Under review as a conference paper at ICLR 2026

STABILITY AND GENERALIZATION OF SPLIT LEARN-
ING: SEQUENTIAL AND FEDERATED

Anonymous authors
Paper under double-blind review

ABSTRACT

Split Learning (SL) has emerged as a practical paradigm for training large models
under privacy and systems constraints, showing strong performance on hetero-
geneous data and aligning well with LLM-era workloads. However, while con-
vergence analyses for SL algorithms such as Sequential Split Learning (SSL)
and Split Federated Learning (SFL) are well-established, their generalization
bounds, especially those dependent on iteration-specific factors, remain largely
unexplored, hindered by challenges like client drift and biased gradient estimates.
In this work, we introduce the first theoretical framework for analyzing the gen-
eralization error of SL algorithms, leveraging an on-average stability approach to
account for both local update drift and aggregation-induced errors. Our frame-
work provides a novel connection between optimization and generalization, re-
vealing how SSL and SFL differ in their stability profiles and generalization be-
havior. Specifically, we demonstrate that SSL excels in sparse client participation
and long-horizon training, while SFL benefits from balanced participation in non-
convex regimes, offering a clear guide for selecting the appropriate aggregation
strategy. By deriving precise stability bounds for both convex and non-convex set-
tings, we provide deep insights into the role of data heterogeneity, client drift, and
aggregation mechanisms in SL. Extensive experiments on MNIST and CIFAR-10
benchmarks validate our theoretical predictions, highlighting the robustness and
applicability of our framework across a range of practical scenarios.

1 INTRODUCTION

Pipeline parallelism is a key strategy for scaling large models, enabling efficient training and fine-
tuning on edge devices. Split Learning (SL), a fundamental approach, partitions a neural network
between clients and a central server, exchanging intermediate activations and gradients instead of
raw data. This design mitigates data heterogeneity by enabling collaborative training across diverse
data distributions without sharing raw data, while inherently enhancing privacy protection. SL is
thus well-suited for privacy-sensitive applications like large language models (LLMs) (Zhao et al.,
2024} Zhang et al., 2025b; [He et al., 2025). As illustrated in|I} SL has inspired frameworks like
Sequential Split Learning (SSL) (Gupta & Raskar,[2018) and Split Federated Learning (SFL) (Thapa
et al.l 2022) for deploying LLMs on edge devices with privacy-preserving features. In SSL, the
model is sequentially passed among clients, with aggregation after each update. Conversely, SFL
trains client-server splits in parallel, aggregating results per round, which enhances parallelism and
accelerates convergence. These aggregation strategies provide distinct scalability and performance
trade-offs based on application and participation constraints.

Despite significant advances in Split Learning (SL), the generalization properties—especially
iterate-dependent bounds—have received limited study. While convergence analyses for Sequen-
tial Split Learning (SSL) and Split Federated Learning (SFL) are well established (Li & Lyul 2023
Han et al.| [2024), deriving iterate-dependent guarantees remains difficult due to SL-specific factors.
First, data heterogeneity combined with partial model splits and cut layers yields biased gradients
relative to end-to-end training. Second, SSL’s sequential aggregation and SFL’s parallel aggregation
introduce randomness and client drift, altering optimization stability. Hence, precise measurement
of client drift i.e., discrepancies in client updates induced by these aggregation schemes , is required.
These issues motivate a tailored, algorithm-dependent stability analysis for SL.

Under review as a conference paper at ICLR 2026

Fed Sever

(a) Sequential Split Learning (SSL). (b) Split Federated Learning (SFL).

Figure 1: Overviews of Split Learning paradigms.

In this paper, we propose an algorithm-dependent, on-average model stability framework (Lei &
Ying, |2020) that quantifies a model’s stability with single-sample perturbations. Under mild as-
sumptions and two common step-size schedules, our method mirrors Split Learning’s gradient flow,
embedding per-round stability analysis. Specifically, we quantify (i) local update drift at each client
and (ii) aggregation effects in Sequential Split Learning (SSL) and Split Federated Learning (SFL),
then combine them to assess stability over training for both convex and smooth non-convex settings.

Our results yield key insights: in the non-convex case, both SSL and SFL achieve a clean 1/(MN)
scaling with sublinear dependence on T'K. In SSL, correction terms depend on the number of
active clients, and the method remains robust under sparse or bursty participation. By contrast,
SFL performs better when participation is moderate and stable across clients. Harmonic step-size
schedules also suppress the exponential transients associated with square-root decay.

Our Contributions.

* First work about stability and generalization in split learning. We develop an algorithm-dependent
stability calculus without L-Lipschitz loss assumptions, linking optimization to generalization.
For harmonic and square-root learning rate decays, our bounds clarify how 3, T, K, M, N,
heterogeneity ¢, and participation ¢, M affect generalization (Table .

* Choosing SSL or SFL. We analyze SSL (sequential) and SFL (parallel) aggregation, showing their
impact on stability and generalization. SSL suits sparse availability (low M) and convex objectives
with large T'. SFL excels in heterogeneous, non-convex systems with high client participation.

» Experimental Validation. We provide numerical experiments on MNIST with logistic regression
on convex case and on CIFAR-10 with ResNet-18 on non-convex case to validate our theory. The
preliminary results are consistent with our theoretical insights.

Table 1: Summary of Assumptions, Stability Tools, and Dependencies for Various Algorithms. LL:
L-Lipschitz loss (or bounded gradients); SM: -smooth; M: number of clients; /N: number of
samples per client; M: active clients per round (SSL); ¢: participation rate (SFL); 7": number of
rounds; K: local steps; n: stepsize; o: stochastic noise; (: heterogeneity.

Algorithm LL SM Stability Tool M N M/iqT K n o ¢
FedAvg[Sunetal|(2023) X v Uniform stability S v v v v v v K
FedAvg[Sunetal|(2024) v v On-averagestability (¢,) v v X v X v v
D-SGD [Bellet et _all] v v On-averagestability (¢,) v v X v - v X X
(2024)

D-SGD|Ye et al.|(2025a) ' v On-average stability (¢1) vV X - v v v
SSL/SFL (Ours) X v On-average stability (¢2) v v v v v v Vv V

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Split Learning. Split Learning (SL) partitions a network between clients and a server, exchang-
ing intermediate activations and gradients to preserve data privacy. Early work showed feasibility
in multi-agent and healthcare settings (Gupta & Raskar, 2018} [Vepakomma et al., [2018), and later
comparisons with FL quantified communication and systems trade-offs. Two paradigms dominate:
SSL and SFL (Gupta & Raskar, [2018}; Thapa et al., [2022)). SSL forwards partially updated models
across clients, ensuring strict privacy and low per-round communication but incurring serialization
latency (Gupta & Raskar, [2018)); SSL research established convergence under heterogeneity and ex-
posed privacy risks, prompting defenses against inference, label exposure, and model inversion (Li
& Lyu,, 2023} [Pasquini et al.|, [2021} [Li et al., 2021} Titcombe et al.,|2021; |[Erdogan et al., 2022)); sys-
tems reduced cost via server-side gradient averaging and learning-rate acceleration (Pal et al.,[2021]).
SFL integrates FL-style parallelism with SL partitioning, enabling simultaneous client updates fol-
lowed by aggregation (Thapa et al.| 2022 [McMahan et al.| 2017); it is effective in constrained and
wireless environments and admits convergence under heterogeneous, non-convex settings (Wu et al.}
2023; |Lin et al., 2024; Han et al., |2024)). Applications include large-scale vision pretraining, secure
learning under label-inference threats, and distributed LLM training via FedSLLM, federated split-
ting, and VFLAIR-LLM (Wang et al.| [2023} |[Liu et al.,[2024;|Gao & Zhang, 2023} Zhao et al., 2024;
Zhang et al., 2025b; Gu et al., 2025)); recent systems—Hourglass, Ampere, Protocol Models—refine
SFL with communication-efficient scheduling and model parallelism, improving scalability and ac-
curacy (He et al.} 2025 Zhang et al., 2025a; Ramasinghe et al., [2025).

Stability and Generalization. Algorithmic stability has long been a critical avenue for understand-
ing generalization. Bousquet & Elisseeft] (2002); [Elisseeff et al.|(2005) formalized uniform stability,
and|Hardt et al.| (2016) proved that stochastic gradient descent (SGD) is uniformly stable, leading to
extensions in non-convex settings, such as SGLD (Mou et al.,|2018). Recent studies have applied
uniform stability to analyze stability in Federated Learning (FL) and decentralized Stochastic Gra-
dient Descent (D-SGD) (Sun et al., 2023; Wang et al., 2024} |Liu et al., [2025)), as well as stochastic
weight averaging (Wang et al., 2024)) and federated systems with partial client participation (Zhang
et al.| 2024). On-average stability, introduced by [Lei & Ying| (2020); [Lei et al.| (2023)), has been
extended to higher generalization bounds of D-SGD (Bellet et al.,[2024) and complex settings such
as heterogeneous federated learning and Byzantine-resilient D-SGD (Sun et al., 2024; |Ye et al.,
2025azb). Our work builds on /5 on-average stability, which alleviates the reliance on the Lipschitz
condition, providing a more flexible tool for large-scale federated learning systems.

3 PRELIMINARIES

In this section, we present some notation and define the optimization and generakization in Sec
describe the SL update rules in Sec[3.2] For a detailed nomenclature, please refer to Appendix [Al

3.1 PROBLEM SETUP

We consider a set of clients M = {1,2,..., M}, each holding a private local distribution D,,
supported on Z. The objective of Split Learning is to learn a global model, parameterized by w, that
minimizes the population risk, as defined by:

M
min R(w) = Z emEzop, [f(w; 2)], w" = argmin R(w).

m=1

Here, f denotes the loss function, and ¢, € (0, 1] is a weight proportional to the dataset size of

client m (typically, ¢, =]Lpiml), such that ZM_l Cm = 1.

k=1 Dkl m=
In practice, we solve this problem by a random algorithm .A over empirical counterpart, computed
over M local datasets S = (Si,...,Su), where S,y = {Z1m, ..., Znm} denotes the dataset of

client m with Z;,,, ~ D,,. For simplicity, we assume all local datasets have the same size N,
although our analysis can be extended to accommodate heterogeneous sizes. The corresponding

Under review as a conference paper at ICLR 2026

empirical risk minimization problem is formulated as:

M M N
1
min Rg(w) £ Y ¢ R, (w) £ ¥ > > e f(w; Znm), wh = argmin Rg(w).
m=1

m=1n=1

Definition 3.1. Given a dataset S and a randomized algorithm as a map A : S — €, we define:

* Generalization error is defined as €gen, = Eg a[R(A(S)) — Rg(A(S))], i.e., the expected statis-
tical discrepancy between the population and empirical risk distributions.

* Excess generalization error is defined as €exc = Eg 4[R(A(S)) — R(w*)], i.e., the expected
performance gap between the population risk and the global true minimizer.

* Optimization error is defined as e,py = Eg 4[Rs(A(S)) — Rs(w%)], i.e., the expected conver-
gence gap between the population risk and the empirical risk minimizer solution.

Furthermore, the excess generalization error €.« can be decomposed as follows:
€exe = Bs,a [R(A(S)) — Rs(A(S))] + Es,a [Rs(A(S)) — Rs(w5s)] + Es,a [Rs(ws) — R(w”)] -

€gen €opt <0

Thus, the excess generalization error combines optimization error and generalization error together.

3.2 ALGORITHM

Split Learning (SL) works by dividing a deep model into two parts at a designated cut layer, L:
the client-side model, consisting of the first L. layers, and the server-side model, consisting of the
remaining layers. The training process consists of the following steps:

Client Forward Propagation. Each client performs a forward pass on its local model to compute
the smashed data (i.e., the activations at the cut layer). These activations, along with the correspond-
ing labels, are transmitted to the server. All clients operate in parallel during this step.

Server-Side Training. After receiving the smashed data, the server proceeds with the forward pass
on its portion of the model, computes the loss, and updates the server-side parameters. It also
computes the gradient respect to the cut-layer activations and sends this gradient back to the clients.

Client Backward Propagation. Each client receives the gradient signal from the server and uses
the chain rule to complete backpropagation on its local parameters, updating the client-side model.

After several steps of local training, model aggregation or parameter passing is performed among
the involved participants, ensuring consistent global model updates.

Two representative variants of this framework are commonly considered: (i) Sequential Split Learn-
ing (SSL)|Gupta & Raskar|(2018), in which clients train sequentially by passing the updated param-
eters from one to the next; and (ii) Split Federated Learning (SFL) |Thapa et al.| (2022), in which
clients train in parallel and the global model is aggregated using federated averaging. We now de-
scribe their aggregation mechanisms and update rules in detail.

3.2.1 SEQUENTIAL SPLIT LEARNING (SSL)

We present a concise version of SSL in Algorithm |1 to illustrate its update rules. At the start
of each training round, indices 1, Ty, ..., m,; are randomly sampled without replacement from

{1,2,..., M}, forming a random permutation that determines the M involved clients’ training or-
der. In each round, the first client, 71, receives the current global parameter vector and performs

K steps of local updates using its local dataset. The updated local parameter is passed to the next

client, and this process continues until all clients complete their local training. Let w,(,t;k) denote the

local parameter of client 7, after k updates in round ¢, and let w(*) and g,(,t;k) represents the the
model parameter and the gradient of the loss function with respect to it. Using stochastic gradient

descent (SGD) as the local solver, the SSL update rule is as follows:

® ifm=1
WBETD) () *n(t’k) (t,k) (¢,0) _ {w) rm)

Local update: with initial w
P i m itm > 1.

Under review as a conference paper at ICLR 2026

, K
Global aggregation: w(t+1) = w5,

3.2.2 SPLIT FEDERATED LEARNING (SFL)

In contrast to SSL, Split Federated Learning (SFL) shown in Algorithm [2| allows clients to train in
parallel. At the start of each communication round, every client downloads the latest global client-
side parameters. The clients then perform local training, interacting with the server through forward
and backward propagation, as described in the general SL framework. After K local epochs, the
server aggregates the client-side models using a weighted averaging scheme (e.g., FedAvg|McMahan
et al.| (2017)) to form the updated global client-side parameters. Partial participation is controlled
by the set M, which includes the indices of the clients participating in round ¢. The server-side
models are also aggregated across clients to update the global server-side parameters. The update
rules for SFL are summarized as follows:

Local update: w%’kﬂ) — w,(,t;k) — n(t’k)gfﬁ’k),
Global aggregation:w(tt1) « (*) — > mext, Cm ZkK:() ntR) R with Yoment, cm =q <1
or more details about the two algorithms and their pseudocode, please refer to Appendix [C|

4 THEORETICAL ANALYSIS

In this section, we provide the necessary assumptions in Sec .1} then study on-average model
stability bound and excess generalization bound of SSL and SFL in Sec The discussion about
discovery and insight of theorems is contained in Sec 4.3

4.1 ASSUMPTION

Assumption 4.1 (5-smoothness). The loss function f is S-smooth, i.e., there exists 5 > 0 such that
forallw,w’ € R 2 € Z,

IVf(w;z) = Vf(w'2)|l2 < Bllw — w2
Assumption 4.2 (Bounded Stochastic Gradient Variance). The stochastic gradients at each client
are unbiased, and their variance is bounded by o2

EZ,., IV f(w; Zynn) = VRs,, (W)||* < 0®,
for any agent m € M and w € R<.
Assumption 4.3 (Bounded Heterogeneity). There exists (2 > 0 such that for any ¢ € R?,

M

1

17 2 |IVRs, (@) = VRs(w)|* < ¢%,
m=1

Remark 4.1. The smoothness assumption is common uesd in stability analysis (Lei & Ying, |2020;
Sun et al., 2024; Bellet et al., 2024), and it is valid for many loss functions, such as logistic regres-
sion, softmax classifiers, and l;-norm regularized linear regression. The value of ¢ quantifies the
level of stochasticity, while a larger value of (2 indicates a degree of data heterogeneity.

4.2 STABILITY AND GENERALIZATION

First, we give the definition of on-average model stability as follows:

Definition 4.1 (/5 On-average Model Stability). (Lei & Ying, 2020) Let S = (Si1,...,S5m)
with Sy, = {Zimy..-, Zym} and S = (S1,...,Sy) with Sy, = {Zim,..., Znm} be
two independent copies such that Z;,, ~ D,, and Z;,, ~ D,,. For any i & {1,...,N}
and j € {1,...,M}, we define W) = (Sl,...,Sj_l,S§i),Sj+1,...,S]\/[), where SJ(-i) =
{Z1j,...,Zi—j, Zij, i+1j,-- > ZN;} is the dataset formed from S by replacing the i-th element
of the j-th agent’s dataset with Zij. Algorithm A is said to be Iy on-average model e-stable if

N M

1 i
Essa | a7 2o 2 MAS) = A5 | <&

i=1 j=1

Under review as a conference paper at ICLR 2026

Remark 4.2. The definition of /5 on-average model stability indicates how robust the algorithm is
to perturbations in the local datasets, which quantifies the sensitivity of the output model to the
replacement of individual data points in the datasets.

Theorem 4.1 (Generalization via on-average model stability). (Lei & Ying|[2020) Let A be an £ on-
average model e-stable algorithm. If the convex loss function f(-; z) is nonnegative and 3-smooth
forall z € Z, we have the generalization bound with constant vy > 0:

N M N M

o < g 3 O Bt [IVACAG) Zo)I] + Sort 303 B [IA(S) — A]

i=1 j=1 i=1 j=1

Theorem 4.2 (Generalization via on-average model stability). Assume that the loss function f (-, z)
is nonnegative and bounded in [0, 1], and that B-smoothness holds. For all i = 1,...,N and

j=1,...,M, let {wM}_, and {&GM}_, denote the iterates for algorithms run on S and S(*7)
respectively, withA; = ||w® — &®||3. Then, for every ty € {0,1,...,T}, we have the following
bound for the generalization error with constant v > 0:

6g”’—MN 2MN ZZE“ IVF(AE); Zi)I] ZZVYZZESSA[HA A(S®) | A = 0)?.]

=1 j=1 =1 j=1

Remark 4.3. These theorem provides a generalization bound based on the smoothness and stability
of the algorithm. It suggests that the generalization error can be controlled by both the gradient
bound of the loss function and the stability of the algorithm under perturbations in the data.

According to the theorem, it suffices to control the on-average model stability of the algorithm A to
obtain the desired generalization bound. For each round t, we define basic block as below: S; =
Srco R, H 2 S () QA T () T ()7, and let A4, £ 024
¢? + sup, HVRS (w®) 3, then we develop theorem below:

Theorem 4.3 (On-average model stability and generalization error for SSL in the convex case).
Under Assumptions suppose that the loss function is convex, with step sizes {n(t’k)} < %
Then the expected on-average model stability satisfies

N M

INIE As
o 33 Bl - s < 90 (S0 S o).

=1 j=1

(i) For square-root decaying step sizes n"*) = \/%7 with ko > 1:

TR +k+ko’
M 1 B2 886 MA, [1) 1 1
< . .
oo < 4V34 \ N T \/ko 1 T Kk —1) T MNT {ko T\ K= T30 -1y
. . . . k) 1 . A
(ii) For harmonically decaying step sizes 0% = TRThTh with kg > 1:
M 1 B2 8BMA.[1 2 1 1
en < * .
gon < 4V3A \ MNT \/ko At Khke—1) T MNT {ko — t2 Ko —1) 30k —1)°
Proof. See Appendix for the proof. O

Corollary 4.1 (Excess Generalization Error). The preview work|Li & Lyu|(2023) provides an anal-
ysis of copt. The convergence rate of SSL is dominated by O(1// MKT) when 1 < O(1/(MK)).

Therefore, the excess risk of SSL in the convex case satisfies €oxec = O(MLII,T) + (9(

MKT)

Theorem 4.4 (On-average model stability and generalization error for SSL in the non-convex case).
Under Assumptions 4. 1H4.3] suppose that the loss function is non-convex. Then the expected on-
average model stability of the output satisfies

N M T—

; 6 M A,
77 20 2 s sena[l4) - ASE] < o Z S (H, +452Qu) +

=1 j=1

Under review as a conference paper at ICLR 2026

(i) For square-root decaying step sizes n"*) = ﬁ with kg > 1:

28 ~ 1-8 ~ 1-8
TK)T#28 8M A B _1 3(1725) 3M _B____1 23(1F28)
on < (X (TR)TF5 ~ 3 28 (TK) 4A, TK)20+25 ~ 1 o8 (TK)]
“en SN TNt LK) ¢ + uNT (TK) ¢

(ii) For harmonically decaying step sizes nv*) = m with kg > 1:

28 - N
1128
€gen S (TK) + 8 : MA, logT +4A, 3 M log T .
MN 1+286 MNTK 1+28 V MNTK

Proof. See Appendix for the proof. O

Corollary 4.2 (Excess Generalization Error). According to the results in (Li & Lyu, |2023), let n <

25
O(1/(MK)). Then the excess error is mainly goverment by: cxc = O(%) + (9(\/ﬁ) .

Theorem 4.5 (SFL On-Average Model Stability and Generalization in the Convex Case) Under

Assumptions 4. suppose the loss is convex and the step sizes satisfy {77 (t.k) }K 1< 2 Then
the on- averag mod el stability of the averaged output satisfies

MN ZZE 5 A[HA (S(”))H } 16qA <2Ht + 45 ZQt)

(i) For step sizes with square-root decay, n(t’k) = 1/VtK + k + ko with ko > 1:

_ 2 _ 2
o < 4\/§A*\/MN(ql—q) (logTK+ko 1, 28 (K+1))+ 8¢ A, <logTK+k:0 1, 28%(K +1)

ko — 1 ko—1 MN(1—-gq)

(ii) For step sizes with harmonic decay, n'"") = 1/(tK + k + ko) with ko > 1:

ko —1

q 1 232 232 86 q A, 1 232
foon S 4V A, \/MN(l —q) (ko 7 K(ko—1) + 3(ko — 1)3) + MN(1—q) <k0 17 K(ko — 1) +

Proof. See Appendix [E.2.2] O

Corollary 4.3 (Excess Generalization Error). With the optimization results in (Han et al.l
2024) as well, the excess generalization error of SFL in non-convex case satisfies with the

Eexc = O(7(1110%1)3\14}(]\[) + O()
Theorem 4.6 (SFL On-Average Model Stability and Generalization in the Non-Convex Case). Un-

der Assumptions for any burn-in index to €{0,...,T — 1}, the on-average model stability
of the output satisfies

LSy i) 16gA, <= 255, , £
W;;Es,s(ij),AU)A(S) ()H } < m Z *(Ht+4,3 Qt) + o

(i) For step sizes with square-root decay, n**) = 1/VtK + k + ko with ko > 1:

_28 1-8
TK) 1+28 8qA* 8 1 2(1+258)
P o5 o o 28(TK)
€gen MN MN(—q) (TK) Kze
1-8
q B 1 g (TK)TOT2E
+ AVB Ao (TK)2TP K e :
BMN(1—q) (TK)
(ii) For step sizes with harmonic decay, n**) = 1/(tK + k + ko) with ko > 1:
. (TK)T2 264, logT 2V34, logT
gm o~ MN (14+28)MN TK 4/7+ 28) MN
Proof. See Appendix [E2.3] O

Corollary 4.4 (Excess Generalization Error). Similarly, from the convergence result in the (Han

28
. . A (TK)T+2B A1
et al.| |2024)), the excess generalization error satisfies €oxe = O(W) + O(s—ﬁ)

Under review as a conference paper at ICLR 2026

4.3 DISCUSSION

Here we give some insight inside theorems and corollaries above :

Remark 4.4 (Influential Factors of the Generalization Error). Fixing model, loss, and dataset essen-
tially makes 3, o, and ¢ constants throughout. Theorem bounds clearly suggest: (i) enlarging per-
client sample size V; (ii) increasing the number of clients M (iii) reducing optimization distance to
shrink sup, ||V Rs(w®)||2 in A,; (iv) using a smaller stepsize i while still preserving convergence.
Choosing more i.i.d. data further lowers ¢ and thereby tightens the bound significantly.

Remark 4.5 (Stepsize Choice). In convex problems, square-root and harmonic decay yield quite
similar leading-order bounds; thus square-root is usually simpler to tune effectively. In non-convex
settings, square-root’s cumulative step size causes >t to blow up rapidly, destabilizing the train-
ing, while harmonic decay keeps the stability term bounded, thereby improving robustness. Though
square-root can sometimes speed early optimization (Li & Lyu, 2023; |[Han et al., |2024)), harmonic
decay preserves tighter generalization and successfully avoids exponential growth.

Remark 4.6 (Impact of Participation). In SSL, longer gradient paths naturally amplify output sen-
sitivity: selecting M clients per round adds gradients, so the bound usually grows with M. SFL
averages gradients each round, maintaining better stability even with consistently high participation.
For convex cases, bounds typically scale with (9(1%(1) ; smaller ¢ generally improves the overall
generalization. In non-convex settings, participation effects drop down to lower-order terms.
Remark 4.7 (When to choose SSL or SFL). SSL’s per-round averaging suits large 7" and sparse edge
devices; SFL benefits dense participation by aggregating many diverse gradients. For very large T'

with non-convex objectives, both achieve essentially the same leading rate O((TK) = /(MN));
practical gaps stem mainly from subtle step-size and aggregation nuances.

Due to the limint of pages, more discussion about comparison to other generalization bounds in
other multi agent algorithms (like FedAvg and D-SGD) is in Appendix

5 EXPERIMENTAL RESULTS

In this Section, we validate our theory with classification experiments on logistic regression (Sec-
tion[5.1)) and ResNet (Section[5.2)), and study how key factors affect stability errors.

5.1 LOGISTIC REGRESSION

In the validation of the convex objectives, we adopt classical logistic regression problem to validate
the generalization in the training. We conduct experients on MINST dataset|LeCun et al.| (2002).

The experimental results in Figure [2] shows : (i) Square-root decay yields faster growth of instabil-
ity |lws — w;]|, whereas harmonic decay converges more gently (Fig. a)(d)), consistent with our
theorem : slower decay suppresses cumulative perturbations and lowers €gep,. (i) With a constant
learning rate and fixed total iterations 7' K, increasing local updates K markedly amplifies instability
(Fig. b)(e)), indicating larger client drift . (iii) Higher client participation consistently improves
stability (Fig. Ekc)(f)), mitigating gradient variance and drift accumulation.

5.2 RESNET-18

We also conduct the experiments on ResNet-18 He et al.| (2016) with CIFAR-10Krizhevsky et al.
(2009) dataset to validate the properties in non-convex objectives.

The experimental results in Figure [3| shows : (i) Larger learning rates cause pronounced instabil-
ity [|w; — wj|| in both SSL and SFL (Fig. Bfa)(d)), confirming our on-average ¢, stability analysis:
slower decay or smaller steps better control parameter drift and reduce €gen. (ii) Increasing the
number of total client number markedly reduces instability and smooths the trajectories in SSL and
SFL (Fig.[3[b)(e)), as averaging across more clients lowers gradient variance and mitigates the im-
pact of heterogeneity . (iii) Higher client participation consistently improves stability (Fig.[3(c)(f)),
mitigating gradient variance and drift accumulation. Overall, these non-convex results further val-

Under review as a conference paper at ICLR 2026

Stability [xc - x|

0.00

= T=1000, K=1

0.010

o
o
S
@

xill

|
0.006

0.004

Stability x

T=500, K=2
—— harmonic decay $0.002 — T=250,K=4 0.002
squareroot decay —— T=125,K=8
0.000 0.000
0 200 400 600 800 1000 [200 400 600 800 1000 [200 400 600 800 1000

Iteration

(a) Impact of Learning Rate on egen
of SSL

Iteration

(b) Impact of Local Update Steps
and Iteration Steps on €gen of SSL

Iteration

(c) Impact of Client Participation
on €gen of SSL

0.010

i

0.008

0.010 50%

25%

0.008

o

X,

w—12.5%

0.006{ = 6.25%

h
X —— harmonic decay %0.006 S
> 0.015 > >
£ squareroot decay £ 6.004 —— T=1000, K=1 £0.004
g o.010 8 T=500, K=2 8
“ 0.005 & 0.002 — 2250, K=4 & 0.002
— T=125,K=8
0.000 0.000 0.000
[200 400 600 800 1000 [200 400 600 800 1000 [200 400 600 800 1000

Iteration

(d) Impact of Learning Rate of €gen
on SFL

Iteration

(e) Impact of Local Update Steps
and Iteration Steps on €gen of SFL

Iteration

(f) Impact of Client Participation on
€gen Of SFL

Figure 2: Generalization errors for a convex objective.

—— Ir=0.03
_0¢ Ir=0.02
% 0.5] = Ir=0.001
% 0.4] = Ir=0.005
203

o o o o
2R NN
5 O S O

Stability [xc — x|

o
o
&

o
o
S

0 20 40 60 80 100 120
Round

(a) Impact of Learning Rate on €gen
of SSL

100 125 150 175 200
Round

(b) Impact of Client Size on €gen Of

100 125 150 175 200
Iteration

0 25 50 75

(c) Impact of Client Participation

SSL on €gen of SSL
— Ir=0.03 0.30] = M=25
Ir=0.02 _ M=50
—— Ir=0.001 ‘|><~° 25| — M=100
Ir=0.005 £ 0.20{ = M=200
>
Zois — 20%
§0.10 10%
“0.05 —_— 5%
—_— 25%
0.00

0 20 40 60 80 100 120
Round

(d) Impact of Learning Rate of egen
on SFL

100 125 150 175 200
Round

0 25 50 75

100 125 150 175 200
Iteration

0 25 50 75

(e) Impact of Client Size €gen of (f) Impact of Client Participation on

SFL

€gen Of SFL

Figure 3: Generalization errors for a non-convex objective.

idate our stability bounds and show the same key levers—moderate learning rate, controlled local
updates, and broad participation—are essential for reducing egc, even beyond the convex case.

6 CONCLUSION

This paper provides the first comprehensive analysis of generalization error bounds for Split Learn-
ing (SL), focusing on Sequential Split Learning (SSL) and Split Federated Learning (SFL) in non-
convex settings. Using an on-average stability framework, we quantify model responses to perturba-
tions, offering generalization guarantees without assuming L-Lipschitz loss. Our findings highlight
how client drift, aggregation schemes, and data heterogeneity affect stability and generalization,
clarifying SSL and SFL behavior under different strategies. We show harmonic learning rate sched-
ules mitigate transient effects of square-root decay, enhancing convergence in both convex and non-
convex settings. Experiments on benchmark datasets validate our theoretical insights.

Limitation. The impact of cut layer placement on client drift and stability remains under-explored,
with limited research on its convergence properties, which is a key direction for future work.

Under review as a conference paper at ICLR 2026

REFERENCES

Aurélien Bellet, Marc Tommasi, Kevin Scaman, Giovanni Neglia, et al. Improved stability and gen-
eralization guarantees of the decentralized sgd algorithm. In Forty-first International Conference
on Machine Learning, 2024.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning
research, 2(Mar):499-526, 2002.

Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil, and Leslie Pack Kaelbing. Stability of
randomized learning algorithms. Journal of Machine Learning Research, 6(1), 2005.

Ege Erdogan, Alptekin Kiip¢ii, and A Ercument Cicek. Splitguard: Detecting and mitigating
training-hijacking attacks in split learning. In Proceedings of the 21st Workshop on Privacy in the
Electronic Society, pp. 125-137, 2022.

Xinben Gao and Lan Zhang. {PCAT}: Functionality and data stealing from split learning by
{Pseudo-Client} attack. In 32nd USENIX Security Symposium (USENIX Security 23), pp. 5271—
5288, 2023.

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye. Vflair-Ilm: A comprehensive
framework and benchmark for split learning of llms. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V. 2, pp. 5470-5481, 2025.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1-8, 2018.

Pengchao Han, Chao Huang, Geng Tian, Ming Tang, and Xin Liu. Convergence analysis of split
federated learning on heterogeneous data. Advances in Neural Information Processing Systems,
37:103476-103544, 2024.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225-1234. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Qiang He, Kaibin Wang, Zeqian Dong, Liang Yuan, Feifei Chen, Hai Jin, and Yun Yang. Hourglass:
Enabling efficient split federated learning with data parallelism. In Proceedings of the Twentieth
European Conference on Computer Systems, pp. 1317-1333, 2025.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 2002.

Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic
gradient descent. In International Conference on Machine Learning, pp. 5809-5819. PMLR,
2020.

Yunwen Lei, Tao Sun, and Mingrui Liu. Stability and generalization for minibatch sgd and local
sgd. arXiv preprint arXiv:2310.01139, 2023.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith,
and Chong Wang. Label leakage and protection in two-party split learning. arXiv preprint
arXiv:2102.08504, 2021.

Yipeng Li and Xinchen Lyu. Convergence analysis of sequential split learning on heterogeneous
data. arXiv preprint arXiv:2302.01633, 2023.

Zheng Lin, Guangyu Zhu, Yiqin Deng, Xianhao Chen, Yue Gao, Kaibin Huang, and Yuguang Fang.
Efficient parallel split learning over resource-constrained wireless edge networks. IEEE Transac-
tions on Mobile Computing, 23(10):9224-9239, 2024.

10

Under review as a conference paper at ICLR 2026

Junlin Liu, Xinchen Lyu, Qimei Cui, and Xiaofeng Tao. Similarity-based label inference attack
against training and inference of split learning. IEEE Transactions on Information Forensics and
Security, 19:2881-2895, 2024.

Yingqi Liu, Qinglun Li, Jie Tan, Yifan Shi, Li Shen, and Xiaochun Cao. Understanding the stability-
based generalization of personalized federated learning. In The Thirteenth International Confer-
ence on Learning Representations, 2025.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273—1282. PMLR, 2017.

Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of sgld for non-
convex learning: Two theoretical viewpoints. In Conference on Learning Theory, pp. 605-638.
PMLR, 2018.

Shraman Pal, Mansi Uniyal, Jihong Park, Praneeth Vepakomma, Ramesh Raskar, Mehdi Bennis,
Moongu Jeon, and Jinho Choi. Server-side local gradient averaging and learning rate acceleration
for scalable split learning. arXiv preprint arXiv:2112.05929, 2021.

Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference at-
tacks on split learning. In Proceedings of the 2021 ACM SIGSAC conference on computer and
communications security, pp. 2113-2129, 2021.

Sameera Ramasinghe, Thalaiyasingam Ajanthan, Gil Avraham, Yan Zuo, and Alexander Long. Pro-
tocol models: Scaling decentralized training with communication-efficient model parallelism.
arXiv preprint arXiv:2506.01260, 2025.

Yan Sun, Li Shen, and Dacheng Tao. Which mode is better for federated learning? centralized or
decentralized. 2023.

Zhenyu Sun, Xiaochun Niu, and Ermin Wei. Understanding generalization of federated learning
via stability: Heterogeneity matters. In International conference on artificial intelligence and
statistics, pp. 676-684. PMLR, 2024.

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun.
Splitfed: When federated learning meets split learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 36, pp. 8485-8493, 2022.

Tom Titcombe, Adam J Hall, Pavlos Papadopoulos, and Daniele Romanini. Practical defences
against model inversion attacks for split neural networks. arXiv preprint arXiv:2104.05743,2021.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Peng Wang, Li Shen, Zerui Tao, Shuaida He, and Dacheng Tao. Generalization analysis of stochastic
weight averaging with general sampling. In Forty-first International Conference on Machine
Learning, 2024.

Zhousheng Wang, Geng Yang, Hua Dai, and Chunming Rong. Privacy-preserving split learning for
large-scaled vision pre-training. IEEE Transactions on Information Forensics and Security, 18:
1539-1553, 2023.

Wen Wu, Mushu Li, Kaige Qu, Conghao Zhou, Xuemin (Sherman) Shen, Weihua Zhuang, Xu Li,
and Weisen Shi. Split learning over wireless networks: Parallel design and resource management.
IEEE Journal on Selected Areas in Communications, 41(4):1060-1078, 2023. doi: 10.1109/
JSAC.2023.3244130.

Haoxiang Ye, Tao Sun, and Qing Ling. Generalization error analysis for attack-free and byzantine-
resilient decentralized learning with data heterogeneity. arXiv preprint arXiv:2506.09438, 2025a.

11

Under review as a conference paper at ICLR 2026

Haoxiang Ye, Tao Sun, and Qing Ling. Generalization guarantee of decentralized learning with
heterogeneous data. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1-5. IEEE, 2025b.

Hao Zhang, Chenglin Li, Wenrui Dai, Ziyang Zheng, Junni Zou, and Hongkai Xiong. Stabilizing
and accelerating federated learning on heterogeneous data with partial client participation. /IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2024.

Zihan Zhang, Leon Wong, and Blesson Varghese. Ampere: Communication-efficient and high-
accuracy split federated learning. arXiv preprint arXiv:2507.07130, 2025a.

Zishuai Zhang, Hainan Zhang, Jiaying Zheng, Ziwei Wang, Yongxin Tong, Jin Dong, and Zhiming
Zheng. A federated splitting framework for llms: Security, efficiency, and adaptability. arXiv
preprint arXiv:2505.15683, 2025b.

Kai Zhao, Zhaohui Yang, Chongwen Huang, Xiaoming Chen, and Zhaoyang Zhang. Fedsllm: feder-
ated split learning for large language models over communication networks. In 2024 International
Conference on Ubiquitous Communication (Ucom), pp. 438—443. IEEE, 2024.

12

Under review as a conference paper at ICLR 2026

APPENDIX

A Appendix: Notations|

[B~Appendix: More Details about Spilt Learning|

|C Comparative Analysis|

[D Appendix: Additional Definition, Technical Lemmas and Propositions|

|[E.2.2 Proof of Theorem{4.5|(SFL On Convexcase)
I[E.2.3 Proof of Theorem 4.6/ (SFL On Non-convex Case)]

13

14

15

17

18

Under review as a conference paper at ICLR 2026

A APPENDIX: NOTATIONS

Table 2: Unified notation used throughout the paper.

Symbol Meaning
M, M Set of clients and its size: M = {1,..., M}, M = |M|.
m, j Client index (morj € {1,..., M}).
N, i Local sample count per client N; sample index ¢ € {1,...,N}.
D, Z Data distribution of client m (D,); sample space Z.
S, Sm Training set S = (S1,. .., Swm); client-m dataset Sy, = {Z1im, - .-, ZNm }-
59 Neighbor dataset that differs from .S only at client j’s i-th sample.
Cm Aggregation weight with > ¢, = 1 (typically proportional to | Sy).
flw; 2) Per-sample loss function.
R(w) Population risk: R(w) =Y, cm Ez~p,, [f(w; Z)].
Rs(w), Rs,,(w) Empirical risks: Rs(w) = 3., cmRs,, (w), where Rs,, (w) = & S0 f(w; Zom).
w*, ws Population/empirical risk minimizers
Egen, Eopts Eexc Generalization error, optimization error, and excess risk .
T, t Communication rounds and their index.
K,k Local steps per round and their index.
Neks Mty M Learning rates.
ko Positive offset in the step-size schedule (ko > 1).
B Smoothness constant.
o2 Variance bound of stochastic gradients.
¢? Client heterogeneity measure.
L Lipschitz constant (only appears in referenced lemmas).
w® Global parameter at round ¢ (if round-averaged output is used: W = % 23;1 w®).
wﬁ,ﬁ’k) Client-m local parameter at step k in round ¢ .
(k) gk = v (wiM; Z1, ,,,m); for client/server shards ggff ggﬁ) .
M the number of active clients in per round .
7w = (m1,...,7y;) Random permutation in SSL;
M, Active-client set in SFL at round ¢ .
q Participation rate in SFL: ¢ = ZmeM, em < 1.
L. Cut-layer index in split models. /
wg)7 w(;) Client-/server-side parameters of the split model .
an;’“, Vag,t;k) Smashed data (cut-layer activations) and its gradient.
A(Y) Randomized learning algorithm .
Ay Parameter gap between two neighbor runs at round ¢: A; = Hw(t) — oW .
St, He, Qr Step-size aggregates: Sy = >y ek, He = 32 77t2,k, Qr=2>_, 77t2,k o<k Mos:
By, Wi(k) Oy = 1, (1+ o), Wa(k) = TTN L (1 + Bni)2
A* Aggregated gradient-scale constant: A* := g2 4+ ¢2 + sup, |[VRs(w®)|?*.
¥ Tuning constant in converting stability to generalization bounds.

14

Under review as a conference paper at ICLR 2026

B APPENDIX: MORE DETAILS ABOUT SPILT LEARNING

Algorithm 1 Sequential Split Learning (SSL)

1: Input: clients M = {1,..., M}; rounds T’; local steps K; stepsizes {1**)}; cut layer L;
datasets {D,,, }

2: Initialize: global models wg)), wéo)

3: fort=0,...,7T—1do

Sample permutation 7 = (71, ..., 7)

Set carry state: w(c 21 <—wg), “"gf(r? <—wg)

5
6: form = 1to M do

»

(t) . _ (t) ; —
0 Ws ifm=1 0 We,frm ifm=1
T wlnl e ek,) wm e R |
Ws ﬂm o otherwise We, otherwise
8: for k =0,. —1do
. : (t k) . (t.k (t.k) (k).
9: Client 7y, forward sample zx"’ ~ D, ; compute awm = fwd wc w s 2 3 Le
send (a;ﬁf% z&in’“)) // Com.
10: Server my, fwd/bwd: evaluate f (wg T’f) ,aﬁfm’”, z,(rtmk)) backprop to get Va%’f); send
Vagrtjf) // Com.
11: Client update: w(t R wg m (k) g(t 71:7),1
12: Server update: wgfil) —w (t k) — k) gt 777r)n
13: end for
14: end for) K X .
15: Round output: w(wr)<—ng) w(tﬂ) <—ng); broadcast (w (Hl),w(sH)
16: end for)
17: Output: final models (@4 = 37 w® & = LT o)

Algorithm 2 Split Federated Learning (SFL-V1)

1: Input: clients M = {1,...,M}, rounds T local steps K, stepsizes {n(**)}, cut layer L.,
datasets {D,, }, aggregatlon welghts {em M with), ¢ =1

2: Initialize: global models wg)), wgo)’ set wg)sl) <—w(c9), wém) <—ng) for all m

3: fort=0,...,7T—1do
4. fork=0,..., K —1do

5: Client-side forward: for each m € M, sample a set of samples S$7k) ~ D,,, compute
alt® = fwd(gﬁ?, SYR. L) and send (ag,t;k) (& k)) to server // Com.
6: Server-side training: compute f (wg;ﬁ); a%’k),y%’k)> backprop to get Va(t ®) , update
w(tflﬂ) = w(t Bt k)g(t ") send Va't*) to client m // Com.
7: Client-side backward : update w(t B = "‘-’(cffn) — g (¢ k) . using Vallk)

8: end for) X) K
9: Model aggregation: w(t+) 2%21 Cm wg m), (t+) Zm 1Cm wgm)

(t+1 o) (t+1) (t+1,0)

(t+1)
Cwo T, W, wg

10: Broadcast: set w,
11: end for -
12: Output: final models (w(c),wg)

for all m

15

Under review as a conference paper at ICLR 2026

Algorithm 3 Split Federated Learning (SFL-V2)

1: Input: clients M = {1,..., M}, rounds T, local epochs E, stepsizes {n*), n(-:)}, cut layer
L., datasets {D,, }, aggregation weights {c,, }M_, with }_, ¢, =1

. Initialize: global models wg)), wgo); set wg)))m <—wg))

cfort=0,...,7T—1do

4: Client-side forward (parallel): for each m € M, sample a set of samples 57(5) ~D,,, compute

for all m

w N

ag,t,,) = fwd (wg?m, S,(f;); LC) and send (a%)7 y,(,?) to server // Com.

5: Server-side sequential training: draw a random permutation 7; over M;

g); a%), y%)) , backprop to get Va;t@) and server gradient gg’);

for m in ; do compute f (w
update w' «w — n®Wg® send Val) to client m // Com.
6: Client-side backward (parallel, E epochs): for each m € M do for e = 1,..., F do use

Va;? to compute ggfn) and update w(ct',)m <_w(Ct’,)m o n(t,e)ggf”)’

7. Model aggregation & broadcast: wgﬂ) — Z%Zl Cm wg’)m, ngnl) — wgﬂ) vm
8: Carry server: set w(StH) ewg)

9: end for
10: Output: final models (w(CT),ng))

This subsection provides a structured explanation to complement Algorithms

In Sequential Split Learning (SSL)Algorithms [I] clients are visited sequentially during each com-
munication round, following a random permutation. The client-side and server-side model slices are
carried along this sequence. At each visited client, the algorithm performs K forward and backward
steps, transmitting activations to the server and receiving activation gradients in return. The server
and client updates occur in lockstep, and the terminal state of the chain becomes the round output,
which is broadcast to all clients as the initialization for the subsequent round. There is no explicit
averaging across clients; rather, the contributions from the clients are combined along a single, time-
ordered trajectory. Under data heterogeneity, updates from earlier clients may induce drift relative
to later clients, but the synchronous, step-by-step updates along the chain progressively correct this
mismatch. The round output can thus be viewed as a temporal integration of client signals, consis-
tent with the on-average Lo stability perspective in which perturbations dissipate along the update
path.

In Split Federated Learning (SFL), the split-model approach is maintained, but with distinct time-
lines and aggregation points.

In Variant 1 (SFL-V1)2] clients train in parallel. Each client retains its own client-side slice paired
with a server-side slice, and all clients perform K local updates within a round. At the end of the
round, weighted averages of both slices are computed, producing new global client and server slices,
which are then broadcast to all clients. This end-of-round averaging reduces drift and ensures that all
clients begin the next round from the same initialization. The design increases wall-clock throughput
on sufficiently provisioned servers but necessitates the server retaining per-client server-side replicas
prior to aggregation.

Variant 2 (SFL-V2)2]differs primarily in the server update procedure. On the client side, V2 mirrors
V1: clients train in parallel, and client-side slices are averaged at the end of the round before being
broadcast. On the server side, however, there exists only a single global server model. Within a
round, the server processes client activations sequentially in a random order, updating the server
model after each client and returning the corresponding activation gradients to the clients. At the
end of the round, the server model is transferred to the next round without averaging. This approach
reduces the server’s memory footprint and enhances its responsiveness to recent cross-client signals,
while client-side averaging continues to mitigate drift. It is important to note that the update rule in
SFL-V2 is fundamentally consistent with that of SFL-V 1. In both variants, each round is structured
by parallel client-side local updates, followed by end-of-round weighted averaging on the client
side; the primary distinction is whether the server utilizes in-round sequential updates (V2) or end-
of-round averaging of per-client replicas (V1). From the analytical framework employed in this
paper, this difference does not alter the treatment of the core quantities governing error propagation

16

Under review as a conference paper at ICLR 2026

and dissipation under on-average Lo stability. To avoid redundancy, the main text provides detailed
derivations solely for SFL-V1.

C COMPARATIVE ANALYSIS

Table 3: Our generalization bounds under convex settings .

Algorithm Learning Rate Result (scaling)
L Oghr) OV« alegei)
. o) oo +)
SEL O] O(yBEEAETR | Lalel 2T
SFL o(tK1+k) O(\/ My T+ MNﬁ(({—q))

Table 4: Our generalization bounds under non-convex settings.

Algorithm Learning Rate Result (scaling)

~ 1
SSL O iz
MN MNT ¢
~ M __B___ 1 c TK 2(%/236)
+0 MNT(TK)2<1+25>K462<>
SSL O ()
2 ~ ~
~ | (TK)1+28 MlogT
O(uN T unTR T\ N TR
A 1
SFL O(W)
é (711:(')1igﬁ + q (TK)lJf?BK% c(TK)2(1;§/3)
MN MN(1—q) ¢
~ q B___ 1 E(TK)2(1-T—2BI“1)
+O W(TK)2(1+25)K462
—q
SFL ()
oK a o [alesT
MN MN(1—qK °® MN(1 - K

Remark C.1 (Lower Generation Error). In both convex and non-convex settings, SL algorithms
(SSL and SFL) exhibit lower generalization error compared to FedAvg and D-SGD. In convex set-

tings, SSL and SFL achieve bounds scaling as % or % significantly outperforming FedAvg’s

slower terms (1° 3/ 4T 2/ 3) and D-SGD’s linear T scaling. In non-convex settings, SL bounds scale

28 B
with (T K)T#27 , which is tighter than FedAvg’s T°/6 or T73/* and D-SGD’s T'7+1, ensuring better
generalization as the number of iterations 1" increases.

17

Under review as a conference paper at ICLR 2026

Table 5: Previous works under convex settings .

Algorithm Learning Rate Result (scaling)
FedAvg|Sun et al.|(2024) 0O (ﬁ) o) (% c+ 5(;;?;//44 ay® <jv/6 T2/3 Al/271/2
~ D-SGD|Bellet et al.|(2024] o) O(-Z:)
D-SGD (Strong Covex)Ye et al.|(2025a) O~(%) O (;Lﬁng + }LX;N + i;N>

Table 6: Previous works under non-convex settings.

Algorithm Learning Rate Result (scaling)
1 I N - B 5
FedAvg [Sun et al.[(2023) O(ﬁ) 1o) (% (M]lb;-/f (TK) m)
| _ N 1 1.5 1.3 T
FedAvg|Sun et al.|(2024) O(ﬁ) O<T24A1]ogT (C+0)+ (£2)7 L8 4+ (A%¢)s T + \/Aole
] B
D-SGD [Bellet et al.|(2024) o) O(T)
1 NMB+T

Remark C.2 (Robustness to Heterogeneity and Noise). The generalization bounds of SSL and SFL
are less sensitive to initial conditions (A) and noise (¢) compared to FedAvg, which includes terms
dependent on these factors. SSL and SFL rely on parameters like /5 (data heterogeneity) and M,
providing robustness in heterogeneous or noisy federated learning environments. D-SGD’s strong
convex bound depends on the strong convexity parameter p, limiting its applicability, whereas SL

algorithms are more general.

D APPENDIX: ADDITIONAL DEFINITION, TECHNICAL LEMMAS AND
PROPOSITIONS

Definition D.1. An update rule G(w) is said to be v-expansive if:

o 16@) — 6@ _
w,w’ |w — |2 B

Lemma D.1 (Expansivity of G, ,). (Hardt et al.|2016) If f is B-smooth, we have:

1. Gy .(w) is (1 + np)-expansive;

2. Assume in addition that f(-; z) is convex and n < 2/8. Then G,, .(w) is 1-expansive;
Lemma D.2 (Growth Recursion). (Hardt et al.l|2016) Fix an arbitrary sequence of gradient update

rule Gy, 2,5 -, Gy 2p and another sequence Gy,, Gy, . with same loss function f . Let
wo = W}, be a starting point in T% and define &, = ||w; — w}| where wy, w), are defined recursively
through

_ ! _ !
wit1 = Gy, 2, (We), Wip1 = Gn;,zg (wy)-
Then, we have the recurrence relation
0o=0
vy if Gy, -, = Gy, 2 is v-expansive

01 < 9. o L . .
min{1,v}6; + 2L if f is L-Lipschitz and G, ., is v-expansive

Lemma D.3 (Gradient Bound). Let Assumptions and{.3|hold. Denoting A, = 6%+ (> +

sup, ||VRS(w(t))
the round reference w'Y) satisfies

M N
1 2
WZZE&A[HW(M;@)H } < 362 +3¢% + 3| VRs(w®)|3 < 34..
j=1i=1

18

z, then for any round t, the (sample- and client-) averaged squared gradient at

Under review as a conference paper at ICLR 2026

Proof. Write the global and per-client empirical risks as Rg(w) = 17+ Zﬁl Zf;l f(w; Z;;) and

Rs,(w) = % 2511 f(w; Z;;). For each sample (j,) at the common iterate w(*), add and subtract
the client and global empirical gradients:

VI Z3i) = (V@ Z5) = VR, (@) + (TR, (@) = VRs(w")) + VRs(w?)
————

(1) (1) (I11)
By the inequality ||a + b + ¢||* < 3(||al|® + ||b]|* + ||¢]|?), we have:
1 M N 1 M
DY s [IVA@ Z30) 3] <372 D Esa [Exns, VF(@; 2) = VR, (w®)]3]
j=1i=1 j=1
<62
M
1
+357 > IVRs, (@) = VRs(w®)][3 43V Rs ()3
j=1

<¢?

Here the first bound uses Assumption the second uses Assumption and the last term is
deterministic given S. This yields the claimed inequality. O

Lemma D.4 (Local Gradient with Client Drift Bound). Under Assumptions for any client
m, round t, and local step k, denoting

Ay £ 8+t sup [VRs(@)]

, then the local stochastic gradient in split learning satisfies

k k
g2 < (1 442 Z(n<t’3>)2) (452 42+ 4||VRs(w(t))||§) < 4(1 + 45 Z(n(t’s))g)A*.
s=0 s=0
Proof. Consider the local update at client m, wfﬁ’k) = wfﬁ’k*l) — (t’k_l)g,(ﬁ’k*l),. For any

k > 1, expand the squared distance to the round reference w(®) and add/subtract VRg, (w®)
and VRg(w®):

oo — P = |l — kD) 4 gl
2
= [— wfth) DG TR, () + Vs, () - VR5() + VR ()|

Taking expectation over the sampling at step (¢,k — 1) and using ||a + b + ¢ + d||* < 4(||a||® +
1811 + [lel® + lld[|?) gives

_ _ 2
EfJlw® — wlM 3] < o® — wt* D3 +4(n 1) (62 + ¢ + [VRs()]3),

where 2 bounds the stochastic variance of the local gradient around its client empirical mean and
¢? bounds the client—global gradient discrepancy (Assumption. Unrolling from £ to 0 and using

w,(,i’o) = w® yields

o~

E[Jw® - w3 < 43" (149)* (02 + ¢ + [VRs(@)]3). ()
s=0

Next, decompose gﬁ,ﬁ’k) around the client/global empirical means at the same iterate w%’k) and
around w®):
g™ 13 < 41V fin (W) = VR, (™) + 4]V R, (wit™) = VR, (w®)]3
+4|VRs,, (@) = VRs(w®)|5 + 4| VRs(w™)]|5.

19

Under review as a conference paper at ICLR 2026

By [-smoothness (Assumption ||VR5m (wﬁ,t;k)) — VRg, (w)]l2 < 5||w£,t;k) — wO,.
By bounded stochastic n01se(Assumpt10n and inter-client heterogeneity (Assumption [4.3)),
E||V fin(wi™) — VR, (w3 < 62 and IVRs, (w®) — VRs(w®)||3 < 2. Taking ex-
pectations, applying these bounds, and invoking equation [T} we obtain

Ellg |5 < 46% + 487 Ellw™) — wBM[|3 + 4¢% + 4|V Rs (0I5
k
<407+ 1687)_ () (02 + 2+ [VRs(w®)3) +4¢% + 4 VRs ().

s=0

Finally, observe that 452 + 1682 Y.F_ (n®*)2 0% < (1 + 4825 (n®)?) - 462, so, after
grouping terms,

k
EllgiM 3 < (144873 (n9)?) (467 + 462 + 4 VRs ()13,
s=0
Dropping the expectation on the left-hand side yields the claimed bound. O

E PROOF OF THEOREM

E.1 PROOF OF SSL
E.1.1 SETUP

Let S = {Z;; : i € [N],j € [M]} denote the dataset, and let S(*/) be the neighboring dataset
obtained by replacing Z;; with an independent copy Zij. We run Sequential Split Learning (SSL)
on both S and S(¥/) using the same internal randomness (e.g., client permutations and data indices).
Denote the global models after round ¢ by w® and &@®, respectively, with w(® = & In each
round ¢, a random permutation m = (7q,...,7as) of the clients is sampled, and M < M clients
participate sequentially. Each active client m performs K local gradient descent steps starting from
the output of the previous client (sequential-pass rule):

wffl’o) =w®, wffmo) =w 12 (m>1), W+ = wT(fA’ZK).

Define the outer-run distance A; := [|w*) —&® ||y, and the SSL outputs at round 7' by A(S) = w?)
and A(S)) = @),

E.1.2 PROOF OF THEOREM [4.3](SSL ON CONVEX CASE)

and 2’ = Z .m)

Tm 2 Tm

One-step local stability. For a fixed local step (¢, k, m), write z = Z i)

m 0 Tm

By Lemma the GD update . ,,(z) = z — nV f(z; 2) is 1-expansive when 1(*:*¥) < 2/p, hence

”w(t Jk+1) tk+1)H < Hw(tk w(t k)||2 +n(t’k)’|vf(&7(ri;k)vz) (t k) ||)

Tm

The second term is nonzero only when (I,(T,;), Tm) = (2, 7). Since (¢, 7) is uniform in M N samples,

the collision probability is 1 /(M N). Using Young’s inequality and taking expectation yields

4(n(t:k
Ellw{F) — @ERD |12 < Bllwlth — o2 + A) E||Vf (witM); $Zem ||2. (3)

MN
Summing equationover k=0to K —1andusing w'"? = w®, &0 = & gives
4 K
mw(t K) &7(5;1()”3] < E[A2 W Z n(tk EHg(t k)HQ’ 4)
k=0

where g&m vf(wﬂ'nz ’Zﬂf k) ﬂm)'

T™m

20

Under review as a conference paper at ICLR 2026

Sequential pass with partial participation. Summing equation [4] over the active clients m =

1,...,.M (sequentially passed within round ?) and using non-expansivity of the pass/aggregation,
we obtain
4 M K-1
2 2 tk)) tk
E[A71] < E[A]] TN Z ()2 El|gl)Hz
m=1 k=0
Lemma[D.4] 9 6MA K-l 2 k 9
* (t,k) 2 (t,s)
< BN + S > (n*R)) (1+4B ;(n)) (5)
Define the blockwise sums H, = S0 ' (nt#)2 @, = ST R (n@R)2 o8 ()2, Then
16MA,
E[A7] - B[AY) < — 7 (Hi+46°Qy). (©6)
Averaged round 7 output. Summing equation[f|over t = 0,...,7 — 1 and using Ay = 0, for
the averaged output w(”) = % ZZ:OI w(®), Jensen’s inequality implies
T—1 ~ . T—1
) _=D|*_ 1 2 16M A, 2
IEHw | <7 ;]E[At] < S g (H, + 452Q,).)

Evaluating two common step-sizes. (i) Square-root decay n(**) = ﬁ (kg > 1):

T—1
TK + ko — K+1
H, <1 _— —_—.
ST S g it
Substituting into equation (/| gives

_ —(m)||2 _ 16MA, TK +ko—1 26%(K +1)
Efla -57 < 1 8
@Y = TMNT ko —1 (ko — 1) ®)
(i) Harmonic decay n(*%) = m (ko > 1):
T-1
1 1 1
H < — = .
; ko — 1 ZQ“2(k01)+3(k01>3>
Substituting into equation [/|yields
_ —m2 _ 16MA, [1 232 232
Bl -5, < 0
WY LS TUNT (ko= TR —1) 3k — 1) ©)

From stability to generalization. By Theorem[d.] for any v > 0,

A, —(T)||2
€gen < 5 é J , where S := IEHU(T) — w(T)H)
27y 29779

Minimizing the RHS in vy gives v* = 4/ 3?* and
€gen < gS + V3A,S.

(i) Square-root decay. Using equation 8}

TK + k 71 282 (K + 1 88 MA TK + ko — 1 282 (K + 1
cgen < 4V AL/ \/og 2 + 7) | BMA, {bg(2)+ G 1 oo
MNT ko — 1 ko — 1 MNT ko — 1 ko — 1

(ii) Harmonic decay. Using equation [9}

M 1 2 88 MA 1 1 1
egen < 4\/§A*¢ +0 - 4 M. + 267 + - S| oan
MNT \ kg —1 K(ko — 1) MNT |kg—1 K(ko —1) 3(ko —1)3

This complete the proof.]

21

Under review as a conference paper at ICLR 2026

E.1.3 PROOF OF THEOREM [4.4] (SSL ON NON-CONVEX CASE)

Proof. Proof. We adopt the local update rule

(t) =1
w 3 m)
Wil =Wl =gl W = { (1) (12)
wﬂm 19 m > L

where in each round ¢ the server hands the current model to the first active client and then passes the
updated model sequentially along the M active clients.

One-step local stability after the burn-in index ¢,. Write Afrtmk) = wT(rt,;k) — &&ﬁf). By
Lemma for stepsizes n(*"*), the one-step update is (1 + 47**))-expansive. As in the con-
vex case, conditioning on whether the touched sample coincides gives

wp. 1= g + ATV < (1+ 8n D)2 AL P, (13)
wp. gy ¢ IALFDS < (14 Bp)2 ALPE 4+ 4P 2 g8 4
Taking expectation over the internal randomness,
Altk+1) 2} < (1 (t,k) [A(tk } (t,k) [(m 2]' 15
E[JalHOIR] < 1+ s P PE[IAGY] + o ORI as)
Unrolling over local steps K = 0,..., K — 1. Define the amplification factors
K-1 , K—1)
b, = H (1 +577(t’r))) Uy (k) = H (1+ 577(t’r)) (< D).
r=0 r=k+1
Iterating equation [#9] yields, for each active client m,
4 Kl
IE[AEK) 2} <&]E[A(tO } (B2, (& [k) } 1
1A%l < @ E 2] + 37w O(n)2 U (k) E| (9503 (16)
Using log(1 4+ z) < zand (1 + z)? < 2%, with S; := 27,;01 n®r),
K—-1
U, (k) < @y = eXp(2 Z log(1 + ,Bn(t,r))) < 28BSt (17)
r=0

Sequential pass with partial participation. Unrolling equation|l6jover m = 1,..., M vyields a
linear accumulation of the noise terms (no extra exponential in M):

E[|A“D 3] =E[IAGO)3 }

TN

< @, E[|Ar]3] + Z (192 E 1942 13]

m=1 k=

4 N 285 L

< O, E[|Ar]3] + N

G OPE[lgEPI] . as)
k=0

Averaging round 7' —t, output. Assume a burn-in where the two runs coincide at ¢, i.e., Af0) =
0. Averaging equation[8|over ¢ = to,...,T — 1 and using equationn 117 gives

- 9 T—1 T-1
£l 57 - g SR < iy & e[l
=to

k=0
(19)

By Lemma|D.4] for all (¢, k), introduce

K-1
H, = Z (77(t,zc))27 Q= (tk 22 (t s)

k=0 k:O s=0

22

Under review as a conference paper at ICLR 2026

Then equation [I9 becomes

P 160 A,
Bo™ -5)H < NT] Ze%‘t (7 +45%Q.). 20)

Generalization from on-average stability. By the standard stability-to-generalization conversion
(with a tunable v > 0),

+ . —(T 2 3A*
cien = min B(7,t0) < 72 P gl -+ 3 @D
We will use log(1+) <z, (1 +)2 < e?*,and 1 + z < e® forx > 0.
. (t.k) 1
(i) Square-root schedule """ = ———.
VIK +k+ kg
By Riemann-sum bounds,
1 K
K + ko + K — tK+k) o)
kzo tK +k+ko (\/ 0 v) = ViK ¥t ko @2)
and
K—1
1 tK + ko + K)
H, = < < H?. 23
t kZ:OtK+k+ko—°g Ktk @ Qs 23)

Plugging equation [22}-equation [23]into equation 20| gives

E —r) _ =) 2 < 16MA* ! 28 K K 5 K2
Hw T Hz ~ MN(T —to) t:Ze p(\/tK+k0> (tK+ko +45 (tK+ko)2>' (24

With u = tK + kg (du = K dt), u runs from ug := tgK + kg to U := T K + kq. Using the change
of variables v = \/u and w = 26 K we get the tidy bound

_ 2 16 M A, 20K
EHU(T) 7(_,3(T)H < 6 . Vo exp(b),
2 BMN(T —ty) K Vo

Ug = toK + Ifo. (25)

Substitute tg = (TK)% for optimization of B(+y, to). For large TK,

Vo 5 _1 28K 1-8
Y = (TK)1+28~ 2 =2 TK)z20+28) ,
o= TR TR =05 (1K)
Hence
= 16 M A, _
]EHw(T) (T)H S ZMNT (TK)lfQ;g—% exp(Qﬁ (TK)isza)). (26)

Using equation and T — to =< T, and minimizing B(v,tg) at v* = \/3A*/IE||§(T) ™ 12,
we obtain

QB(TK)ﬁ AA 3M TK _ B _1 Q(TK)H%SB)
N 3(1+28) 4 .
+ Nt T ¢

B ~
L (TK)™% 8M A, 5 _
sm e~ MN MNT

27

Compared with prior (incorrect) versions, the exponential factor no longer contains M: M appears only linearly
in the prefactor.

23

Under review as a conference paper at ICLR 2026

1
(li) Harmonic schedule n(t’k) = m
We have
K—1 K—1
tK + ko + K 1
S=S — e A H, = < 28
t gtKJrkJrko—Og tK + ko ! Z:;](tK+k+ko)2—tK+ko’ 28)
Q: <H? < _ (29)
=TS K 4 ko)?
Thus 25
tK + ko tK + ko tK + ko
Plugging equation [29]into equation |20]and expanding gives
EHUm LS| . _16M A, TZ*I 1 28K 42 88° K\
2= MN(T —to) = tK +ko (tK+ko)?2 (K +ko)? (tK+ ko)
(30)
With u = ¢t K + kg and the estimates
T—1 T—1 T—1
1 1 T 1 1 1 1
< —log— < _ < 31
; tK +ho =~ K ot ; (tK + ko)2 — Kuo’ ; GK+hop =282 O
=to =to =to
where ug := to K + ko, U := T K + ko, we obtain
_ —(1)||2 16 M A, 1. T 28 48> 48°
IEH 1) _ mH <M A | et 422 2. 32
G LS MNT) | K% T w T K a2 2)

283 28
Substitute to = (T'K)T+28 for optimization. Noting uo < oK = (T K)TF28 K and T — to < T, the log
term dominates for large 7K, and we get

2< 16 M A, 1

—— . ——— logT.
2~ MNTK 1+28 °®
Using equationand ~v* = y/3A./S with S given by equation , we obtain

28 ~ -
(TK)™25 88 MA,logT 3 M log T
en S : 4A, . 4
Gn SN 1428 MNTK 1428\ MNTK 39

This complete the proof. O

EHG(T) A (33)

E.2 PROOF OF SFL

E.2.1 SETUP.

Let the training set be S = {Z,; : i € [N], j € [M]}, with M clients each holding N examples.
Let S(“7) denote the neighbour dataset obtained from S by replacing the single example Z;; with an
independent copy Zi ;- Run the SFL algorithm on S and on S (i7) with identical internal randomness
(same seeds for client participation, permutations, and data indices). Denote the global models after
round ¢ by w® and @®, respectively, with common initialization w(®) = &(®). Within each round
t, client m performs K local gradient steps

wﬁf;k“) = wffb’k) — n(t’k)Vfwm (w,(qi’k); ZI,(fL’k),m)’ k=0,...., K -1,

where I\t" € [N] is sampled uniformly (independently across t, k,m), and (71, ...,m) is the
client permutation for round ¢. Aggregation is by averaging over the active clients A; (we write
M; = |Aq]); for clarity we present full participation M; = M (the partial-participation case fol-
lows mutatis mutandis with M;). Assume the per-sample loss f(-; z) is S-smooth; when specified,
convexity is also assumed. Define the round-¢ discrepancy

A2 [l -0,

24

Under review as a conference paper at ICLR 2026

E.2.2 PROOF OF THEOREM [4.5](SFL ON CONVEX CASE)

One-step local stability. Fix ¢, k, m. For brevity write z = Z,¢.» , and 2 =27 [k . Because

the gradient step map @ ,,(z) = 2 — nV f(z; 2) is 1-expansive for n(**) < 2/3 (Lemma|D.1)), we
have

wlEAHD — GURD|y = ||®, o (WEF) — 0w (@S],
<@, e (@ER) = @ o (@S|, + 0P|V F(@ER); 2) — V(@8R)|,
< wb* — @R ||y + nER ||V F(@ER; 2) = VH@ER:)|, (35)

The second term is nonzero only when the sampled pair ([, ,(,i’k) ,m) coincides with the replaced index
(4,7). Since the replaced pair (i, j) is uniform over the M N samples, the probability of collision is
1/(MN). Using Young’s inequality yields for the second term in equation 35}

(tk+1) _ ~(tk+1)2 (k) _ ~(tk))2 4(77(t’k))2 (t,k) |2
E[”wm’ — Wy ||2] < E[”wm’ — Wy HQ] + W || m ||2 (36)
Summing equatlonover the K local steps and using w(t - = w®), cby(,tjo) = oM gives
K-1
4
E[llwt™ a8 O3] < A7 + 57 20 (1“9)7|gP 5. (37)
k=0

Aggregation over clients . Under partial participation (Zf\g:l cm = q < 1), Jensen’s inequality
gives

t+1 EH Z Cm w(t K) H Z CmEHw(t K) ~1(7t1.’K)H§
0+ i“(O o)
MN & m -l
lem: [DA 16g =) k 2
< aA + ooy > (n9) (1+4,82;)(77(t*))A*. (38)

Train outer round 7. Introduce the blockwise sums

K—1 K—1 k
2 2 S\ 2
H, 2 Z (), Q@ £ Z (n®*) Z(n(t, N*.
k=0 k=0 5=0
Then from equation 3§]
16¢A, 64q8° A,
EATL] < 6AF + i He + =y O (39)
Assume A = 0, telescope equation[39|from ¢ = 0 to 7' — 1 to get
T-1 T-1 T-1
_ —(T) |2 9 16qg A, 64¢B%A,
E[e® -7 < Y ma Hy + — 272 1 @o
o™ - & 2,;“],]\”1_ Zt (1_(1);@ (40)

Let ap 2 (n**))2, Then
K-1 k 1 K-1 2 K-1 1 K-1
Sayes S wned((Sa) e X)< Soer),
k=0 s=0 0<s<k<K—1 k=0 k=0 k=0

where we swap the summation order to symmetrize the (s, k) pairs.

Consequently,

%HE < Qt < Ht2~
This identity (and bounds) lets us express equation 0] purely in terms of H; (plus a small quartic
correction), which simplifies step-size—specific evaluations.

25

Under review as a conference paper at ICLR 2026

1
Evaluating Two common step-size. (i) For square-root decay step-size %) = ————
g P (i) For sq y step-size 1) KTk o
K—1 T-1 TK-1
1 1 TK +ky—1
H, = —_ d H, = <1 ()
L ZtK—I—kJ-i—k‘o an ; b ngon-i-k‘o_og ko—1
For each block ¢ we also have the elementary bound:
tK+K+ky—1 K
Ht S 10g< + + 0 > = 9
tK + ko —1 tK +ko—1
where we used log(1 + z) < z.
Consequently,
T— T-1
K? K
H} < < 41
> G S R @

the last inequality following from the comparison of the arithmetic progression tK + ko — 1 with
the harmonic tail and the bound >, ., n™? <1/(b—1) forb > 1.

For the fourth-order terms,

T-1K-1 T-1K-1 TK—1 1 1
> >) ZZ— - > < .
=0 k=0 =0 k=0 tK+k+ko) 0 (TL+]€0)2 ko -1
Then we get:
T-1K-1
K+1
H?)) S 0
ZQt_2(Z +t§;];) =T 42)

Plugging equation 41| and equation 2] into equation [40] yields the explicit squared stability bound
for the square-root schedule:

16gA, TK +ko— 1\ | 26%(K +1)
E[A}] < soh—— (log() : 43
Elar] < MNO—)(0 ko —1 N (ko — 1) (43)
. . . 1
(ii) For harmonic decay step-size n(*"*) = e Now (77(t,k))2 = G
szl < / R S 1
—0 tK+k+k0) tK+ko—1 22 tK+ko—1 tK+K+ky—1
Summing ¢t =0, .. — 1 yields
T-1
1 1 1
H; < — < . 44
; "Sho—1 TK+hko—1 ko1 4
71 T-1
1 1
H? < <
t=0 ‘o — (LK + ko —1)2 7 K(ko—1)’
T—1K-1 TK-1 ~ .
(n(t,k))4: - < NP -
2 Gk = 2w S 31
Therefore,
T—1
1 1 1
<5 . 45
%<3 (&m =1 * 5w -17))

t

Il
<

Substituting equation[44] and equation43]into equation 0] yields the explicit squared stability bound
for the harmonic schedule:

2 166]A 1 2&2 262
Elar) < MN(1—q) (k01+K(k01)+3(k01)3>' (46)

26

Under review as a conference paper at ICLR 2026

From stability to generalization. By Theorem ??, to obtain the tightest bound, minimize the

right-hand side with respect to v > 0. The generalization bound is then

min B(y) = N = E[AZ]

¥ 2’7 2

(i) For square-root decay, using equation[43] the generalization bound is

MN(1 — q) ko — 1 ko — 1 MN(1 — q)

TK +kog—1 282(K+1 88qA TK +kg—1 28%(K+1
ege,,<4fAJ a (10» + ko +ﬂ(+)> ﬁq*<10 k+01 +Bk(t)>'
0 — 0 —

For large T, K, M and constant kq:

([[1006(TE) + #°K) Baq(loa(TK) + BK)
Eg°“<0<\/ MN(Q-q | MNI-g))

(ii) For harmonic decay, using equation 6] the generalization bound is

q 1 232 282 88 q Ay 1 282
en < 4V3 A,
‘s V3 Jth(l—q)(kofl+K(k071)+3(k071)3) +]vIN(lfq)(kofl-FK(ko—l)

232
+ 3(ko — 1)3) '

For large K and constant k:

€gen < O

(Vir g NM%q_ q>)'

This completes the proof.

E.2.3 PROOF OF THEOREM [4.6] (SFL ON NON-CONVEX CASE)

One-step local stability after the burn-in index ¢,. Write A,

(LK) . (k) _ (k)

. Under

Assumption (4.1 and Lemma the one-step update is (1 + ﬁn(t k))-expansive. Conditioning on

whether the touched sample coincides:

wop. 1= gy o A3 < (14 ™92 ATP 2,

wp. gy o [AGFVIZ < (14 B)2 IATPZ + 40)2 g5 3.

Taking expectation:
4

(th+1) 2] < (t,k)\2 (t,k))12 (t,k)\2 (t,k)]12
E[IALH D3] < (1 + 8B ALM 1] +)2 E [l 3]

Unrolling over local steps k = 0,..., K — 1. Define

K—1) K-1
Boi= [L O+ W)= [] (1400 (< @)
r=0 r=k+1

Iterating equation 9] yields

E[1a%™ 3] < &, ElaEO13] + M“KZ (R)E 193] -

With S; := ZkK:_Ol n®*) and using log(1 + z) < x, (1 +) < €?*,

K-1 K-
U (k) < @ = exp(2 Z log(1 + Bn(t””)) < exp(Z t ’”)) e2PSt
r=0 r=0

27

(47)
(43)

(49)

(50)

(G

Under review as a conference paper at ICLR 2026

Aggregation over active clients. Let the server aggregate by weighted averaging @(©%) =

> e, Cm W) with cm > 0,3 em, Cm = ¢ < 1, and wttl) .= G(K) - By Jensen’s
inequality and equation [50L

E[J At] :EM) cm(wﬁvK)—wﬁz’KUHj
meMy
<y cmE[nAgimué}

meM;
K—

< a@,E[|A3] Z CRR R E[lgP B D)

k=0

Accumulating from ¢ (with A(*0) = 0) to 7' — 1 and summing the geometric factor coming from
q®; gives

E[l|ar(3] ZE[IIA““ 13]

t=to
T-1 K-
285, (t, k) [(t,k) }
= MN 1 —q) Z ‘ Z gr” 2 &)
By Lemma , define H, := kK:—Ol (Tl(t,k))Z7 Q; = K_—Ol (n(t,k))Q Zfzo(n(t,s))Z. Then
from equation|53]
T-1
16¢ A, 285,
EllarlE] < g g 2o ° (#: +48°Q1). (54)

Generalization via stability. For any v > 0 and burn-in ¢,

Cen = mm{]\/t[(}v + @ llAr|2] + 3;* } (55)
It remains to bound Sy, Hy, Q.
(i) Square-root schedule n**) = \/ﬁm. Using S; < ﬁ, Hy < 755, Qr <
ﬁ, equation becomes
16g4, oK , K2
E[[|Ar|3] < A“V();;emivu£+m)<mﬁku+4ﬁ @K+%V)' (56)
=to

Let u = tK + ko (du = K dt) and v = /u. As in the SSL analysis, one obtains

U
2K,/ 28K
/ eXp<255)(% +432%2) du < 4o eV, ug = toK + ko, U :=TK + k.
uo

B
(57
Therefore
16¢ A, 20K
[||ATH] £ W()\/?oexp(ﬁ) (58)

Choosing tg = (TK)% gives

B 20K _1-5
= (TK)™2 K2 P 9B(TK)rs,
Vo < (TK) ; Jio B(TK)

28

Under review as a conference paper at ICLR 2026

Hence

B[Arl2] § — ot

i) et
S GaN g TR exp(26 (TK)7i+ m). (59)

Using equationwith v = /3A,JE||Ar|?,

_28 1-8 1-8
1+28 Il 51598 B S(1123)
cgen S (TK) 4 Sads (TK)WK% 2B @I2ATE g 4 (TK)2(1+28) K B (rE)20T28
MN MN(1 — q) VBMN(1—q)
(60)
" . (t,k) _ 1 tK+kg+K 1 1 288
(ii) Harmonic schedule 7 = Kkt e Here S; < log (7’5K+k0). He < KRRy Q: < R and e t <
exp(%) <1+ t?(ﬁji—[io . Summing by integral comparison gives, with ug := to K + ko,
T-1 T-1 T-1
1 1 T 1 1 1 1
——— < —log—, > ———— < Y < ©D
Sy tK ko T K to S5 (tK + ko) Kug' 5 (tK + ko) 2K u2
Thus
4qA 1 T 2 ap? 4B’
Ellarl3] € —atr | 1T 28 27 48)
MN(1—-gq) | K to ug K ug ug
28
Choose tg = (TK) 128 | so that the log term dominates:
4qA 1
E(lar|?] < L log T 63
[1ari3] < NG K 1T ©3)
Plugging equation [63]into equation [55| with v* yields
(TK)™% 28 A log T 3
T+28 o
gen < + L_48. 081 494, d ViogT.| (64)
MN 1+28 MN(1-¢ K (1+28)MN(1—q) K
This complete the proof. O

29

	Introduction
	Related Work
	Preliminaries
	Problem Setup
	Algorithm
	Sequential Split Learning (SSL)
	Split Federated Learning (SFL)

	Theoretical Analysis
	Assumption
	Stability and Generalization
	Discussion

	Experimental Results
	Logistic Regression
	ResNet-18

	Conclusion
	Appendix: Notations
	Appendix: More Details about Spilt Learning
	Comparative Analysis
	Appendix: Additional Definition, Technical Lemmas and Propositions
	Proof of Theorem
	Proof of SSL
	Setup
	Proof of Theorem 4.3 (SSL On Convex Case)
	Proof of Theorem 4.4 (SSL On Non-convex Case)

	Proof of SFL
	Setup.
	Proof of Theorem 4.5 (SFL On Convex case)
	Proof of Theorem 4.6 (SFL On Non-convex Case)

