenvalues of
Â∞ satisfy λ̂i ≥ λD. Both upper and lower bounds are necessarily satisfied simultaneously in the
ridgeless limit ρ→ 0.

C.1 More general normal matrix case

Suppose B has p pairs of complex eigenvalues λcj , λcj with corresponding eigenvectors ucj , ucj , as
well as D−2p real eigenvalues λrj with corresponding eigenvectors urj . We can then rewrite (C.1) as

Â∞ =

2

p∑
j=1

ℜ(λcj )

1−ℜ(λcj )
Fcj + 2

p∑
j=1

ℑ(λcj )

1−ℜ(λcj )
Gcj +

D−2p∑
j=1

u
rj
1:d(u

rj
1:d)

⊤ λrj

1− λrj

K−1

where
Fcj =

(
ℜ(ucj

1:d)ℜ(u
cj
1:d)

⊤ + ℑ(ucj
1:d)ℑ(u

cj
1:d)

⊤)
and

Gcj =
(
ℜ(ucj

1:d)ℑ(u
cj
1:d)

⊤ −ℑ(ucj
1:d)ℜ(u

cj
1:d)

⊤)
. Similarly, we can also express K in terms of real components:

K = ρ̃Id + 2

p∑
j=1

1

1−ℜ(λcj )
Fcj +

D−2p∑
j=1

1

1− λrj

u
rj
1:d(u

rj
1:d)

⊤.
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We then study the spectrum of

Â′
∞ = K−1/2

(
2

p∑
j=1

ℜ(λcj )

1−ℜ(λcj )
Fcj + 2

p∑
j=1

ℑ(λcj )

1−ℜ(λcj )
Gcj +

D−2p∑
j=1

u
rj
1:d

λrj

1− λrj

(u
rj
1:d)

⊤

)
K−1/2

Â′
∞ is no longer symmetric because of the skew-symmetric components Gcj . However, we can still

analyze the symmetric component

(Â′
∞)s = K−1/2

2

p∑
j=1

ℜ(λcj )

1−ℜ(λcj )
Fcj +

D−2p∑
j=1

u
rj
1:d

λrj

1− λrj

(u
rj
1:d)

⊤

K−1/2.

As before, under the condition ρ̃ℜ(λ1) ≥ 0, we have the ordering

(Â′
∞)s ⪯ K−1/2

ρ̃ℜ(λ1)Id + 2

p∑
j=1

ℜ(λ1)

1−ℜ(λcj )
Fcj +

D−2p∑
j=1

u
rj
1:d

ℜ(λ1)

1− λrj

(u
rj
1:d)

⊤

K−1/2

= K−1/2(ℜ(λ1)K)K−1/2

= ℜ(λ1)Id

We can then observe that v⊤(Â′
∞ − ℜ(λ1)Id)v ≤ 0 for arbitrary v ∈ Rd, since the symmetric

component of Â′
∞ −ℜ(λ1)Id is NSD. This implies that ℜ(λ̂j) ≤ ℜ(λ1) for all j.

Similarly, under the condition ρ̃λD ≤ 0, ℜ(λ̂j) ≥ ℜ(λD) for all j. Both upper and lower bounds
again hold simultaneously for ρ→ 0, regardless of the teacher spectra.

C.2 Stronger result for symmetric teachers

In the symmetric case B = B⊤ with ρ→ 0, we can also show a stronger result that λ̂j ≤ λj for all
j ∈ {1, . . . d}:
Observe that for any j > 1, that

Â′
∞ = K−1/2

(
j−1∑
i=1

λi

1− λi
ui
1:du

i
1:d

⊤
)
K−1/2 +K−1/2

 D∑
i=j

λi

1− λi
ui
1:du

i
1:d

⊤

K−1/2

Let λj(·) denote the jth largest eigenvalue of ·. Applying Weyl’s inequality, we have

λj(Â
′
∞) ≤ λj

(
K−1/2

(
j−1∑
i=1

λi

1− λi
ui
1:du

i
1:d

⊤
)
K−1/2

)

+ λ1

K−1/2

 D∑
i=j

λi

1− λi
ui
1:du

i
1:d

⊤

K−1/2


= λ1

K−1/2

 D∑
i=j

λi

1− λi
ui
1:du

i
1:d

⊤

K−1/2

 (C.3)

which follows since the first term of the RHS is of rank ≤ j − 1.

We also have that

K−1/2

 D∑
i=j

λi

1− λi
ui
1:du

i
1:d

⊤

K−1/2 ⪯ K−1/2

 D∑
i=j

λj

1− λi
ui
1:du

i
1:d

⊤

K−1/2

= λjID

Thus, we can bound (C.3) above by λj , yielding the result

λ̂j ≤ λj (C.4)
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C.3 Line attractor recovery

Suppose the teacher is a near perfect symmetric line attractor. In particular, let B = B⊤ have
eigenvalues λ1 = 1− ε, ε≪ 1, and λi ≪ 1 for i ≥ 2. For simplicity, assume ρ→ 0. In this case,
we can express (C.2) as

Â∞ =

(
1− ε

ε
u1
1:d(u

1
1:d)

⊤ +

D∑
i=2

λi

1− λi
ui
1:d(u

i
1:d)

⊤

)(
1

ε
u1
1:d(u

1
1:d)

⊤ +

D∑
i=2

1

1− λi
ui
1:d(u

i
1:d)

⊤

)−1

(C.5)
Denote P1 =

∑D
i=2

λi

1−λi
ui
1:d(u

i
1:d)

⊤ and P2 =
∑D

i=2
1

1−λi
ui
1:d(u

i
1:d)

⊤. From Weyl’s perturbation
bounds on symmetric matrices [50], we can bound the eigenvalues of the "numerator" as follows:

∣∣∣∣λ1

(
1− ε

ε
u1
1:d(u

1
1:d)

⊤ + P1

)
− λ1

(
1− ε

ε
u1
1:d(u

1
1:d)

⊤
)∣∣∣∣ ≤ ||P1||op

≤ λ2

1− λ2
(C.6)

where (C.6) follows from the Cauchy interlacing theorem [51]. This yields the bound on the top
eigenvalue of the numerator,

λ1

(
1− ε

ε
u1
1:d(u

1
1:d)

⊤ + P1

)
≥ 1− ε

ε
||u1

1:d||22 −
λ2

1− λ2

We can obtain a similar bound on the largest eigenvalue of the "denominator":

λ1

(
1

ε
u1
1:d(u

1
1:d)

⊤ + P2

)
≤ 1

ε
||u1

1:d||22 +
1

1− λ2

In the case where λi ≥ 0 (e.g., no timescale is faster than the intrinsic timescale of a single neuron),
we can use bounds on the eigenvalues of products of PSD matrices to obtain the following:

λ̂1 = λ1(Â∞) ≥ λ1(Num)λd(Den−1)

= λ1(Num)(λ1(Den))−1

≥
(
1− ε

ε
||u1

1:d||22 −
λ2

1− λ2

)(
1

ε
||u1

1:d||22 +
1

1− λ2

)−1

≥
(
1− ε

ε
||u1

1:d||22 −
1 + λ2

1− λ2

)(
1

ε
||u1

1:d||22
)−1

= λ1 −
ε(1 + λ2)

||u1
1:d||22(1− λ2)

where we have used ‘Num’ and ‘Den’ as shorthand for the factors in (C.5). Assuming eigendirections
are randomly oriented, ||u1

1:d||22 = O
(

d
D

)
.

From result (C.4), we have an upper bound on the second largest eigenvalue

λ̂2 ≤ λ2

Thus, under the stated assumptions, we can conclude λ̂1 ≥ λ1 −O
(
εD
d

)
, and λ̂2 ≤ λ2.

D Feedforward chain

In this Appendix, we derive the approximation for the learned dynamics matrix resulting from partial
observations of a feedforward chain that we state in §3.2.
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Suppose the teacher matrix has structure B = QMQ⊤ for Mij = δi+1,j , and QQ⊤ = Q⊤Q = ID.
For convenience, we focus on the continuous-time limit. In this limit, the stationary covariance

Σ∞ = lim
T→∞

1

T

∫ T

0

z(t)z(t)⊤dt

satisfies the relation

Σ∞ = 2σ2
ξ

∫ ∞

0

e−(ID−B)te−(ID−B⊤)tdt = 2σ2
ξ

∫ ∞

0

e−2teBteB
⊤tdt

By the nilpotency of B, we have that

eBt =

D−1∑
n=0

(Bt)n

n!
= Q

(
D−1∑
n=0

(Mt)n

n!

)
Q⊤

(
D−1∑
n=0

(Mt)n

n!

)
ij

=

{
ti−j

(i−j)! i ≤ j

0 i > j

We then have that [
eMteM

⊤t
]
ij
=

D∑
k=max(i,j)

=
t2k−i−j

(k − i)!(k − j)!

Defining ΣM as

[ΣM ]ij =

∫ ∞

0

e−2t
[
eMteM

⊤t
]
ij
dt =

D∑
k=max(i,j)

1

22k−i−j+1

(
2k − i− j

k − i

)
,

we can express the stationary covariance as

Σ∞ = 2σ2
ξQΣMQ⊤

The learned dynamics matrix is then given by

Â = PQMΣMQ⊤P⊤

(
PQΣMQ⊤P⊤ +

ρ

2σ2
ξ

Id

)−1

For simplicity, we consider the Q = ID case, with ρ→ 0. Â will satisfy:

Â
(
PΣMP⊤) = PMΣMP⊤ (D.1)

Observe that [PΣMP⊤]ij = [ΣM ]ij for 1 ≤ i, j ≤ d, and that

[MΣM ]ij =

{
[ΣM ]i+1,j i ≤ D − 1

0 i = D

And thus, for d < D, [PMΣMP⊤]ij = [ΣM ]i+1,j for 1 ≤ i, j ≤ d. We can then make the ansatz
that Âij = δi+1,j + δidâj for some constants âj . This yields the following:

[Â
(
PΣMP⊤)]ij = {[ΣM ]i+1,j i ≤ d− 1∑d

k=1 âk[Σ
M ]kj i = d

The first d− 1 rows of D.1 are equal under this ansatz. The elements â ∈ R1×d are then chosen such
that the dth row of D.1 matches, yielding that they must satisfy the following linear relation:
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d∑
k=1

âk[Σ
M ]kj = [ΣM ]d+1,j , 1 ≤ j ≤ d

â[ΣM ]1:d,1:d = [ΣM ]d+1,1:d

Also note that Â has the form of a companion matrix, and thus has eigenvalues given by the roots
of the polynomial f(λ) = λd −

∑d
k=1 λ

k−1âk. Since â ̸= 0, we can say that Â will have nonzero
eigenvalues.

D.1 Structure of the subsampled stationary covariance

When d≪ D and D is very large, [PΣMP⊤] is well approximated as having a Toeplitz structure
with constant differences between diagonals. Specifically, we claim that for 1 ≤ i, j ≤ d≪ D,

[ΣM ]ij =

√
D

π
− |i− j|

2
+O

(
1√
D

)
.

To show this, we must obtain asymptotics for

[ΣM ]ij =

D∑
k=max(i,j)

1

22k−i−j+1

(
2k − i− j

k − i

)
when 1 ≤ i, j ≤ d as D →∞ for fixed d. It is easy to confirm that this sum is symmetric in i and j, as(

2k − i− j

k − i

)
=

(
(k − i) + (k − j)

k − i

)
=

(
2k − i− j

k − j

)
.

Consider the lower triangular elements, letting j = i− q for q ∈ {0, 1, 2, . . . , i− 1}. After shifting
k ← k − i, we have

[ΣM ]i,i−q =

D−i∑
k=0

1

22k+q+1

(
2k + q

k

)
.

It is then easy to see that the diagonal elements (q = 0) are weighted sums of central binomial
coefficients:

[ΣM ]i,i =
1

2
+

D−i∑
k=1

1

22k+1

(
2k

k

)
.

Then, using the bounds [52]

1

2

4k√
πk

<

(
2k

k

)
<

4k√
πk

,

we have that

1

2
+

1

4
√
π

D−i∑
k=1

1√
k
< [ΣM ]i,i <

1

2
+

1

2
√
π

D−i∑
k=1

1√
k
.

Using asymptotics for generalized harmonic numbers [52], we have

D−i∑
k=1

1√
k
= 2
√
D − i+O

(
1√

D − i

)
.

For any fixed i, this immediately yields

[ΣM ]i,i =

√
D

π
+O

(
1√
D

)
.
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Now, consider the off-diagonal elements, for q ∈ {1, 2, . . . , i − 1}. We remind ourselves that the
sum of interest is

D−i∑
k=0

1

22k+q+1

(
2k + q

k

)
Using the recurrence (

2k + q

k

)
=

2k + q

k + q

(
2k + q − 1

k

)
,

we have (
2k + q

k

)
≤ 2

(
2k + q − 1

k

)
so

D−i∑
k=0

1

22k+q+1

(
2k + q

k

)
≤

D−i∑
k=0

1

22k+(q−1)+1

(
2k + q − 1

k

)
,

which shows that the matrix elements are non-increasing as one moves away from the diagonal:

[ΣM ]i,i−q ≤ [ΣM ]i,i−(q−1).

Moreover, we have from the same recurrence the weak lower bound(
2k + q

k

)
≥
(
2k + q − 1

k

)
whence

[ΣM ]i,i−q ≥
1

2
[ΣM ]i,i−(q−1).

These bounds show that all elements of the truncated covariance matrix must be of the same order. To
show that the subleading term is of the desired form, we consider the difference between successive
diagonals, which using the above identities may be expressed as

[ΣM ]i,i−(q−1) − [ΣM ]i,i−q =

D−i∑
k=0

1

22k+q+1

q

2k + q

(
2k + q

k

)
.

Using the abovementioned bounds on central binomial coefficients, we have the bound

1

22k+q+1

q

2k + q

(
2k + q

k

)
≤ 1

22k+q+1

q

2k + q

(
2k + q

k + q/2

)
≤ 1√

2π

q

(2k + q)3/2

which shows that the series is convergent as D →∞, with an O(1/
√
D) remainder. In particular,

letting n = D − i+ 1, as this bound is monotone decreasing in k, we have
∞∑

k=n

1

22k+q+1

q

2k + q

(
2k + q

k

)
≤

∞∑
k=n

1√
2π

q

(2k + q)3/2

≤ 1√
2π

q

(2n+ q)3/2
+

∫ ∞

n

dk
1√
2π

q

(2k + q)3/2

=
1√
2π

q

(2n+ q)3/2
+

1√
2π

q

(2n+ q)1/2

= O
(

1√
D

)
.
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What remains is to compute the infinite sum, which evaluates to
∞∑
k=0

1

22k+q+1

q

2k + q

(
2k + q

k

)
=

1

2

for q ≥ 1. Therefore, we have

[ΣM ]i,i−(q−1) − [ΣM ]i,i−q =
1

2
+O

(
1√
D

)
,

hence in combination with our previous result for the diagonal terms we conclude that

[ΣM ]i,i−q =

√
D

π
− q

2
+O

(
1√
D

)
,

or, restoring the indices, we obtain the claimed result that

[ΣM ]ij =

√
D

π
− |i− j|

2
+O

(
1√
D

)
.

This shows that the subsampled stationary covariance matrix is approximately Toeplitz.

D.2 Structure of the student dynamics matrix under heavy subsampling

Now, we consider the structure of the student’s dynamics matrix in the d≪ D regime. The inverse
of the form of Toeplitz matrix by which the stationary covariance is approximated is known to take
the form [53]:

[PΣMP⊤]−1 ≈



1− 1
O(c)+O(d) −1 0 . . . 0 1

O(c)+O(d)

−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . .
...

. . . . . . . . . . . .
...

0 0 0 −1 2 −1
1

O(c)+O(d) 0 0 0 −1 1− 1
O(c)+O(d)


where c =

√
D/π. We also have that PMΣMP⊤ ≈ PΣMP⊤+ 1

2R where Rij = 1(i < j)−1(i ≥
j). Thus,

Â = PMΣMP⊤ (PΣMP⊤)−1 ≈ Id +
1

2
R[PΣMP⊤]−1.

Taking the large c approximation, we find that the learned student dynamics approaches the form

Âij = δi+1,j + δidδij .

In other words, Â approaches a feedforward chain of size d, except with the activity of the start of
the chain never decaying. The largest learned eigenvalue in this limit is 1, while the others vanish
identically.

We note that in practice, the sensitivity of the eigenvalues of feedforward chain connectivity matrices
to small perturbations would cause multiple of the learned eigenvalues to be significantly larger than
0. In particular, the ε-pseudospectrum of a feedforward chain of length d has a radius on the order
ε1/d [54].

E Low rank

In this Appendix, we derive the results on MAP inference for low-rank null teachers stated in §3.3.

Consider a low-rank teacher of the form B = MN⊤, M ∈ RD×r, N ∈ RD×r. If N⊤M = 0r×r

and N⊤N = M⊤M = γ2Ir, then B has all 0 eigenvalues, but is nonnormal. Here γ2 is a
scale parameter, which in some sense controls the degree of non-normality (scales the norm of the
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commutator [B,B⊤] = BB⊤−B⊤B). We compute the stationary covariance of the teacher process,
suppressing factors of σ2

ξ by setting σ2
ξ = 1:

Σ∞ = 2

∫ ∞

0

e−(ID−B)te−(ID−B⊤)tdt =

∫ ∞

0

e−2teMN⊤teNM⊤tdt

= 2

∫ ∞

0

e−2t exp

(
t

r∑
i=1

min
⊤
i

)
exp

(
t

r∑
k=1

nkm
⊤
k

)
dt

Observe that min
⊤
i commutes with mjn

⊤
j due to the N⊤M = 0 constraint. Thus, we can write

Σ∞ = 2

∫ ∞

0

e−2t
r∏

i=1

exp
(
min

⊤
i t
) r∏
k=1

exp
(
nkm

⊤
k t
)
dt

= 2

∫ ∞

0

e−2t
r∏

i=1

(ID +min
⊤
i t)

r∏
k=1

(ID + nkm
⊤
k t)dt

= 2

∫ ∞

0

e−2t(ID +Bt)(ID +B⊤t)dt

= 2

∫ ∞

0

e−2t(ID + 2Bst+BB⊤t2)dt

where Bs =
B+B⊤

2 . Performing this integral yields the solution

Σ∞ = ID +Bs +
1

2
BB⊤.

E.1 Spectrum of the stationary covariance

Our first goal is to determine the eigenvalues and eigenvectors of Σ∞. To do so, suppose that u ∈ RD

is a unit-norm eigenvector of Σ∞ with eigenvalue λ. Then, it must satisfy

Σ∞u = u+
1

2
MN⊤u+

1

2
NM⊤u+

1

2
γ2MM⊤u = λu.

As M and N span orthogonal r-dimensional subspaces of RD, one possibility is that u lies in the
(D−2r)-dimensional complement of those subspaces, in which case it must have eigenvalue 1. Thus,
Σ∞ has eigenvalue 1 with multiplicity D− 2r. Now consider the case in which u lies in the union of
the subspaces spanned by M and N . Make a decomposition

u = Ma+Nb,

where a,b ∈ Rr. The unit-norm condition is

1 = ∥u∥2 = γ2(∥a∥2 + ∥b∥2),

while the eigenvector condition becomes

Σ∞u = Ma+Nb+ u⊥ +
1

2
Mγ2b+

1

2
Nγ2a+

1

2
γ4Ma

= λ[Ma+Nb+ u⊥].

Acting with M⊤, we have

a+
1

2
γ2b+

1

2
γ4a = λa

while acting with N⊤, we have

b+
1

2
γ2a = λb.
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Together these conditions imply that b = ta, which gives a coupled set of equations for t and λ:

1 +
1

2
γ2t+

1

2
γ4 = λ

t+
1

2
γ2 = λt.

This linear system has solutions

λ± =
4 + γ4 ± γ2

√
4 + γ4

4

t± =
−γ2 ±

√
4 + γ4

2
,

which each must correspond to orthogonal r-dimensional eigenspaces. Therefore, we at last conclude
that the eigenvalues of Σ∞ are 1 with multiplicity D − 2r and λ±, each with multiplicity r. When
γ ≫ 1, this gives an r-dimensional ‘signal’ eigenspace with eigenvalue

λ+ =
4 + γ4 + γ2

√
4 + γ4

4
=

γ4

2
+

3

2
+O

(
1

γ4

)
,

a (D − 2r)-dimensional ‘null’ eigenspace with eigenvalue 1, and an r-dimensional ‘suppressed’
eigenspace with eigenvalue

λ− =
4 + γ4 − γ2

√
4 + γ4

4
=

1

2
+O

(
1

γ4

)
.

As a result, increasing γ will push the effective dimensionality of activity in the stationary state closer
to r.

E.2 Spectrum of the learned dynamics matrix for large γ

We now turn to our main goal, which is to approximately determine the eigenvalues of the learned
dynamics matrix after subsampling. Using our result for the stationary covariance, we find that the
learned dynamics matrix in the infinite time limit is given by

Â = PB(ID +Bs +
1

2
BB⊤)P⊤(P (ID +Bs +

1

2
BB⊤)P⊤)−1

= (M̃Ñ⊤ +
γ2

2
M̃M̃⊤)

(
Id +

M̃Ñ⊤ + ÑM̃⊤

2
+

γ2

2
M̃M̃⊤

)−1

where M̃ = PM denotes M truncated to the first d rows. Since MN⊤ is of rank r, Â will have at
most r non-zero eigenvalues.

The relevant regime is when γ ≫ 1, such that the activity is approximately low-dimensional. Because
of the normalization condition N⊤N = M⊤M = γ2Ir, in any fixed dimension we must have Nij =
O(γ), Mij = O(γ). We can then consider making γ parametrically large, in which case we have

Â = ΠM̃M̃⊤ +O
(

1

γ2

)
where ΠM̃M̃⊤ is the orthogonal projector onto the r-dimensional span of M̃M̃⊤. Here, we have
used the fact that γ2M̃M̃⊤ ∼ O(γ4) and M̃Ñ⊤ ∼ O(γ2), so the former terms will dominate at
large γ. Therefore, it follows that as γ becomes large the r non-zero eigenvalues of Â tend to one.
This argument relies on fixing all dimensions.

A case of interest is when γ2 ∼ O(D/
√
r) for D ≫ r; with this scaling, the elements of B are O(1)

with respect to D and r.
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F Numerical methods and supplemental figures

All of our numerical simulations are implemented in Python 3.9.18 using NumPy 1.26.2 [55], SciPy
[56], and PyTorch [57]. They were not computationally-intensive, and required less than 12 hours
in total to run on a consumer Dell XPS laptop equipped with an Intel Core™ i7-13700H processor.
Code to reproduce all experiments is included as an anonymized ZIP file for initial submission, and
will be made available on GitHub upon acceptance.

For simplicity, we use τ = 1 in all numerical simulations. Unless stated otherwise, we use a teacher
network size of D = 500 in all numerical experiments.

We integrate the student and teacher RNN dynamics via Euler integration with a timestep ∆t = 0.01.
Under the discretization scheme of B.4, in all experiments, we select the noise parameters of the
student and teacher dynamics as ση = σξ = 0.02√

2
.

In the examples of Fig. 1, we generate ground truth network activity by iterating the dynamics for a
duration T = 5000×∆t.

In the purely noise-driven experiments with finite observation time windows, we fit student networks
to ground truth teacher activity generated over a duration T = 30000×∆t.

For MAP inference, we use a regularization parameter ρ = 0.001 in all experiments. In experiments
involving the long time limit T →∞, we use SciPy [56]’s built-in Lyapunov solver to compute the
stationary covariance of the teacher activity.

For all LDS models, we run the fitting procedure for 200 iterations using the implementation provided
by the authors of [18] under an MIT License on GitHub.1 For the experiments in Fig. 1, the input
signal was explicitly passed to the fitting procedure.

1https://github.com/lindermanlab/ssm
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Figure F.1: Properties of learned student dynamics matrices for functionally feedforward teachers
in the long time limit T → ∞. Each row corresponds to a functional skip connection strength
β ∈ {0.25, 0.5, 1}. Left: Line attractor score versus subsampling fraction (d/D). The green line
indicates a line attractor score of 1. Middle: Top two singular values of the learned (student) and
true (teacher) dynamics matrices as a function of subsampling fraction. Right: Normalized overlap
(absolute cosine similarity) of the learned left and right singular vectors corresponding to the largest
learned singular value (û1, v̂1, respectively) with the truncated top left and right singular vectors of
the true network ([u1]1:d, [v1]1:d, respectively). The red curve shows how the expected overlap would
approximately scale for arguments with randomly selected entries. All plots show averages over 20
randomly selected teacher networks. The shaded regions indicate ±1 standard error of the mean, and
is in some cases too small to see.
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