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ABSTRACT

A key goal of current mechanistic interpretability research in NLP is to find linear
features (also called “feature vectors”) for transformers: directions in activation
space corresponding to concepts that are used by a given model in its compu-
tation. Present state-of-the-art methods for finding linear features require large
amounts of labelled data – both laborious to acquire and computationally expen-
sive to utilize. In this work, we introduce a novel method, called “observable
propagation” (in short: OBPROP), for finding linear features used by transformer
language models in computing a given task – using almost no data. Our paradigm
centers on the concept of “observables”, linear functionals corresponding to given
tasks. We then introduce a mathematical theory for the analysis of feature vectors:
we provide theoretical motivation for why LayerNorm nonlinearities do not affect
the direction of feature vectors; we also introduce a similarity metric between fea-
ture vectors called the coupling coefficient which estimates the degree to which
one feature’s output correlates with another’s. We use OBPROP to perform exten-
sive qualitative investigations into several tasks, including gendered occupational
bias, political party prediction, and programming language detection. Our results
suggest that OBPROP surpasses traditional approaches for finding feature vectors
in the low-data regime, and that OBPROP can be used to better understand the
mechanisms responsible for bias in large language models.

1 INTRODUCTION

When a large language model predicts that the next token in a sentence is far more likely to be
“him” than “her”, what is causing it to make this decision? The field of mechanistic interpretability
aims to answer such questions by investigating how to decompose the computation carried out by a
model into human-understandable pieces. This helps us predict their behavior, identify and correct
discrepancies, align them with our goals, and assess their trustworthiness, especially in high-risk
scenarios. The primary goal is to improve output prediction on real-world data distributions, iden-
tify and understand discrepancies between intended and actual behavior, align the model with our
objectives, and assess trustworthiness in high-risk applications (Olah et al., 2018).

One important notion in mechanistic interpretability is that of “features”. A feature can be thought
of as a simple function of the activations at a particular layer of the model, the value of which is
important for the model’s computation at that layer. For instance, in the textual domain, features
used by a language model at some layer might reflect whether a token is an adverb, whether the
language of the token is French, or other such characteristics. Possibly the most sought-after type of
feature is a “linear feature”, or “feature vector”: a fixed vector in embedding space that the model
utilizes by determining how much the input embedding points in the direction of that vector. Linear
features are in some sense the holy grails of features: they are both easy for humans to interpret and
amenable to mathematical analysis (Olah, 2022).

Contributions Our primary contribution is a method, which we call “observable propagation”
(OBPROP in short), for both finding feature vectors in large language models corresponding to given
tasks, and analyzing these features in order to understand how they affect other tasks. Unlike non-
feature-based interpretability methods such as saliency methods (Simonyan et al., 2013; Jacovi et al.,
2021; Wallace et al., 2019) or circuit discovery methods (Conmy et al., 2023; Wang et al., 2022),
observable propagation reveals the specific information from the model’s internal activations that
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are responsible for its output, rather than merely tokens or model components that are relevant.
And unlike methods for finding feature vectors such as probing (Gurnee et al., 2023; Li et al.,
2023; Elazar et al., 2021) or sparse autoencoders Cunningham et al. (2023), observable propagation
can find these feature vectors without having to store large datasets of embeddings, perform many
expensive forward passes, or utilize vast quantities of labeled data. In addition, we present the
following contributions:

• We develop a detailed theoretical analysis of feature vectors. In Theorem 1, we provide theoret-
ical motivation explaining why LayerNorm sublayers do not affect the direction of feature vectors;
making progress towards answering the question of the extent to which LayerNorms are used in
computation in transformers, which has been raised in mechanistic interpretability (Winsor, 2022).
In Theorem 2, we introduce and motivate a measurement of feature vector similarity called the “cou-
pling coefficient”, which can be used to determine the extent to which the model’s output on one
task is coupled with the model’s output on another task.
• In order to determine the effectiveness of OBPROP in understanding the causes of bias in large
language models, we investigate gendered pronoun prediction (§4.1) and occupational gender bias
(§4.2). By using observable propagation, we show that the model uses the same features to predict
gendered pronouns given a name, as it does to predict an occupation given a name; this is supported
by further experiments on both artificial and natural datasets.
• We perform a quantitative comparison between OBPROP and probing methods for finding feature
vectors on diverse tasks (subject pronoun prediction, programming language detection, political
party prediction). We find that OBPROP is able to achieve superior performance to these traditional
data-heavy approaches in low-data regimes (§4.3).

1.1 BACKGROUND AND RELATED WORK

In interpretability for NLP applications, there are a number of saliency-based methods that attempt
to determine which tokens in the input are relevant to the model’s prediction (Simonyan et al.,
2013; Jacovi et al., 2021; Wallace et al., 2019). Additionally, recent circuit-based mechanistic in-
terpretability research has involved determining which components of a model are most relevant to
the model’s computation on a given task (Conmy et al., 2023; Wang et al., 2022). Our work goes
beyond these two approaches by considering not just relevant tokens, and not just relevant model
components, but relevant feature vectors, which can be analyzed and compared to understand all
the intermediate information used by models in their computation. A separate line of research aims
to find feature vectors by performing supervised training of probes to find directions in embedding
space that correspond to labels (Gurnee et al., 2023; Li et al., 2023; Elazar et al., 2021; Cunning-
ham et al., 2023), or use unsupervised autoencoders on model embeddings to find feature vectors
Cunningham et al. (2023). OBPROP does not rely on any training. A number of recent studies in
interpretability involve finding feature vectors by decomposing transformer weight matrices into a
set of basis vectors and projecting these vectors into token space (Dar et al., 2023; Millidge & Black,
2023). OBPROP goes beyond this by taking into account nonlinearities, by finding precise feature
vectors for tasks and by formulating the concept of “observables”, which is more general than the
tasks considered in these prior works.

2 OBSERVABLE PROPAGATION: FROM TASKS TO FEATURE VECTORS

In this section, we present our method, which we call “observable propagation” (OBPROP), for
finding feature vectors directly corresponding to a given task. We begin by introducing the concept
of “observables”, which is central to our paradigm. We then explain observable propagation for
simple cases, and then build up to a general understanding.

2.1 OUR PARADIGM: OBSERVABLES

Often, in mechanistic interpretability, we care about interpreting the model’s computation on a spe-
cific task. In particular, the model’s behavior on a task can frequently be expressed as the difference
between the logits of two tokens. For instance, Mathwin et al. (2023) attempt to interpret the model’s
understanding of gendered pronouns, and as such, measure the difference between the logits for the
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tokens " she" and " he". This has been identified as a general pattern of taking “logit differ-
ences” that appears in mechanistic interpretability work (Nanda, 2022).

The first insight that we introduce is that each of these logit differences corresponds to a linear func-
tional on the logits. That is, if the logits are represented by the vector y, then each logit difference
can be represented by nT y for some vector n. For instance, if etoken is the one-hot vector with a one
in the position corresponding to the token token, then the logit difference between " she" and "
he" corresponds to the linear functional n = (e" she" − e" he").

We thus define an observable to be a linear functional on the logits of a language model. In doing
so, we no longer consider logit differences as merely a part of the process of performing an inter-
pretability experiment; rather, we consider the broader class of linear functionals as being objects
amenable to study in their own right. As we will see, concretizing observables like this will enable
us to find sets of feature vectors corresponding to different observables.

2.2 OBSERVABLE PROPAGATION FOR ATTENTION SUBLAYERS

First, let us consider a linear model f(x) = Wx. Given an observable n, we can compute the
measurement associated with n as nT f(x), which is just nTWx. But now, notice that nTWx =
(WTn)Tx. In other words, WTn is a feature vector in the domain, such that the dot product of the
input x with the feature vector WTn directly gives the output measurement nT f(x).

Next, let us consider how to extend this idea to address attention sublayers in transformers. At-
tention combines information across tokens. They can be decomposed into two parts: the part that
determines from which tokens information is taken (query-key interaction), and the part that deter-
mines what information is taken from each token to form the output (output-value). Elhage et al.
(2021) refer to the former part as the “QK circuit” of attention, and the latter part as the “OV circuit”.
Following their formulation, each attention layer can be written as
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factor corresponds to the OV circuit. Note that the primary nonlinearity in attention layers comes
from the computation of the attention scores, and their multiplication with the WOV

l,h xl
i terms. As

such, as Elhage et al. (2021) note, if we consider attention scores to be fixed constants, then the
contribution of an attention layer to the residual stream is just a weighted sum of linear terms for
each token and each attention head. This means that if we restrict our analysis to the OV circuit, then
we can find feature vectors using the method described for linear models. While this restricts the
scope of computation, analyzing OV circuits in isolation is still very valuable: doing so tells us what
sort of information, at each stage of the model’s computation, corresponds to our observable. From
this point of view, if we have an attention head h at layer l, then the direct effect of that attention
head on the output logits of the model is proportional to WUW

OV
l,h xl

i for token i, where WU is
the model unembedding matrix (which projects the model’s final activations into logits space). We
thus have that the feature vector corresponding to the OV circuit for this attention head is given by
(WUW

OV
l,h )Tn.

This feature vector corresponds to the direct contribution that the attention head has to the output.
But an earlier-layer attention head’s output can then be used as the input to a later-layer attention
head. For attention heads h, h′ in layers l, l′ respectively with l < l′, the computational path starting
at token i in layer l is then passed as the input to attention head h; the output of this head for that
token is then used as the input to head h′ in layer l′. Then by the same reasoning, the feature vector
for this path is: (WUW

OV
l′,h′WOV

l,h )Tn. Note that this process can be repeated ad infinitum.

2.3 GENERAL FORM: ADDRESSING MLPS AND LAYERNORMS

Along with attention sublayers, transformers also contain nonlinear MLP sublayers and LayerNorm
nonlinearities before each sublayer. One main challenge in interpretability for large models has
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Algorithm 1 Observable propagation
Let WU be the model unemebdding matrix.
if there exists a LayerNorm operation x 7→ f(x) before the unembedding operation then

y ← ∇
(
nTWUf(x)

)
|x=x0 for some suitable value of x0

else
y ← (WU )

Tn

for k ∈ {|P| , . . . , 1}, starting at the end do
if lk is an attention head then

Let Wk be the OV matrix for lk.
y ←WT

k y.
if lk is an a nonlinearity that maps x 7→ f(x) then

y ← ∇
(
yTWUf(x)

)
|x=x0 for some suitable value of x0

Output: y

been the difficulty in understanding the MLP sublayers, due to the polysemantic nature of their
neurons (Olah et al., 2020; Elhage et al., 2022). One prior approach to address this is modifying
model architecture to increase the interpretability of MLP neurons (Elhage et al., 2022). Instead of
architecture modification, we address these nonlinearities by approximating them as linear functions
using their first-order Taylor approximations. This approach is reminiscent of that presented by
Nanda et al. (2023), who use linearizations of language models to speed up the process of activation
patching (Wang et al., 2022); we go beyond this by recognizing that the gradients used in these
linearizations act as feature vectors that can be independently studied and interpreted, rather than
merely making activation patching more efficient. Taking this into account, the general form of
observable propagation, including first-order approximations of nonlinearities, can be implemented
as follows. Consider a computational path P in the model through sublayers l1 < l2 < · · · <
lk. Then for a given observable n, the feature vector corresponding to sublayer l in P can be
computed according to Algorithm 1. Note that before every sublayer, there is a nonlinear LayerNorm
operation. For greatest accuracy, one can find the feature vector corresponding to this LayerNorm
by taking its gradient as described above. But as shown in Theorem 1, if one only cares about
the directions of the feature vectors and not their magnitudes, then the LayerNorms can be ignored
entirely.

2.4 THE EFFECT OF LAYERNORMS ON FEATURE VECTORS

LayerNorms are ubiquitous in Transformers, appearing before every MLP and attention sublayer,
and before the final unembedding matrix. Therefore, it is worth investigating how they affect feature
vectors; if LayerNorms are highly nonlinear, this would cause trouble for OBPROP.

The core LayerNorm function can be defined as LayerNorm(x) = Px
∥Px∥ where P is the orthogonal

projection onto the hyperplane orthogonal to 1⃗, the vector of all ones (Brody et al., 2023). Nanda
et al. (2023) provide intuition for why we should expect that in high-dimensional spaces, LayerNorm
is approximately linear. But it can be shown that the gradient of LayerNorm(x) is inversely propor-
tional to ∥Px∥ (see Appendix C.1), so we cannot consider LayerNorm gradients to be constant for
inputs of different norms. However, empirically, we found that LayerNorms had almost no impact
on the direction of feature vectors (see Appendix I). The following statement, which we prove in
Appendix H, provides theoretical underpinning for this behavior:
Theorem 1. Define f(x;n) = n · LayerNorm(x). Define

θ(x;n) = arccos

(
n · ∇xf(x;n)

∥n∥ ∥∇xf(x;n)∥

)
– that is, θ(x;n) is the angle between n and ∇xf(x;n). Then if n ∼ N (0, I) in Rd, and d ≥ 8 then

E [θ(x;n)] < 2 arccos
(√

1− 1/(d− 1)
)

Note that after every LayerNorm as defined above, the output is multiplied by a fixed scalar constant
equal to

√
d (where d is the embedding diension), multiplied by a learned diagonal matrix, and added
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to a learned vector. Thus, the actual operation implemented is
√
dW LayerNorm(x) + b, where W

is the learned matrix and b is the learned vector. Now, b does not affect the gradient. Additionally,
empirically, most of the entries in W tend to be very close to one another (see Appendix E.2), which
suggests that we can approximate W as a scalar, meaning that W primarily scales the gradient,
rather than changing its direction. Therefore, if we want to analyze the directions of feature vectors
rather than their magnitudes, then we can do so without worrying about LayerNorms.

3 DATA-FREE ANALYSIS OF FEATURE VECTORS

Once we have used this to obtain a given set of feature vectors, we can then perform some pre-
liminary analyses on them, using solely the vectors themselves. This can give us insights into the
behavior of the model without having to run forward passes of the model on data.

Feature vector norms One technique that can be used to assess the relative importance of model
components is investigating the norms of the feature vectors associated with those components. To
see why, recall that if y is a feature vector associated with observable n for a model component that
implements function f , then for an input x, we have n · f(x) = y · x. Now, if we have no prior
knowledge regarding the distribution of inputs to this model component, we can expect y · x to be
proportional to ∥y∥. Thus, components with larger feature vectors should have larger outputs; this
is borne out in experiments (see §4.1) Note that when calculating the norm of a feature vector for a
computation path starting with a LayerNorm, one must multiply the norm by an estimated norm of
the LayerNorm’s input (see Appendix E.1 for explanation).

Coupling coefficients An important question that we might want to ask about observables is the
following: to what extent should we expect inputs that yield high outputs under observable n1

to also yield high outputs for another observable n2? If the outputs under n1 and n2 are highly
correlated, then this suggests that the model uses the same underlying features for both observables.
Having motivated this problem, let us translate it into the language of feature vectors. If n1 and
n2 are observables with feature vectors y1 and y2 for a function f , then for inputs x, we have
n1 · f(x) = y1 · x and n2 · f(x) = y2 · x. Now, if we constrain our input x to have norm c, and
constrain x ·y1 = k, then what is the expected value of x ·y2? And what are the maximum/minimum
values of x · y2? We present the following theorem to answer both questions:
Theorem 2. Let y1, y2 ∈ Rd. Let x be uniformly distributed on the hypersphere defined by the
constraints ∥x∥ = s and x · y1 = k. Then we have

E[x · y2] = k
y1 · y2
∥y1∥2

and the maximum and minimum values of x · y2 are given by
∥y2∥
∥y1∥

(
k cos(θ)± sin(θ)

√
s2∥y1∥2 − k2

)
where θ is the angle between y1 and y2.

We denote the value y1·y2

∥y1∥2 by C(y1, y2), and call it the “coupling coefficient from y1 to y2”. In-
tuitively, C(y1, y2) measures the expected dot product between a vector and y2, assuming that that
vector has a dot product of 1 with y1. Additionally, note that Theorem 2 also implies that the
coupling coefficient becomes a more accurate estimator as the cosine similarity between y1 and y2
increases. This is borne out experimentally; see §4.1.

4 EXPERIMENTS

Armed with our “observable propagation” toolkit for obtaining and analyzing feature vectors, we
now turn our attention to the problem of gender bias in LLMs in order to determine the extent to
which these tools can be used to diagnose the causes of unwanted behavior.

4.1 GENDERED PRONOUNS PREDICTION

We first consider the related question of understanding how a large language model predicts gen-
dered pronouns. Specifically, given a sentence prefix including a traditionally gendered name (for
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Observable Heads with greatest feature norms Feature vector norms

nsubj 18::11 17::14 13::11 15::13 237.3 236.2 186.4 145.4
nobj 17::14 18::11 13::11 15::13 159.2 157.0 145.0 112.3

Observable Heads with greatest attributions Path patching attributions

nsubj 17::14 13::11 15::13 13::3 5.004 3.050 1.199 0.584
nobj 17::14 13::11 15::13 22::2 2.949 1.885 1.863 0.365

Table 1: The four attention heads with the greatest feature norms and path patching attributions
(corrupted-clean logit differences) for both the nsubj and nobj observables. nsubj is the observable
measuring the difference between the logits for " she" and " he"; nobj is the observable measur-
ing the difference between the logits for " her" and " him". “l::k” denotes the attention head
with index k at layer with index l. “Feature vector norms” refers to the norm of the feature vector
associated with the attention head; “Path patching attributions” refers to the difference between the
model’s output for the given observable when the given attention head’s activations was patched,
and the model’s output for that given observable when the attention head was not patched.

example, “Mike” is often associated with males and “Jane” is often associated with females), how
does the model predict what kind of pronoun should come after the sentence prefix? We will later
see that understanding the mechanisms driving the model’s behavior on this benign task will yield
insights for understanding gender-biased behavior of the model. Additionally, this investigation also
provides an opportunity to test the ability of OBPROP to accurately predict model behavior.

The gendered pronoun prediction problem was previously considered by Mathwin et al. (2023),
where the authors used the “Automated Circuit Discovery” tool presented by Conmy et al. (2023)
to investigate the flow of information between different components of GPT-2-small (Radford et al.,
2019) in predicting subject pronouns (i.e. “he”, “she”, etc). We extend the problem setting in various
ways. We investigate both the subject pronoun case (in which the model is to predict the token “she”
versus “he”) and the object pronoun case (in which the model is to predict “her” versus “him”).
Additionally, we seek to understand the underlying features responsible for this task, rather than just
the model components involved, so that we can compare these features with the features that the
model uses in producing gender-biased output.

Problem setting We consider two observables, corresponding to the subject pronoun prediction
task and the object pronoun prediction task. The observable for the subject pronoun task, nsubj, is
given by e" she"−e" he", where etoken is the one-hot vector with a one in the position corresponding
to the token token. This corresponds to the logit difference between the tokens " she" and " he",
and indicates how likely the model predicts the next token to be " she" versus " he". Similarly,
the observable for the object pronoun task, nobj, is given by e" her" − e" him".

We investigate the model GPT-Neo-1.3B (Black et al., 2021), which has approximately 1.3B
parameters, 24 layers, 16 attention heads, an embedding dimension of 2048, and an MLP hidden
dimension of 8192. Note that OBPROP is able to work with models that are significantly larger than
those previously explored, such as GPT-2-small (117M parameters) (Radford et al., 2019), which
has been the focus of recent interpretability work by Wang et al. (2022), inter alia.

Additionally, a note on notation. The attention head with index h at layer l will be presented as
“l::h”. For instance, 17::14 refers to attention head 14 at layer 17. Furthermore, the MLP at layer L
will be presented as “mlpL”. For instance, mlp1 refers to the MLP at layer 1.

Feature vector norms for single attention heads We begin by analyzing the norms for the feature
vectors corresponding to nsubj and nobj for each attention head in the model. We then used path
patching (Goldowsky-Dill et al., 2023) to measure the mean degree to which each attention head
contributes to the model’s output on dataset of male/female prompt pairs. If our method is effective,
then we would expect to see that the heads with the greatest feature norms are those identified by
path patching as most important to model behavior. The results are given in Table 1.

We see that three of the four attention heads with the highest feature norms – that is, 17::14, 15::13,
and 13::11 – also have very high attributions for both the subject and object pronoun cases. (Interest-
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Head Coupling coefficient Cosine similarity Best-fit slope r2

17::14 0.7123 0.9882 0.7692 0.9567
15::13 0.8011 0.9816 0.8003 0.9523
13::11 0.7478 0.9352 0.7632 0.8189

6::6→... – 0.9521 – 0.8613

Table 2: Coupling coefficients and cosine similarity, compared to the slope of the best-fit line for
empirical dot products with feature vectors of nsubj versus nobj. Note that for the 6::6→... feature
vectors, we do not investigate coupling coefficients, because these earlier-layer attention heads are
involved in many computational paths, so the magnitudes obtained for these feature vectors along
one computational path do not reflect the importance along the sum total of computational paths.

ingly, head 18::11 does not have a high attribution in either case despite having a large feature norm;
this may be due to effects involving the model’s QK circuit.) This indicates that observable prop-
agation was largely successful in being able to predict the most important attention heads, despite
only using one forward pass per observable (to estimate LayerNorm gradients).

Cosine similarities and coupling coefficients Next, we investigated the cosine similarities be-
tween feature vectors for nsubj and nobj. We found that the four heads with the highest cosine
similarities between its nsubj feature vector and its nobj feature vector are 17::14, 18::11, 15::13, and
13::11, with cosine similarities of 0.9882, 0.9831, 0.9816, 0.9352. The high cosine similarities of
these feature vectors indicates that the model uses the same underlying features for both the task of
predicting subject pronoun genders and the task of predicting object pronoun genders.

We also looked at the feature vectors for the computational paths 6::6→9::1→13::11 for nsubj and
6::6→13::11 for nobj, because performing path patching on a pair of prompts suggested that these
computational paths were relevant. The feature vectors for these paths had a cosine similarity of
0.9521.

We then computed the coupling coefficients between the nsubj and nobj feature vectors for heads
17::14, 15::13, and 13::11. This is because these heads were present among the heads with the
highest cosine similarities, highest feature norms, and highest patching attributions, for both the
nsubj and nobj cases. After this, we tested the extent to which the coupling coefficients accurately
predicted the constant of proportionality between the dot products of different feature vectors with
their inputs. We ran the model on approximately 1M tokens taken from The Pile dataset (Gao
et al., 2020) and recorded the dot product of each token’s embedding with these feature vectors. We
then computed the least-squares best fit line that predicts the nobj values given the nsubj values, and
compared the slope of the line to the coupling coefficients. The results are given in Table 2. We find
that the coupling coefficients are accurate estimators of the empirical dot products between feature
vectors and that, in accordance with Theorem 2, the dot products between vectors with greater cosine
similarity exhibited greater correlation.

4.2 OCCUPATIONAL GENDER BIAS

Now that we have understood some of the features relevant to predicting gendered pronous, we
more directly consider the setting of occupational gender bias in language models, a widely-
investigated problem (Bolukbasi et al., 2016; Vig et al., 2020). For a prompt like "My friend
[NAME] is an excellent ...", an LM which hasn’t been aligned using e.g. RLHF (Ouyang
et al., 2022) is more likely to predict that the next token is " programmer" than " nurse" if
[NAME] is replaced with a male name, and vice-versa for a female name (Brown et al., 2020).
We applied observable propagation to the problem in order to go beyond prior work and un-
derstand the features responsible for this behavior. In particular, we considered the observable
nbias = (e" nurse"+e" teacher"+e" secretary")− (e" programmer"+e" engineer"+e" doctor");
this observable represents the extent to which the model predicts stereotypically-female occupations
instead of stereotypically-male ones.

The same features are used to predict gendered pronouns and occupations We ran path patch-
ing on a single pair of prompts in order to determine computational paths relevant to nbias. The results
were computational paths beginning with mlp1→6::6→9::1→... and 6::6→9::1→..., which began
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(a) (b)

Figure 1: The dot product of model activations with (normalized) feature vectors, compared to the
model’s output for observables. (a) Dot products with the nbias feature vector for 6::6→9::1→...,
versus the model’s output with respect to nbias. (b) Dot products with the nsubj feature vector for
6::6→9::1→13::11, versus the model’s output w.r.t nsubj.

on the token in the prompt associated with the gendered name. Even though there were many rele-
vant computational paths beginning with these prefixes, and even though these computational paths
passed through multiple later-layer MLPs, the feature vectors for these different paths nevertheless
had high cosine similarity with one another.

More surprising is that the feature vector for nbias for 6::6→9::1→... had a cosine similarity of
0.966 with the feature vector for nsubj for 6::6→9::1→13::11. Similarly, the nbias feature vec-
tor for mlp1→6::6→9::1→... had a cosine similarity of 0.977 with the nsubj feature vector for
mlp1→6::6→9::1→13::11. This indicates that the model uses the same features to identify both
gender pronouns and likely occupations, given a traditionally-gendered name.

To determine the extent to which these feature vectors reflected model behavior, we ran the model
on an artificial dataset of 600 prompts involving gendered names (see Appendix B), recorded the
dot product of the model’s activations on the name token with the feature vectors, and recorded the
model’s output with respect to the observables. The results can be found in Figure 1. Note that the
correlation coefficient r2 between the dot product with the nbias feature vector and the actual model
output is 0.88, indicating that the feature vector is a very good predictor of model output.

We then investigated the tokens in a 1M-token subset of The Pile that maximally activated the
nbias feature vector. These tokens were primarily female names: tokens like " Rita", "
Catherine", and " Mary", along with female name suffixes like "a" (as in “Phillipa”), "ine"
(as in “Josephine”), and "ia" (as in “Antonia”). Surprisingly, the least-activating tokens were gen-
erally male common nouns, such as " husband", " brother", and " son" – but also words
like " his", and even " male". This evidence even further supports the hypothesis that the
model specifically uses gendered features in order to determine which occupations are most likely
to be associated with a name. However, it is worth noting that part of the power of OBPROP is that
it allows us to test hypotheses such as this without needing to run the model on large datasets and
record the tokens with the highest feature vector activations: simply by virtue of the extremely high
cosine similarity between the nsubj feature vector and the nbias feature vector, we could infer that the
model was using gendered information to predict occupations. As such, looking at the maximally-
activating tokens primarily served as a “sanity check”, verifying that the feature vectors returned by
OBPROP are human-interpretable.

4.3 QUANTITATIVE ANALYSIS ACROSS OBSERVABLES

We now evaluate OBPROP’s performance across a broader variety of tasks, including subject pro-
noun prediction, identifying American politicians’ party affiliations, and distinguishing between C
and Python code. We compare the performance of these feature vectors to the performance of fea-
ture vectors obtained by linear/logistic regression, a more traditional method (used by e.g. Kim
et al. (2018) and others), but a more data-intensive one. For the former two tasks, we evaluate the
correlation between the feature vectors and model outputs on the aforementioned artificial dataset
used in the subject pronoun prediction experiments, and on an artificial dataset comprised of 40
Democratic politicians and 40 Republican politicians. For the programming language classification
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Task OBPROP Logistic regression (trained) Regression training set size

Subject pronoun prediction r2 ≈ 0.945 r2 ≈ 0.945 60 prompts
Political party prediction r2 ≈ 0.427 r2 ≈ 0.295 60 prompts (3/4 of dataset)
C vs. Python AUC ≈ 0.9974 AUC ≈ 0.9971 50 code snippets

Table 3: Accuracy of regression-derived feature vectors vs. OBPROP feature vectors.

task, we evaluate the effectiveness of feature vectors in differentiating C and Python code using a
natural dataset and the “Area Under the ROC Curve” metric.

The results are given in Table 3. For the subject pronoun prediction task, in order for the feature vec-
tor found by linear regression to match the performance of the OBPROP feature vector, 60 prompts’
worth of embeddings had to be used for training; similarly, for the C vs. Python classification task,
the logistic regression had to be trained on 50 code snippets’ worth of embeddings to obtain equal
performance. In the political party prediction task, even when training on 3/4 of the dataset, the
linear regression feature vector’s performance on the test set was well below that of the OBPROP
feature vector’s performance on the whole dataset. This suggests the ability of OBPROP to match
the performance of prior methods for finding feature vectors, and outcompete them especially in the
low-data regime.

5 CONCLUSION AND DISCUSSION

In this paper, we introduced observable propagation (or OBPROP for short), a novel method for find-
ing feature vectors in transformer models using little to no data. We developed a theory for analyzing
the feature vectors yielded by OBPROP, and demonstrated this method’s utility for understanding
the internal computations carried out by a model. In our case studies, we found that investigating the
norms of feature vectors obtained via OBPROP could be used to predict relevant attention heads for
a task without actually running the model on any data; that OBPROP can be used to understand when
two different tasks utilize the same feature; that coupling coefficients can be used to show the extent
to which a high output for one observable implies a high output for another on a general distribution
of data; and that the feature vectors returned by OBPROP accurately predict model behavior. We
also demonstrated that in data-scarce settings, OBPROP outperforms traditional data-heavy probing
approaches for finding feature vectors.

This culminated in a demonstration that the model specifically uses the feature of “gender” to pre-
dict the occupation associated with a name. Notably, even though experiments on larger datasets
further supported this claim, observable propagation alone was able to provide striking evidence of
this using minimal amounts of data. We hope that our approach, being independent of data, can
democratize interpretability research and facilitate broader-scale investigations.

Furthermore, the conclusion that the model uses the same mechanisms to predict grammatical gen-
der as it does to predict occupations portends difficulties in attempting to “debias” the model. This
means that inexpensive inference-time attempts to remove bias from the model will likely also de-
crease model performance on desired tasks like correct gendered pronoun prediction (see Appendix
F for additional experiments.) This reveals a clear future work direction to invest in more powerful
methods, to ensure that models are both unbiased and useful.

Note that although OBPROP demonstrates significant promise in cheaply unlocking the internal
computations of language models, it does have limitations. In particular, OBPROP only addresses the
OV circuits of Transformers, ignoring computations in QK circuits responsible for mechanisms such
as “induction heads” (Elhage et al., 2021). However, even though QK circuits are responsible for
moving information around in Transformers, OV circuits are where computation on this information
occurs. Thus, whenever we want to understand what sort of information the model uses to predict
one token as opposed to another, the answer to this question lies in the model’s OV circuits, and
OBPROP can provide such answers. Given the power that the current formulation of OBPROP has
demonstrated already in our experiments, we are very excited about the potential for this method,
and methods building upon it, to yield even greater insights in the near future.

9
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Ethics statement In this work, we present observable propagation, our method for finding fea-
ture vectors used by large language models in their computation of a given task. We demonstrate
in an experiment that observable propagation can be used to pin-point specific features that are re-
sponsible for gender bias in large language models, suggesting that observable propagation might
prove to be useful in mechanistically understanding how to debias language models. Additionally,
the data-efficient nature of observable propagation allows this sort of inquiry into model bias to be
democratized, conducted by researchers who might not have access to compute or data required
by other methods. However, it is important to note that observable propagation does not necessarily
make perfect judgments about model bias or lack thereof; a model might be biased even if observable
propagation fails to find specific feature vectors responsible for that bias. As such, it is incumbent
upon researchers, practitioners, and organizations working with large language models to continue
to perform deeper investigations into model bias issues, and be aware of the way in which it might
affect their results.

Reproducibility statement A proof of Theorem 1 is given in Appendix H; a proof of Theorem
2 is given in Appendix J. Details on the datasets that we used in our experiments can be found in
Appendix B. Further details regarding the experiments in Section 4.3 can be found in Appendix
G. Details on how we chose the x0 point used to approximate nonlinearities (as described in §2.3)
can be found in Appendix D; for LayerNorm linear approximations, we used the estimation method
described in Appendix C.1. We plan to release code soon.
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A FORMAL DEFINITION OF OBSERVABLES

For further clarification, in this section, we provide a more formal definition of an observable.

Definition A.1. An observable is a linear functional n : Rd vocab → R, where d vocab is the
number of tokens in the model’s vocabulary. We refer to the action of taking the inner product of the
model’s output logits with an observable n as getting the output of the model under the observable
n.

Note that because all observables are linear functionals on a finite vector space, they can be written
as row vectors. As such, it is often convenient to abuse notation, and associate an observable with
its corresponding vector.

Observables often correspond to tasks on which we want to measure model output. The following
example demonstrates how observables corresponding to a specific task can be constructed.
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Example A.1. Consider the task of predicting gendered subject pronouns. We want to measure the
difference between the model’s predicted logits for the pronoun “she” and the pronoun “he”; this
corresponds to how much more likely the model thinks that the next token will be the female subject
pronoun over the male subject pronoun. Then if etoken is the one-hot vector with size d vocab
and a one in the position corresponding to token, then an observable corresponding to this task is
given by n = e”she”−e”he”. This is because the output of the model under this observable precisely
corresponds to the desired logit difference.

B DATASETS

In our experiments, we made use of an artificial dataset, along with a natural dataset. The natural
dataset was processed by taking the first 1,000,111 tokens of The Pile (Gao et al., 2020) and then
splitting them into prompts of length at most 128 tokens. This yielded 7,680 prompts.

To construct the artificial dataset, we wrote three prompt templates for the nsubj observable, three
prompt templates for the nbias observable, and three prompt templates for the nobj observable. The
prompt templates are as follows:

• Prompt templates for nsubj (inspired by Mathwin et al. (2023)):

1. "<|endoftext|>So, [NAME] really is a great friend,
isn’t"

2. "<|endoftext|>Man, [NAME] is so funny, isn’t"

3. "<|endoftext|>Really, [NAME] always works so hard,
doesn’t"

• Prompt templates for nobj:

1. "<|endoftext|>What do I think about [NAME]? Well, to be
honest, I love"

2. "<|endoftext|>When it comes to [NAME], I gotta say, I
really hate"

3. "<|endoftext|>This is a present for [NAME]. Tomorrow,
I’m gonna give it to"

• Prompt templates for nbias:

1. "<|endoftext|>My friend [NAME] is an excellent"

2. "<|endoftext|>Recently, [NAME] has been recognized as a
great"

3. "<|endoftext|>His cousin [NAME] works hard at being a
great"

A dataset of prompts was then generated by replacing the [NAME] substring in each prompt tem-
plate with a name from a set of traditionally-male names and a set of traditionally-female names.
These names were obtained from the “Gender by Name” dataset from UCI Machine Learning
Repository (2020), which provided a list of names, the gender traditionally associated with each
name, and a measure of the frequency of each name. The top 100 single-token traditionally-male
names and top 100 single-token traditionally-female names from this dataset were collected; this
comprised the list of names that we used.

C MORE ON LAYERNORM GRADIENTS

C.1 LAYERNORM GRADIENTS ARE INVERSELY PROPORTIONAL TO INPUT NORMS

In §2.4, it was stated that LayerNorm gradients are not constant, but instead, depend on the norm
of the input to the LayerNorm. To elaborate, the gradient of nT (

√
dW LayerNorm(x) + b) can

be shown to be
√
dW

∥Px∥P
(
I − (Px)(Px)T

∥Px∥2

)
n (see Appendix H). P and

(
I − (Px)(Px)T

∥Px∥2

)
are both

orthogonal projections that leave ∥n∥ relatively untouched, so the term that is most responsible for
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affecting the norm of the feature vector is the
√
dW

∥Px∥ factor. Now, by Lemma 1 in Appendix H, we

have that
√
dW

∥Px∥ ≈
√
dW
∥x∥ . Thus, if ∥̃x∥ a good estimate of ∥x∥ for a given set of input prompts

at a given layer, then a good approximation of the gradient of a LayerNorm sublayer is given by(√
dW/∥̃x∥

)
n. This approximation can be used to speed up the computation of gradients for

LayerNorms.

C.2 FEATURE VECTOR NORMS WITH LAYERNORMS

In §4.1, we explained that looking at the norms of feature vectors can provide a fast and reasonable
guess of which model components will be the most important for a given task. However, there is
a caveat that must be taken into account regarding LayerNorms. As shown in Appendix C.1, the
gradient of a LayerNorm sublayer is approximately inversely proportional to the norm of the input
to the LayerNorm sublayer.

Now, assume that we have a computational path beginning at a LayerNorm, where ∥̃x∥ is an estimate
of the norm of the inputs to that LayerNorm. Let y be the feature vector for this computational path.
Then we have y ≈

√
dW/∥̃x∥y′, where y′ is the feature vector for the “tail” of the computational

path, that comes after the initial LayerNorm.

Given an input x, we have that

y · x ≈
√
dW/∥̃x∥y′ · x

=
√
d∥̃x∥ ∥Wy′∥ ∥x∥ cos θ

≈
√
d ∥Wy′∥ cos θ

Therefore, the dot product of an input vector with the feature vector y will be approximately pro-
portional to

√
d ∥Wy′∥ – not

√
d ∥Wy′∥ /∥̃x∥. As such, if one wants to use feature vector norms to

predict which feature vectors will have the highest dot products with their inputs, then that feature
vector must not be multiplied by 1/∥̃x∥.

A convenient consequence of this is that when analyzing computational paths that do not involve
any compositionality (e.g. analyzing a single attention head or a single MLP) – then ignoring Lay-
erNorms entirely still provides an accurate idea of the relative importance of attention heads. This is
because the only time that a (

√
dW/∥̃x∥) term appears with the factor of 1/∥̃x∥ included is for the

final LayerNorm before the logits output. As such, since this factor is not dependent on the layer of
the component being analyzed, it can be ignored.

D DETAILS ON LINEAR APPROXIMATIONS FOR MLPS

Finding feature vectors for MLPs is a relatively straightforward application of the first-order Taylor
approximation. However, there is a fear that if one takes the gradient at the wrong point, then the
local gradient will not reflect well the larger-scale behavior of the MLP. For example, the output of
the MLP with respect to a given observable might be saturated at a certain point: the gradient at this
point might be very small, and might even point in a direction inconsistent with the MLP’s gradient
in the unsaturated regime.

To alleviate this, we use the following method. Define g(x) = nT MLP(x), where n is a given
observable. If this observable n represents the logit difference between two tokens, then we should
be able to find an input on which this difference is very negative, along with an input on which this
difference is very positive. For example, if n represents the logit difference between the token "
her" and the token " him", then an input containing a male name should make this difference
very negative, and an input containing a female name should cause this difference to be very positive.

Thus, we have two points x− and x+ such that g(x−) < 0 and g(x+) > 0. Since MLPs are
continuous, there therefore must be some point x∗ at which g(x∗) = 0: a point that lies on the
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Figure 2: Mean norms of activations before each LayerNorm

decision boundary of the MLP. It stands to reason that the gradient at this decision boundary is
more likely to capture the larger-scale behavior of the MLP and is less likely to be saturated, when
compared to the gradient at more “extreme” points like x− and x+.

D.1 EMPIRICAL MLP APPROXIMATION ACCURACY

In order to evaluate the accuracy of linear approximations of MLP sublayers, we approximated the
circuit “MLP16 → MLP19 → unembeddings”, and compared the output of this approximation to
the output of the actual circuit with respect to nbias on the artificial dataset described in Appendix B.
This circuit was chosen because this is the MLP-containing part of the circuit used to find the nbias
attention-head 6::6 feature vector.

The mean output of this subcircuit with respect to nbias was approximately 11.887 logits; the root
mean squared error of the linear approximation was approximately 0.4139 logits. As such, the root
mean squared error was only approximately 3.482% of the mean circuit output. This indicates that,
even in this circuit that involves two MLP sublayers, the linear approximation is accurate.

E EMPIRICAL LAYERNORM GRADIENT INVESTIGATIONS

In this section, we put forth various empirical results relevant for the discussion of LayerNorm
gradients in §2.4.

E.1 LAYERNORM INPUT NORMS PER LAYER

We calculated the average norms of inputs to each LayerNorm sublayer in the model, over the
activations obtained from ten of the prompts from the artificial dataset described in §B. The results
can be found in Figure 2. The wide variation in the input norms across different layers implies that
input norms must be taken into account in any approximation of LayerNorm gradients.

E.2 LAYERNORM WEIGHT VALUES ARE VERY SIMILAR

In §2.4, we state that the entries in the LayerNorm scaling matrices tend to be very close together,
and use this as justification for treating weight matrices as scalars. Specifically, we found that the
average variance of scaling matrix entries across all LayerNorms in GPT-Neo-1.3B is 0.007827. To
determine the extent to which this variance is large, we calculated the ratio of the variance of each
LayerNorm’s weight matrix’s entries to the mean absolute value of each layer’s embeddings’ entries.
The results can be found in Figure 3. Note that the highest value found was 0.0731 at Layer 0 –
meaning that the average entry in Layer 0 embeddings was over 13.67 times larger than the variance
between entries in that layer’s ln 1 LayerNorm weight. This supports our assertion that LayerNorm
scaling matrices can be largely treated as constants.
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Figure 3: Ratio between LayerNorm weight matrix variances and mean absolute entries of each
layer’s embeddings

One possible guess as to why this behavior might be occurring is this: much of the computation tak-
ing place in the model does not occur with respect to basis directions in activation space. However,
the diagonal LayerNorm weight matrices can only act on these very basis directions. Therefore, the
weight matrices end up “settling” on the same nearly-constant value in all entries.

F FURTHER DEBIASING EXPERIMENTS

We ran further experiments on the artificial dataset described in Appendix B, in order to determine
the extent to which the feature vectors yielded by observable propagation could be used for debiasing
the model’s outputs. The idea is similar to that presented by Li et al. (2023): by adding a feature
vector to the activations at a given layer for the name token, we can hopefully shift the model’s
output to be less biased.

Specifically, we used the following methodology. We paired each of the 300 female-name prompts
for nbias with one of the 300 male-name prompts for nbias. For each prompt pair, we ran the model
on the female-name prompt and on the male-name prompt, recording the scores with respect to the
nbias observable. We then ran the model on the male-name prompt – but added a multiple of the 6::6
feature vector for nbias described in §4.2 to the model’s activations for the name token before the
LayerNorm preceding the layer 6 attention sublayer.

In particular, let y be the unit 6::6 feature vector for nbias, let xfemale be the activation vector for the
name token at that layer for the female prompt, and let xmale be the activation vector for the name
token at that layer for the male prompt. Then we added the vector y′ = ((xfemale − xmale) · y) y to
xmale. If the model were a linear model whose output was solely determined by the dot product of
the input at this layer with the feature vector y, then the output of the model in the case where y′ is
added to the male embeddings would be the same as the output of the model on the female prompt.
Therefore, the difference between this “patched” output and the model’s output on the female prompt
can be viewed as an indicator of the extent to which the feature vector is affected by nonlinearity in
the model. We also ran this same experiment, but adding 2y′ instead of y′ to the male embeddings,
in order to get a stronger debiasing effect.

The results are given in Table 4. We see that adding y′ to the activations for the male prompts is
in fact able to cause the model’s output to become closer to that of the female prompts – although
not as much as it would if the model were linear. But adding 2y′ to the male prompts’ activations is
able to bring the model’s output to within an average of 1.3180 logits of the model’s output on the
female prompts. And when the mean difference between the patched male prompt outputs and the
female prompt outputs is calculated without taking the absolute value, this difference becomes even
smaller – only 0.1316 logits on average – which indicates that sometimes, adding 2y′ to the male
prompts’ activations even overshoots the model’s behavior on the female prompts. As such, we can
infer that this feature vector obtained via observable propagation has utility in debiasing the model.
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Male prompt Female prompt Male patched +y′ Male patched +2y′

Mean nbias score −2.947 5.011 −0.5489 4.879
Mean absolute dif-
ference with female
scores

7.9903 0 5.6245 1.3180

Mean difference
from female scores

7.9583 0 5.5599 0.1316

Table 4: The results of the debiasing experiments for the nbias observable. “Mean absolute differ-
ence with female scores” refers to the mean absolute difference between the nbias score for each
male prompt (or male prompt with patched activations) and the score for the corresponding female
prompt. “Mean difference from female scores” refers to the mean difference, without taking the ab-
solute value, between the nbias for the female prompt, and the score for the corresponding (patched)
male prompt.

Male prompt Female prompt Male patched +2y′

Mean nsubj score −5.1393 5.0404 4.8794
Mean absolute difference with female
scores

10.180 0 2.148

Mean difference from female scores 10.180 0 0.161

Table 5: The results of the debiasing experiments for the nsubj observable, adding 2y′ to the male
prompts’ activations.

We then wanted to investigate the extent to which adding this “debiasing vector” would harm the
model’s performance on the pronoun prediction task. As such, we repeated these experiments on the
dataset of prompts for nsubj, but adding 2y′ to the male activations. The results can be found in Table
5. The results show that adding the “debiasing vector” to the male name embeddings also causes the
model’s ability to correctly predict gendered pronouns to drop dramatically. This suggests that in
cases such as this one, where the model uses the same features for undesirable outputs as it does for
desirable outputs, inference-time interventions such as that presented by Li et al. (2023) may cause
an inevitable decrease in model quality.

G EXPERIMENTAL DETAILS FOR SECTION 4.3

G.1 DATASETS

The dataset used in the subject pronoun prediction task is the same artificial dataset described in
Appendix B.

The dataset used in the C vs. Python classification task consists of 730 code snippets, each 128
tokens long, taken from C and Python subsets of the GitHub component of The Pile (Gao et al.,
2020).

The dataset used in the American political party prediction task is an artificial dataset
consisting of prompts of the form "[NAME] is a", where [NAME] is replaced by
the name of a politician drawn from a list of 40 Democratic Party politicians and 40
Republican Party politicians. These politicians were chosen according to the list of
“the most famous Democrats” and “the most famous Republicans” for Q3 2023 com-
piled by YouGov, available at https://today.yougov.com/ratings/politics/fame/Democrats/all and
https://today.yougov.com/ratings/politics/fame/Democrats/all. The intuition behind this choice of
dataset is that the model would be more likely to identify the political affiliation of well-known
politicians, because better-known politicians would be more likely to occur in its training data. This
is the primary reason that a smaller dataset is being used.

17



Under review as a conference paper at ICLR 2024

G.2 TASK DEFINITION

The subject pronoun prediction task involves the model predicting the correct token for each prompt.
The target scores are considered to be the difference between the model’s logit prediction for the
token " she" and the model’s logit prediction for the token " he".

The political party prediction task also involves the model predicting the correct token for each
prompt. The target scores are considered to be the difference between the model’s logit prediction
for the token " Democrat" and the model’s logit prediction for the token " Republican".

For the C vs. Python classification task, because the data is drawn from a diverse corpus of code,
the task is treated as a binary classification task instead of a token prediction task.

G.3 FEATURE VECTORS

The OBPROP feature vector used for the pronoun prediction task is the feature vector corresponding
to the computational path 6::6 → 9::1 → 13::1 for the nsubj observable.

The OBPROP feature vector used for the political party prediction task is the feature vector corre-
sponding to attention head 15::8 for the observable defined by e" Democrat" − e" Republican".

The OBPROP feature vector used for the C versus Python classification task is the feature vector
corresponding to attention head 16::9 for the observable defined by e" ):" − e" ){". (The intuition
behind this observable is that in Python, function definitions look like def foo(bar, baz):,
whereas in C, function definitions look like int foo(float bar, char* baz){. Notice
how the former line ends in the token "):" whereas the latter line ends in the token "){".)

The regression feature vectors for each task were trained on model embeddings at the same layer as
the OBPROP feature vectors for that task. Thus, for example, the linear regression feature vector for
the pronoun prediction task was trained on model embeddings at layer 6.

G.4 TASK EVALUATION

For the pronoun prediction task, the predicted score was determined as the dot product of the feature
vector with the model’s embedding at layer 6 for the name token in the prompt.

For the political party prediction task, the predicted score was determined as the dot product of the
feature vector with the model’s embedding at layer 15 for the last token in the politician’s name in
each prompt.

For the C versus Python classification task, the predicted score for each code snippet was determined
by taking the mean of the model’s embeddings at layer 16 for all tokens in the code snippet, and
then taking the dot product of the feature vector with those mean embeddings.

H PROOF OF THEOREM 1

Theorem 1. Define f(x;n) = n · LayerNorm(x). Define

θ(x;n) = arccos

(
n · ∇xf(x;n)

∥n∥ ∥∇xf(x;n)∥

)
– that is, θ(x;n) is the angle between n and ∇xf(x;n). Then if n ∼ N (0, I) in Rd, and d ≥ 8 then

E [θ(x;n)] < 2 arccos

(√
1− 1

d− 1

)
To prove this, we will introduce a lemma:

Lemma 1. Let y be an arbitrary vector. Let A = I − vvT

∥v∥2 be the orthogonal projection onto the

hyperplane normal to v. Then the cosine similarity between y and Ay is given by
√

1− cos(θ)2,
where cos(θ) is the cosine similarity between y and v.
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Proof. Assume without loss of generality that y is a unit vector. (Otherwise, we could rescale it
without affecting the angle between y and v, or the angle between y and Ay.)

We have Ay = y − y·v
∥v∥2 v. Then,

y ·Ay = y · (y − y · v
∥v∥2

v)

= ∥y∥2 − (y · v)2

∥v∥2

= 1− (y · v)2

∥v∥2

and

∥Ay∥2 = (y − y · v
∥v∥2

v) · (y − y · v
∥v∥2

v)

= y · (y − y · v
∥v∥2

v)− y · v
∥v∥2

v · (y − y · v
∥v∥2

v)

= y ·Ay − y · v
∥v∥2

v · (y − y · v
∥v∥2

v)

= y ·Ay − (y · v)2

∥v∥2
+

∥∥∥∥ y · v∥v∥2
v

∥∥∥∥2
= y ·Ay − (y · v)2

∥v∥2
+

(y · v)2

∥v∥4
∥v∥2

= y ·Ay − (y · v)2

∥v∥2
+

(y · v)2

∥v∥2

= y ·Ay

Now, the cosine similarity between y and Ay is given by

y ·Ay

∥y∥∥Ay∥
=

y ·Ay

∥Ay∥

=
∥Ay∥2

∥Ay∥
= ∥Ay∥

At this point, note that ∥Ay∥ =
√
y ·Ay =

√
1− (y·v)2

∥v∥2 . But y·v
∥v∥ is just the cosine similarity

between y and v. Now, if we denote the angle between y and v by θ, we thus have

∥Ay∥ =

√
1− (y · v)2

∥v∥2
=
√

1− cos(θ)2.

Now, we are ready to prove Theorem 1.

Proof. First, as noted by Brody et al. (2023), we have that LayerNorm(x) = Px
∥Px∥ , where P =

I − 1
d 1⃗⃗1

T is the orthogonal projection onto the hyperplane normal to 1⃗, the vector of all ones. Thus,
we have

f(x;n) = nT

(
Px

∥Px∥

)
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Using the multivariate chain rule along with the rule that the derivative of x
∥x∥ is given by I

∥x∥−
xxT

∥x∥3

(see §2.6.1 of Petersen & Pedersen (2012)), we thus have that

∇xf(x;n) =

(
nT

(
I

∥Px∥
− (Px)(Px)T

∥Px∥3

)
P

)T

=

(
1

∥Px∥
nT

(
I − (Px)(Px)T

∥Px∥2

)
P

)T

=
1

∥Px∥
P

(
I − (Px)(Px)T

∥Px∥2

)
n because P is symmetric

Denote Q = I − (Px)(Px)T

∥Px∥2 . Note that this is an orthogonal projection onto the hyperplane normal
to Px. We now have that ∇xf(x;n) =

1
∥Px∥PQn. Because we only care about the angle between

n and ∇xf(x;n), it suffices to look at the angle between n and PQn, ignoring the 1
∥Px∥ term.

Denote the angle between n and PQn as θ(x, n). (Note that θ is also a function of x because Q is a
function of x.) Then if θQ(x, n) is the angle between n and Qn, and θP (x, n) is the angle between
Qn and PQn, then θ(x, n) ≤ θQ(x, n) + θP (x, n), so E[θ(x, n)] ≤ E[θQ(x, n)] + E[θP (x, n)].

Using Lemma 1, we have that θQ(x, n) = arccos
(√

1− cos(ϕ(n, Px))2
)

, where ϕ(n, Px) is the

angle between n and Px. Now, because n ∼ N (0, I), we have E[cos(ϕ(n, Px))2] = 1/d, using the
well-known fact that the expected squared dot product between a uniformly distributed unit vector
in Rd and a given unit vector in Rd is 1/d.

At this point, define g(t) = arccos
(√

1− t
)
, h(t) = g′

(
1

d−1

)(
t− 1

d−1

)
+ g

(
1

d−1

)
. Then if

1
d−1 < c, where c is the least solution to g′(c) = π−2g(c)

2(1−c) , then h(t) ≥ g(t). (Note that g(t) is convex

on (0, 0.5] and concave on [0.5, 1). Therefore, there are exactly two solutions to g′(c) = π−2g(c)
2(1−c) .

The lesser of the two solutions is the value at which g′(c) equals the slope of the line between
(c, g(c)) and (1, π/2) – the latter point being the maximum of g – at the same time that g′′(c) ≥ 0.)
One can compute c ≈ 0.155241 . . . , so if d ≥ 8, then 1/(d − 1) < c is satisfied, so h(t) ≥ g(t).
Thus, we have the following inequality:

h(1/(d− 1)) > h(1/d)

= h(E[cos(ϕ(n, Px))2])

= E[h(cos(ϕ(n, Px))2)] due to linearity

≥ E[g(cos(ϕ(n, Px))2)] because h(t) ≥ g(t) for all t
= E[θQ(x, n)]

Now, h(1/(d − 1)) = g(1/(d − 1)) = arccos
(√

1− 1
d−1

)
. Thus, we have that

arccos
(√

1− 1
d−1

)
> E[θQ(x, n)].

The next step is to determine an upper bound for E[θP (x, n)]. By Lemma 1, we have that θP (x, n) =

arccos

(√
1− cos(ϕ(Qn, 1⃗))2

)
. Now, note that because n ∼ N (0, I), then Qn is distributed

according to a unit Gaussian in ImQ, the (d − 1)-dimensional hyperplane orthogonal to Px. Note
that because 1⃗ is orthogonal to Px (by the definition of P ) and Px is orthogonal to ImQ, this means
that 1⃗ ∈ ImQ. Now, let us apply the same fact from earlier: that the expected squared dot product
between a uniformly distributed unit vector in Rd−1 and a given unit vector in Rd−1 is 1/(d − 1).
Thus, we have that E[cos(ϕ(Qn, 1⃗))2] = 1/(d− 1).

From this, by the same logic as in the previous case, arccos
(√

1− 1
d−1

)
≥ E[θP (x, n)].
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Task Cosine similarity Angle (radians)

Subject pronoun prediction (attention 6::6) 0.99779 0.0664
C vs. Python 0.99936 0.0358

Political party prediction 0.99900 0.0447

Table 6: Cosine similarities between the feature vectors used in Section 4.3, computed with and
without LayerNorms

Adding this inequality to the inequality for E[θQ(x, n)], we have

2 arccos

(√
1− 1

d− 1

)
> E[θQ(x, n)] + E[θP (x, n)] ≥ E[θ(x, n)]

.

I EMPIRICAL RESULTS REGARDING THEOREM 1

Note that Theorem 1 assumes that feature vectors n are normally-distributed, which may not nec-
essarily occur in practice (although given that observables and observable-derived feature vectors
are only introduced in this work, it is hard to say whether this is false more generally; more re-
search is necessary, including research on the sorts of observables that practitioners wish to analyze
in practice). However, the intention of Theorem 1 is to provide motivation that underpins what we
found empirically: namely, that feature vectors computer by taking LayerNorm into account have
extremely high cosine similarities with feature vectors computed without taking LayerNorm into
account.

In particular, for the feature vectors considered in Section 4.3, these cosine similarities and angles are
given in Table 6. For reference, note that the upper bound on the angle between these feature vectors
according to Theorem 1 is approximately 0.0442 radians. The feature vectors for subject pronoun
prediction have a higher angle between them of 0.0664 radians, but this can be attributed to the fact
that the circuit for these feature vectors goes through multiple LayerNorms. Additionally, the angle
for the political party prediction feature vector is also slightly higher than the bound predicted by the
theorem; but it is worth noting that the theorem predicts a bound on the expected angle, rather than
a bound on the maximum angle; this also might be due to the scaling matrix W in the LayerNorm
(see Appendix E).

J PROOF OF THEOREM 2

Theorem 2. Let y1, y2 ∈ Rd. Let x be uniformly distributed on the hypersphere defined by the
constraints ∥x∥ = s and x · y1 = k. Then we have

E[x · y2] = k
y1 · y2
∥y1∥2

and the maximum and minimum values of x · y2 are given by

∥y2∥
∥y1∥

(
k cos(θ)± sin(θ)

√
s2∥y1∥2 − k2

)
where θ is the angle between y1 and y2.

Before proving Theorem 2, we will prove a quick lemma.
Lemma 2. Let S be a hypersphere with radius r and center c. Then for a given vector y, the mean
squared distance from y to the sphere, Es∈S [∥y − c∥2], is given by ∥y − c∥2 + r2.

Proof. Without loss of generality, assume that S is centered at the origin (so ∥y − c∥2 = ∥y∥2).
Induct on the dimension of the S . As our base case, let S be the 0-sphere consisting of a point in R1

at −r and a point at r. Then Es∈S [|y − s|2] = (y−r)2+(y−(−r))2

2 = y2 + r2.
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For our inductive step, assume the inductive hypothesis for spheres of dimension d − 2; we will
prove the theorem of spheres of dimension d− 1 in an ambient space of dimension d. Without loss
of generality, let y lie on the x-axis, so that we have y = [y1 0 0 . . .]

T . Next, divide S into
slices along the x-axis. Denote the slice at position x = x0 as Sx0

. Then Sx0
is a (d − 2)-sphere

centered at [x0 0 0 . . .]
T , and has radius

√
r2 − x2

0. Now, by the law of total expectation,

Es∈S [∥y − s∥2] = E−r≤x≤r

[
Es′∈Sx

[
∥y − s′∥2

]]
. We then have that

Es′∈Sx

[
∥y − s′∥2

]
= E

[
(y1 − x)2 + s22 + s23 + · · ·

]
= (y1 − x)2 + E

[
s22 + s23 + · · ·

]
Once again, Sx is a (d − 2)-sphere defined by s22 + s23 + · · · = r2 − x2. This means that by the
inductive hypothesis, we have E

[
s22 + s23 + · · ·

]
= r2 − x2. Thus, we have

Es′∈Sx

[
∥y − s′∥2

]
= (y1 − x)2 + r2 − x2

Es′∈Sx

[
∥y − s′∥2

]
= (y1 − x)2 + r2 − x2

Es∈S [∥y − s∥2] = E−r≤x≤r

[
(y1 − x)2 + r2 − x2

]
=

1

2r

∫ r

−r

(y1 − x)2 + r2 − x2dx

= r2 + y21

We are now ready to begin the main proof.

Proof. First, assume that ∥x∥ = 1. Now, the intersection of the (d− 1)-sphere defined by ∥x∥ = 1
and the hyperplane x · y1 = k is a unit hypersphere of dimension (d− 2), oriented in the hyperplane
x · y1 = k, and centered at c1y1 where c1 = k/ ∥y1∥2. Denote this (d− 2)-sphere as S, and denote
its radius by r.

Next, define c2 = k
y2·y1

. Then cy2 · y1 = k, so c2y2 lies in the same hyperplane as S. Additionally,
because c1y1 is in this hyperplane, and c1y1 is also the normal vector for this hyperplane, we have
that the vectors c1y1, c2y2, and c1y1 − c2y2 form a right triangle, where c2y2 is the hypotenuse
and c1y1 − c2y2 is the leg opposite of the angle θ between y1 and y2. As such, we have that
∥c1y1 − c2y2∥ = sin(θ) ∥c2y2∥.

Furthermore, we have that c1y1 · c2y2 = k2

∥y1∥2 , that ∥c1y1∥ = |k|
∥y1∥2 , and that ∥c2y2∥ = |k|

∥y1∥|cos θ|

We will now begin to prove that the maximum and minimum values of y2 · x are given by
∥y2∥
∥y1∥

(
k cos(θ)± | sin(θ)|

√
s2∥y1∥2 − k2

)
.

To start, note that the nearest point on S to c2y2 and the farthest point on S from c2y2 are located at
the intersection of S with the line between c2y2 and c1y1.

To see this, let x+ be the at the intersection of S and the line between c2y2 and c1y1. We will show
that x+ is the nearest point on S to c2y2. Let x′

+ ∈ S ̸= x+. Then we have the following cases:

• Case 1: c2y2 is outside of S. Then ∥c2y2 − c1y1∥ = ∥c2y2 − x+∥+∥x+ − c1y1∥, because
c2y2, x+, and c1y1 are collinear – so ∥c2y2 − c1y1∥ = ∥c2y2 − x+∥+r (because x+ ∈ S).
By the triangle inequality, we have ∥c2y2 − c1y1∥ ≤

∥∥c2y2 − x′
+

∥∥ +
∥∥x′

+ − c1y1
∥∥ =∥∥c2y2 − x′

+

∥∥+ r. But this means that ∥c2y2 − x+∥ ≤
∥∥c2y2 − x′

+

∥∥.

• Case 2: c2y2 is inside of S. Then ∥c2y2 − c1y1∥ = ∥x+ − c1y1∥ − ∥c2y2 − x+∥, be-
cause c2y2, x+, and c1y1 are collinear – so ∥c2y2 − c1y1∥ = r − ∥c2y2 − x+∥. By

22



Under review as a conference paper at ICLR 2024

the triangle inequality, we have
∥∥x′

+ − c1y1
∥∥ ≤

∥∥c2y2 − x′
+

∥∥ + ∥c2y2 − c1y1∥, so∥∥x′
+ − c1y1

∥∥ ≤
∥∥c2y2 − x′

+

∥∥ + r − ∥c2y2 − x+∥. But since
∥∥x′

+ − c1y1
∥∥ = r, this

means that ∥c2y2 − x+∥ ≤
∥∥c2y2 − x′

+

∥∥.

A similar argument will show that x−, the farthest point on S from c2y2, is also located at the
intersection of S with the line between c2y2 and c1y1.

Now, let us find the values of x+ and x−. The line between c2y2 and c1y1 can be parameterized by
a scalar t as c1y1 + t(c2y2 − c1y1). Then x+ and x− are given by c1y1 + t∗(c2y2 − c1y1), where t∗
are the solutions to the equation ∥c1y1 + t(c2y2 − c1y1)∥ = 1.

We have the following:

1 = ∥c1y1 + t(c2y2 − c1y1)∥
= ∥c1y1∥2 + 2t(c1y1 · (c2y2 − c1y1)) + t2 ∥c2y2 − c1y1∥2

= ∥c1y1∥2 + 2t((c1y1 · c2y2)− ∥c1y1∥2) + t2 ∥c2y2∥2 sin2 θ

=
k2

∥y1∥2
+ 2t

(
k2

∥y1∥2
− k2

∥y1∥2

)
+ t2

k2

∥y1∥2 cos2 θ
sin2 θ

=
k2

∥y1∥2
(t2 tan2 θ + 1)

Thus, solving for t, we have that t∗ =
±
√

∥y1∥2−k2

|k| tan θ . Therefore, we have that

x+, x− = c1y1 + t∗(c2y2 − c1y1)

= c1y1 +

(
k2

∥y1∥2
(t2 tan2 θ + 1)

)
(c2y2 − c1y1)

=
ky1

∥y1∥2
+

±
√

∥y1∥2 − k2

|k| tan θ

( ky2
y1 · y2

− ky1

∥y1∥2

)

= k

 y1

∥y1∥2
±


√
∥y1∥2 − k2

|k| tan θ

( y2
y1 · y2

− y1

∥y1∥2

)
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y2 · x+, y2 · x− = y2 · k

 y1

∥y1∥2
±


√
∥y1∥2 − k2

|k| tan θ

( y2
y1 · y2

− y1

∥y1∥2

)
=

ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)(
y2 · y2
y1 · y2

− y1 · y1
∥y1∥2

)

=
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)(
∥y2∥

∥y1∥ cos θ
− ∥y2∥ cos θ

∥y1∥

)
=

[
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)
∥y2∥
∥y1∥

(
1

cos θ
− cos θ

)]

=
ky1 · y2
∥y1∥2

±
(
cot θ

√
∥y1∥2 − k2

)
∥y2∥
∥y1∥

sin θ tan θ

=
ky1 · y2
∥y1∥2

± ∥y2∥
∥y1∥

sin θ

√
∥y1∥2 − k2

=
∥y2∥
∥y1∥

(
k cos(θ)± sin(θ)

√
∥y1∥2 − k2

)

We will now prove that E [y2 · x] = y1·y2

∥y1∥2 . Before we do, note that we can also use our value of t∗

to determine the squared radius of S. We have that the squared radius of S is given by

r2 = ∥t∗(c2y2 − c1y1)∥2

= (t∗)2 ∥(c2y2 − c1y1)∥2

= (t∗)2 sin2 θ ∥c2y2∥2

=
sin2(θ)k2/

(
∥y1∥2 cos2 θ

)
k2 tan θ

(
∥y1∥2 − k2

)
= 1− k2

∥y1∥2

We will use this result soon. Now, on to the main event. Begin by noting that y2 · x =
∥y2∥ ∥x∥ cos(y2, x) = ∥y2∥ cos(y2, x), where cos(y2, x) is the cosine of the angle between y2 and
x. Now, cos(y2, x) = signum(c2) cos(c2y2, x). And we have that ∥x− cy2∥2 = ∥x∥2 + ∥cy2∥2 −
2 ∥x∥ ∥c2y2∥ cos(cy2, x) = 1 + ∥c2y2∥2 − 2 ∥c2y2∥ cos(c2y2, x). Therefore, we have

cos(y2, x) = signum(c2) cos(c2y2, x)

= signum(c2)
∥x− c2y2∥2 − 1− ∥c2y2∥2

−2 ∥c2y2∥

= signum(c2)
1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥

y2 · x = ∥y2∥ cos(y2, x)

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥
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E [y2 · x] = E

[
signum(c2) ∥y2∥

1 + ∥c2y2∥2 − ∥x− c2y2∥2

2 ∥c2y2∥

]

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 − E

[
∥x− c2y2∥2

]
2 ∥c2y2∥

= signum(c2) ∥y2∥
1 + ∥c2y2∥2 −

(
1− k2

∥y1∥2 + ∥c1y1 − c2y2∥2
)

2 ∥c2y2∥
This last line uses Lemma 2: c1y1 is the center of S, so the expected squared distance between c2y2
and a point on S is given by 1 − k2

∥y1∥2 + ∥c1y1 − c2y2∥2, where 1 − k2

∥y1∥2 is the squared radius

of S and ∥c1y1 − c2y2∥2 is the squared distance from c2y2 to the center. We can use this lemma
because c2y2 is in the same hyperplane as S, so we can treat this situation as being set in a space of
dimension d− 1.

Now, continue to simplify:

E [y2 · x] = signum(c2) ∥y2∥
1 + ∥c2y2∥2 −

(
1− k2

∥y1∥2 + ∥c1y1 − c2y2∥2
)

2 ∥c2y2∥

= signum(c2) ∥y2∥
∥c2y2∥2 + k2

∥y1∥2 − sin2 θ ∥c2y2∥2

2 ∥c2y2∥

= signum(c2) ∥y2∥
∥c2y2∥2 cos2 θ + k2

∥y1∥2

2 ∥c2y2∥

= signum(c2) ∥y2∥
1

2

(
∥c2y2∥ cos2 θ +

|k| cos θ
∥y1∥

)
= signum(c2) ∥y2∥

1

2

(
|k| |cos θ|
∥y1∥

+
|k| |cos θ|
∥y1∥

)
= signum(c2) |k|

∥y2∥
∥y1∥

|cos θ|

= k
∥y2∥
∥y1∥

cos θ

= k
y1 · y2
∥y1∥2

The last thing to do is to note that the above formulas are only valid when ∥x∥ = 1. But if ∥x∥ = s,
this is equivalent to the case when ∥x∥ = 1 if we scale y1 and y2 by s. Scaling those two vectors by
s gives us the final formulas in Theorem 2.

K TOP ACTIVATING TOKENS ON 1M TOKENS FROM THE PILE FOR nBIAS AND
nSUBJ 6::6 FEATURE VECTORS

In §4.2, in order to confirm that the feature vectors that we found for attention head 6::6 corresponded
to notions of gender, we looked at the tokens from a dataset of 1M tokens from The Pile (see
Appendix B) that maximally and minimally activated these feature vectors.

K.1 nBIAS FEATURE VECTOR

The thirty highest-activating tokens, along with the prompts from which they came, and their scores,
are given below:

1. Highest-activating token #1:
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• Excerpt from prompt: "son Tower** and in front of it a
beautiful statue of St Edmund by Dame Elisabeth Frink
(1976). The rest of the abbey spreads eastward like a
r"

• Token: "abeth"
• Score: 18.372

2. Highest-activating token #2:

• Excerpt from prompt: " a gorgeous hammerbeam roof and a
striking sculpture of the crucified Christ by Dame
Elisabeth Frink in the north transept.\n\nThe impressive
entrance porch has a"

• Token: "abeth"
• Score: 17.388

3. Highest-activating token #3:

• Excerpt from prompt: " the elaborate Portuguese silver service
or the impressive Egyptian service, a divorce present
from Napoleon to Josephine"

• Token: "ine"
• Score: 16.815

4. Highest-activating token #4:

• Excerpt from prompt: " rocky beach of **Priest’s Cove**,
while nearby are the ruins of **St Helen’s Oratory**,
supposedly one of the first Christian chapels built in
West Cornwall"

• Token: " Helen"

• Score: 16.309

5. Highest-activating token #5:

• Excerpt from prompt: ", and opened in 1892, this brainchild
of his Parisian actress wife, Josephine, was built by
French architect Jules Pellechet to display a collection
the Bow"

• Token: "ine"
• Score: 16.267

6. Highest-activating token #6:

• Excerpt from prompt: " the film Bridget Jones’s
Diary; a local house was used as Bridget’s parents’
home.\n\n1Sights\n\nBroadway TowerTOWER"

• Token: "idget"
• Score: 16.171

7. Highest-activating token #7:

• Excerpt from prompt: ") by his side and a loyal band of
followers in support. Arthur went on to slay Rita Gawr,
a giant who butchered"

• Token: " Rita"

• Score: 16.079

8. Highest-activating token #8:

• Excerpt from prompt: " for the fact that Sir Robert Walpole’s
grandson sold the estate’s splendid art collection to
Catherine the Great of Russia to stave off debts { those
paintings formed the foundation of the"

• Token: " Catherine"
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• Score: 16.039
9. Highest-activating token #9:

• Excerpt from prompt: " Highlights include the magnificent gold
coach of 1762 and the 1910 Glass Coach (Prince William
and Catherine Middleton actually used the 1902 State
Landau for their wedding in 2011).\n\n"

• Token: " Catherine"
• Score: 15.967

10. Highest-activating token #10:
• Excerpt from prompt: " by Canaletto, El Greco and Goya as well
as 55 paintings by Josephine herself. Among the 15,000
other objets d’art are incredible dresses from"

• Token: "ine"
• Score: 15.906

11. Highest-activating token #11:
• Excerpt from prompt: " looks like something from a children’s
storybook (a fact not unnoticed by the author Antonia
Barber, who set her much-loved fairy-tale The Mousehole
Cat"

• Token: "ia"
• Score: 15.582

12. Highest-activating token #12:
• Excerpt from prompt: ". Precious little now remains save for a
few nave walls, the ruined **St Mary’s chapel**, and the
crossing arches, which may"

• Token: " Mary"
• Score: 15.443

13. Highest-activating token #13:
• Excerpt from prompt: ".\n\nTrain\n\nThe northern terminus of
the Welsh Highland Railway is on St Helen’s Rd. Trains
run to Porthmadog (£35 return, 2½"

• Token: " Helen"
• Score: 15.374

14. Highest-activating token #14:
• Excerpt from prompt: "2\n\n### KING RICHARD III\n\nIt’s
an amazing story. Philippa Langley, a member of the
Richard III Society, spent four-and-a"

• Token: "a"
• Score: 15.358

15. Highest-activating token #15:
• Excerpt from prompt: " pit (which can still be seen) from
the granary above. In 1566, Mary, Queen of Scots
famously visited the wounded tenant of the castle, Lord
Bothwell,"

• Token: " Mary"
• Score: 15.312

16. Highest-activating token #16:
• Excerpt from prompt: " Richard III, Henry VIII and Charles I.
It is most famous as the home of Catherine Parr (Henry
VIII’s widow) and her second husband, Thomas Seymour.
Princess"
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• Token: " Catherine"
• Score: 15.275

17. Highest-activating token #17:

• Excerpt from prompt: " Peninsula\n\n#### Bodmin Moor\n\n####
Isles of Scilly\n\n#### St Mary’s\n\n#### Tresco\n\n####
Bryher\n\n#### St Martin"

• Token: " Mary"
• Score: 15.246

18. Highest-activating token #18:

• Excerpt from prompt: "’.\n\nOutside the cathedral’s eastern end
is the grave of the WWI heroine Edith"

• Token: "ith"
• Score: 15.182

19. Highest-activating token #19:

• Excerpt from prompt: " many people visit for the region’s
literary connections; William Wordsworth, Beatrix
Potter, Arthur Ransome and John Ruskin all found
inspiration here.\n\n"

• Token: "rix"
• Score: 15.135

20. Highest-activating token #20:

• Excerpt from prompt: " Peninsula\n\n#### Bodmin Moor\n\n####
Isles of Scilly\n\n#### St Mary’s\n\n#### Tresco\n\n####
Bryher\n\n#### St Martin"

• Token: " Mary"
• Score: 15.111

21. Highest-activating token #21:

• Excerpt from prompt: " Mayor of Casterbridge locations hidden
among modern Dorchester. They include **Lucetta’s
House**, a grand Georgian affair with ornate door posts
in Trinity St,"

• Token: "etta"
• Score: 15.053

22. Highest-activating token #22:

• Excerpt from prompt: " leads down to this little cove and
the remains of the small Tudor fort of **St Catherine’s
Castle**.\n\nPolkerris BeachBEACH\n\n( G"

• Token: " Catherine"
• Score: 15.051

23. Highest-activating token #23:

• Excerpt from prompt: "-century **St Catherine’s Lighthouse**
and its 14th-century counterpart, **St Catherine’s Or"

• Token: " Catherine"
• Score: 14.979

24. Highest-activating token #24:

• Excerpt from prompt: " ) ; Castle Yard) stands behind a
15th-century gate near the church of St Mary de Castro
( MAP GOOGLE MAP ) ; Castle St),"

• Token: " Mary"
• Score: 14.968
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25. Highest-activating token #25:
• Excerpt from prompt: " the Glasgow School of Art. It was there
that he met the also influential artist and designer
Margaret Macdonald, whom he married; they collaborated
on many projects and were major influences on"

• Token: " Margaret"
• Score: 14.930

26. Highest-activating token #26:
• Excerpt from prompt: " Nov-Mar )\n\nThe raising of the
16th-century warship the Mary Rose in 1982 was an
extraordinary feat of marine archaeology. Now the new
£"

• Token: "Mary"
• Score: 14.699

27. Highest-activating token #27:
• Excerpt from prompt: " was claimed by the Boleyn family and
passed through the generations to Thomas, father of Anne
Boleyn. Anne was executed by her husband Henry VIII in
1533, who"

• Token: " Anne"
• Score: 14.686

28. Highest-activating token #28:
• Excerpt from prompt: ". The village has literary cachet too
{ Wordsworth went to school here, and Beatrix Potter’s
husband, William Heelis, worked here as a solicitor for"

• Token: "rix"
• Score: 14.658

29. Highest-activating token #29:
• Excerpt from prompt: " are William MacTaggart’s Impressionistic
Scottish landscapes and a gem by Thomas Millie Dow.
There’s also a special collection of James McNeill
Whistler’s lim"

• Token: "ie"
• Score: 14.626

30. Highest-activating token #30:
• Excerpt from prompt: " Stay\n\nAMillgate House\n\nADevonshire
Fell\n\nAHelaina\n\nAQuebecs\n\nALa Rosa Hotel\n\n##
Yorkshire Highlights"

• Token: "aina"
• Score: 14.578

The thirty lowest-activating tokens, along with the prompts from which they came, and their scores,
are given below:

1. Lowest-activating token #1:
• Excerpt from prompt: " recounted the sighting of a disturbance
in the loch by Mrs Aldie Mackay and her husband: ’There
the creature disported itself, rolling and plunging for
fully a minute"

• Token: " husband"
• Score: -12.129

2. Lowest-activating token #2:
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• Excerpt from prompt: " paid time off work during
menstruation\n• (often from male workers, who viewed the
employment of women as competition) women should not be
employed in"

• Token: " male"
• Score: -11.344

3. Lowest-activating token #3:
• Excerpt from prompt: " family was devastated, but things
quickly got worse. Emily fell ill with tuberculosis
soon after her brother’s funeral; she never left the
house again, and died on 19 December. Anne"

• Token: " brother"
• Score: -11.146

4. Lowest-activating token #4:
• Excerpt from prompt: " handsome Jacobean town house belonging
to Shakespeare’s daughter Susanna and her husband,
respected doctor John Hall, stands south of the centre.
The exhibition offers fascinating insights"

• Token: " husband"
• Score: -11.016

5. Lowest-activating token #5:
• Excerpt from prompt: " hall was home to the 16th-century’s
second-most powerful woman, Elizabeth, Countess of
Shrewsbury { known to all as Bess of Hardwick {"

• Token: " Count"
• Score: -10.793

6. Lowest-activating token #6:
• Excerpt from prompt: " haunted places, with spectres from a
phantom funeral to Lady Mary Berkeley seeking her errant
husband. Owner Sir Humphrey Wakefield has passionately
restored the castle’s extravagant medieval stater"

• Token: " husband"
• Score: -10.682

7. Lowest-activating token #7:
• Excerpt from prompt: " Windsor Castle in 1861, Queen Victoria
ordered its elaborate redecoration as a tribute to her
husband. A major feature of the restoration is the
magnificent vaulted roof, whose gold mosaic"

• Token: " husband"
• Score: -10.577

8. Lowest-activating token #8:
• Excerpt from prompt: "Ornate Plas Newydd was home to Lady
Eleanor Butler and Miss Sarah Ponsonby, two society
ladies who ran away from Ireland to Wales disguised as
men, and"

• Token: "onson"
• Score: -10.503

9. Lowest-activating token #9:
• Excerpt from prompt: " with DVD players, with tremendous views
across the bay from the largest two. Bridget and Derek
really give this place a ’home away from home’ ambience,
and can arrange"
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• Token: " Derek"
• Score: -10.483

10. Lowest-activating token #10:
• Excerpt from prompt: " of adultery, debauchery, crime and edgy
romance, and is filled with Chaucer’s witty observations
about human nature.\n\nHistory\n\nCanterbury’s past"

• Token: "cer"
• Score: -10.296

11. Lowest-activating token #11:
• Excerpt from prompt: " the city in 1645. Legend has it that
the disease-ridden inhabitants of **Mary King’s Close**
(a lane on the northern side of the Royal Mile on the
site"

• Token: " King"
• Score: -10.294

12. Lowest-activating token #12:
• Excerpt from prompt: " manor was founded in 1552 by the
formidable Bess of Hardwick and her second husband,
William Cavendish, who earned grace and favour by
helping Henry VIII dissolve the English"

• Token: " husband"
• Score: -10.251

13. Lowest-activating token #13:
• Excerpt from prompt: " Apartments** is the bedchamber where
Mary, Queen of Scots gave birth to her son James VI, who
was to unite the crowns of Scotland and England in 1603"

• Token: " son"
• Score: -10.148

14. Lowest-activating token #14:
• Excerpt from prompt: "s at the behest of Queen Victoria, the
monarch grieved here for many years after her husband’s
death. Extravagant rooms include the opulent Royal
Apartments and Dur"

• Token: " husband"
• Score: -10.112

15. Lowest-activating token #15:
• Excerpt from prompt: "am-5pm Mar-Oct)\n\nThis ambitious
three-dimensional interpretation of Chaucer’s classic
tales using jerky animatronics and audioguides is
certainly entertaining"

• Token: "cer"
• Score: -10.053

16. Lowest-activating token #16:
• Excerpt from prompt: " his death, in the hard-to-decipher
Middle English of the day, Chaucer’s Tales is an
unfinished series of 24 vivid stories told by a party"

• Token: "cer"
• Score: -10.050

17. Lowest-activating token #17:
• Excerpt from prompt: " especially in **Poets’ Corner**, where
you’ll find the resting places of Chaucer, Dickens,
Hardy, Tennyson, Dr Johnson and Kipling, as well as"
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• Token: "cer"
• Score: -10.033

18. Lowest-activating token #18:
• Excerpt from prompt: " her? She’s up here saying his intent
was this.\n\n¶ 35 Trujillo objected on the basis"

• Token: " his"
• Score: -10.031

19. Lowest-activating token #19:
• Excerpt from prompt: " lived here happily with his sister
Dorothy, wife Mary and three children John, Dora and
Thomas until 1808, when the family moved to another
nearby house at Allen Bank, and"

• Token: " Thomas"
• Score: -9.934

20. Lowest-activating token #20:
• Excerpt from prompt: " home of Queen Isabella, who (allegedly)
arranged the gruesome murder of her husband, Edward
II.\n\nHoughton Hall"

• Token: " husband"
• Score: -9.932

21. Lowest-activating token #21:
• Excerpt from prompt: " Saturday, four on Sunday).\n\nQueen
Victoria bought Sandringham in 1862 for her son, the
Prince of Wales (later Edward VII), and the features and
furnishings remain"

• Token: " son"
• Score: -9.883

22. Lowest-activating token #22:
• Excerpt from prompt: " the palace, which contains Mary’s
Bed Chamber, connected by a secret stairway to her
husband’s bedroom, and ends with the ruins of Holyrood
Abbey.\n\nHoly"

• Token: " husband"
• Score: -9.824

23. Lowest-activating token #23:
• Excerpt from prompt: " holidays.\n\nThe two-hour tour includes
the **Throne Room**, with his-and-hers pink chairs
initialed ’ER’ and ’P’. Access is"

• Token: " his"
• Score: -9.717

24. Lowest-activating token #24:
• Excerpt from prompt: " is packed with all manner of Highland
memorabilia. Look out for the secret portrait of Bonnie
Prince Charlie { after the Jacobite rebellions all
things Highland were banned, including pictures of"

• Token: " Prince"
• Score: -9.691

25. Lowest-activating token #25:
• Excerpt from prompt: " the last college to let women study
there; when they were finally admitted in 1988, some
male students wore black armbands and flew the college
flag at half mast.\n\n"
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• Token: " male"
• Score: -9.652

26. Lowest-activating token #26:
• Excerpt from prompt: "oh, Michael Bond’s Paddington Bear,
Beatrix Potter’s Peter Rabbit, Roald Dahl’s Willy Wonka
and JK Rowling’s Harry Potter are perennially popular"

• Token: "ald"
• Score: -9.613

27. Lowest-activating token #27:
• Excerpt from prompt: " one of the rooms. In 2003 the
close was opened to the public as the Real Mary King’s
Close.\n\n### SCOTTISH PARLIAMENT BUILDING\n"

• Token: " King"
• Score: -9.405

28. Lowest-activating token #28:
• Excerpt from prompt: ", Mary, Dorothy and all three children.
Samuel Taylor Coleridge’s son Hartley is also buried
here.\n\nGrasm"

• Token: " Samuel"
• Score: -9.372

29. Lowest-activating token #29:
• Excerpt from prompt: ", the town became northern Europe’s most
important pilgrimage destination, which in turn prompted
Geoffrey Chaucer’s The Canterbury Tales, one of the
most outstanding works in English literature."

• Token: "cer"
• Score: -9.351

30. Lowest-activating token #30:
• Excerpt from prompt: " Queen Isabella, who (allegedly)
arranged the gruesome murder of her husband, Edward
II.\n\nHoughton Hall"

• Token: " Edward"
• Score: -9.272

K.2 nSUBJ FEATURE VECTOR

The thirty highest-activating tokens, along with the prompts from which they came, and their scores,
are given below:

1. Highest-activating token #1:
• Excerpt from prompt: "son Tower** and in front of it a
beautiful statue of St Edmund by Dame Elisabeth Frink
(1976). The rest of the abbey spreads eastward like a
r"

• Token: "abeth"
• Score: 18.372

2. Highest-activating token #2:
• Excerpt from prompt: " a gorgeous hammerbeam roof and a
striking sculpture of the crucified Christ by Dame
Elisabeth Frink in the north transept.\n\nThe impressive
entrance porch has a"

• Token: "abeth"

33



Under review as a conference paper at ICLR 2024

• Score: 17.388
3. Highest-activating token #3:

• Excerpt from prompt: " the elaborate Portuguese silver service
or the impressive Egyptian service, a divorce present
from Napoleon to Josephine"

• Token: "ine"
• Score: 16.815

4. Highest-activating token #4:
• Excerpt from prompt: " rocky beach of **Priest’s Cove**,
while nearby are the ruins of **St Helen’s Oratory**,
supposedly one of the first Christian chapels built in
West Cornwall"

• Token: " Helen"
• Score: 16.309

5. Highest-activating token #5:
• Excerpt from prompt: ", and opened in 1892, this brainchild
of his Parisian actress wife, Josephine, was built by
French architect Jules Pellechet to display a collection
the Bow"

• Token: "ine"
• Score: 16.267

6. Highest-activating token #6:
• Excerpt from prompt: " the film Bridget Jones’s
Diary; a local house was used as Bridget’s parents’
home.\n\n1Sights\n\nBroadway TowerTOWER"

• Token: "idget"
• Score: 16.171

7. Highest-activating token #7:
• Excerpt from prompt: ") by his side and a loyal band of
followers in support. Arthur went on to slay Rita Gawr,
a giant who butchered"

• Token: " Rita"
• Score: 16.079

8. Highest-activating token #8:
• Excerpt from prompt: " for the fact that Sir Robert Walpole’s
grandson sold the estate’s splendid art collection to
Catherine the Great of Russia to stave off debts { those
paintings formed the foundation of the"

• Token: " Catherine"
• Score: 16.039

9. Highest-activating token #9:
• Excerpt from prompt: " Highlights include the magnificent gold
coach of 1762 and the 1910 Glass Coach (Prince William
and Catherine Middleton actually used the 1902 State
Landau for their wedding in 2011).\n\n"

• Token: " Catherine"
• Score: 15.967

10. Highest-activating token #10:
• Excerpt from prompt: " by Canaletto, El Greco and Goya as well
as 55 paintings by Josephine herself. Among the 15,000
other objets d’art are incredible dresses from"
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• Token: "ine"
• Score: 15.906

11. Highest-activating token #11:

• Excerpt from prompt: " looks like something from a children’s
storybook (a fact not unnoticed by the author Antonia
Barber, who set her much-loved fairy-tale The Mousehole
Cat"

• Token: "ia"
• Score: 15.582

12. Highest-activating token #12:

• Excerpt from prompt: ". Precious little now remains save for a
few nave walls, the ruined **St Mary’s chapel**, and the
crossing arches, which may"

• Token: " Mary"

• Score: 15.443

13. Highest-activating token #13:

• Excerpt from prompt: ".\n\nTrain\n\nThe northern terminus of
the Welsh Highland Railway is on St Helen’s Rd. Trains
run to Porthmadog (£35 return, 2½"

• Token: " Helen"

• Score: 15.374

14. Highest-activating token #14:

• Excerpt from prompt: "2\n\n### KING RICHARD III\n\nIt’s
an amazing story. Philippa Langley, a member of the
Richard III Society, spent four-and-a"

• Token: "a"
• Score: 15.358

15. Highest-activating token #15:

• Excerpt from prompt: " pit (which can still be seen) from
the granary above. In 1566, Mary, Queen of Scots
famously visited the wounded tenant of the castle, Lord
Bothwell,"

• Token: " Mary"

• Score: 15.312

16. Highest-activating token #16:

• Excerpt from prompt: " Richard III, Henry VIII and Charles I.
It is most famous as the home of Catherine Parr (Henry
VIII’s widow) and her second husband, Thomas Seymour.
Princess"

• Token: " Catherine"

• Score: 15.275

17. Highest-activating token #17:

• Excerpt from prompt: " Peninsula\n\n#### Bodmin Moor\n\n####
Isles of Scilly\n\n#### St Mary’s\n\n#### Tresco\n\n####
Bryher\n\n#### St Martin"

• Token: " Mary"

• Score: 15.246

18. Highest-activating token #18:

• Excerpt from prompt: "’.\n\nOutside the cathedral’s eastern end
is the grave of the WWI heroine Edith"
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• Token: "ith"
• Score: 15.182

19. Highest-activating token #19:
• Excerpt from prompt: " many people visit for the region’s
literary connections; William Wordsworth, Beatrix
Potter, Arthur Ransome and John Ruskin all found
inspiration here.\n\n"

• Token: "rix"
• Score: 15.135

20. Highest-activating token #20:
• Excerpt from prompt: " Peninsula\n\n#### Bodmin Moor\n\n####
Isles of Scilly\n\n#### St Mary’s\n\n#### Tresco\n\n####
Bryher\n\n#### St Martin"

• Token: " Mary"
• Score: 15.111

21. Highest-activating token #21:
• Excerpt from prompt: " Mayor of Casterbridge locations hidden
among modern Dorchester. They include **Lucetta’s
House**, a grand Georgian affair with ornate door posts
in Trinity St,"

• Token: "etta"
• Score: 15.053

22. Highest-activating token #22:
• Excerpt from prompt: " leads down to this little cove and
the remains of the small Tudor fort of **St Catherine’s
Castle**.\n\nPolkerris BeachBEACH\n\n( G"

• Token: " Catherine"
• Score: 15.051

23. Highest-activating token #23:
• Excerpt from prompt: "-century **St Catherine’s Lighthouse**
and its 14th-century counterpart, **St Catherine’s Or"

• Token: " Catherine"
• Score: 14.979

24. Highest-activating token #24:
• Excerpt from prompt: " ) ; Castle Yard) stands behind a
15th-century gate near the church of St Mary de Castro
( MAP GOOGLE MAP ) ; Castle St),"

• Token: " Mary"
• Score: 14.968

25. Highest-activating token #25:
• Excerpt from prompt: " the Glasgow School of Art. It was there
that he met the also influential artist and designer
Margaret Macdonald, whom he married; they collaborated
on many projects and were major influences on"

• Token: " Margaret"
• Score: 14.930

26. Highest-activating token #26:
• Excerpt from prompt: " Nov-Mar )\n\nThe raising of the
16th-century warship the Mary Rose in 1982 was an
extraordinary feat of marine archaeology. Now the new
£"
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• Token: "Mary"
• Score: 14.699

27. Highest-activating token #27:
• Excerpt from prompt: " was claimed by the Boleyn family and
passed through the generations to Thomas, father of Anne
Boleyn. Anne was executed by her husband Henry VIII in
1533, who"

• Token: " Anne"
• Score: 14.686

28. Highest-activating token #28:
• Excerpt from prompt: ". The village has literary cachet too
{ Wordsworth went to school here, and Beatrix Potter’s
husband, William Heelis, worked here as a solicitor for"

• Token: "rix"
• Score: 14.658

29. Highest-activating token #29:
• Excerpt from prompt: " are William MacTaggart’s Impressionistic
Scottish landscapes and a gem by Thomas Millie Dow.
There’s also a special collection of James McNeill
Whistler’s lim"

• Token: "ie"
• Score: 14.626

30. Highest-activating token #30:
• Excerpt from prompt: " Stay\n\nAMillgate House\n\nADevonshire
Fell\n\nAHelaina\n\nAQuebecs\n\nALa Rosa Hotel\n\n##
Yorkshire Highlights"

• Token: "aina"
• Score: 14.578

The thirty lowest-activating tokens, along with the prompts from which they came, and their scores,
are given below:

1. Lowest-activating token #1:
• Excerpt from prompt: " family was devastated, but things
quickly got worse. Emily fell ill with tuberculosis
soon after her brother’s funeral; she never left the
house again, and died on 19 December. Anne"

• Token: " brother"
• Score: -11.732

2. Lowest-activating token #2:
• Excerpt from prompt: " recounted the sighting of a disturbance
in the loch by Mrs Aldie Mackay and her husband: ’There
the creature disported itself, rolling and plunging for
fully a minute"

• Token: " husband"
• Score: -11.608

3. Lowest-activating token #3:
• Excerpt from prompt: " paid time off work during
menstruation\n• (often from male workers, who viewed the
employment of women as competition) women should not be
employed in"

• Token: " male"
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• Score: -11.324
4. Lowest-activating token #4:

• Excerpt from prompt: "Ornate Plas Newydd was home to Lady
Eleanor Butler and Miss Sarah Ponsonby, two society
ladies who ran away from Ireland to Wales disguised as
men, and"

• Token: "onson"
• Score: -11.228

5. Lowest-activating token #5:
• Excerpt from prompt: " of adultery, debauchery, crime and edgy
romance, and is filled with Chaucer’s witty observations
about human nature.\n\nHistory\n\nCanterbury’s past"

• Token: "cer"
• Score: -11.007

6. Lowest-activating token #6:
• Excerpt from prompt: " Apartments** is the bedchamber where
Mary, Queen of Scots gave birth to her son James VI, who
was to unite the crowns of Scotland and England in 1603"

• Token: " son"
• Score: -10.971

7. Lowest-activating token #7:
• Excerpt from prompt: " handsome Jacobean town house belonging
to Shakespeare’s daughter Susanna and her husband,
respected doctor John Hall, stands south of the centre.
The exhibition offers fascinating insights"

• Token: " husband"
• Score: -10.884

8. Lowest-activating token #8:
• Excerpt from prompt: " his death, in the hard-to-decipher
Middle English of the day, Chaucer’s Tales is an
unfinished series of 24 vivid stories told by a party"

• Token: "cer"
• Score: -10.854

9. Lowest-activating token #9:
• Excerpt from prompt: " especially in **Poets’ Corner**, where
you’ll find the resting places of Chaucer, Dickens,
Hardy, Tennyson, Dr Johnson and Kipling, as well as"

• Token: "cer"
• Score: -10.794

10. Lowest-activating token #10:
• Excerpt from prompt: "am-5pm Mar-Oct)\n\nThis ambitious
three-dimensional interpretation of Chaucer’s classic
tales using jerky animatronics and audioguides is
certainly entertaining"

• Token: "cer"
• Score: -10.793

11. Lowest-activating token #11:
• Excerpt from prompt: " haunted places, with spectres from a
phantom funeral to Lady Mary Berkeley seeking her errant
husband. Owner Sir Humphrey Wakefield has passionately
restored the castle’s extravagant medieval stater"
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• Token: " husband"
• Score: -10.696

12. Lowest-activating token #12:
• Excerpt from prompt: " Windsor Castle in 1861, Queen Victoria
ordered its elaborate redecoration as a tribute to her
husband. A major feature of the restoration is the
magnificent vaulted roof, whose gold mosaic"

• Token: " husband"
• Score: -10.673

13. Lowest-activating token #13:
• Excerpt from prompt: " hall was home to the 16th-century’s
second-most powerful woman, Elizabeth, Countess of
Shrewsbury { known to all as Bess of Hardwick {"

• Token: " Count"
• Score: -10.617

14. Lowest-activating token #14:
• Excerpt from prompt: " Saturday, four on Sunday).\n\nQueen
Victoria bought Sandringham in 1862 for her son, the
Prince of Wales (later Edward VII), and the features and
furnishings remain"

• Token: " son"
• Score: -10.556

15. Lowest-activating token #15:
• Excerpt from prompt: " is packed with all manner of Highland
memorabilia. Look out for the secret portrait of Bonnie
Prince Charlie { after the Jacobite rebellions all
things Highland were banned, including pictures of"

• Token: " Prince"
• Score: -10.424

16. Lowest-activating token #16:
• Excerpt from prompt: " beautiful, time-worn rooms hold
fascinating relics, including the cradle used by Mary
for her son, James VI of Scotland (who also became James
I of England), and fascinating letters"

• Token: " son"
• Score: -10.266

17. Lowest-activating token #17:
• Excerpt from prompt: ", the town became northern Europe’s most
important pilgrimage destination, which in turn prompted
Geoffrey Chaucer’s The Canterbury Tales, one of the
most outstanding works in English literature."

• Token: "cer"
• Score: -10.250

18. Lowest-activating token #18:
• Excerpt from prompt: " the city in 1645. Legend has it that
the disease-ridden inhabitants of **Mary King’s Close**
(a lane on the northern side of the Royal Mile on the
site"

• Token: " King"
• Score: -10.177

19. Lowest-activating token #19:
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• Excerpt from prompt: " with DVD players, with tremendous views
across the bay from the largest two. Bridget and Derek
really give this place a ’home away from home’ ambience,
and can arrange"

• Token: " Derek"
• Score: -10.124

20. Lowest-activating token #20:

• Excerpt from prompt: " her? She’s up here saying his intent
was this.\n\n¶ 35 Trujillo objected on the basis"

• Token: " his"
• Score: -10.113

21. Lowest-activating token #21:

• Excerpt from prompt: " the last college to let women study
there; when they were finally admitted in 1988, some
male students wore black armbands and flew the college
flag at half mast.\n\n"

• Token: " male"
• Score: -10.058

22. Lowest-activating token #22:

• Excerpt from prompt: "s at the behest of Queen Victoria, the
monarch grieved here for many years after her husband’s
death. Extravagant rooms include the opulent Royal
Apartments and Dur"

• Token: " husband"
• Score: -10.018

23. Lowest-activating token #23:

• Excerpt from prompt: " home of Queen Isabella, who (allegedly)
arranged the gruesome murder of her husband, Edward
II.\n\nHoughton Hall"

• Token: " husband"
• Score: -9.989

24. Lowest-activating token #24:

• Excerpt from prompt: ", Van Dyck, Vermeer, El Greco, Poussin,
Rembrandt, Gainsborough, Turner, Constable, Monet,
Pissarro,"

• Token: "brand"
• Score: -9.937

25. Lowest-activating token #25:

• Excerpt from prompt: " 24 vivid stories told by a party
of pilgrims journeying between London and Canterbury.
Chaucer successfully created the illusion that the
pilgrims, not Chaucer (though he appears in the"

• Token: "cer"
• Score: -9.909

26. Lowest-activating token #26:

• Excerpt from prompt: " the palace, which contains Mary’s
Bed Chamber, connected by a secret stairway to her
husband’s bedroom, and ends with the ruins of Holyrood
Abbey.\n\nHoly"

• Token: " husband"
• Score: -9.862
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27. Lowest-activating token #27:
• Excerpt from prompt: " lived here happily with his sister
Dorothy, wife Mary and three children John, Dora and
Thomas until 1808, when the family moved to another
nearby house at Allen Bank, and"

• Token: " Thomas"
• Score: -9.842

28. Lowest-activating token #28:
• Excerpt from prompt: " 19 prime ministers, countless princes,
kings and maharajahs, famous explorers, authors and"

• Token: " prime"
• Score: -9.733

29. Lowest-activating token #29:
• Excerpt from prompt: " held court in the Palace of
Holyroodhouse for six brief years, but when her son
James VI succeeded to the English throne in 1603, he
moved his court to London"

• Token: " son"
• Score: -9.711

30. Lowest-activating token #30:
• Excerpt from prompt: ", Mary, Dorothy and all three children.
Samuel Taylor Coleridge’s son Hartley is also buried
here.\n\nGrasm"

• Token: " Samuel"
• Score: -9.654
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