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Abstract

Distribution-free uncertainty estimation for ensemble methods is increasingly desir-
able due to the widening deployment of multi-modal black-box predictive models.
Conformal prediction is one approach that avoids making strong distributional
assumptions. Methods for conformal aggregation have been proposed for ensem-
bled prediction, where the prediction regions of individual models are merged to
retain coverage guarantees while minimizing conservatism. Merging the prediction
regions directly, however, can miss out on opportunities to further reduce conser-
vatism by exploiting structures present in the conformal scores. We, therefore,
propose a novel framework that extends the standard scalar formulation of a score
function to a multivariate score that produces more efficient prediction regions. We
then demonstrate that such a framework can be efficiently leveraged in both classi-
fication and predict-then-optimize regression settings downstream and empirically
show the advantage over alternate conformal aggregation methods.

1 Introduction

Ensemble methods are an oft-used class of statistical modeling techniques due to their ability to
reduce variance or improve predictive accuracy [1}[2}3]. Such methods are increasingly being coupled
with complex, black-box models, such as in multi-modal language models [4} 5,16} [7,8]]. Couplings of
this sort are seeing ever-widening deployment in safety-critical settings, such as medicine [9, 110, |[11]
and robotics [12} 13} 14].

Increasing interest is, therefore, now being placed on quantifying uncertainty for such models
[15116k 1174 18,119]). Towards this end, methods of uncertainty quantification have arisen, such as deep
ensembles and committee estimation [20, 21} [22]. Such methods, however, sacrifice generality with
the imposition of distributional assumptions, motivating the need for distribution-free uncertainty
quantification for ensemble methods.

One method for performing distribution-free uncertainty quantification is conformal prediction, which
provides a principled framework for producing distribution-free prediction regions with marginal
frequentist coverage guarantees [23| 24]]. By using conformal prediction on a user-defined score
function, prediction regions attain marginal coverage guarantees. While calibration is guaranteed
from this procedure, predictive efficiency, i.e., the size of the resulting prediction regions, can be
large for poorly chosen score functions.

As a result, methods have arisen to perform conformal model aggregation, which both provide
uncertainty estimates of the ensembled predictions and do so in ways as to minimize the prediction
region size [25} 126/ 27, 28, 29]. While such approaches succeed in reducing the prediction region
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Figure 1: CSA provides a principled extension to the standard conformal prediction pipeline by
leveraging ideas from higher-dimensional quantile regression to define quantile envelopes Q instead
of scalar quantiles ¢. It does so by evaluating a collection of score functions (here s; and s2) over
the calibration dataset to define S, finding quantiles {g,, } over a set of projection directions {uy, },

and taking O to be the intersection of the resulting half-planes H (., ¢, ). These quantile envelopes
result in more informative prediction regions that can be used in downstream tasks.

size over naive aggregation, they all aggregate the separately conformalized prediction regions of the
predictors in the ensemble. In doing so, they forgo the possibility of automatically leveraging shared
structure amongst the scores of the individual predictors, resulting in conservative prediction regions.

We instead propose to perform aggregation in score space by extending traditional conformal
prediction to consider a multivariate score function and defining prediction regions using “quantile
envelopes” in place of scalar quantiles. Doing so enables efficient, data-driven, automated conformal
model aggregation. We demonstrate that this formulation retains the desired distribution-free coverage
guarantees typical of standard conformal prediction and that the resulting prediction regions can be
used efficiently in both classification and regression settings. Our contributions are:

* Providing a multivariate extension to conformal prediction, dubbed “conformal score ag-
gregation” (CSA), that leverages quantile envelopes to enable data-driven, informative
uncertainty estimation for model ensembles while retaining coverage guarantees.

* Demonstrating how the prediction regions resulting from CSA can be efficiently leveraged
in downstream predict-then-optimize regression tasks.

* Demonstrating the empirical improvement of the CSA framework over alternate conformal
aggregation strategies across classification and regression settings.

2 Background

2.1 Conformal Prediction

Coverage guarantees of uncertainty quantification methods generally rely on distributional assump-
tions, often via asymptotics or explicit specification. To alleviate the need for such restrictive
assumptions, interest in finite-sample, distribution-free uncertainty quantification methods has risen.
Conformal prediction is one such method [23} 24]).

Conformal prediction serves as a wrapper around such predictors, producing prediction regions C(x)
that have formal guarantees of the form Px y (Y ¢ C(X)) < « for some prespecified level a.. To
achieve this, “split conformal” partitions the dataset D = {(z;,y;)}2, into a training set D7 and a

calibration set D¢. The former serves as the data used to fit f. Users of conformal prediction must
then design a “score function” s(z, y), which should quantify “test error”, often in a domain-specific

manner. For instance, a simple score function for a regression setting would be s(z,y) = || f(x) — y||.
This score function is then evaluated across the calibration set to define S¢ = {s(z,y) | (x,y) € Dc}.
For a desired coverage of 1 — o, we then take G to be the [(|D¢| + 1)(1 — «)]/|D¢| quantile of S¢,
with which prediction regions for future test queries  can be defined as C(z) = {y | s(z,y) < q}.
Under the exchangeability of the score of a test point s(X’,Y") with S¢, we have the desired
finite-sample probabilistic guarantee that 1 — a < Px/ y/ (Y’ € C(X')).



While this guarantee holds for any s(z, y), the informativeness of the resulting prediction regions,

quantified as the inverse expected Lebesgue measure across X, i.e. (E[£(C(X))])™", is intimately
tied to its specification [24]]. Thus, much of the challenge of conformal prediction relates to choosing
a score function that retains coverage while minimizing region size.

2.2 Quantile Envelopes

Generalizations of quantiles have a long history in statistics [30} 31]]. Unlike univariate data, mul-
tivariate data do not lend itself to an unambiguous definition of a quantile, as there is no canon-
ical ordering in higher dimensional spaces. The notion of a “directional quantile” for a random
variable X € R” can, however, be directly defined given some direction v € S™~!, namely as
Q(X,a,u) =inf{g € R: P(u' X < q) > «a} [32,[33,34]. When there is no ambiguity, we just
denote it as (v, u). For any given u, notice the choice of quantile defines a corresponding halfplane
H(u,Q(a,u)) = {z € X : u"z < Q(c,u) }. The quantile envelope is then the intersection thereof:

D)= () H(u,Q(a,u)). §))

ueS™—1

Notably, while each individual H (u, Q(«, u)) captures 1 — « of the points, D(«) does not, as it is
the intersection thereof and hence captures < 1 — « of the mass. If 1 — o combined coverage is
sought, a correction, such as Bonferroni adjustment, is used for the individual planes.

2.3 Predict-Then-Optimize

In the case of classification, conformal prediction regions simply constitute a subset of the label space,
making their direct use by end users straightforward [35]]. In high-dimensional regression settings,
however, prediction regions become harder to use directly; for this reason, recent works have started
shifting focus to using them in their implicit forms.

One such application is [36], where conformal prediction was leveraged in a predict-then-optimize
setting. As the name suggests, predict-then-optimize problems are two-stage problems, which take
observed contextual information x and predict the parametric specification of a downstream problem
of interest ¢ := g(x) with some trained predictor g. The final result is then a decision made with this
specification, w* := min,, f(w,¢). An example of such a setting is if an optimal labor allocation w*
is sought based on predicted demand ¢ from transactions x in a delivery platform.

While the predicted ¢ is often trusted, this approach is inappropriate in risk-sensitive settings, where
misspecification of the map g : X — C could lead to suboptimal decision-making. For this reason,
recent interest has been placed on studying a “robust” formulation [37, 38} 139]. Following this line
of work, [36] proposed studying w*(z) := min,, maxzec (s f(w, ), with C(x) being produced by
conformalizing the predictor g.

2.4 Related Works

Ensemble methods consist of K predictors fr : Xx — J; notably, such predictors need not map
from the same set of covariates. A naive approach for uncertainty quantification would then be to
conformalize the ensembled predictor. That is, for an ensembling algorithm F : YVE Y, ascore
function s(F(f1(x), ..., fi(x)),y) would be defined. Denoting the [(N¢ + 1)(1 — «)]/N¢ quantile
of the score distribution over D¢ as g(«), C(x) = {y : s(x,y) < g(«)} would then be calibrated.

Such an approach, however, lacks some desirable properties. In particular, prediction regions C(x)
should have the quality that, if a particular predictor has less uncertainty in its predictions, as is
frequently true of ensemble settings where the predictors span multiple input data modalities, upon
routing to that predictor, the corresponding size of the prediction region should be smaller than if
it had been routed to a different predictor. While the naive approach does, in principle, support
this property, it ultimately relies on defining an uncertainty-aware ensembling algorithm F. In its
typical form, however, F simply takes point predictions f1(x), ..., fi(x) in as input, meaning any
uncertainty-awareness would need to be baked in a priori into the definition of F through domain
knowledge of the uncertainties of the predictors f1, ..., fx, which can seldom be specified precisely,
sacrificing the predictive efficiency of C(z).



Conformal model aggregation, thus, seeks to mitigate these deficiencies by aggregating the prediction
regions C1 (), ..., Ck (z) rather than the individual point predictions [25} 27 28} 29]. While there are
several methods in this vein, they can be categorized into one of two general approaches. The first
line of work seeks to perform model selection, in which a single conformal predictor is selected Cp~,
typically based on the criterion of minimizing region size k* := arg min, E[£(Ci(X))] (27, 28].

Generally, however, methods leveraging the full collection of predictors produce less conservative
regions [25129]. Such works aggregate the individual prediction regions into a final region by defining
Clz) ={y| Zle w1y € Cr(x)] > a} for weights {wy} € [0, 1] such that Zle wg, = 1 and
a threshold @. Methods then differ in the procedure by which {wy,} and @ are prescribed, several
of which were prescribed by [29]], whose detailed presentation is deferred to Appendix [N|for space
reasons. We note that the methods of [25]] are designed for a different setting than that considered
herein, namely that in which conformal coverage is sought adaptively over data streams.

In this vein, [40] have recently proposed a vector-score extension as that discussed herein, in which
candidate weight vectors {w,,} € RX are searched over for score aggregation. That is, a vector
s(z) := (s1(z,y), ..., sx (7, y)) € RE of scores si(x,y) corresponding to each predictor f(x) is
predicted and its aggregate prediction region defined on the projection (w,~, s) for w, the weight
resulting in the smallest prediction region. This method, however, has two shortcomings addressed
herein. The first is that their method can only be applied in classification settings, whereas our method
can be leveraged across both regression and classification problems. The second is that their approach
only uses a single weighted projection in the end, resulting in suboptimal aggregation and, therefore,
conservative prediction regions.

3 Method

3.1 Multivariate Score Quantile

We consider the setting typical of conformal model aggregation, as discussed in Section [2.4] in
which predictors fi (z), ..., fx (z) and corresponding scores s1(x,y), ..., Sk (z,y) are defined. We
assume a similar premise as [40], in which the scores are stacked into a multivariate score s(x,y) :=
(s1(z,y), ..., sk (z,y)). A naive approach would then leverage standard conformal prediction over

a pre-defined map g : RX — R, e.g., g(s) = Zszl si. Similar to the naive conformalization of
an ensembled predictor discussed in Section [2.4] using a fixed g fails to adapt to any disparities in
uncertainties present across predictors or requires intimate knowledge of such uncertainties. We
instead wish to provide a data-adaptive pipeline to automatically produce such a g.

Importantly, we hereafter assume the score functions are non-negative, i.e., s : X x ) — R, which
is typically the case as the score serves as a generalization of the residual. We highlight that many of
the details of the method presented below are geometric in nature and are more easily understood
with the supplement of diagrams. We have, thus, provided an accompanying visual walkthrough of
the procedure in Appendix [A]to clarify its presentation.

3.1.1 Score Partial Ordering

Intuitively, our method seeks to directly generalize the approach of split conformal, by “ordering” the
collection of multivariate calibration scores and taking the 1 — « score under such an ordering to be

a threshold Q with which prediction regions are then implicitly defined. Formally, the multivariate
“ordering” is established as a pre-ordering < over R¥; a pre-ordering differs from a total ordering in
that it need not satisfy the antisymmetric axiom of a total ordering. Roughly speaking, an “acceptance
region,” so called as it serves as the criterion used to ultimately decide which y are accepted into the
prediction region, is then defined as Q := {s | s < ¢}, where G'is the 1 — a empirical quantile of S¢:
under <. Such a Q naturally generalizes the standard scalar acceptance interval of [0, g in the case
of non-negative score functions. We briefly highlight the distinction between acceptance regions and
prediction regions. The former are subsets of the space C R of multivariate scores that ultimately
define the criteria for retaining particular y values in the prediction region. The latter are the subsets
of the output space ) and it is these that ultimately have coverage guarantees. The two, however,
are directly related; in particular, for a fixed score s(z, y), a larger acceptance region will result in a
more conservative prediction region.



Crucially, therefore, the problem of choosing this pre-ordering closely parallels that of choosing
g, where a poorly chosen pre-ordering will result in overly large acceptance regions and, hence,
conservative prediction regions. For instance, using a lexicographical ordering <p,ex will result in
axis-aligned hyper-rectangular acceptance regions. As a result, rather than manually prescribing a
pre-ordering, we define < in a data-driven fashion by prescribing an indexed family of nested sets
{A:}ier, such that Ay, C Ay, for tq <ty and stating s1 < s2 if VE, s2 € Ay = s1 € Ay

For a family of sets {A; }:cr, we take each A; to be the region of the positive orthant Rf bounded
by the coordinate axes and an “outer frontier” parameterized by ¢. The shape of this outer frontier
remains fixed over the family and is merely scaled outward from the origin with ¢. Under this choice,
comparing 51,52 € R¥, i.e., checking if s; < s3, amounts to checking if #(s1) < t(s2), where
t(s) is the smallest ¢ for which the outer frontier of A; intersects s. Notably, ¢(s) is precisely the
aforementioned data-driven score fusion function g(s) of interest. Defining a data-adaptive g(s),
therefore, reduces to having a data-driven approach for defining the outer frontier of .4;. We restrict
this outer frontier to be such that A, is a convex set; if A; were permitted to be nonconvex, computing
t(s) := min{t € R : s € A;} would potentially be computationally expensive. The benefits of such
convexity are highlighted, for example, in Section 3.2}

To have tight acceptance regions, we formally wish for the pre-ordering to have the property that the

acceptance region given by Q has minimal Lebesgue measure and captures 1 — « points of S¢. The
problem of discovering an optimal pre-ordering can, thus, be equivalently stated as seeking to define
the outer frontier of .4; to match that of the tightest 1 — & convex cover of S¢.

This motivates selecting the outer frontier to be the 1 — « quantile envelope of S¢. Using S¢ to
define A; and in turn <, however, sacrifices the exchangeability of its points with test scores s’, as the
very nature of ordering would change in swapping s’ with any s € S¢. The goal follows as seeking
to define the outer frontier as the 1 — « quantile envelope of S¢ without directly using S¢. For this
reason, we partition S¢ = S(Cl U 8(02 ), where we define < using Sél ) and compute 7 over Sg ). Such
a split is predicated on the assumption that the 1 — « quantile envelope defined over S(C1 ) resembles
that of Sg ), implying the |Sé1 )| should be sufficiently large as to capture this structure accurately.

We now focus attention on defining the quantile envelope over Sél ) using a technique paralleling
that described in Section In particular, we start by selecting the projection directions {u,, } of
Equation li since s € Rf , we similarly restrict u,, € Sf “l=8K-1n Rf . To best approximate
Equation H we wish for {u,, } to be uniformly distributed over S f ~1: however, exactly finding an
evenly distributed set of points over hyperspheres in arbitrary n-dimensional spaces is a classically
difficult problem [41] If K = 2, we can solve this exactly; for K > 2, we generate directions
stochastically such that U ~ Unif(S¥ 1) by drawing Vi, ..., Var ~ N(0, IX*5) and defining

U; == Vi"| /\/VZ + ... + VZ,, where v!'l denotes the component-wise absolute values.

We now wish to define the quantile thresholds {g;, } for the selected directions to optimally capture
1—aof Sg ), Naively taking the 1 —« quantile per projection direction w,,, results in joint coverage by

Q= ﬂ%zl H(upm,, @) of Sél) to be < 1 — a. A straightforward fix is to replace the 1 — « quantile
per direction instead with its Bonferroni-corrected 1 — oo/ M quantile. While valid, this approach
produces overly conservative prediction regions. We, therefore, instead tune a separate 5 € («/M, )
parameter via binary search, finding the maximum S* such that using the 8* quantile per direction
provides the overall desired coverage, i.e., ﬂ%zl H(up, Ejm(lfﬂ*))ﬂSél) |/Ne, € (1—a, 1—a+e)
for some fixed, small e > 0. With this choice of {(t,, ¢ )}, we have a defined pre-ordering, whose
coverage guarantees are formally stated below and proven in Appendix

Theorem 3.1. Suppose (X1,Y1),...,(Xne,Yneg), (X', Y') are exchangeable, where Do :=

{(Xs, Y;)}ficl Assume further that K non-negative maps s : X x Y — Ry have been defined and
a composite s(X,Y) := (s1(X,Y), ..., sg(X,Y)) is defined.

Let 0 = (01,...,0N.) be a random permutation of the indices {1,..., N¢}, drawn uniformly
and independently of D¢ and (X',Y'). Let the calibration set D¢ be partitioned into D(c} ) =

{(XU].,YUJ.)};-\Ef and D(CQ) = {(XU].,YU],)};Y:]{,:fo, where No := N¢, + N¢,. Let the corre-



sponding score sets be Sg ) and 8 .LetT(S (a )) : Rf — R be a deterministic function for any

given realization of Sél ),

For some o € (0, 1), let £ be the [( N, +1)(1 —a)]-th smallest value of the set of transformed scores
{T(si; Sél)) | s; € Sg)}. Assume that ties among the transformed scores occur with probability

zero. Then, denoting by C(X') ={y € Y| T(s(X',y);Sg)) <t}, P(Y' € C(X")) > 1—a, where
the probability is defined over the joint draw of the data D¢, (X',Y"), and the permutation o.

3.1.2 Score Quantile Threshold

To then compute ¢, we find ¢t*(s) for each s € S, defined to be min{t € R : s €
ﬂM_ H (U, tGm)}- This can be efficiently computed as t*(s) = max,,—1.._ s (u,,5/Gm). Denot-

m=1
ing the [(Ne, + 1)(1 — a)]-th largest t*(s) as &, Gy := G and Q := ﬂﬂn/lzl H (U, @ )- If the
tightest quantile envelope was already discovered over S¢ () this adjustment factor t~ 1. Critically,
such calculations can be computed efficiently in vector form. Due to space restrictions, we defer this
discussion to Appendix [E] We additionally there empirically validate the efficiency of the procedure
under this vectorized implementation. We present the full algorithm in Algorithm|[T}

Importantly, while this procedure will result in convex regions Q, this does not mean the downstream
prediction regions in ) will be convex, as discussed in Section However, it is unsurprising such
flexibility exists, as even a single scalar score s;(x,y) can produce nonconvex prediction regions.
One additional notable property of the CSA prediction regions is that their sizes vary across x even if
such variability is not baked into the constituent scores. For instance, using si(x,y) := | fi(z gjs) y|
with standard, scalar conformal prediction yields intervals of length 2¢;, for any x, yet IC

even with such {sy(z,y)} will vary with z. This variability is desirable, as predictive uncertamty 1s
seldom uniform across the covariate space. See Appendix [ for a full illustration of this.

Algorithm 1 CSA: UNIFHYPERSPHERE(K ) is an assumed subroutine that samples ~ Unif (S%—1).

Inputs: Score functions sy, ..., sg : X — ), Calibration set D¢, Desired coverage 1 — «

[Bios Bui] + [a/M,a],Q + 0
o ~ Unif (Permutations of {1, ..., N¢})

ScM USSP {(sk(:ro(i),yo(i)))szl}fV:cf,’NNchJrl, {tm < UNIFHYPERSPHERE(K)}M_,

while [S{ N Q|/Ne, ¢ 1 — a+edo
B (Bio + Bni)/2
{cjm + (1 — j3) empirical quantile of {u;si}&esu)}
Ade]
8: Q — ﬂ%:l H(u’my am)
9: if SV N O|/Ne, > 1 —  then fy, < 3 else B < 3

10: end while
11: t <+ (1 — ) empirical quantile of {max;,e(nr] (U, i /Gm)}

12: Return {(t,, tA@n)},”n[:l

N R

m=1

Siesg)

Notably, this algorithm achieves the aforementioned coverage guarantee as a direct corollary of
Theorem3.1] stated below and proven in Appendix [C| Intuitively, the proof proceeds by demonstrating
that the 7" scoring function defined implicitly by Algorithm I]satisfies those conditions posited in
Theorem [3.1] from which the posited coverage immediately follows.

Corollary 3.2. Let D¢, (X', Y"), {si 1, and o be as defined in Theorem Let o, S(l) SC ),
and U = {u,,}M_, be as defined by lines 3-4 of the call CSA({sx},Dc,1 — ) ofAlgortthml
Denote by {qm }r,—1 the parameters defined by lines 4-9 of Algorithm I and by T the scoring
function T(S;Sg), U) = maxy,—1. . (u,,8/Gm) for any score vector s € Rf. Then, denoting
byC(X)={yey| T(S(X’7y);8g)) < i}, P(Y' € C(X')) > 1 — «, where the probability is
defined over the joint draw of the data D¢, (X',Y"), and the permutation o.



3.2 Predict-Then-Optimize

With this generalization of the score function, a natural question is how to leverage the result-
ing prediction regions C(x). For both classification and regression, C(z) = ﬂ%zl Crm(x) where
Con(z) := {y | u,.5(z,y) < Gn}. For classification, where || € N, explicit construction of C(z) is
straightforward: for any x, explicitly constructing C(z) can be done by iterating through y € ) and

checking if s(z,y) € 9] by comparing s(x, y) against each one of the thresholds g, after projection.

In the case of regression, however, the prediction region cannot be explicitly constructed in the general
case, since ) contains uncountably many elements. In fact, explicit construction is generally not of
interest for downstream regression applications. We, therefore, focus on one particular application,
namely that of [36] discussed in Section[2.3] and demonstrate the CSA prediction regions can be
leveraged in their framework for problems studied therein. For instance, the authors demonstrated
the utility of their method in a robust traffic routing setting with ¢ being predicted traffic from a
probabilistic weather model ¢(C' | X') for weather covariates X. An ensembling approach emerges
with multiple predictive models, such as a ¢o(C' | X) predicting traffic based on historical trends.

As in Section[3.T] we note that the below described algorithm is better understood with a visual accom-
paniment, which we provide in Appendix[D] [36] demonstrated that solving the robust problem variant
w*(z) := min, maxzec(y) f(w,c) in a computationally efficient manner is feasible by performing
gradient-based optimization on w, where the gradient V., ¢(w) of ¢(w) := maxgec(s) f(w, ) can
be computed by leveraging Danskin’s Theorem so long as maxzec(q) f(w, ) is efficiently com-
putable for any fixed w. We focus on demonstrating that this remains the case for CSA, specifically
considering the case where individual view score functions take the form of the “GPCP” score
considered therein. In this setup, each constituent predictor is a generative model ¢;,(C | X) from
which {¢g; }3]21 ~ qi(C | X) samples are drawn. Note that .J, need not be constant across k. The
GPCP score, used to define the score components, is

_ : o ) 2
su@.c) = min [|[o; = ol @
Notably, this framework subsumes many standard regression settings, e.g., for a deterministic
predictor, one can take ¢x(C' | X) = 0(fx(X)). To compute maxzee(s) f(w, <), we first let
je€J ={j,-.,jx} be an indexing tuple, where each jj € {1, ..., Ji}. That is, each j is a vector

that “selects” one sample per predictor. Notably then, the projection u;;s(ﬁj, ¢) is convex in ¢, since

the projection directions are all restricted to S f ~L. Thus,
* T (o -~
¢ i= arginaxf(w, c) s.t. ums(c;, ¢) <qm Yme{l,.., M} 3)

remains a standard convex optimization problem. The final maximum can then be found by aggre-
gation, namely ¢* = arg max;, ; f(w, c;i) While | 7| = [[,_; Jk, in certain cases of ensemble
prediction, such as multi-view prediction, there tend to be a limited number of predictors in practice,

typically K = 2 or K = 3. This coupled with the trivial parallelizability of computing over indices
means this approach is still computationally tractable. The full procedure is outlined in Algorithm 2]

Algorithm 2 Predict-Then-Optimize Under CSA

1: Inputs: Context x, Predictors {gx(C | X)}X_,, Optimization steps 7', Sample counts {J }~_,,
CSA quantile {(t,, Gm)}M_,;
. K
{{Ch; 1y ~ au(C | X)Hy, T = [T [4]
w® ~ U(W)
fort e {1,...T} do
for j € 7 do c;i_ — argmax, f(w®, c) st. Ymel,.,. M u;s(ﬁj, ¢) < Gm
c* + argmax,. f(w(t),c;i_)
7
w® HW('w(t_l) - nvwf(w(t_1)7 c*))
end for
Return w(™)

W & ke




Table 1: Classification results are shown across tasks for o = 0.10, &« = 0.05, and «« = 0.01, with
coverages in the top (grey) and average prediction set sizes (white) in the bottom of each row. Both
were assessed over a batch of i.i.d. test samples (15% of the validation set from ImageNet). Standard
deviations and means were computed across 10 randomized draws of the calibration and test sets.

Dataset/oc | ResNet VGG DenseNet VFCP cM ch cv Ensemble CSA
ImageNet | 0.901(0.005)  0.902(0.003)  0.902(0.003)  0.899(0.004)  0938(0.003) 0909 (0.004) 0.9 (0.004) 0.899 (0.004) 0.9 (0.003)
(a=0.10) | 137.004 (1.98)  136.116(2206)  120.096 (2.427)  46.063 (1.089)  87.337 (1.604) 82746 (1.692)  131.856 (2378) 69.123 (1317)  34.006 (0.924)
(a=0.05) | 0.95 (0.003) 0949 (0.004)  0952(0.002)  0.95(0.003)  0.975(0.002)  0.954 (0.004) 0.95(0.003)  0.949(0.002)  0.95 (0.003)
220022 (2.072)  229.523(3.076)  208.658 (2.016)  78.108 (2.004) 166933 (2.157) 143.323(2.932) 220491 (2.773) 112161 (2.115)  59.574 (3.382)

(a =0.01) 0.99 (0.001) 0.991 (0.001) 0.989 (0.002) 0.99 (0.001) 0.997 (0.001) 0.991 (0.002) 0.99 (0.002) 0.99 (0.002) 0.99 (0.002)
491.952(6.353)  726.028 (12.157)  459.399 (6.739) ~ 194.691 (4.579)  580.592 (7.715) 532.155(24.829)  559.188 (7.07)  299.453 (6.526) ~ 201.32 (46.509)

4 Experiments

We now study CSA empirically across several tasks, demonstrating its coverage guarantees with
reduced conservatism. We demonstrate improvements in an ImageNet classification task in Sec-
tion [4.1] across real-data regression benchmark tasks in Section[4.2]as proposed by [42], and in a
downstream predict-then-optimize task in Section[4.3] We additionally assess the robustness of CSA
to imbalanced ensembles and perform an ablation study of the two-stage calibration.

We note that the predictors and calibration and test sets were fixed across choices of calibration
procedure for each experiment, meaning care had to be taken in partitioning D¢ = D¢ Wy De @) for
CSA, where an insufficiently large Dc(l) would result in poor estimation of the a-quantile envelope

and hence require a large adjustment ¢ factor and an insufficiently large D¢ () in the classical reduced
predictive efficiency from conformal prediction. We note the splits in each of the sections that follow.

We compare against the methods presented in Section [2.4] viz. the model selection of [27], the
aggregation methods of [25]], and the single weighted score projection (VFCP) of [40]. We addi-
tionally include the initial strategy discussed in Section [2.4] in which the ensemble predictor is
directly conformalized, using a natural aggregate “ensemble” score, given in the following sec-
tions. From the work of [25]], we consider the following methods: the standard majority-vote CM,
partially randomized thresholding C*, and fully randomized thresholding CY approaches (see Ap-
pendix [N). Notably, these methods do not lend themselves for use in the predict-then-optimize
setting, so we eliminate them from consideration therein. VFCP can only be applied in classifi-
cation settings; we, thus, do not compare to it across the regression tasks. Code is available at
https://github.com/yashpatel5400/fusioncp/|

4.1 Classification Tasks

We first study the predictive efficiency of the aforementioned methods on the ImageNet classification
task [43]. In particular, an ensemble was constructed from three separately trained deep learning
architectures, namely ResNet-50, VGG-11, and DenseNet-121. Conformalization on the individual
models was performed using the standard classification score function across all approaches, namely

s(z,y) = 22:1 j?(x),rj (z) Where y = m; () and 7(x) is the permutation of {1,...,[)|} that sorts

f (z) from most to least likely. Here, the “Ensemble” score was computed with the same s(z, y),
replacing fj(«) with the ensemble average probability, i.e. j(x); := >, (fi(x));/K. Calibration
was performed using 85% of the ImageNet test set and assessment of the coverage and interval
lengths on the remaining 15%, with 10 trials conducted over randomized draws of these calibration
and test sets. A 25/75% split was used for Dc(l)-Dc(Q). The results are presented in Table the full
results across additional « is given in Appendix[G] We see that all the approaches exhibit the desired
coverages across . However, CSA consistently produces significantly smaller prediction regions
than both the individually conformalized models and alternate aggregation strategies.

4.2 Regression Tasks

We now similarly study the predictive efficiency of CSA across a suite of regression tasks from [42].
The data for each task were split with 50/45/5% for training, calibration, and testing for coverage and
interval lengths, with five trials conducted over randomized selections of such sets. A 5/95% split

was used for DeM-D¢(?). The problem setup was replicated from [29]], in which four prediction
methods were ensembled, namely an OLS model, a LASSO linear model, a random forest (RF),


https://github.com/yashpatel5400/fusioncp/

Table 2: The results for five distinct tasks are shown below for « = 0.05 (top five rows) and
a = 0.025 (bottom five rows). For each, the average coverages (grey rows) and prediction set lengths
(white rows) with standard deviations are given, both assessed over 5 randomized draws of the
training, calibration, and test sets. In cases where the method failed to achieve sufficient coverage (i.e.
< .93 for a = 0.05 and < 0.96 for o« = 0.025), we do not include it in comparison for set length.

Dataset/a | oLS LASSO RF XGBoost cM cr cv Ensemble Single-Stage CSA
361234 097 (0.011) 0966 (0.011)  0.939(0.002)  0.954(0.006) 0956 (0.011)  0.948 (0.01) 0.96 (0.013) 0.95 (0.006) 0.955 (0.013) 0957 (0.01)
(@=005) | 9.673(0.160)  9.645(0.154)  10.080 (0.160) ~ 9.157(0.052)  9.196(0.123) 8703 (0.086)  9.524(0.056)  17.759(0.275)  7.646(0.073) 7.688 (0.181)
361235 0.947 (0.0) 0.945(0.005)  0.968(0.016)  095(0.005  0955(0.016)  0.897(0.005  0953(0.011)  0.932(0.021) 0.745 (0.011) 0.984 (0.005)
(@ =0.05) | 20961 (0.651) 24.241(0.246)  10.096 (0.587)  11.387 (0.452)  11.782(0.057) — 16088 (0.118) 15823 (1.272)  6.162 (0.458) 11.695 (0.266)
361236 0.975 (0.008)  0.975 (0.008) 0.961 (0.0) 0948 (0.012)  0.948(0.012)  0.938(0.012) 0965 (0.008)  0.934 (0.004) 0.94 (0.004) 0.963 (0.004)
(a=0.05) | 44ded (1.17¢3) 4.4504 (1.233) 5.08¢4 (3.86¢2) 4.10e4 (1.223) 4.32e4 (1.00e3) 4.09¢4 (1.09e3) 4.44ed (8.52¢2) 6.05¢4 (2.41e3)  9.10ef (2.48e3)  3.34e4 (1.28¢3)
361237 0.969 (0.023)  0.969 (0.023) 0.981 (0.0) 0.923 (0.0) 0.954 (0.015) 0.9 (0.008) 0969 (0.023)  0.885 (0.038) 0.8(0.015) 0977 (0.008)
(a=0.05) | 44.019(0.990) 44069 (1.115)  27.035 (1.014) — 26.524 (1.244) — 31.967 (1.118) — 14.473 (0.503) 23.145 (0.199)
361241 0.954(0.001) 0956 (0.001)  0.944 (0.005)  0957(0.002)  0.954 (0.002) 0923 (0.0) 0952 (0.0) 0.949 (0.001) 0.917 (0.006) 0951 (0.001)
(@=0.05) | 19.133(0.062) 20245(0.095)  18.102(0.055)  18.482(0.062)  17.958 (0.062) — 18932 (0.034)  29.548 (0.191)  15.199 (0.427) 17.328 (0.097)
361234 0987 (0.008)  0.987(0.008)  0.974(0.004)  0977(0.008)  0.982(0.008)  0.971(0.01) 0.981 (0.01) 0.97 0.008) 0.976 (0.01) 0973 (0.006)
(=0.025) | 11.939(0.137)  11.871 (0.084) 12484 (0.168)  11.972(0.009) 11587 (0.110) 11157 (0.086)  11.965 (0.050) 25598 (0.974)  9.306 (0.259) 8.855 (0.059)
361235 0.987 (0.0) 0982 (0.011)  0979(0011)  0.984(0.005  0989(0.005)  0.966(0.016) 0976 (0.005)  0.958 (0.021) 0.889(0.011) 0989 (0.005)
(a=0.025) | 24.595(0.825) 28.841(1.129)  11.811(0.992) 14.237(0.786)  14.472(0.172) 12278 (0.026)  19.231 (0.356) — 7.719 (0.467) 12.563 (0.766)
361236 0.992 (0.004)  0.992 (0.004) 0.981 (0.0) 0965 (0.008)  0.975(0.008)  0.965(0.008)  0977(0.012)  0.955 (0.008) 0.955 (0.012) 0973 (0.004)
(@ =10.025) | 4.86c4 (8.74c2) 4.86e4 (3.68¢2) 5.61cd (3.69c2) 4.66e4 (1.57e3) 4.76ed (8.102) 4.57e4 (1.06e3) 4.92e4 (7.53¢2) — 3.29¢4 (3.11e3)  3.58c4 (1.95¢3)
361237 0.981 (0.0) 0.981 (0.0) 0.981 (0.0) 0.977 (0.008) 0.962 (0.0) 0.962 (0.0) 0977 (0.008)  0.965 (0.008) 0.927(0.031) 0.981 (0.0)
(a=0.025) | 47.738(0.542)  47.440(0.959)  30.785(0.037)  26.208 (0.897)  30.554 (0.561)  27.182(0.803)  35.982(0.619)  67.660 (6.380)  18.214 (0.436) 26.897 (0.515)
361241 0979 (0.001)  0978(0.001)  0.976(0.001) 0978 (0.001) 0978 (0.0) 0.964 (0.002) 0977 (0.0) 0.972 (0.002) 0.958 (0.003) 0.979 (0.0)
(a=0.025) | 21.772(0.085)  23.089 (0.106) ~ 21.543(0.009)  21.454 (0.109)  20.862(0.088)  19.291 (0.060)  21.905 (0.041)  40.082(0.045)  17.765 (0.329) 19.897 (0.062)

and an XGBoost model. A residual function was used as the score across all methods, namely

s(z,y) = |f(x) — y|. Here, the “Ensemble” score was the standard s(z,y) := %, where

(1(x),0(x)) are the ensemble mean and standard deviation. Prediction intervals could be analytically
constructed for the CM, CE, and CY methods. To assess CSA, however, a discretized grid Gy C Y of
coarseness Ay was considered, and an interval length estimate given by L(C(z)) = Ay - [{y : y €

Gy, s(x,y) € Q}|. We also present an ablation, labeled “Single-Stage,” to demonstrate the two-stage
calibration is necessary to retain coverage; this single-stage approach does not split S¢ and instead
directly computes {g,,} on S¢: per Section[3.1.1} For CSA, M = 1000 was used. Intuitively, as
M — oo, we would expect to recover the 1 — « tightest cover and, thus, that the prediction region
size should be roughly decreasing in M, with some plateau. This is explicitly shown in Appendix

We provide the results for & = 0.05 and o = 0.025 to demonstrate the consistency of the method
performance. A subset of the results is given in Table[2} the full set of results is deferred to Appendix[H]
As in the results of Section[d.T] we see that CSA retains the coverage guarantees typical of conformal
prediction yet produces significantly smaller prediction intervals than both the individual models
and the alternate aggregation strategies. We additionally see that the “Single-Stage” approach fails
to retain coverage, demonstrating the necessity of the two-stage calibration. We provide a visual
comparison of the prediction regions resulting from these methods in Appendix [J|

We additionally assessed the robustness of our method to imbalanced ensembles. The experiments of
[29] were conducted on a UCI benchmark task [44] with an ensemble of an OLS model, a LASSO
linear model, a random forest, and an MLP, and they found the conformalized random forest to
outperform all the proposed aggregation strategies, due to the lack of orthogonal information in
considering the other predictors. We find that, in these degenerate cases, where the best decision is
to simply choose a single predictor, our method outperforms other aggregation methods and nearly
matches the performance of the best conformalized predictor in hindset; the results are presented in
Appendix [K] across a number of UCI benchmarks.

4.3 CSA Predict-Then-Optimize

We now study a real-world predict-then-optimize traffic routing task, from [36]]. In this task, a time
series of T" preceding precipitations is used to predict future precipitations and, in turn, future traffic,
as fully described in Appendix [[] We consider the traffic routing problem for a fixed source-target
pair (s, t) over the graph of Manhattan, where V| = 4584 and || = 9867. Formally,

w*(x) == IninAmCa(x) Tw st wel0,1%, Aw =b,Pxc(C€C(X))>1—a
w ceC(z
where 2 € RT*H*W are the previous precipitation readings, w. € RI¢! the traffic proportion routed

along road e, ¢ € RI€! the transit times anticipated across roads, A € RIVI*I€| the graph incidence



matrix, and b € RIYI the vector that specifies the routing problem, in which b, = 1,b; = —1, and
by, = 0 for s the travel source node, ¢ the terminal node, and k ¢ {s, ¢} all other nodes.

We then consider two probabilistic models for traffic prediction, namely one based on the classical
probabilistic Lagrangian integro-difference approach (STEPS) of [45]] and one on the modern latent
diffusion model (LDM) approach of [46]]. As a result of the higher inference cost of the latter,
we consider the setup where J; > Jo, specifically with J; = 4 and J» = 1, highlighting the
flexibility of non-uniform sampling from predictors discussed in Section As discussed in
Section [4] the alternate aggregation strategies do not lend themselves for use in this setting. We,
therefore, only compare CSA to the separate conformalizations of the two predictors, with the score
from Equation (2)). We here evaluate the methods using the expected suboptimality gap proportion,
Ay =Ex[A(X,C(X))/min,, f(w,C(X))], where A is defined as discussed in Section [2.3] This
measures the conservatism of the robust optimal value and is bounded in [0, 1].

Experiments were conducted with [D¢| = 200, with a 20/80% split used for DeV-D¢(?). The

suboptimality was then computed across 100 i.i.d. test samples. To assess the improvement, we

conducted two paired t-tests, where Hy : AS%CSA) = AE%?TEPS) and H, : A;SSA) < Af;TEPS) and

similarly for Al(%CSA) and A% PM) The results are provided in Table from which we find that CSA
significantly reduces the suboptimality after accounting for Bonferroni multiple testing. We see that,
while conformalization of either of the two views individually already produces the desired coverage,
CSA produces more informative prediction regions, and hence less conservative robust upper bounds.

Table 3: Coverages for o = 0.05 for the individually conformalized and CSA approach and p-values
of the paired t-tests comparing Ao, are shown, both computed over 100 i.i.d. test samples.
Coverage | P-values for H,

STEPS LDM CSA | Al < AFTPP9): 361 x 104
0981 0962 0968 | ALY < AP 950 x 10

5 Discussion

We have presented a framework for producing informative prediction regions in ensemble predictor
pipelines, suggesting many directions for extension. One is in extracting insights of the relative
predictor uncertainties from the data-driven relation <. Another is the integration of CSA with [47]],
which proposed an end-to-end extension to [36]. Such end-to-end integration may discover more
optimal vector comparisons than the quantile envelope partial ordering approach proposed herein.
Additionally, in requiring the data to be split to retain coverage, we are sacrificing statistical efficiency,
which may be infeasible in data-sparse regimes: developing a method analogous to full conformal,
which forgoes computational efficiency for statistical efficiency, would be another valuable direction
for extension. Finally, given the prevalence of sensor fusion in robotics, another avenue is to study
the use of CSA in robust control. This would extend recent works that have leveraged conformal
prediction for robust linear control [48]].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [NA]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [NA|

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [NA |
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [NA]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A CSA Visual Walkthrough

We walk through a visual presentation of the approach below to supplement the textual description
in the main text. We start with a collection of multivariate calibration scores S¢ with s € S being
€ RX. For the purposes of visualization in this section, we have K = 2. We first partition the score

evaluations S¢ = Sg Jus® , with a subset Sg ) used to define the pre-ordering and the remainder
S(C2 ) to define the multivariate quantile.
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Figure 2: The calibration score evaluations are first split between those used to define the pre-ordering
(green) Sg ) and those used to define the final multivariate quantile (red) Sg ),

We first wish to define the pre-ordering over S((J1 ). As described in the main text, the goal is to
define this using an indexed family of sets .A; with index ¢ € R, after which the multivariate quantile

approach reduces to the univariate quantile formulation. To ensure the final envelope over Sg )
remains as tight as possible, we wish to define this family in a data-driven fashion. Critically, the

shape of this tightest envelope around Séz ) will vary across a, meaning we must define the family
separately for each choice of a. We expect the contour of the tightest a envelope for S(cl ) will be
similar to that over Sg ), motivating such a choice to define the indexing family. To do this, we project

S((Jl ) along a number of directions, finding the S quantile along each, in turn defining a half-plane,
where (3 is as described in Section[3.1

Figure 3: The pre-ordering points are projected across a number of directions, after which the
quantile is used to define a direction quantile. This defines a half-plane of points that are in the region
(blue) and those outside (red).

We then iteratively update /3 in the manner described in Algorithm [I] to obtain 3*, namely the
minimum value for which the region given by the intersection of the corresponding half-planes covers
roughly 1 — o of Sg).
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Figure 4: We use the intersection of hyperplanes to define the quantile envelope, seeking 5* that
achieves the desired coverage.

Once this 1 — « quantile envelope of Sél )is found, we define A; to be such an envelope, with
which future points can now be partially ordered. That is, for any point s € R¥ notice that we can
unambiguously associate it with ¢(s) := min{t € R : s € A;}. Intuitively, this is the ¢ where the

contour “intersects” s. Notably, now that the partial ordering has been defined, the points of Sél ) are
no longer used. It would be of interest to investigate whether a concurrent definition of the partial
ordering and final calibration is possible without such data splitting in future work.

S

Figure 5: Using the quantile envelope, the family of nested sets .A; is defined, in turn defining a
partial ordering over R

A1 n

sLoy
Ty

T

With this .4;, we find the final ¢ simply by mapping the points of 8(02 ) to their corresponding (s)
values in the aforementioned fashion and performing standard conformal prediction. As discussed, if

the envelope has a similar structure to that found over Sg ), the envelope should be adjusted by only
a minor amount.
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Figure 6: Using the nested family of sets, we expand or contract the envelope appropriately using the
data of Sg ) to find the final adjustment factor.

B Multivariate Score Coverage

The proof of the multivariate extension of conformal prediction follows in precisely the same manner
as that of standard conformal prediction with the pre-order < replacing the complete ordering used in
traditional conformal prediction.

Theorem B.1. Suppose (X1,Y1),...,(Xng, Yne ), (X', Y') are exchangeable, where Do =

{(X;,Y3)}Ye . Assume further that K non-negative maps sy, = X x ) — R, have been defined and
a composite s(X,Y) := (s1(X,Y), ...,sx (X, Y)) is defined.

Let 0 = (01,...,0N.) be a random permutation of the indices {1,..., N¢c}, drawn uniformly
and independently of Do and (X', Y'). Let the calibration set D¢ be partitioned into Dg ) =

{(XC,J.,YC,].)};V:CI1 and Dg) = {(ng,ng)}jy:cj\,leff, where No :== N¢, + Ng,. Let the corre-

sponding score sets be S(Cl) and Sg). Let T(:; S(Cl)) : Rf — R be a deterministic function for any
given realization of Sél ),
For some o € (0, 1), let be the [(N¢, +1)(1 — «)]-th smallest value of the set of transformed scores

{T(s4; Sé.l )) | s; € S(C2 )}. Assume that ties among the transformed scores occur with probability

zero. Then, denoting by C(X') ={y € Y | T(s(X',y);Sg)) <}, P(Y' € C(X")) > 1—a, where
the probability is defined over the joint draw of the data D¢, (X',Y"), and the permutation o.

Proof. The overall probability is taken over the joint distribution of the exchangeable data, D¢
and (X’,Y"), and the independent random permutation, . We use the law of total probability by
first conditioning on a specific realization of the permutation, ¢ = , and the data in the first split,

D(Cl) = dW. Given ¢ = 7 and Dg) = dW, the score set Sél) is fixed. As a result, the function
T(; Sél )) becomes a fixed, deterministic transformation.

By the initial exchangeability of all data points, after conditioning on the values of the first split D(Cl ),

the remaining N¢, calibration points in Dg ) and the test point (X’,Y") are still an exchangeable
sequence. Applying the fixed transformation 7’ to their scores yields an exchangeable sequence of
Nc¢, + 1 scalar values:

{T(s;88) | (Xi,Y:) € DY ULT(s(X",Y"); S8}

Under the no-ties assumption, the rank of the test value T'(s(X’,Y"); Sg )) within this sequence is
uniformly distributed on {1, ..., N¢, + 1}. The test point Y is covered if its transformed score is

23



less than or equal to the threshold ¢. This occurs if and only if the rank of the test score is at most

m = [(N¢, + 1)(1 — «)]. The probability of this event, conditional on o = 7 and D(Cl) =dW, is:

No, +1)(1 = a)]
ch +1

P(Y' €C(X')| o =mD5 =dV) = It >1-a.

Since this guarantee holds for any realization (7, d(1)), the unconditional probability also holds by

the law of total probability:
PY' €eC(X")=E

(PO ec(x') |0, DP)| 2 E, (i —a] =1-a,

(1) (1)
O'aDc U,DC

where the expectation is taken over the joint distribution of o and D(Cl ). This completes the proof. [

C CSA Algorithm Coverage

We now provide the proof of the coverage guarantees of the region produced by Algorithm|[I] As
mentioned in the main text, this follows as a direct corollary of Theorem@

Corollary C.1. Let D¢, (X',Y"), {si}f_,, and o be as defined in Theorem Let o, (Sg), Sg)),
and U = {u,, }M_, be as defined by lines 3-4 of the call CSA({sx},Dc,1 — ) ofAlgorithm
Denote by {qm }r,—1 the parameters defined by lines 4-9 of Algorithm 1 and by T the scoring
function T(S;S(Cl)7 U) = maxy,—1,. . m(u,,8/Gm) for any score vector s € ]Rf. Then, denoting

byC(X")={ye)| T(s(X’,y);Sg)) <t}, P(Y' € C(X")) > 1 — «, where the probability is
defined over the joint draw of the data D¢, (X',Y"), and the permutation o.

Proof. To prove the corollary, we must show that this specific function 7 satisfies the conditions of
Theorem 1. The overall probability is taken over the joint draw of the data (D¢, (X', Y")), the random
permutation o, and the random directions U. We use the law of total probability by conditioning on

specific realizations of the random elements o = T, D(Cl ) = d(l), and U = u.

Given these fixed realizations, the score set Sél ) and the projection directions {u,, } are fixed. The
procedure in Algorithm 1 to find the base quantiles {G,, } via binary search is a deterministic operation

on this fixed data. Therefore, the function 7'(s; S(cl ), U) becomes a fixed, deterministic function of s.
The conditions of Theorem 1 are met (again assuming no ties in 7°), and its proof implies that the
conditional probability of coverage is at least 1 — a:

PY' €C(X')|oc=mDY =dV,U=u)>1-a.
Since this guarantee holds for any realization (7, d*),u), the unconditional guarantee follows from
the law of total probability:

P(Y' €C(X')) =E [P(Y’ eC(x’) | o, DY, U)] >1-a.

(1)
0,D.", U

Thus, the guarantee holds for the specific procedure in Algorithm 1. O

D CSA Predict-Then-Optimize Visual Walkthrough

We now present a visual accompaniment of the predict-then-optimize algorithm presented in Sec-
tion 3.2l We once again take K = 2 for visual clarity in this walkthrough, where the predictors
are as discussed in Section namely assumed to be generative predictors g, (C | X) where the
number of samples per predictor are fixed to be {.Jj }. For illustration, we assume J; = 5 and J, = 3,
meaning predictions with the first model are made by drawing 5 samples and 3 for the second. We
assume the CSA calibration of Section[3.1]has already been performed, from which a collection of
projection directions and quantiles {(ty,, G )}M_, are available that implicitly define an acceptance
region Q. We further assume the individual predictor score functions are all the GPCP score given in
Equation (2), with dj, from Equation (2)) specifically here taken to simply be the standard Euclidean
2-norm, giving

sk(x,c) = jnin [1ek; — cll- 4)
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We now wish to compute ¢* = maxzec(y) f(w, ¢). To do so, we must start by defining this region
C(x) for the test point =, which we do by drawing the respective number of samples from the two
models, producing samples {1;}7_; and {¢;}5_,, as shown in Figure

[}
[

,_\
i
o)

o

Figure 7: Samples drawn from the two generative models {¢1,}?_, ~ q1(C | z) (blue) and

{c2;}3=1 ~ q2(C'| x) (green). Note that this is a visualization in the C space, i.e. not the space of
multivariate scores.

By definition, Vc € C(x),

u,Tn ( min _||¢15, —¢||, min |[[cz;, — c||) < Gm Vm=1,...,M. 5)
Jj1=1,...,5 Jj2=1,...,3
As a result, we must have that, Ve € C(x), 3 j; = 1,..,5 and jo = 1,...,3 such that

u (|[e1, — el |24 — ¢l]) < @m ¥Vm = 1,..., M. Solving for c*, therefore, amounts to con-
sidering each pair 7 := (j1,j2) € J, where J := {1,...,5} x {1,...,3}, and solving
c]f, := arg max f(w, ¢)

(6)
st u,) <||clj~»1 —cll,[leyz, — c||) <qm Ymed{l,.., M}

Notice that, for any fixed 7, this is a standard convex optimization problem with a convex feasible
region. We illustrate how the feasible region would be constructed for a fixed j in Figure Note
that the construction of this feasible is never explicitly done in practice and is only implicitly used by
convex solver routines in practice. We can, therefore, then solve Equation @ over all possible jed
and aggregate the maxima to compute c*.

dy

Figure 8: A candidate ¢ € C is in pred1ct1on region if the projections of its distances (dy, d2) from at
least one pair of points indexed by ] = (j1,72) is in the acceptance region Q. Here, we illustrate a

point c that lies in the feasible region from its proximity to the ] := (4, 1) pair of points. Note that
the left is again a visualization over the C space, whereas the right is of the score space.
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E Computational Efficiency

E.1 Vectorized Score Computation

We now discuss the vectorized form of the computations discussed in Section[3.1.2] In particular,
putting the scores into a matrix 5% = [sy, ..., SNe,]| € RNer*K and directions into a matrix
U = [u,...,up]" € REXM all the projections u, s; can be computed as Sg)U € RNy xM|

where [S$) U], is precisely u] s;. § € RM := {g,, := quantile([SS U] ;1 — a)} is then the
quantile per row.

For any test point s’ € R, we can then very efficiently check if it falls into the region by checking if
it satisfies Us’ < ¢ component-wise. Each iteration of the loop to find 5*, therefore, is very fast, and
we find the search typically converges in 5-10 iterations.

The final step is computing t. Computing this follows similarly to above, where we take the scores
S(z), compute projections Sg)U € RNeo XM find T := S(C?)U/(j € RNe2 XM "where division is
interpreted as being defined component-wise along the rows, computing the maxima similarly along
the rows [T*]; := max Ti7;, and finally computing 7 as the 1 — o quantile of 7*.

E.2 Empirical Efficiency Validation

To demonstrate the computational efficiency of this vectorized approach, we reran the experiment on
the “Parkinsons” UCI task with both varying numbers of predictors (K) and projection directions
(M); for each combination, we measured the total time taken to compute the quantile (i.e. to run
Algorithm 1) and to perform the projection to assess coverage for the test points. The additional
predictors were taken to be random forests with different numbers of trees. K is given in the left
column and M in each column heading, with the entry for each (K, M) pair being reported in
seconds. As expected, by the vectorized nature of the computations, as discussed in the main paper,
the performance scales gracefully over M at roughly O(M) and remains roughly constant in K.

Table 4: Performance values for varying K (number of predictors) and M (number of projection
directions). All values are reported in seconds.
M ‘ 10 100 1000 10000

6| 0.111668 0.373029 2.32803 37.2561
8 | 0.0961056 0.327051 2.16211  36.7216
10 | 0.117146 0.373464 2.73875 37.2603
12 | 0.123772  0.384527 2.35386 37.0735

K

F Prediction Region Intuition

We now consider a simplified setting of the general procedure to gain insight into the efficiency
resulting prediction regions. In particular, we consider a scalar regression setting with K predictors
fi,, [+ X — R. We further suppose, with a slight abuse of notation, f(z) —y ~ N(0,X) for
f(x) == [f1(x), ..., fx (v)] and that the scores are taken to be si(x,y) := (fi(x) — y)?. Then, as

~

@ is precisely the region with minimal volume that captures 1 — « density, it is precisely given by
X%{,l—a’ the 1 — o quantile of the x? distribution with K degrees of freedom. That is, the prediction

regions are C%54(z) := {y : (f(x) —y) "7 (f(z) —y) < X%k.1_o ) Notably, if & = diag({o7}),

K f 2
COsA—diag () {y . Z ( k() y) <% 1a} ) %)
i=1 Tk ’
Two insights arise from this expression. The first is that, unlike in the prediction regions for the case
of the univariate score function sy (z,y) := (fx(z) — y)?, the size |CYSA~%88 (1) is dependent on
z. In the univariate case, the size is 2q; across all . Here, however, the feasible set of 3 becomes
smaller the more distinct the values fi(x) are. The second insight, therefore, is that, under such
independence of residuals, prediction region sizes are minimized in having well-separated predictions,
which suggests that efficiency is optimized by having an ensemble of predictors that learn distinct
maps from X — ), such as those that focus on distinct views of the covariate space.

26



G Full ImageNet Results

Here we present the complete collection of results for the classification task across additional o than
those that could fit in the main paper.

Table 5: Average coverages across different coverage levels are shown in the top rows and average
prediction set sizes in the bottom rows. Both were assessed over a batch of i.i.d. test samples (15%
of the validation set from ImageNet). Standard deviations and means were computed across 10
randomized draws of the calibration and test sets.

Dataset/a Metrics ResNet VGG DenseNet VFCP cM ch ct Ensemble  CSA (Single-Stage) CSA
ImageNet ~ Coverage  0.97 (0.011) 0966 (0.011)  0939(0.002)  0.954(0.006)  0.956 (0.011) 0.948 (0.01) 0.96 (0.013) 0.95 (0.006) 0.955 (0.013) 0.957 (0.01)
(a=007) Length 174.828(2.037) 181.58(2459) 160623 (2828) 61247 (1.638) 122.899 (2.154) 111.602(2.155) 173264 (2.674) 86955 (1.886)  44.787 (1.198) 45.352 (1.56)
Coverage  0.95 (0.003) 0949 (0.004)  0952(0.002)  095(0.003)  0.975(0.002)  0.954 (0.004) 0.95(0.003)  0.949 (0.002) 0.95 (0.002) 0.95 (0.003)
(¢=005) Length 220.022(2.072) 229.523(3.076) 208.658 (2.016) 78.108(2.004) 166.933 (2.157) 143.323(2.932) 220491 (2.773) 112.161 (2.115)  58.424 (1.674) 59.574 (3.382)
Coverage  0.98 (0.002) 0981 (0.002) 0.98 (0.002) 0.98(0.002)  0.992(0.002)  0.982(0.002) 0.98 (0.002) 0.98 (0.003) 0.98 0.001) 0.979 (0.002)
(@=002) Length 357.487(5.046) 363376 (4.916) 342479 (5.603) 137.356(3.595) 311.521 (4.053) 327.754(6.251) 355.701 (4.423) 202.573(2.948)  117272(5.015) 121477 (19.719)
Coverage 0.9 (0.001) 0991 (0.001)  0989(0.002)  099(0.001)  0.997 (0.001)  0.991 (0.002) 0.99 (0.002) 0.99 (0.002) 0.99 (0.001) 0.9 (0.002)
(a=001) Length 491.952(6.353) 726.028 (12.157) 459399 (6.739) 194.691 (4.579) 580.592(7.715) 532.155(24.829) 559.188(7.07) 299.453 (6.526)  180.534 (8.468)  201.32 (46.509)

H Full OpenML Results

Table 6: Average coverages across tasks for & = 0.05 are shown in the top row and average prediction
set lengths in the bottom row, where both were assessed over a batch of i.i.d. test samples (20% of
the dataset size). Standard deviations and means were computed across 5 randomizations of draws of
the training, calibration, and test sets. In cases where the method failed to achieve sufficient coverage
(defined as < 0.93), we do not include it in comparison for set length. Similarly, the single-stage

approach fails to achieve coverage due to lack of exchangeability with test points.

Dataset  Metrics Linear Model LASSO Random Forest XGBoost oM cr cv Ensemble CSA (Single-Stage) CSA
361234 Coverage 097 (0.011) 0966 (0.011) 0.939 (0.002) 0,954 (0.006) 0956 (0.011) 0.948 (0.01) 096 (0.013) 0.95 (0.006) 0.955(0.013) 0957 (0.01)
Length 9.673(0.160) 9.645 (0.154) 10.080 (0.160) 9.157 (0.052) 9.196 (0.123) 8.703 (0.086) 9.524 (0.056) 17.759 (0.275) 7.646(0.073) 7.688 (0.181)
361235 Coverage 0.947 (0.0) 0945 (0.005) 0.968 (0.016) 095 (0.005) 0,955 (0.016) 0.897 (0.005) 0,953 (0.011) 0932 (0.021) 0745 (0.011) 0,984 (0.005)
Length 20,961 (0.651) 24241 (0.246) 10.096 (0.587) 11387 (0452) 11782 (0.057) 16,088 (0.118) 15823 (1.272) 6162 (0.458) 11695 (0.266)
361236 Coverage 975 (0.00; 0975 (0.008 0.961 (0.0) 0.012) 0.948 (0.012 0.938 (0.01 0.965 (0.00 0,934 (0.004) 0.94 (0.004 963 (0.0
Length  44407.071 (1173.758)  44509.269 (1229.817)  50820.568 (385.951) 41045.069 (1221.808) 43185.942 (1002.516) 40905.295 (1089.411)  44437.938 (851.862)  60509.250 (2410.320) 30953.589 (2452.065) 33439322 (1275.213)
361237 Coverage 0.969 (0.023) 969 (0.023) 0.981 (0.0) 0923 (0.0) 0,954 (0.015) 0.9 (0.008) 0.969 (0.023) 0.885 (0.038) 0.3(0.015) 0,977 (0.008)
Length 44019 (0.990) 44.069 (1.115) 27.035 (1.014) 26524 (1.244) — 31967 (1.118) 14473 (0.503) 23.145 (0.199)
361241 Coverage 0954 (0.001) 0956 (0.001) 0.944 (0.005) 0.957 (0.002) 0,954 (0.002) 0923 (0.0) 0952 (0.0) 0.949 (0.001) 0.917 (0.006) 0,951 (0.001)
Length 19.133 (0.062) 20245 (0.095) 18.102 (0.055) 18.482 (0.062) 17958 (0.062) — 18932 (0.034) 29.548 (0.191) 15.199 (0.427) 17.328 (0.097)
361242 Coverage 0.944 (0.004) 955 (0.0) 0.947 (0.004) 0,942 (0.0) 0.948 (0.0) 0.914(0.003) 0,944 (0.001) 0.949 (0.003) 09 0,944 (0.002)
Length 70.248 (0.304) 84510 (0.282) 50442 (0.421) 54844 (0.036) 54217 (0.115) — 65.635 (0.094) 61613 (0372) 44.602(0.170) 57.935 (0.070)
361243 Coverage 0922 (0.03) 0952 (0.015) 0.956 (0.022) 0,952 (0.015) 0.937(0.022) 0893 (0.044) 0,937 (0.022) 0919 (0.022) 0.748 (0.126) 0,956 (0.022)
Length — 71388 (0.152) 75.924 (2.291) 72877 (0.729) 68.493 (0.993) — 72.048 (0.024) — 43.742(10.285) 68.220 (1.603)
361244 Coverage 097 (0.022) 097 (0.022) 097 (0.022) 097 (0.022) 0.97 (0.022) 097 (0.022) 097 (0.022) 0974 (0.015) 0.963 (0.037) 0,956 (0.015)
Length 3.274 (0.004) 3.274.(0.004) 3336 (0.023) 3.284.(0.010) 3.272 (0.000) 3.269 (0.003) 3289 (0.002) 4854 (0.293) 0.287(0.008) 0.287 (0.008)
361247 Coverage 0,96 (0.001) 0953 (0.003) 0.94 (0.001) 0,951 (0.003) 0,963 (0.001) 0,903 (0.007) 0.951(0.0) 0954 (0.001) 0.843 (0.003) 0,943 (0.006)
Length 0.025 (0.000) 0.038 (0.000) 0.006 (0.000) 0.016 (0.000) 0.015 (0.000) — 0,022 (0.000) 0.013 (0.000) 0.005 (0.000) 0.008 (0.000)
361249 Coverage 0.96 (0.002) 0956 (0.002) 0962 (0.003) 0,972 (0.007) 0,953 (0.005) 0938 (0.002) 0,965 (0.005) 0936 (0.01) 0.931(0.0) 0,953 (0.005)
Length 3.008 (0.006) 3.068 (0.009) 2,800 (0.000) 2.780 (0.025) 2775 (0.006) 2.558 (0.019) 2,894 (0.000) 4706 (0.099) 2.216(0.020) 2.614 (0.043)

Table 7: Average coverages across tasks for a

0.025 are shown in the top row and average

prediction set lengths in the bottom row, where both were assessed over a batch of i.i.d. test samples
(20% of the dataset size). Standard deviations and means were computed across 5 randomizations of
draws of the training, calibration, and test sets. In cases where the method failed to achieve sufficient
coverage (defined as < 0.96), we do not include it in comparison for set length. Similarly, the
single-stage approach fails to achieve coverage due to lack of exchangeability with test points.

Dataset s Linear Model LASSO Random Forest XGBoost cM ch cv Ensemble CSA (Single-Stage) CSA
361234 g 0.987 (0.008) 0.987 (0.008) 0974 (0.004) 0.977 (0.008) 0.982 (0.008) 0971 (0.01) 0981 (0.01) 0.97 (0.008) 0.976 (0.01) 0.973 (0.006)
Length 11939 (0.137) 11871 (0.084) 12,484 (0.168) 11972 (0.009) 11587 (0.110) 11157 (0.086) 11965 (0.050) 25.598 (0.974) 9.306 (0.259) 8.855 (0.059)
361235 Coverage 0.987 (0.0) 0.982 (0.011) 0979 (0.011) 0.984 (0.005) 0.989 (0.005) 0966 (0.016) 0,976 (0.005) 0958 (0.021) 0.889(0.011) 0.989 (0.005)
Length 24.595 (0.825) 28.841 (1.129) 11811 (0.992) 14237 (0.786) 14472 (0.172) 12.278 (0.026) 19.231 (0.356) — 7.719(0.467) 12.563 (0.766)
361236 Coverage  0.992(0.004 0.992 (0.004) 0.981 (0.0) 0.965 (0.008) 0975 (0.008) 0.965 (0.008) 0977 (0.012) 0.955 (0.008) 0.955 (0.012, 0.973 (0.004)
Length 48591496 (873.946) 48578821 (867.718) 56132.760 (368.832) 46623.663 (1565.744) 47630.890 (810.373) 45714.911 (1062.420) 49188.464 (753.205) — 32881.580 (3110.734)  35777.096 (1949.538)
361237 Coverage 0981 (0.0) 0981 (0.0) 0981 (0.0) 0977 (0.008) 0962 (0.0) 0962 (0.0) 0977 (0.008) 0.965 (0.008) 0.927(0.031) 0981 (0.0)
Length 47.738 (0.542) 47.440 (0.959) 30.785 (0.037) 26.208 (0.897) 30.554 (0.561) 27.182 (0.803) 35.982 (0.619) 67.660 (6.380) 18.214(0436) 26.897 (0.515)
361241 Coverage  0.979 (0.001) 0978 (0.001) 0976 (0.001) 0.978 (0.001) 0978 (0.0) 0.964 (0.002) 0977 (0.0) 0,972 (0.002) 0.958 (0.003)
Length 21772 (0.085) 23.089 (0.106) 21.543 (0.009) 21.454 (0.109) 20.862 (0.088) 19.291 (0.060) 21905 (0.041) 40.082 (0.045) 17.765 (0.329) 19.897 (0.062)
361242 Coverage 0977 (0.003) 0.978 (0.001) 0975 (0.002) 0.968 (0.003) 0.973 (0.004) 0955 (0.002) 0971 (0.002) 0975 (0.0) 0.936 (0.001) 0977 (0.001)
Length 83.892 (0.143) 99811 (0.866) 65.672 (0.212) 68.119 (0.187) 68.155 (0.357) — 80.032 (0.354) 85.678 (0.371) 53.549(0.585) 69.388 (0.128)
361243 Coverage  0.985(0.007) 0.985 (0.007) 0.985 (0.007) 0.956 (0.022) 0.985 (0.007) 097 (0.015) 0.985 (0.007) 0.978 (0.007) 0.748 (0.126) 0.985 (0.007)
Length 92.698 (1.567) 87.949 (0.147) 88.993 (2.345) — 84.569 (0.557) 79.879 (0.739) 87950 (0.308)  137.673(15214)  46.504 (12.957) 79976 (2.585)
361244 Coverage  0.974(0.015) 0,974 (0.015) 0974(0.015) 0,974 (0.015) 0974 (0.015) 0974 (0.015) 0,974 (0.015) 0.989 (0.022) 0.963 (0.037) 0,974 (0.015)
Length 5274 (0.004) 5274 (0.004) 5336 (0.023) 5284 (0.010) 5272 (0.000) 5269 (0.003) 5289 (0.002) 11.283 (1.039) 0.287(0.008) 0.287 (0.008)
361247 Coverage 098 (0.0) 0,976 (0.003) 0.969 (0.004) 0,974 (0.001) 0977 (0.003) 0.945 (0.004) 0971 (0.003) 0982 (0.001) 0.906 (0.003) 0974 (0.004)
Length 0.029 (0.000) 0.042 (0.000) 0.009 (0.000) 0.019 (0.000) 0.018 (0.000) — 0.025 (0.000) 0.016 (0.000) 0.008 (0.000) 0012 (0.000)
361249 Coverage 0981 (0.003) 0981 (0.003) 0984 (0.002) 0991 (0.002) 0981 (0.003) 0976 (0.002) 0.981 (0.003) 0971 (0.007) 0.962(0.011) 0977 (0.003)
Length 3.645 (0.023) 3.674 (0.026) 3.600 (0.000) 3322(0019) 3402 (0.005) 3201 (0.019) 3543 (0.000) 6533 (0252) 2.719(0.164) 2.9720.064)
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I CSA Region Size Over M

Across all the choices of M presented in the below table, the coverages were identical, namely 0.981
for the o = 0.025 case and 0.962 for o = 0.05 (for task 361237).

Table 8: Comparison of interval lengths for different M values.

M Length (o = 0.025) | Length (av = 0.05)
50 28.037 23.017

100 27.111 22.071

500 25.880 22.621

1000 26.110 22.172
5000 24.943 22.037

J CSA Prediction Region Visualizations

We now visualize some of the prediction regions corresponding to some of the trials run in Appendix[H]
While we find these intervals to be connected across these tasks, we expect visualizations over
multivariate output spaces, i.e. for 2D regression problems, would reveal sets to be non-connected.

Task 361235 Intervals (@ =0.05) Task 361235 Intervals (a=0.025)

csA csA

LASSO LASSO

Random Forest Random Forest

Neural Net Neural Net

Ensemble Ensemble

Figure 9: Prediction regions across methods for task 361235 for a = 0.05 (left) and 0.025 (right).
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Task 361242 Intervals (a=0.05) Task 361242 Intervals (a=0.025)

csa csa
Linear Model Linear Model
Lasso Lasso
Random Forest Random Forest
Neural Net Neural Net
o o
& &
o @
Ensemble Ensemble
o 3 % 100 150 EN o E) 160 150

Figure 10: Prediction regions across methods for task 361242 for a = 0.05 (left) and 0.025 (right).

K UCI Results

We consider those regression tasks from the UCI repository [44] that have at least 1,000 samples.
The complete collection of results is presented in Table [0} As discussed in the main text, across
nearly all the UCI benchmark tasks, we find that the conformalized random forest does optimally and
that ensembling methods provide no further benefit over simply taking this single predictor. In this
degenerate case, we would expect an optimal aggregator to simply then return this optimal single
predictor. We then find CSA to consistently significantly outperform other aggregation strategies and
to return a prediction region of size comparable to that of the nominal random forest.

Table 9: Average coverages across tasks for « = 0.05 are shown in the top row and average prediction
set lengths in the bottom row, where both were assessed over a batch of i.i.d. test samples (10% of
the dataset size). We are highlighting the robustness compared to other aggregation strategies here
and so bold the best performing amongst the aggregation methods. Standard deviations and means
were computed across 5 randomizations of draws of the training, calibration, and test sets. Note that,
while the single-stage prediction regions are the smallest, they fail to achieve the desired coverage
level and are, therefore, precluded from comparison.

Dataset Metrics  Linear Model LASSO Random Forest XGBoost cM cr cv Ensemble CSA (Single-Stage) CSA
aifoil Coverage  0.966 (0.011)  0.926 (0.011)  0.934 (0.026) ~ 0.966 (0.011) ~ 0.945 (0.021)  0.916 (0.016) ~ 0.934 (0.026)  0.958 (0.032) 0.805 (0.058) 0.953 (0.011)
Length  19.062 (0.615) — 11368 (0.188)  11.770 (0.261)  12.371 (0.131) — 16227 (0.025) 16097 (1.052)  8.609 (0.719) 14.075 (0.734)

bike Coverage 0,944 (0.007)  0.947 (0.004)  0.954(0.002)  0.958 (0.003) 0938 (0.006)  0.908 (0.0)  0.946 (0.003)  0.955(0.0) 0.963 (0.007) 0.947 (0.003)
Length  3.178(0.011)  3.343(0.021)  0.065(0.000)  0.111(0.000)  0.111(0.001) — 1.722(0.007)  0.682 (0.004) 0.156 (0.019) 0.134 (0.007)

concrete  Coverage 0977 (0.008) 0977 (0.008)  0.981(0.0)  0915(0.023)  0.962(0.0)  0.915(0.023)  0.981 (0.0) 0915 (0.023) 0.854 (0.054) 0.977 (0.008)
Length  44.295 (0424) 44.470(0.326) 26.053 (2.114) — 26.488 (1.141) — 32455 (1.165) — 19.712(6.592) 25302 (3.244)

kindOk Coverage 0949 (0.002)  0.949 (0.001)  0.946 (0.002)  0.948 (0.003)  0.945(0.002) 0919 (0.002)  0.949 (0.0)  0.945 (0.002) 0.907 (0.004) 0.941 (0.006)
Length  3.781(0017)  3.781(0.016)  2333(0.026)  3.343(0.026)  3.269 (0.018) — 3.291(0.009)  4.985 (0.003) 2,138 (0.001) 2.456 (0.042)

parkinsons  Coverage  0.937(0.003)  0.946 (0.0)  0.958(0.009) 0953 (0.007)  0.936 (0.001)  0.904 (0.008) 0.936 (0.005)  0.955 (0.004) 0.873 (0.043) 0.951 (0.003)
Length  35.957(0.323) 36.430(0.328) 3.254(0423) 11268 (0.114) 10.992 (0.074) — 21470 (0.003) 14161 (0.083)  3.457(0.727) 4.584 (0.637)

pol Coverage  0.944 (0.001)  0.942(0.002) 0951 (0.004)  0.955(0.001) 0938 (0.001) 0909 (0.003) 0.946 (0.001)  0.953 (0.003) 0.884 (0.009) 0952 (0.003)
Length ~ 97.944 (0.150) 97.771(0.386) 28.000 (0.000) 48.572(1.279) 45.056 (0.821) — 69.078 (0.362) 57.432(0.663)  24.321(1.370)  33.230 (1.569)

protein Coverage 0,958 (0.001)  0.957 (0.002) 0953 (0.003)  0.959 (0.003) 0957 (0.003) 0928 (0.003) 0953 (0.003)  0.955(0.0) 0.91(0.002) 0.963 (0.004)
Length  2316(0.000)  2.412(0.011) 2151 (0.014)  2210(0.006)  2.134 (0.002) — 2269 (0.001)  3.707 (0.039) 1.717 (0.036) 1.994 0.000)

pumadyn32nm  Coverage  0.961 (0.011)  0.961 (001)  0.947 (0.001)  0.962(0.003) 096 (0.007)  0.935(0.003) 095 (0.013) 0957 (0.013) 0.906 (0.026) 0.963 (0.001)
Length 3997 (0.024)  3.979(0.031)  1.525(0.027)  3518(0.058) 3.507(0.051) 2.350(0.043) 3.242(0.033)  5.351(0.139) 1.564 (0.048) 1.858 (0.078)

tamiclectric  Coverage  0.953(0.002) 0953 (0.002)  0.947(0.003)  0.953(0.003)  0.952(0.003) 0.926 (0.007) 0949 (0.0)  0.948 (0.003) 0.909 (0.003) 0.949 (0.002)
Length 0950 (0.001) 0951 (0.001)  1271(0.006)  0.953(0.001)  0.948 (0.001) — 1029 (0.003)  4.539 (0.038) 0.774 (0.005) 0.799 (0.004)

wine Coverage  0.96 (0.005) 0.943 (0.01) 0.931(0.015) 0.923 (0.02) 0.928 (0.005)  0.884 (0.015)  0.948 (0.005)  0.946 (0.015) 0.805 (0.054) 0.933 (0.015)
Length ~ 2.352(0.002)  3.521(0.025)  2.619 (0.050) — — — 2.621(0.039)  3.390 (0.042) 1.683 (0.224) 2.291 (0.026)

L Robust Traffic Routing Setup

We replicate the experimental setup of [36], namely where a graph of Manhattan with corresponding
nominal transit times was extracted using OSMnx [49]. Formally, the Manhattan graph is given as
a tuple (V, £), where the edge weights represent the transit times along the respective city roads.
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Such weights were assigned in a two-step process, namely by first making weather predictions
and then using such weather predictions to then upweight the nominal transit times. In particular,
precipitation forecasts were made from time-series observations of previous precipitations readings,
specifically given over a map spatially resolved to H x W resolution. Precipitation forecasters,
such as those considered in the experiments herein as given in [45]] and [46]], specifically map such
previous observations to potential future trajectories. Formally, they define probablhstlc models over
some future time horizon 7'y, from which probabilistic draws Y € R7/*H*W  P(Y | 1) can be
made, where x € RT*H*W Notably, we instead consider the probabilistic forecasts at some future

fixed time point 7", meaning the outcome of interest Y € RE*W — Yo

From a precipitation map, namely a spatially resolved reading Y € R”*W  we assign the final edge
weights by first associating nodes to the closest pixel coordinate of the precipitation map. That is,
denoting the pixel nearest to a vertex v as (pj, py ), the node is assigned the value at such a spatial
location Yy v To, therefore, assign the edge weight, we average the weights of the edge endpoints
and then weigh the nominal transit time. In particular, denoting the nominal transit time along such
an edge e between nodes (s, t) as ¢, the transit time with traffic was computed as

Yoes o +Y er e
Ce = Ee~exp{ = Ty 5 P Py } (8)

M Compute Details

All OpenML were all run on a standard-grade CPU. The deep learning-based experiments, namely
the ImageNet classification and traffic forecasting predict-then-optimize task, were performed on
an Nvidia RTX 2080 Ti GPU. Such experiments, however, were conducted with publicly available,
pre-trained models provided by the works respectively referenced in the sections describing the
experimental setups.

N Conformal Aggregation Methods

We now describe the methods from [25]] that were compared against experimentally, specifically the
standard majority-vote C*, partially randomized thresholding C*, and fully randomized thresholding
CY approaches. As discussed in Section these methods all follow the structural form of

C(x) {y|Zwk]ly€Ck( )] > a} )

k=1

and largely differ in their choice of weights and thresholds. The standard majority-vote CM is the
most natural choice, defined by

o 1 & 1
CY(z) =<y] o Z 1y € Cr(z)] > 30 (10)
k=1

The randomized methods differ in that independent randomization is leveraged over the threshold,
namely with:

N\H

K
cf(x) { Z]lyeck ;+g} (11)
k=1

K
cY(x) {yz [y € Cu(x >U}, (12)
k=1

for U ~ Unif([0, 1]). Notably, all these methods retain the guarantees typical of conformal prediction.
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