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ABSTRACT

Distributional reinforcement learning (RL) provides a natural framework for es-
timating the distribution of returns rather than a single expected value. However,
the control aspect of distributional RL has not been as thoroughly explored as
the evaluation part, typically relying on the greedy selection rule with respect
to either the expected value, akin to standard approaches, or risk-sensitive mea-
sures derived from the return distribution. On the other hand, casting RL as a
probabilistic inference problem allows for flexible control solutions utilizing a
toolbox of approximate inference techniques; however, its connection to distribu-
tional RL remains underexplored. In this paper, we bridge this gap by proposing
a variational approach for efficient policy search. Our method leverages the log-
likelihood of optimality as a learning proxy, decoupling it from traditional value
functions. This learning proxy incorporates aleatoric uncertainty of the return
distribution, enabling risk-aware decision-making. We provide a theoretical anal-
ysis of our framework, detailing the conditions for convergence. Empirical results
on vision-based tasks in DM Control Suite demonstrate the effectiveness of our ap-
proach compared to various algorithms, as well as its ability to balance exploration
and exploitation at different training stages.

1 INTRODUCTION

The return, composed of cumulative rewards, is a central component of RL, summarizing how ef-
fective an agent is. Standard RL (Sutton & Bartol 2018) aims to maximize the expected value of
returns to improve the agent’s decisions. While this approach is widely adopted in the literature, it
ignores the underlying distributional nature of the returns rooted in the randomness of transitions.
For example, two returns with the same expected value can exhibit different levels of variability. In
such cases, standard RL fails to distinguish between them. In contrast, distributional RL (Bellemare
et al., 2017) directly models the distribution of returns, allowing for the incorporation of aleatoric
uncertainty. For instance, a risk-averse agent would prefer lower variance, while a risk-seeking
agent might tolerate higher variance. A substantial body of works (Dabney et al., [2018b) (Dabney
et al.l 2018a) (Yang et al.l 2019) focus on improving the approximation quality of such distribu-
tions based on the distributional Bellman operator (Bellemare et al., 2017). However, with regard
to the control aspect — specifically, how to refine the policy in relation to the return distribution for
risk-aware decision making, existing research is limited. Most approaches derive a statistic from the
return distribution, either the expectation or risk-sensitive measures, to greedily improve the policy.
This raises the question: can we develop a new control principle that better aligns with the nature of
distributional RL beyond the current scope?

Control as probabilistic inference (Levinel 2018) provides a promising framework for our pur-
pose. This framework represents the underlying dynamical system using a probabilistic graphical
model (PGM) and associates the rewards with an additional optimality variable. Conventionally, this
optimality variable is often proportional to the exponential rewards. This choice has been shown to
link the maximization of the log-likelihood to that of cumulative rewards (Toussaint, 2009), thereby
connecting the probabilistic inference with RL. Its application has been demonstrated in previous
literature from various angles. For instance, one can match to the posterior after observing the op-
timality variables (Rawlik et al., [2013) or maximize the likelihood of a trajectory being optimal
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(Abdolmaleki et al.| 2018). Moreover, through the lens of message passing (Pearl, [1982) or KL
divergence minimization (Rawlik et al.,|2013)), these formulations can give rise to several categories
of algorithms, including those in Maximum Entropy RL (Ziebart, |2010) or variational policy search
(Neumann, 2011) (Peters & Schaal| 2007) (Hachiya et al.| [2009) (Abdolmaleki et al., 2018)). Fur-
thermore, probabilistic methods such as expectation maximization, expectation propagation (Minka,
2001])), or recent advancements in variational inference (Kingma & Welling,[2014)), can be effectively
utilized by those algorithms. However, despite being versatile, interpretable, and powerful, the ap-
plication of probabilistic inference to distributional RL remains underexplored, even when the return
variable can be readily incorporated into the graphical model. To bridge this gap, we aim to explore
how to model the control aspect of distributional RL within the probabilistic inference framework
and uncover the insights this new approach would bring.

In this paper, we introduce DRIVE, a distributional model-based RL algorithm designed for efficient
policy search through variational inference. We develop probabilistic learning proxies as alternatives
to traditional value functions, transforming the standard RL problem into a distributional framework.
The return variable is incorporated into this framework by encoding information about the return dis-
tribution into the optimality variable through marginalization. We leverage the variational inference
to jointly optimize a practical variational lower bound, iteratively improving the desired objective.
Since approximating our objective involves sampling trajectories from a model, we integrate our
method with model-based approaches like Dreamer (Hafner et al.,[2020) to learn a transition model.
Theoretical analysis is conducted to understand convergence and the optimization process. Em-
pirical results demonstrate the effectiveness of our approach on challenging vision-based tasks in
DMControl Suite, enhancing the uncertainty-aware decision-making.

2 PRELIMINARIES

We consider an infinite-horizon discounted Markov Decision Process (S, A, P, R, po, ), where S
and A represent the state and action spaces, P the transition kernel P(-|s, a), R the reward function,
po the initial state distribution, and y € [0, 1) the discount factor. This process models how the agent
interacts with the environment. At each step, the agent takes an action a; ~ 7 (+|s;) at the current
state s;, and receives a reward R(s;, a;), and transits to a new state sy ~ P(-|s¢, a;). Following

o0
this procedure, we can define the return as U™ (s¢,a;) = Y. v*R(s¢1k, as11), which is a random
k=0

variable. Whenever noted, we denote the approximate transition model as f . We assume the reward
function is bounded, therefore the return is also bounded. We denote the maximum of the return as
Unax- The action value function is defined as Q™ (s, a) = E[U™ (s, a)], characterized by:

Q" (s,a) = E[R(s,a)] + VEp[Q" (s, a")]. (1)
The value function is then the expected value of action value function, V™ (s) = E;[Q7 (s, a)].
This approach succinctly represents the agent’s objective in terms of the expectation; however, it

is unable to capture the underlying distributional information, as the dynamics, reward function, or
policy could be stochastic.

2.1 DISTRIBUTIONAL REINFORCEMENT LEARNING

In contrast, distributional RL (Bellemare et al., [2017) directly models the distribution of the return
instead of a single expected value. In this perspective, the distributional Bellman operator is defined
as:

T™U(s,a) = R(s,a) +~U(s',a’) s’ ~ P(:|s,a),a’ ~ m(-|s")
H—1
D
(TW)H U(Sta at) = R<H + VHU(St+H7at+H) T ~ P77Ta R<H = Z ’}/nR(St-‘rna at+'n)a
(Uls,a) (Uls,a) =0
p s,a q s,a

2
where the equality denotes two random variables have equal probability laws, and T is the trajectory
generated under the transition model P and the policy 7. We denote the distribution of U (s, a) as
p(Uls,a) and (T™)7U (s, a) as q(U|s, a), which is the bootstrapped return distribution, derived by
expanding the one-step operator [ — 1 times.
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Figure 1: Comparison of PGM between the standard approach and our method: (a) Optimality vari-
ables are embedded and conditioned on state and action; (b) Our method first incorporates the return
variable U, which then conditions the optimality variables; (c¢) Procedure overview: (i) establish a
prior on p(O = 1|U, s, a) (ii) marginalize the product of the return distribution and this prior to
obtain the conditional optimality distribution.

While most previous works have focused on improving the approximation of the return distribution
based on the distributional Bellman operator, little attention has been paid to improving the policy
based on the return distribution. They typically follow a greedy selection rule, where the improved
policy 7’ corresponds to maxge 4 E[U™(s,a)] = Q™ (s, a). However, this is similar to the standard
RL and discards the uncertainty information within the return distribution for decision-making. Our
goal is to use probabilistic inference to incorporate this information.

2.2 RL AS PROBABILISTIC INFERENCE

To embed the control problem into a graphical model, we need to introduce a binary random variable
O which denotes optimal if O = 1 otherwise it is not optimal. Typically, this variable is related to
an exponential transformation on the reward (Todorov, [2008) (Rawlik et al.|[2013), (Levine, 2018)):

p(O = 1ls, a) oc exp(R(s; a)). 3)

This formulation results in a steeper curve as the reward increases. It bears a close relationship
to energy-based methods (Haarnoja et al., 2017) and Maximum Entropy RL algorithms (Haarnoja
et al.l 2018)) by minimizing the KL divergence between the trajectory distribution and the posterior
after observing optimality variables. Other derivatives generally adhere to this principle although
the interpretation of the optimality variable may differ, for instance, in the finite-horizon caseﬂ the
likelihood of a trajectory being optimal is:

T
p(O =1|r) o exp (Z R(s, m)) : 4

t=0

However, these formulations have their own shortcomings. The first approach is limited to individual
steps, failing to account for cumulative information. While the second approach addresses this
limitation by considering past events, it does not capture environmental uncertainty. To resolve
these issues, we propose a new formulation that not only considers future events but also captures
uncertainty. Figure[I]illustrates a comparison between the standard approach and our method.

3 CONTROL AS INFERENCE

3.1 FROM STANDARD RL TO DISTRIBUTIONAL PERSPECTIVE

First of all, we propose a probabilistic learning proxy that allows us to transfer from the standard RL
formulation to the distributional setting.

"Extending to the infinite horizon case simply needs follow a modified dynamic P(-|s,a) = vP(-|s,a) +
(1 — 4)d(s = 5) where § is an absorbing state regardless of what action has been taken.



Under review as a conference paper at ICLR 2025

The goal of the standard RL is to find an optimal policy such that 7*(-|s) = arg max, V7 (s) for all
states s € S. Instead, we consider maximizing a probabilistic learning proxy that represents the log-
likelihood of being optimal. Notably, it can be related to the corresponding state-action counterpart
in a manner analogous to how the value function is expressed as the expectation of the action value
function:

max VT(s) =E[Q"(s,a)],Vs €S )

maxlog p™ (O = 1|s) = logE;[p" (O = 1|s,a)],Vs € S. (6)

This formulation offers a more natural framework for probabilistic inference by decoupling the
optimization problem from traditional value functions. However, adapting to distributional RL raises
the question of how to holistically integrate the return with this probabilistic learning proxy.

3.2  VARIATIONAL BOUND

To address this problem, we integrate the return U into the state-action probabilistic learning proxy
by marginalizing over all possible outcomes of the return distribution. We then employ the con-
cept of variational inference to infer the most probable action distributions based on that proba-
bilistic learning proxy. Thereafter, we decompose the objective by associating it with the boot-
strapped return distribution q(U|s, a). This approach fosters: 1) long-horizon policy optimization,
2) divergence-awareness in return distribution predictions, and 3) direct balancing of the exploration-
exploitation trade-off with an appropriate model specification.

In the first step, we model aleatoric uncertainty in U using a parametric return model py,(Uls, a) and
a likelihood model p(O = 1|U, s, a). By marginalizing over U, we can incorporate this uncertainty
into the state-action probabilistic learning proxy:

log py (O =1]s,a) = log/p(O = 1|U, s,a)py(Uls, a)dU. @)
Different choices for the likelihood model can lead to varying agent behaviors. In this paper, we
define our model as being proportional to the exponential of U:
p(O =1|U, s,a) x exp(U). (8)
With this model specification, we find that it can effectively balance the exploration and exploitation
trade-off.

Next, we utilize variational inference to solve the problem in Equation [6] To facilitate a tractable
approximation, we make the following assumption:

Assumption 3.1. p(O = 1|Unax, S, a)E]: 1.

It is worth noting that Assumption [3.1] is easy to validate as we assume the reward function is
bounded.

Based on our model specification in Equation [§] and Assumption regarding p(O = 1|U, s, a),
we derive a variational lower bound using Jensen’s inequality. The policy, value distribution, and
variational posterior are parameterized as (0,1, ¢), respectively, where the variational posterior
¢4(a]O = 1, s) approximates the true posterior:

log py (O = 1|s) = =Dxui(gp(alO = 1, 5)[[mg(als))

+ Eqyaio=1,9108 [ (O = 1U,5,0)py (Ul )]
xexp(U)
> — Dxi(ge(alO = 1, 5)||mg(als))
& 9)
+Eq,(a)0=1,5),q(U]s,a) [U]
Ju

— Eqg,(a)0=1,5[DxL(a(Uls, a)||py (Uls, a))] —Unmax
T

= E(aﬁ ¢7 11[}; 8)7

*Upax can be relaxed as Unax + € as long as € > 0.
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The overall objective comprises three terms: complexity jﬁ), reparameterized policy gradient (PG)

Ju, and regularizer jéi). This structure offers multiple benefits. The complexity term facilitates
policy optimization through two models — the policy and the variational posterior — by dividing
the multi-step optimization problem into two manageable parts. Additionally, the reparameterized
PG term enables long-horizon optimization via importance weighting with the bootstrapped return
distribution, allowing for more information from the future to be backpropagated into both the policy
and the variational posterior. Moreover, the regularizer measures the discrepancy between the return
distribution and the bootstrapped return distribution. For actions with a significant discrepancy, the
variational posterior will reduce the likelihood of those actions, which then influences the policy
through the complexity term, fostering divergence-aware decision-making.

In the next section, we focus on how to approximate those terms with a practical transition model f .

3.3 DECOMPOSITION

Complexity ]I&) The complexity term is generally tractable with simple distributions, such as
Gaussian or Beta, but requires approximation with complex distributions, like Gaussian mixtures.

Reparameterized PG 7y By definition of q(U]|s, a) and leveraging the change of variables, we
can expand Jyy over multiple steps:

Jo=E Rey +v"U(seim, aeen)] s (10)

which intuitively recovers the discounted cumulative rewards. Additionally, it can be efficiently
optimized using Monte Carlo estimates when all components are reparameterized.

46,10, fpy (Ulstm a1 1) [

Regularizer jlg) The approximation of the regularizer reduces to approximating q(U|s,a). If
the return distribution belongs to the Normal distribution class, it can be expressed analytically as a
weighted combination of Normal distributions based on the trajectory distribution:

q(Uls,a) =E_, ¢ N(Ren + Y oy (1411, at+H)a’72Ha12/;(3t+H7at+H))} . (1m)
Furthermore, we can derive statistics that are useful for approximating q(Uls, a):

E[Uls,a] =E_, ;[Ren +7" po(serm, arym)] 12
Var[Uls, a] = ’Y2H]E7r9,f[012p(8t+H, ar+m)] + Varﬂ97f[R<H + ’YHMw(St+H, apH))-
In practice, we can generate N trajectories for each (s, a) and then empirically estimate those quan-

tities to approximate ¢(U s, a) for calculating the regularizer jg).

4 PRACTICAL ALGORITHM

In this section, we outline our final objectives and demonstrate how to integrate them with a model-
based approach for long-horizon prediction.

An intriguing property of our variational lower bound is that it unifies policy and value distribution
updates into a single objective. By differentiating it with respect to i), we obtain the cross-entropy
loss for the value distribution based on the target distribution q(U|s, a). Additionally, by differenti-
ating it with respect to both 6 and ¢, we can jointly optimize the posterior and the policy.

Value Dist: J(¥) = Equis,a)[—logpy(Uls,a)] (13)
Posterior + Policy: J(0,¢)=—-Ju + jéi) + Jﬁ). (14)

In order to approximate 7, we need a transition model f to sample trajectories. We opt the RSSM
of Dreamer (Hafner et al., [2020) to enable long-horizon prediction. With a deterministic encoder
hts = GRU(h¢_1, $¢—1, a;—1) tracking the history information, the overall generative model will be:

Representation model: q(stlhe, 0r)

Observation model: p(ot]he, S¢) (15)
Reward model: p(re|he, St)

Transition model: p(st|he).
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These terms can be jointly optimized by improving a variational lower bound across multiple time
steps:

T
jDreamer = Z]Eq[logp(of, | htvst) +10gp(7’t | hta St) 7DKL(q(5t ‘ ht70t) H p(st | ht))] (16)

t=1

75 7 T

In summary, our algorithm DRIVE encompasses three phases — data collection, model learning,
and behavior learning. A key aspect of behavior learning in DRIVE is that it branches at the first
time step, dividing the multi-step optimization problem into two manageable parts handled by the
posterior and the policy. This not only amortizes the policy optimization but also allows for efficient
optimization via stochastic gradient methods. A full procedure of behavior learning is outlined in
Algorithm T]

Algorithm 1 DRIVE: Behavior Learning

Denote z; = (hy, s¢)

Initialize parameters ¢, 0, 1

> Behavior Learning

Imagine H-length trajectories { (-, a,)}

t+H
Sample rewards r¢ 4 ~ p(Tt+7‘xt+T),7:f'_; 0,1,...,H—1.

Sample values Ut+H ~ Py (Ut+H |517t+H . at+H).

Compute H-step return as targets ﬁt for each (z¢, ay).

Estimate q(U¢|z¢, at) with rewards 744~ and statistics (pt¢+ m, Ot+H) (Equation.
Update posterior and policy (Equation@.

Update value distribution with ﬁt (Equation.

from each x4 with ay ~ q4(-|O = 1, ) otherwise ar ~ mg(-|x,), T > t.

5 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of our method. Its complexity stems from involving
not only a changing prior (the policy) but also a truncated optimization with a finite horizon H. This
contrasts with standard approximate inference methods like VAE or EM, where the prior is typically
fixed. Additionally, unlike in RL, the probabilistic decoder in these methods does not depend on the
H-step value distribution or value function. Given these challenges, our analysis aims to identify
conditions under which our method would converge, ideally to a local optimum.

Let us consider a two-stage problem interleaving between the optimization of the approximate pos-
terior ¢ and the policy 7 as follows:

J(q,7) = —Dxr(q||T) + Eg[logp™ (O = 1[s, a)]
= —Dxur(ql|7) + Eq[log p (O = 1]s,a,7)],

where we made use of a shorthand log p7; (O = 1]s, a, 7) such that when 7 equates 7 in what fol-
lows:

a7

log pfy (O = 1]s¢, a4, @) =108 B ppr (U]siy maars) 1650 (Rerr + 77 U)] = Unax. (18)

Optimizing J(g,m) can be divided into two subproblems: (a) max, J(g,7) and (b)
max, J(q", ), where ¢™ is the optimum of problem (a). Notably, for the problem (b), not merely
can 7 approach to g™ but also be optimized within log p7; (O = 1]s, a, 7) for a fixed H-step horizon.

As will be shown, the repeated two-stage step will produce a monotonic policy sequence that at
least converges to a local optimum 7* under some conditions to account for the bias of the value
distribution in log p™ (O = 1]s, a, 7).

Define g™ (s, a) := Epr (s, lexp (v U)], we obtain:

Theorem 5.1. For a given initial policy g, the two-state optimization, if satisfying:

Ejrpir,P lexp (Rem)g™+* (St41, At+H)]

Eqri |log >0 (19)
o Ef\ﬂk+1,P lexp (Rerr)g™ (¢4 1, G111
produces a monotonic improving sequence of policies {7y} such that
log ™+ (O = 1|s) > logp™ (O = 1|s), (20)
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which converges to a local optimum 7 such that:

klim log p™ (O = 1|s) = logp™ (O =1|s) > V™ (s) — Upax- (21)
—00

However in practice, directly calculating log p™ (O = 1|s, a) poses challenges in both numerical
stability and expectation approximation. Specifically, 1) exponential intensifies large returns, po-
tentially leading to overflow; 2) multiple trajectories are required to approximate the expectation,
which can be inefficient. Alternatively, we could trade off the accuracy with improved stability and
sample efficiency by utilizing the following surrogate:

L(g,m) = =Dxw(qll™) + Eqpr (v]5,0)[U]

; (22)
= —Dxu(ql|m) + Eq[Q7F ()],
where similar to Equation|18] we have Q7 () as follows:
H-1
Q}T{(St’ Qs 7~T> = E3t+17at+1"‘/ﬁy"' St H At H~T Z ’VkR(StJrkv atJrk) + 'VHQW(StJrHa atJrH)'
k=0
(23)

This is akin to SVG(co) (Heess et al., |2015) on finite-horizon trajectories, or reparameterized PG in
our context by modifying the distribution to which expectations adhere while preserving the action
value function under the original policy 7 at the final time step.

Theorem 5.2. For a given initial policy mo, the two-state optimization over surrogate L(q, ), if
satisfying:

E g7k (as]0=1,51), Q™" (St4m, atv1r) — Q" (Se4m, 1)) >0 (24)

P(s¢ym|se,ae),
Trt+1(at+m|St+H)

produces a monotonic improving sequence of policies {my} such that:

logEr, , [exp Q™ +'] > log By, [exp Q"] (25)

which converges to a local optimum 7* such that:

klim log B, [exp Q™) = log Ers [exp Q™ ] > V™ (s). (26)
— 00

6 EXPERIMENTS

In this section, we aim to understand the effectiveness and advantages of DRIVE. We evaluate
DRIVE on diverse and challenging continuous control tasks from DMControl Suite (Tassa et al.,
2018), including tasks with high-dimensional state and action spaces, dense and sparse rewards, and
image observations. We seek to answer the following questions:

(1) How does DRIVE compare with model-based, distributional RL, and “RL as inference”
approaches?

(2) Does DRIVE effectively balance the exploration and exploitation during training?
(3) What are the roles of different components of DRIVE’s objective?

Baselines We evaluation our method against the following:

— Dreamer and its successors, the base model (Hafner et al.,[2020) used in our approach, which is
a state-of-the-art model-based approach enabling long-horizon prediction. Successive developments
have improved not only the model learning but also the control aspect, including mixed actor gradi-
ents, entropy regularization (Hafner et al.,[2021)) and advantage normalization (Hafner et al., [2023)).

— TD-MPC (Hansen et al.|[2022), another model-based approach, integrates model predictive con-
trol to achieve sample-efficient control.

— D4PG (Barth-Maron et al., 2018)), an adaption of distribution RL for continuous control, derived
from DDPG.

— SAC (Haarnoja et al., 2018)), an off-policy RL algorithm closely tied to probabilistic inference,
whose objective aligns with matching the trajectory distribution to the posterior (Levine, [2018]).
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Table 1: Evaluation on vision-based DMControl Suite. We report the mean and 95% confidence
interval of the average return across 5 random seeds, each with 1M frames. The results of prior
methods are sourced from either official reports or open-source repositories. ~ indicates the results
are estimated based on the results from the original paper.

Tasks Dreamer  DreamerV2 DreamerV3 SAC pixel TD-MPC (~) MPO state (~) D4PG pixel (100M) DRIVE
Ball in Cup Catch 967 +4 797 +£ 291 972+5 173 +£92 973 970 981 +1 962 + 16
Cheetah Run 716 £ 32 741 £ 67 77T+ 45 25+ 14 583 675 5247 767 + 60
Finger Spin 517 £ 179 397 + 58 791+ 125 269 +59 990 975 986 + 1 647 + 182
Finger Turn Easy 777+ 63 891 + 32 834 + 115 141 £ 67 725 950 971+ 4 907 £ 77
Finger Turn Hard 716 £ 111 842 + 63 896 + 85 79 £81 500 840 966 + 3 872 £ 65
Quadruped Run 389 + 64 490 + 80 371+ 53 59 4+ 39 388 — - 648 £ 77
Quadruped Walk 444 + 63 719 4+ 80 474 + 137 79 £25 425 - - 670 + 263
Reacher Easy 610 + 112 959 + 8 933 + 42 TTE£34 738 975 967 + 4 977 £12
Walker Run 720 £ 37 684+ 78 775+ 15 29+5 606 825 567 + 19 654 + 59
Walker Stand 957 + 10 969 + 4 983+ 8 139 +24 965 980 985+ 1 982 + 17
Walker Walk 956 + 10 959 + 1 962 + 12 37+11 960 970 968 + 2 974 £ 15
Task Mean 685 766 797 101 714 — - 815
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Figure 2: Comparison of optimality criterion under the return distribution and its mean across train-
ing. Top: The dispersion of our criterion with respect to the mean in ascending order; Bottom: The
correlation between stddev of the return distribution and two criteria on evenly spaced bins.

— MPO (Abdolmaleki et al., [2018), a variational policy search algorithm combined with expec-
tation maximization, shares similarities with (Levine & Koltun, [2013)), where a variational lower
bound on the log-likelihood of optimality is utilized.

The overall results are shown in Table [T} They demonstrate that our approach is competitive with
or outperforms other methods on most tasks, including model-based, distributional RL, and “RL as
inference” approaches. Specifically, improved sample-efficiency can be observed in our approach
compared to distributional RL with greedy selection rule. Furthermore, when inference is combined
with distributional RL, it shows advantages over previous “RL as inference” algorithms.

Balancing Exploration and Exploitation One problem regarding standard approaches is that re-
lying on a single expected value overlooks the uncertainty inherent in the return distribution. This is-
sue becomes particularly significant when either the policy, dynamics or reward function is stochas-
tic. Consequently, we monitor how our optimality criterion varies with respect to the mean of the
return distribution (transformed by exponential) throughout the learning process. As illustrated in
Figure 2] two key observations emerge: (1) Return distributions with the same mean value are not
necessarily equally optimal according to our criterion; (2) A higher mean may be less optimal. This
indicates that, beyond the mean value, the variability within the distribution also affects optimal-
ity. To explore how this variability influences optimality, we calculate the correlation coefficient
r(stddev, -) between the standard deviation of the return distribution (stddev) and the two criteria.
From Figure 2] we observe that, in the early stages of training, our criterion is positively corre-
lated with stddev, encouraging exploration. However, this correlation becomes more negative as the
policy becomes more optimal, shifting the focus toward exploitation. This demonstrates that our
method effectively balances exploration and exploitation at different stages of training, improving
the uncertainty-aware decision-making. In contrast, the mean shows a consistent near-zero correla-
tion with the variability in the return distribution, which complicates the handling of novel situations.
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Figure 3: A 6-armed truncated Normal bandit with aleatoric uncertainty. The optimal action is arm
4, which is distracted by arm 5 with the same mean but higher uncertainty. Mean of 50 seeds.

Additionally, we test our method on a 6-armed bandit problem in the presence of aleatoric uncer-
tainty (Figure [3). Compared to the greedy policy, our method not only effectively explores actions
with mediocre expected value but high variability, but also exploits the optimal action by avoiding
high uncertainty. In contrast, the greedy policy often gets stuck in a suboptimal action and fails to
sufficiently explore other promising actions. For more details, please refer to the Appendix [C.3]

Disentanglement Our objective offers several key benefits. Firstly, the variational posterior di-
vides the multi-step policy optimization into two manageable parts by branching at the first time
step. Meanwhile, the regularizer term assesses the quality of the return distribution, penalizing ac-
tions with a significant discrepancy to the bootstrapped return distribution. We investigate the roles
of these two terms by replacing the posterior with the policy and removing the regularizer term,
disentangling their influences on overall policy optimization. As shown in Figure [d(a)] this leads
to respective performance degradation, validating benefits of both the variational posterior and the
regularizer. In addition, we examine the effect of varying the number of trajectories per data point
generated from the world model for approximating the terms in our objective. From Figure A(b), we
find that increasing the number of trajectories negatively impacts performance, with N = 1 typically
being sufficient. One hypothesis we propose to explain this phenomenon is that a greater number of
generated trajectories increases the likelihood of exploiting model errors in unreliable predictions.
Furthermore, regarding computational complexity, we do not observe significant overhead from the
presence of the posterior network and the new objective, as shown in Table
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Figure 4: (a) Disentanglement of policy and posterior, as well as the effect of regularizer, aggregated
across 5 tasks; (b) Different numbers of generated trajectories from world model; (¢) Second per it-
eration (SPI), time required to complete one iteration of both model learning and behavior learning.

7 RELATED WORK

Distributional RL.  While the distributional perspective of RL has been explored since early times
(Jaquette], [1973) (Sobel [1988), it has gained systematic attention more recently
through (Bellemare et al), 2017). This approach has shown promising results on discrete domains
with parametric quantile (Dabney et al., 2018b), implicit return distribution (Dabney et al., 2018a)),
or mixed between (Yang et all 2019). For continuous domains, different solutions were devel-
oped, including Gaussian mixture models 2021}, extension upon DDPG
2016), generative modeling 2020), and sample-based ap-
proaches (Shahriari et al.} 2022). Even more, its application in robotic applica-
tions (Schneider et al., 2023) showcased risk-sensitive behaviors. However, one major concern is
that while the evaluation part has seen consistent improvement, exploration of the control aspect has
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been less fruitful. Originally, the policy used was based entirely on the mean of the return distribu-
tion (Bellemare et al., [2017), just as in standard RL. This principle persisted until (Dabney et al.,
2018a) pointed out this limitation, advocating for the use of distortion risk measures to adjust the
distribution under which the expectation obeys. In contrast, our approach adopts the perspective
from probabilistic inference, enabling uncertainty-aware decision making.

Control under Risk “Risk” refers to the uncertainty over possible outcomes (Dabney et al.,
2018a). In this regard, control under risk is about how to handle this uncertainty. Typically, a
risk-neutral agent would only wish to maximize the expected return, without considering any vari-
ability within the distribution. However, with pessimistic or optimistic estimates, it can be classified
as risk-averse or risk-seeking, respectively. Various approaches exist to induce these behaviors by
controlling a single risk parameter, such as free-energy (Howard & Matheson, [1972), cumulative
probability weighting (Tversky & Kahneman, [1992) expected shortfall (Rockafellar et al., 2000),
and distortion operators (Wang, 2000). While most of those methods focus on finding a distor-
tion risk measure, our approach is more closely related to expected utility theory (Von Neumann &
Morgenstern, [1947), where a functional transformation is applied to the return without alternating
its distribution. We believe our method has potentials to incorporate various types of functional
transformations beyond the exponential.

RL as Inference Probabilistic inference has a rich history in RL. Early works often focused on
optimizing open-loop action sequences using methods like EM algorithm (Dayan & Hinton, |1997)
or maximum a posteriori (Attias, 2003). Conversely, connecting “costs” with probabilities can be
traced back to optimal control methods, such as Kalman duality (Todorov, 2008)), KL divergence
control (Rawlik et al.,|2013)), and trajectory optimization (Toussaint, [2009). On the other hand, RL
relates this probability to “rewards” to enhance the policy search for reward transformation (Peters
& Schaall, 2007)), multiple situations (Neumann, 201 1)), efficient exploration (Ziebart, 2010) (Levine
& Koltun, [2013)), sample-efficiency (Abdolmaleki et al., 2018), and solving POMDPs (Toussaint
et al.l 2006). Recent advancements in RL with deep learning have further expanded those concepts
from various perspectives, such as energy-based policy (Haarnoja et al.,2017) and soft policy itera-
tion (Haarnoja et al.| 2018)). Additionally, (Levinel 2018) provided a unified view of those methods
within the framework of probabilistic inference. Framing RL as an inference problem offers benefits
from the rich toolbox of inference techniques, including parametric or non-parametric approaches
and efficient approximate inference methods, which enhance expressiveness, interpretation, and rea-
soning among nodes. However, extending this framework to distributional RL remains untapped.
Our approach therefore effectively bridges this gap.

Model-based RL. Model-based RL aims to learn a transition model from experiences, which is
beneficial for planning as it eliminates the need to interact with the environment directly. This
approach has demonstrated higher sample efficiency by utilizing synthetic data (Sutton, [1990), im-
proved value estimates (Feinberg et al.,[2018)), and multi-step planning (Oh et al.| 2017)). However, in
practice, as model errors accumulate, the predictions can become less reliable (Janner et al.,|2019),
especially in high-dimensional spaces and under partial observability. To mitigate these challenges,
learning the dynamics in a compact latent space (Hafner et al.,2019) has emerged as a more efficient
approach, which enables long-horizon prediction and multi-task learning. However, while much at-
tention has been focused on improving this representation, relatively little has been devoted to policy
optimization. Typical approaches involve reparameterized PG with A-return (Sutton, |1988). Our ap-
proach can be seen as an exploration in this direction, providing alternative ways for efficient policy
search.

8 CONCLUSION

In this paper, we proposed a methodology bridging the gap between distributional RL and proba-
bilistic inference regarding the control aspect. Our contribution lies in probabilistic learning proxies
in place of traditional value functions and a variational inference objective. When combined with
model-based approaches, a distributional model-based RL algorithm — DRIVE is derived. Theo-
retical analysis offers insights into the conditions for convergence and the optimization behaviors.
Empirical results validate the effectiveness and advantages of our approach across a range of chal-
lenging continuous control tasks.
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A LIMITATIONS

One limitation we found is that our approach wasn’t tested on discrete domains due to its incom-
patibility with discrete action spaces. Possible solutions could be using Gumbel-Softmax relaxation
(Jang et al.| |2017) or straight-through gradients (Bengio et al.,|2013) for one-hot Categorical policy.
Moreover, although the distributional Bellman operator is at best a non-expansion in KL divergence,
we found it to be effective in practice. In the future, one question worth considering is whether
p(O = 1|s,a) should be expanded under p,(U|s,a) or q(Uls,a). For the latter, it is possible
to decouple the policy evaluation from Equation [9] and utilize various existing methods for return
distribution approximation.

B IMPLEMENTATION DETAILS

B.1 MODEL ARCHITECTURE

We use the RSSM of (Hafner et al.l 2020) and all other components as three dense layer of size
300 with ELU activation (Clevert et al., | 2016). Both the policy and posterior are modeled as Beta
distribution (Chou et al., 2017) due to its bounded support and analytical KL divergence. While
both models share the same network architecture, investigating different model capacities is left for
future research. The value distribution is modeled by a Normal distribution as suggested in Equation
[[1] The reward model is also represented by a Normal distribution. The posterior and policy are
equipped with LayerNorm (Ba et al., |2016) for all layers while only the first layer for the value
distribution. We use a planning horizon H = 15, and the number of trajectories is NV = 1.

In addition, we add a noise N(0, /{2) to the reward targets, where « is a constant. This choice is
particularly beneficial for the sparse reward tasks, as the noise serves as a means of exploration.

Other aspects that distinguish DRIVE from Dreamer (Hafner et al., 2020) include: 1) we do not
necessitate exploration noise during data collection, 2) we clip the gradient norm of the model to be
below 150 instead of 100, and 3) we use H -step return rather than A-return.

Our implementation is built on top of the open source code https://github.com/
facebookresearch/denoised_mdp/tree/main.

B.2 PSEUDOCODE

Algorithm 2 DRIVE

Denote z; = (hy, s¢)
Initialize parameters ¢, 0, ¢
while not converged do
for each update stepc = 1, ..., C do
> Model Learning
Sample B sequences {(a, ¢, ot+1)}f’:+kL of length L.
Compute beliefs hy = GRU(hy—1, St—1,at—1).
Compute posterior states s¢ ~ q(s¢|ht, 0r).
Update transition model (Equation@.
> Behavior Learning
Imagine H-length trajectories { (x+, a;) }£EH from each ¢ with az ~ g4 (-|O = 1, ;) otherwise a, ~ o (-|z,), T > t.
Sample rewards 14+ ~ p(r¢q4r|Ti4r), 7 =0,1,..., H — 1.
Sample values Ur 1 g ~ Py (Uttiq | o, atqmr).
Compute H-step return as targets U, for each (¢, at).
Estimate q(Uy|z¢, ay) with rewards 744~ and statistics (pt¢+ /1, Ot+H) (Equation.
Update posterior and policy (Equation[I4).
Update value distribution with U t (Equation.
end for
> Data Collection
Initialize hg, sg, ag.
01 < env.reset ().
for each environmentstept = 1,...,7T do
Compute the belief hy = GRU(h¢—1,St—1,at—1)-
Compute the posterior state s; ~ q(s¢|h¢, 0t).
Execute at ~ o (+|x¢).
Observe reward r; and next observation o4 1.
Store transition (a¢, ¢, 0¢41) to the replay buffer D.
end for
end while
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B.3 HARDWARE

All our experiments were run on NVIDIA GeForce RTX 3090 with 24 GB memory. The rough
execution time for each run is around 12h to finish 1M steps. We did not observe a significant
difference in the computational complexity between DRIVE and Dreamer.

B.4 HYPERPARAMETERS

Name Symbol Value
World Model

Replay capacity (FIFO) — 106
Batch size B 50
Sequence length L 50
State size — 30
Belief size — 200
RSSM number of units — 200
KL freenats — 3
World model learning rate — 6-10"4
Model gradient clipping — 150
Behavior

Imagination horizon H 15
Number of trajectories N 1
Discount ¥ 0.99
Actor learning rate — 81075
Critic learning rate — 8.107°
Actor gradient clipping — 100
Critic gradient clipping — 100
Common

MLP number of layers — 3
MLP number of units — 300
Action repeat — 2
Adam epsilon € 1077
Reward noise K sparse 0.3; dense 0.0 except 0.1 for walker—stand
Others

Random seeds — 0-4

Table 2: Hyperparameters of DRIVE.

C EXPERIMENTAL DETAILS

C.1 FIGURE[

We examine the relationship between our optimality criterion and the transformed mean with respect
to the return distribution. In the scatter plot at the top, for each policy update, we evaluate those two
quantities on a batch of data. To approximate the expectation E,  (17(s,q) [exp U], we sample 1000
return samples from p,(Uls, a) per data point, whereas for the transformed mean, we compute
Q(s,a) = E, (v}s,a)[U]. Both measures are normalized by exp Unay to ensure they lie within the
range [0, 1]. We plot our criterion against the transformed mean in ascending order, repeating this
process periodically throughout training. In addition, we investigate how the variability within the
return distribution influences the two criteria. For the plot at the bottom, we evaluate the correlation
between the stddev of the return distribution and the two criteria on evenly spaced bins, each con-
taining 100 samples from the batch. The data are also ordered by the transformed mean to ensure
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that the correlation is calculated for samples with similar mean values, while allowing the stddev to
vary.

C.2 FIGURE[M]

In Figure we report the task mean along with the mean of 95% confidence intervals across
5 tasks: walker—-walk, cheetah-run, quadruped-run, ball-in-cup-catch, and
finger—spin. For the baselines, we either set the posterior equal to the policy, canceling the
complexity term and the branching effect, or remove the regularizer term. In Figure we report
the aggregated performance on the walker-walk task while varying the number of trajectories N.
Those trajectories are used to estimate the reparameterized PG Jiy (Equation[I0) and the regularizer

term Jg) (Equation .

C.3 FIGURE[]]

We consider a 6-armed truncated Normal bandit T'(1;, af ,m,M),1 <i<6. Wesetm = 1and
M = 10. The remaining parameters for each arm a; are as follows:

e ap:(1,1)

* as: (1,3)

e az: (5,3)

e ay: (10, 0.01)
* as: (10, 2)

* ag: (9.9,0.1)

Clearly, maximizing the expected value alone is insufficient to guarantee optimality, since variance
also plays a vital role. Consequently, the standard definition of regret may no longer be appropriate:

T
p(T) =Tp* =Y plar). 27)
t=1

We adjust it by incorporating the variance, which emphasizes uncertainty when the expected value
is high and reduces it otherwise:

T T
p(T) =Tp* = plar) + > Mu(ar))o(ar), (28)

t=1 t=1
where A(u(ay)) = —Ldad—minnla) - ypder this criteria, the optimal action is a4, as it has

max; p(a;)—min; p(a;)

the highest expected value with high confidence. Although action a5 attains the same mean, its
higher variance makes it suboptimal. Furthermore, action ag¢ is the second best action, even though
it does not achieve the maximal expected value. For actions with mediocre expected values, high
uncertainty might be preferred, as it offers the chance of achieving a higher value while, whereas
actions with low uncertainty will never yield a high value. An uncertainty-agnostic policy, such as
the greedy selection, does not take variance into account, therefore could easily become trapped in
a suboptimal solution. In contrast, our method effectively balances exploration and exploitation,
deciding when to explore and when to exploit.

C.4 ADDITIONAL RESULTS

As a direct consequence of our probabilistic objective, the resulting policy is monitored through
its entropy during training to investigate exploration at different stages (Figure 5(a)). We compare
our method with DreamerV2, which explicitly includes an entropy term in the policy objective. We
find that our policy exhibits higher entropy during the early stages of training and lower entropy at
convergence, further supporting our claim about balancing exploration and exploitation. Addition-
ally, we investigate the effect of different planning horizons on policy optimization (Figure [5(b)).
We observe that, although the planning horizon does not significantly affect the average return near
convergence, a longer horizon may lead to instability.
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Policy Entropy Planning Horizon
? — DRIVE _ 1000
= o —— DreamerV2 % 800
o ﬁ 600
g g’ 400 —H =5
= g — H=15
3: 200 T <30
0.0 0.1 0.2 0.3 0.4 0.5 %.0 0.1 0.2 0.3 0.4 0.5
Enviroment Steps (millions) Enviroment Steps (millions)
(@) (b)

Figure 5: (a) Comparison of policy entropy; (b) Different horizons for model-based planning.

D DERIVATION OF VARIATIONAL BOUND

Note that:
Py (O =1[s) = /we(a|s)pw(0 = 1|s,a)da, (29)

a

and by using importance sampling and Jensen’s inequality, henceforth we have,

logpy” (O =1[s) = 10g/71’g(a|8)pw(0 =1ls,a)da

m(als)py (O = 1]s,a)
4s(al0 = 1,5)
_ mlals) -
¢ q(alO =1,s) +logpy (O = 1|S,a)]

= —Dxi(g4(a|O =1, 5)|[mg(als)) + Eq, (ajo=1,5) log py(O = 1|s,a)] .

= log Ea~q¢(a|0=1,s) |: (30)

> ]anqd, (a]O=1,s) |:10

Next, we will expand log py, (O = 1]s, @) in similar procedures.

First of all, from our assumptions (1) p(O = 1|U, s, a) x exp (U) and (2) p(O = 1|Unax, $,a) = 1,

itis not difficult to tell that p(O = 1|U, s, a) = ;2270
Then, with some algebra:
log py (O = 1[s,a) = log/p((’) = 1|U, s,a)py(U|s,a)dU 31
py(Uls, a)
=logE O =1U — 32
Og Lq(U|s,a) |:p( | 755a) q(U‘S,CL) (32)
> ]Eq(U|s,a) [U] - DKL(q(U|Sa a)||pw(U|Sv a’)) — const, (33)

where const = Uppax.

Finally, by plugging Equation [31]into Equation[30] the desired result is attained.

E DECOMPOSITION

For Jéi): From (jBellemare et al.l |2017I) and with an approximate transition model f , we know
that:

U_R<H)] ) (34)

1
1Uls,a) = “7Er, 7 {pw( T

We further restrict value distribution to be Normal distribution, thus we have py, = N (py, ai).
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Then we can expand q(U|s, a) as follows:
1 U—-Rcy
(U1s.) = 5, 7 [poC ).

<U_R<H

2
SE T My (St+H, at+H))

1 1
= — ; exp | —

E
~H 7o, f \/ﬂgw (St+-H,Qt+H)

l 1 (U — (R<nm +7Hﬂw(5t+H’at+H))>]

207 (8141 1)

exp
Ver(YHoy(serm, avn)) 2 (YH oy (s arem))’

=E_ i N (Re +7 Mw(stJrHaat+H)»'72H0'12p(3t+H7at+H))]
(35)

For Jy: With:

(a) expand E_ i by definition.

(b) draw T-irrelevant variable U inside the integral.

(c) change of variables, z :== Y=H<

(d) independence between return and history trajectory.

we have:

Ju = Eqy(al0=1,5),q(U}s,0) [U]
/q¢(a|(9—1 5)/ q(Uls,a)UdUda

7/% a0 =15 / rorf [m(U_,yffH)} UdUda
)7/%s O =1 / [/TP(Tl&a)pw(U;,}}H)dT] UdUda

: // /% alO = 1,s)p(7]s, a)pw( 1)\ UdrdUda

o / / /T 4(al0 =1, S)i"(7|57a)Pw(ZIT)(R<H M) dr (v dz)da

d
@ ///Qas(a\(?: 1’5)p(T|5’a)pw(z|5t+H’at+H)(R<HJr’sz)dezda

||4>

(36)

—
=3

—~
2]
N

)[R<H + YU (4411, a1 1))

46,10, fpy(Ulst+myaerm

F PROOFS

F.1 PROOF OF THEOREM[3.]]
Proof. To avoid the ambiguity when the corresponding terms are shorthanded, we denote:

Py (Strm, arym) = p" (Ulstrm, asym) (37)
po(s,a) = p™ (O =1|s,a)

From Equation|[I8] if a change from 7 to 7 occurs, we know that:
logp}‘:l(o = 1|87 a; ﬁ—) = IOg Eﬁ,P,pg(s,+H,at+H) [eXp (R<H + A/HU)] - Umaxv (38)
When 7 = m, by definition of the value distribution, we further have:

log pr (O = 1[s,a,m) = logp™ (O = 15, a). (39)
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Since the lefthand of Equation [38]is implicitly dependent on both pf; and 7, we will overload the
notation J (¢, 7) to J (¢, pf;, 7).

We will start by inspecting the problem (a) where 7 is fixed. Note that:
JI(q,p,m) = =Dxu(gl|m) + Eq[log p5 (s, a)]

:/qlog PoT 14
a q
exp (QM)m (40)

@) /qlog 7”(;8) da +log Z™(s)

- D <q] W) +log Z7(s),

where (a) supplements the partition function Z™(s) = E.[pf,] without changing the objective’s

quantity. This step ensures Zp,‘?(:) is a distribution.

Since the partition function only depends on 7, it will have no effect of the optimization over q.
Therefore, maximizing 7 (g, p;, ™) w.r.t. ¢ is equivalent to minimizing the KL divergence. It im-

mediately follows that:

T T PoT
= ma = . 41
q quj(q7pU,7T) 77(5) (41)
In addition, the above analysis guarantees the following relationship to hold:
I, pism) = T (¢, pp, ™), Va. (42)

Next, fixing ¢™, we will try to solve the second-stage problem. For simplicity’s sake, we replace
log pT; (O = 1]s, a; ) with log p7; (7). Then we try to optimize the following objective over 7 with
a fixed horizon H:

J(q",ph, ) = —Dxw(q||7) + Eq[log pF; (7). 43)
We denote its maximizer as 7’ = arg max; J (¢, pJ;, 7). Then it must hold that:
JGd",pg, ') = T (", ph,m) = T (4,05, 7)., Ya. (44)
The same logic would follow when it comes from 7 to 7/, that is:
TG 57" > T pf 7)) > Tg,p5 7)), V. (45)
From the second inequality of Equation[43] it must hold for ¢™ such that:
T pf 7)) = T(q" . . ). (46)

Due to the truncated optimization over finite horizon, how to bridge 7 (¢™, pfy, ') to J (¢™, p; , ')
becomes a challenge. However, the condition[I9] gives the tightest sufficient condition to ensure that:

T p 7)) — T p, ") = —Dxo(q"||7) + Eqgr [10g]E exp (Ren + WHU)”

T\W'7P7P§/(St+Haat+H) [
+ DKL(qTrHTr/) - EQ" {logETlﬂ/»prg(St+H~,at+H) [eXp (R<H + ’YHU)]]

=Eq~ [logE exp (Repg + ’yHU)]]

"'\ﬂ’,Pvp’[}/(St+H,at+H) [
— Egr |:10g ET‘”’7P7P7[}(5t+H7at+H) [eXp (R<m + FYHU)H

exp (Ren +71U)]

=Eq¢ [log ET\W’,Pvpg,(StJrH’a“rH) [
— 108 B n Py (s0sst,aesmr) (XD (Rt + ’yHU)H

E 1 ]ETlﬂlvP»PEI(SHHaaHH) [exp (R<nm + PYHU)}
! ET‘W”P@E (St4+H,0t4H) [eXp <R<H + ’VHU)}

B p {GXP (Rer)g™ (seym, at+H)}

=E, |lo
1 & Erjr plexp (Ram)g™ (St ar+1)]

i )

(47)
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thereby leading to:
T p 7') > T (", pfy, ) 48)
Combining the relationships from Equation[d4] and Equation [46] we have:

P S
q apU77T)
F

q 7pUa7T)
T

a",pi, )
q", gy, )

logp™ (O = 1s)

237

(49)

Following this procedure, we can produce a sequence of log p™ (O = 1|s),k = 0,1,--- ,Vs €
S that is monotonically increasing starting from a given initial policy 7. Since we assume the
reward function is bounded, the return distribution has a bounded support. Then by definition of
logp™ (O = 1]s), we know that it is also bounded. Therefore, the sequence converges to some 7*

such that limy,_, o, log p™ (O = 1|s) = log p™ (O = 1|s) = supy, log p™ (O = 1]s),Vs € S.

F.1.I RELATIONSHIP BETWEEN logp™ (O = 1|s) AND V™ ()

There are two questions we need to answer: (1) Given the local optimal policy 7* obtained by
our proposed probabilistic learning proxy, what is the relationship between its corresponding value
function? (2) Given a deterministic optimal policy 7* obtained by the value function, what is the
relationship between its corresponding probabilistic learning proxy?

For the first question, note:
logp™ (O =1|s) = logE+ [p”*((’) = 1]s, a)}

= 1OgEﬂ-*,P,p“*(U|sf,_'_,vjy,at_¢_H) [exp (R<H + ’VHU)] — Unax
> Eﬂ*,P,p"r* (Ul|st+m,at+H) [R<H + ’VHU} — Unmax

. (50)
=E.p [R<H +'YHQW ] — Unmax
= ]Eﬂ'* [QW*} - Umax
= V™ (5) = Unax-
For the second question, note:
‘C(q) = _DKL(q| ‘77*) + Eq,p”* (Uls,a) [U] - Umax- (51)
Using the fact that Q" (s, a) = Epr (7)s,q) [U] for any 7, we have:
L(q) = —Dx(ql|m) + Eq[Q™ ] — Unax. (52)

Since 7* is a deterministic optimal policy, therefore it is a Dirac delta distribution §(a — ag) upon
some desired action ag. By definition of the KL divergence, ¢ must be absolutely continuous with
respect to 7* to have a finite value. Based on this, we know that:

Vﬂ* (5) — Umax lfq =7"
£la) {—oo otherwise (53)
Therefore, it concludes that:
max £(¢) = L(7*) = V™ (8) — Unax. (54)
q
O
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F.2 PROOF OF THEOREM[5.2]

Proof. Similarly, since Q7; (s, a; ') defined in Equationis implicitly dependent on both Q™ and

7', we will overload the notation £(q, ) to £L(g, Q™, ).

For the first stage problem (a), the deduction is very similar, except we need to use the fact that

Q™ = logexp (Q").
[':(qa QW77T) = _DKL(qHﬂ-) + EQ[QW]
@ /qlog P\ )T (fﬂ)ﬂda

a

. exp (QT)m
® /qlog IO N log Z™(s)
a q

exp (@)
=-D Hi log Z7 (s).
KL (q 77 (s) ) +log Z7(s)
Then, the maximizer of £(q, Q™,7) w.r.t. ¢ is

exp (Q”)W.

¢" =maxL(q,Q",m) = 77(5)

Henceforth, the following relationship holds:
L(¢",Q",m) = L(q,Q",m),Yq.

Next, for the second-stage problem, we replace Q7; (s, a; ') with Q7; (7’) beforehand.

Then, we optimize the following objective over 7 with a fixed horizon H:

L(q",Q", %) = —Dxw(q|IF) + Eq[QF (7)),

for which, the maximizer is 7/ = arg max; £(g, @™, 7). Then it must hold that:

£(qﬂ" Qﬂ'7 7TI) Z E(qﬂ'7 Qﬂ-7 71—) Z £(q7 Qﬂ—’ 7T)7 Vq'
From the second inequality of Equation[59] it must hold for 7 such that:

E(qﬂ-’ Qﬂ-77-r) Z L(ﬂ7 QTF77T)'

Similarly, we can bridge £(¢™, Q™, 7 to L(q™, Q™ , ') with the condition so that:

L(q", Q™ ,x') > L(¢",Q", 7).

Furthermore, likewise in Equation [57} for the successor policy 7/, we have:
L(¢",Q",7") = L(q,Q" ,7'), Yq.
Combining the relationships Equation [59] Equation [60] Equation [61] and [62] we have:

log Er[expQ™] = L(¢", Q" , )
> L(q",Q" ')
> L(¢",Q", ")
> L(q",Q",7)
=logE,[exp Q7]
> L(m,Q", )
=V7(s).

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

Following this procedure, we can produce a monotonically increasing bounded sequence of
logE,, [exp @™ ],k = 0,1,--- ,Vs € S starting from a given initial policy mg. With similar de-
ductions, the sequence converges to a local optimum 7* such that limy_, o log E,, [exp @™*] =

log B+ [exp Q™ ] = supy, log B, [exp Q7+, Vs € S.
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