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ABSTRACT

Split Learning (SL) has emerged as a practical paradigm for training large models
under privacy and systems constraints, showing strong performance on hetero-
geneous data and aligning well with LLM-era workloads. However, while con-
vergence analyses for SL algorithms such as Sequential Split Learning (SSL)
and Split Federated Learning (SFL) are well-established, their generalization
bounds, especially those dependent on iteration-specific factors, remain largely
unexplored, hindered by challenges like client drift and biased gradient estimates.
In this work, we introduce the first theoretical framework for analyzing the gen-
eralization error of SL algorithms, leveraging an on-average stability approach to
account for both local update drift and aggregation-induced errors. Our frame-
work provides a novel connection between optimization and generalization, re-
vealing how SSL and SFL differ in their stability profiles and generalization be-
havior. Specifically, we demonstrate that SSL excels in sparse client participation
and long-horizon training, while SFL benefits from balanced participation in non-
convex regimes, offering a clear guide for selecting the appropriate aggregation
strategy. By deriving precise stability bounds for both convex and non-convex set-
tings, we provide deep insights into the role of data heterogeneity, client drift, and
aggregation mechanisms in SL. Extensive experiments on MNIST and CIFAR-10
benchmarks validate our theoretical predictions, highlighting the robustness and
applicability of our framework across a range of practical scenarios.

1 INTRODUCTION

Pipeline parallelism is a key strategy for scaling large models, enabling efficient training and fine-
tuning on edge devices. Split Learning (SL), a fundamental approach, partitions a neural network
between clients and a central server, exchanging intermediate activations and gradients instead of
raw data. This design mitigates data heterogeneity by enabling collaborative training across diverse
data distributions without sharing raw data, while inherently enhancing privacy protection. SL is
thus well-suited for privacy-sensitive applications like large language models (LLMs) (Zhao et al.,
2024; Zhang et al., 2025b; He et al., 2025). As illustrated in 1, SL has inspired frameworks like
Sequential Split Learning (SSL) (Gupta & Raskar, 2018) and Split Federated Learning (SFL) (Thapa
et al., 2022) for deploying LLMs on edge devices with privacy-preserving features. In SSL, the
model is sequentially passed among clients, with aggregation after each update. Conversely, SFL
trains client-server splits in parallel, aggregating results per round, which enhances parallelism and
accelerates convergence. These aggregation strategies provide distinct scalability and performance
trade-offs based on application and participation constraints.

Despite significant advances in Split Learning (SL), the generalization properties—especially
iterate-dependent bounds—have received limited study. While convergence analyses for Sequen-
tial Split Learning (SSL) and Split Federated Learning (SFL) are well established (Li & Lyu, 2023;
Han et al., 2024), deriving iterate-dependent guarantees remains difficult due to SL-specific factors.
First, data heterogeneity combined with partial model splits and cut layers yields biased gradients
relative to end-to-end training. Second, SSL’s sequential aggregation and SFL’s parallel aggregation
introduce randomness and client drift, altering optimization stability. Hence, precise measurement
of client drift i.e., discrepancies in client updates induced by these aggregation schemes , is required.
These issues motivate a tailored, algorithm-dependent stability analysis for SL.

1
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(a) Sequential Split Learning (SSL). (b) Split Federated Learning (SFL).

Figure 1: Overviews of Split Learning paradigms.

In this paper, we propose an algorithm-dependent, on-average model stability framework (Lei &
Ying, 2020) that quantifies a model’s stability with single-sample perturbations. Under mild as-
sumptions and two common step-size schedules, our method mirrors Split Learning’s gradient flow,
embedding per-round stability analysis. Specifically, we quantify (i) local update drift at each client
and (ii) aggregation effects in Sequential Split Learning (SSL) and Split Federated Learning (SFL),
then combine them to assess stability over training for both convex and smooth non-convex settings.

Our results yield key insights: in the non-convex case, both SSL and SFL achieve a clean 1/(MN)
scaling with sublinear dependence on TK. In SSL, correction terms depend on the number of
active clients, and the method remains robust under sparse or bursty participation. By contrast,
SFL performs better when participation is moderate and stable across clients. Harmonic step-size
schedules also suppress the exponential transients associated with square-root decay.

Our Contributions.

• First work about stability and generalization in split learning. We develop an algorithm-dependent
stability calculus without L-Lipschitz loss assumptions, linking optimization to generalization.
For harmonic and square-root learning rate decays, our bounds clarify how β, T , K, M , N ,
heterogeneity ζ, and participation q, M̃ affect generalization (Table 1).

• Choosing SSL or SFL. We analyze SSL (sequential) and SFL (parallel) aggregation, showing their
impact on stability and generalization. SSL suits sparse availability (low M̃ ) and convex objectives
with large T . SFL excels in heterogeneous, non-convex systems with high client participation.

• Experimental Validation. We provide numerical experiments on MNIST with logistic regression
on convex case and on CIFAR-10 with ResNet-18 on non-convex case to validate our theory. The
preliminary results are consistent with our theoretical insights.

Table 1: Summary of Assumptions, Stability Tools, and Dependencies for Various Algorithms. LL:
L-Lipschitz loss (or bounded gradients); SM: β-smooth; M : number of clients; N : number of
samples per client; M̃ : active clients per round (SSL); q: participation rate (SFL); T : number of
rounds; K: local steps; η: stepsize; σ: stochastic noise; ζ: heterogeneity.

Algorithm LL SM Stability Tool M N M̃/q T K η σ ζ

FedAvg Sun et al. (2023) % ✓ Uniform stability ✓ ✓ ✓ ✓ ✓ ✓ ✓ %

FedAvg Sun et al. (2024) ✓ ✓ On-average stability (ℓ1) ✓ ✓ % ✓ % ✓ ✓ ✓

D-SGD Bellet et al.
(2024)

✓ ✓ On-average stability (ℓ1) ✓ ✓ % ✓ - ✓ % %

D-SGD Ye et al. (2025a) ✓ ✓ On-average stability (ℓ1) ✓ ✓ % ✓ - ✓ ✓ ✓

SSL/SFL (Ours) % ✓ On-average stability (ℓ2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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2 RELATED WORK

Split Learning. Split Learning (SL) partitions a network between clients and a server, exchang-
ing intermediate activations and gradients to preserve data privacy. Early work showed feasibility
in multi-agent and healthcare settings (Gupta & Raskar, 2018; Vepakomma et al., 2018), and later
comparisons with FL quantified communication and systems trade-offs. Two paradigms dominate:
SSL and SFL (Gupta & Raskar, 2018; Thapa et al., 2022). SSL forwards partially updated models
across clients, ensuring strict privacy and low per-round communication but incurring serialization
latency (Gupta & Raskar, 2018); SSL research established convergence under heterogeneity and ex-
posed privacy risks, prompting defenses against inference, label exposure, and model inversion (Li
& Lyu, 2023; Pasquini et al., 2021; Li et al., 2021; Titcombe et al., 2021; Erdogan et al., 2022); sys-
tems reduced cost via server-side gradient averaging and learning-rate acceleration (Pal et al., 2021).
SFL integrates FL-style parallelism with SL partitioning, enabling simultaneous client updates fol-
lowed by aggregation (Thapa et al., 2022; McMahan et al., 2017); it is effective in constrained and
wireless environments and admits convergence under heterogeneous, non-convex settings (Wu et al.,
2023; Lin et al., 2024; Han et al., 2024). Applications include large-scale vision pretraining, secure
learning under label-inference threats, and distributed LLM training via FedSLLM, federated split-
ting, and VFLAIR-LLM (Wang et al., 2023; Liu et al., 2024; Gao & Zhang, 2023; Zhao et al., 2024;
Zhang et al., 2025b; Gu et al., 2025); recent systems—Hourglass, Ampere, Protocol Models—refine
SFL with communication-efficient scheduling and model parallelism, improving scalability and ac-
curacy (He et al., 2025; Zhang et al., 2025a; Ramasinghe et al., 2025).

Stability and Generalization. Algorithmic stability has long been a critical avenue for understand-
ing generalization. Bousquet & Elisseeff (2002); Elisseeff et al. (2005) formalized uniform stability,
and Hardt et al. (2016) proved that stochastic gradient descent (SGD) is uniformly stable, leading to
extensions in non-convex settings, such as SGLD (Mou et al., 2018). Recent studies have applied
uniform stability to analyze stability in Federated Learning (FL) and decentralized Stochastic Gra-
dient Descent (D-SGD) (Sun et al., 2023; Wang et al., 2024; Liu et al., 2025), as well as stochastic
weight averaging (Wang et al., 2024) and federated systems with partial client participation (Zhang
et al., 2024). On-average stability, introduced by Lei & Ying (2020); Lei et al. (2023), has been
extended to higher generalization bounds of D-SGD (Bellet et al., 2024) and complex settings such
as heterogeneous federated learning and Byzantine-resilient D-SGD (Sun et al., 2024; Ye et al.,
2025a;b). Our work builds on ℓ2 on-average stability, which alleviates the reliance on the Lipschitz
condition, providing a more flexible tool for large-scale federated learning systems.

3 PRELIMINARIES

In this section, we present some notation and define the optimization and generakization in Sec 3.1,
describe the SL update rules in Sec 3.2. For a detailed nomenclature, please refer to Appendix A.

3.1 PROBLEM SETUP

We consider a set of clients M = {1, 2, . . . ,M}, each holding a private local distribution Dm

supported on Z . The objective of Split Learning is to learn a global model, parameterized by ω, that
minimizes the population risk, as defined by:

min
ω

R(ω) ≜
M∑

m=1

cm EZ∼Dm
[f(ω;Z)] , ω∗ = argmin

ω
R(ω).

Here, f denotes the loss function, and cm ∈ (0, 1] is a weight proportional to the dataset size of
client m (typically, cm = |Dm|∑M

k=1 |Dk|
), such that

∑M
m=1 cm = 1.

In practice, we solve this problem by a random algorithm A over empirical counterpart, computed
over M local datasets S ≜ (S1, . . . , SM ), where Sm = {Z1m, . . . , ZNm} denotes the dataset of
client m with Zim ∼ Dm. For simplicity, we assume all local datasets have the same size N ,
although our analysis can be extended to accommodate heterogeneous sizes. The corresponding
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empirical risk minimization problem is formulated as:

min
ω

RS(ω) ≜
M∑

m=1

cm RSm
(ω) ≜

1

N

M∑
m=1

N∑
n=1

cm f(ω;Znm), ω∗
S = argmin

ω
RS(ω).

Definition 3.1. Given a dataset S and a randomized algorithm as a map A : S → Ω, we define:

• Generalization error is defined as ϵgen = ES,A[R(A(S)) − RS(A(S))], i.e., the expected statis-
tical discrepancy between the population and empirical risk distributions.

• Excess generalization error is defined as ϵexc = ES,A[R(A(S)) − R(ω∗)], i.e., the expected
performance gap between the population risk and the global true minimizer.

• Optimization error is defined as ϵopt = ES,A[RS(A(S)) − RS(ω
∗
S)], i.e., the expected conver-

gence gap between the population risk and the empirical risk minimizer solution.

Furthermore, the excess generalization error ϵexc can be decomposed as follows:

ϵexc = ES,A [R(A(S))−RS(A(S))]︸ ︷︷ ︸
ϵgen

+ES,A [RS(A(S))−RS(ω
∗
S)]︸ ︷︷ ︸

ϵopt

+ES,A [RS(ω
∗
S)−R(ω∗)]︸ ︷︷ ︸

≤0

.

Thus, the excess generalization error combines optimization error and generalization error together.

3.2 ALGORITHM

Split Learning (SL) works by dividing a deep model into two parts at a designated cut layer, Lc:
the client-side model, consisting of the first Lc layers, and the server-side model, consisting of the
remaining layers. The training process consists of the following steps:

Client Forward Propagation. Each client performs a forward pass on its local model to compute
the smashed data (i.e., the activations at the cut layer). These activations, along with the correspond-
ing labels, are transmitted to the server. All clients operate in parallel during this step.

Server-Side Training. After receiving the smashed data, the server proceeds with the forward pass
on its portion of the model, computes the loss, and updates the server-side parameters. It also
computes the gradient respect to the cut-layer activations and sends this gradient back to the clients.

Client Backward Propagation. Each client receives the gradient signal from the server and uses
the chain rule to complete backpropagation on its local parameters, updating the client-side model.

After several steps of local training, model aggregation or parameter passing is performed among
the involved participants, ensuring consistent global model updates.

Two representative variants of this framework are commonly considered: (i) Sequential Split Learn-
ing (SSL) Gupta & Raskar (2018), in which clients train sequentially by passing the updated param-
eters from one to the next; and (ii) Split Federated Learning (SFL) Thapa et al. (2022), in which
clients train in parallel and the global model is aggregated using federated averaging. We now de-
scribe their aggregation mechanisms and update rules in detail.

3.2.1 SEQUENTIAL SPLIT LEARNING (SSL)

We present a concise version of SSL in Algorithm 1 to illustrate its update rules. At the start
of each training round, indices π1, π2, . . . , πM̃ are randomly sampled without replacement from
{1, 2, . . . ,M}, forming a random permutation that determines the M̃ involved clients’ training or-
der. In each round, the first client, π1, receives the current global parameter vector and performs
K steps of local updates using its local dataset. The updated local parameter is passed to the next
client, and this process continues until all clients complete their local training. Let ω(t,k)

m denote the
local parameter of client πm after k updates in round t, and let ω(t) and g

(t,k)
m represents the the

model parameter and the gradient of the loss function with respect to it. Using stochastic gradient
descent (SGD) as the local solver, the SSL update rule is as follows:

Local update: ω
(t,k+1)
m = ω

(t,k)
m − η

(t,k)
m g

(t,k)
πm , with initial ω

(t,0)
m =

{
ω(t), if m = 1,

ω
(t,K)
m−1 , if m > 1.

4
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Global aggregation: ω(t+1) = ω
(t,K)
πM .

3.2.2 SPLIT FEDERATED LEARNING (SFL)

In contrast to SSL, Split Federated Learning (SFL) shown in Algorithm 2 allows clients to train in
parallel. At the start of each communication round, every client downloads the latest global client-
side parameters. The clients then perform local training, interacting with the server through forward
and backward propagation, as described in the general SL framework. After K local epochs, the
server aggregates the client-side models using a weighted averaging scheme (e.g., FedAvg McMahan
et al. (2017)) to form the updated global client-side parameters. Partial participation is controlled
by the set M̃⊔, which includes the indices of the clients participating in round t. The server-side
models are also aggregated across clients to update the global server-side parameters. The update
rules for SFL are summarized as follows:

Local update: ω
(t,k+1)
m ← ω

(t,k)
m − η(t,k)g

(t,k)
m ,

Global aggregation:ω(t+1) ← ω(t)−
∑

m∈M̃⊔
cm
∑K

k=0 η
(t,k)g

(t,k)
m ,with

∑
m∈M̃⊔

cm = q ≤ 1
or more details about the two algorithms and their pseudocode, please refer to Appendix C.

4 THEORETICAL ANALYSIS

In this section, we provide the necessary assumptions in Sec 4.1, then study on-average model
stability bound and excess generalization bound of SSL and SFL in Sec 4.2. The discussion about
discovery and insight of theorems is contained in Sec 4.3.

4.1 ASSUMPTION

Assumption 4.1 (β-smoothness). The loss function f is β-smooth, i.e., there exists β > 0 such that
for all ω,ω′ ∈ Rd, z ∈ Z ,

∥∇f(ω; z)−∇f(ω′; z)∥2 ≤ β∥ω − ω′∥2.
Assumption 4.2 (Bounded Stochastic Gradient Variance). The stochastic gradients at each client
are unbiased, and their variance is bounded by σ2:

EZmn∥∇f(ω;Zmn)−∇RSm(ω)∥2 ≤ σ2,

for any agent m ∈M and ω ∈ Rd.
Assumption 4.3 (Bounded Heterogeneity). There exists ζ2 > 0 such that for any ζ ∈ Rd,

1

M

M∑
m=1

∥∇RSm
(ω)−∇RS(ω)∥2 ≤ ζ2,

Remark 4.1. The smoothness assumption is common uesd in stability analysis (Lei & Ying, 2020;
Sun et al., 2024; Bellet et al., 2024), and it is valid for many loss functions, such as logistic regres-
sion, softmax classifiers, and l2-norm regularized linear regression. The value of σ quantifies the
level of stochasticity, while a larger value of ζ2 indicates a degree of data heterogeneity.

4.2 STABILITY AND GENERALIZATION

First, we give the definition of on-average model stability as follows:
Definition 4.1 (ℓ2 On-average Model Stability). (Lei & Ying, 2020) Let S = (S1, . . . , SM )

with Sm = {Z1m, . . . , ZNm} and S̃ = (S̃1, . . . , S̃M ) with S̃m = {Z̃1m, . . . , Z̃Nm} be
two independent copies such that Zim ∼ Dm and Z̃im ∼ Dm. For any i ∈ {1, . . . , N}
and j ∈ {1, . . . ,M}, we define S(ij) = (S1, . . . , Sj−1, S

(i)
j , Sj+1, . . . , SM ), where S

(i)
j =

{Z1j , . . . , Zi−1j , Z̃ij , Zi+1j , . . . , ZNj} is the dataset formed from S by replacing the i-th element
of the j-th agent’s dataset with Z̃ij . Algorithm A is said to be l2 on-average model ε-stable if

ES,S̃,A

[
1

MN

N∑
i=1

M∑
j=1

∥A(S)−A(S(ij))∥22

]
≤ ε2.

5
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Remark 4.2. The definition of ℓ2 on-average model stability indicates how robust the algorithm is
to perturbations in the local datasets, which quantifies the sensitivity of the output model to the
replacement of individual data points in the datasets.
Theorem 4.1 (Generalization via on-average model stability). (Lei & Ying, 2020) LetA be an ℓ2 on-
average model ε-stable algorithm. If the convex loss function f(·; z) is nonnegative and β-smooth
for all z ∈ Z , we have the generalization bound with constant γ > 0:

ϵgen ≤ 1

2MNγ

N∑
i=1

M∑
j=1

ES,A
[
∥∇f(A(S);Zij)∥2

]
+

β + γ

2MN

N∑
i=1

M∑
j=1

ES,S̃,A

[
∥A(S)−A(S(ij))∥2

]
Theorem 4.2 (Generalization via on-average model stability). Assume that the loss function f(·, z)
is nonnegative and bounded in [0, 1], and that β-smoothness holds. For all i = 1, . . . , N and
j = 1, . . . ,M , let {ω(t)}Tt=0 and {ω̃(t)}Tt=0 denote the iterates for algorithms run on S and S(ij)

respectively, with∆t = ∥ω(t) − ω̃(t)∥22. Then, for every t0 ∈ {0, 1, . . . , T}, we have the following
bound for the generalization error with constant γ > 0:

ϵgen ≤ t0
MN

+
1

2MNγ

N∑
i=1

M∑
j=1

ES,A
[
∥∇f(A(S);Zij)∥2

]
+
β + γ

2MN

N∑
i=1

M∑
j=1

ES,S̃,A

[
∥A(S)−A(S(ij)) | ∆(t0) = 0∥2.

]
Remark 4.3. These theorem provides a generalization bound based on the smoothness and stability
of the algorithm. It suggests that the generalization error can be controlled by both the gradient
bound of the loss function and the stability of the algorithm under perturbations in the data.

According to the theorem, it suffices to control the on-average model stability of the algorithm A to
obtain the desired generalization bound. For each round t, we define basic block as below: St ≜∑K−1

k=0 η(t,k), Ht ≜
∑K−1

k=0

(
η(t,k)

)2
, Qt ≜

∑K−1
k=0

(
η(t,k)

)2∑k
s=0

(
η(t,s)

)2
, and let A⋆ ≜ σ2+

ζ2 + supt
∥∥∇RS(ω

(t))
∥∥2
2
, then we develop theorem below:

Theorem 4.3 (On-average model stability and generalization error for SSL in the convex case).
Under Assumptions 4.1–4.3, suppose that the loss function is convex, with step sizes {η(t,k)} ≤ 2

β .
Then the expected on-average model stability satisfies

1

MN

N∑
i=1

M∑
j=1

ES,S̃,A

[∥∥A(S)−A(S(ij))
∥∥2] ≤ 16 M̃ A⋆

MN T

(
T−1∑
t=0

Ht + 4β2
T−1∑
t=0

Qt

)
.

(i) For square-root decaying step sizes η(t,k) = 1√
tK+k+k0

, with k0 > 1:

ϵgen ≤ 4
√
3A⋆

√
M̃

MN T

√
1

k0 − 1
+

β2

K(k0 − 1)
+

8β M̃A⋆

MN T

[
1

k0 − 1
+ 2β2

(
1

K(k0 − 1)
+

1

3(k0 − 1)3

)]
.

(ii) For harmonically decaying step sizes η(t,k) = 1
tK+k+k0

, with k0 > 1:

ϵgen ≤ 4
√
3A⋆

√
M̃

MN T

√
1

k0 − 1
+

β2

K(k0 − 1)
+

8β M̃A⋆

MN T

[
1

k0 − 1
+ 2β2

(
1

K(k0 − 1)
+

1

3(k0 − 1)3

)]
.

Proof. See Appendix E.1.2 for the proof.

Corollary 4.1 (Excess Generalization Error). The preview work Li & Lyu (2023) provides an anal-
ysis of εopt. The convergence rate of SSL is dominated by O(1/

√
M̃KT ) when η ≤ Θ

(
1/(MK)

)
.

Therefore, the excess risk of SSL in the convex case satisfies εexc = O
(√

M̃
MN T

)
+ O

(
1

M̃ K T

)
.

Theorem 4.4 (On-average model stability and generalization error for SSL in the non-convex case).
Under Assumptions 4.1–4.3, suppose that the loss function is non-convex. Then the expected on-
average model stability of the output satisfies

1

MN

N∑
i=1

M∑
j=1

ES,S(ij),A

[∥∥A(S)−A(S(ij))
∥∥2
2

]
≤ 16 M̃ A⋆

MN (T − t0)

T−1∑
t=t0

e2βSt
(
Ht + 4β2Qt

)
+

t0
MN

.

6
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(i) For square-root decaying step sizes η(t,k) = 1√
tK+k+k0

with k0 > 1:

ϵgen ≲
(TK)

2β
1+2β

MN
+
8 M̃ A⋆

MN T
(TK)

β
1+2β

− 1
2 e 2β (TK)

1−β
2(1+2β)

+4A⋆

√
3M̃

βMN T
(TK)

β
2(1+2β)

− 1
4 e β (TK)

1−β
2(1+2β)

.

(ii) For harmonically decaying step sizes η(t,k) = 1
tK+k+k0

with k0 > 1:

ϵgen ≲
(TK)

2β
1+2β

MN
+

8β

1 + 2β
· M̃ A⋆ log T

MN T K
+ 4A⋆

√
3

1 + 2β

√
M̃ log T

MN T K
.

Proof. See Appendix E.1.3 for the proof.

Corollary 4.2 (Excess Generalization Error). According to the results in (Li & Lyu, 2023), let η ≤

Θ
(
1/(MK)

)
. Then the excess error is mainly goverment by: εexc = O

(
(TK)

2β
1+2β

MN

)
+O
(

1√
M̃KT

)
.

Theorem 4.5 (SFL On-Average Model Stability and Generalization in the Convex Case). Under
Assumptions 4.1–4.3, suppose the loss is convex and the step sizes satisfy {η(t,k)}K−1

k=0 ≤
2
β . Then

the on-average model stability of the averaged output satisfies

1

MN

N∑
i=1

M∑
j=1

ES,S(ij),A

[∥∥∥A(S)−A
(
S(ij)

)∥∥∥2] ≤ 16 q A⋆

MN(1− q)

(
T−1∑
t=0

Ht + 4β2
T−1∑
t=0

Qt

)
.

(i) For step sizes with square-root decay, η(t,k) = 1/
√
tK + k + k0 with k0 > 1:

ϵgen ≤ 4
√
3A⋆

√
q

MN(1− q)

(
log

TK + k0 − 1

k0 − 1
+

2β2(K + 1)

k0 − 1

)
+

8β q A⋆

MN(1− q)

(
log

TK + k0 − 1

k0 − 1
+

2β2(K + 1)

k0 − 1

)
.

(ii) For step sizes with harmonic decay, η(t,k) = 1/(tK + k + k0) with k0 > 1:

ϵgen ≤ 4
√
3A⋆

√
q

MN(1− q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
+

8β q A⋆

MN(1− q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
.

Proof. See Appendix E.2.2.

Corollary 4.3 (Excess Generalization Error). With the optimization results in (Han et al.,
2024) as well, the excess generalization error of SFL in non-convex case satisfies with the
εexc = Õ

(
q log(TK)
(1−q)MN

)
+ Õ

(
M√
T

)
.

Theorem 4.6 (SFL On-Average Model Stability and Generalization in the Non-Convex Case). Un-
der Assumptions 4.1–4.3, for any burn-in index t0∈{0, . . . , T − 1}, the on-average model stability
of the output satisfies

1

MN

N∑
i=1

M∑
j=1

ES,S(ij),A

[∥∥∥A(S)−A
(
S(ij)

)∥∥∥2] ≤ 16 q A⋆

MN(1− q)

T−1∑
t=t0

e2βSt

(
Ht + 4β2Qt

)
+

t0
MN

.

(i) For step sizes with square-root decay, η(t,k) = 1/
√
tK + k + k0 with k0 > 1:

ϵgen ≲
(TK)

2β
1+2β

MN
+

8 q A⋆

MN(1− q)
(TK)

β
1+2β K

1
2 e 2β (TK)

1−β
2(1+2β)

+ 4
√
3A⋆

√
q

βMN(1− q)
(TK)

β
2(1+2β)K

1
4 e β (TK)

1−β
2(1+2β)

.

(ii) For step sizes with harmonic decay, η(t,k) = 1/(tK + k + k0) with k0 > 1:

ϵgen ≲
(TK)

2β
1+2β

MN
+

2β A⋆

(1 + 2β)MN
· log T
TK

+
2
√
3A⋆√

(1 + 2β)MN
·
√

log T

TK
.

Proof. See Appendix E.2.3.

Corollary 4.4 (Excess Generalization Error). Similarly, from the convergence result in the (Han

et al., 2024), the excess generalization error satisfies εexc = Õ
(

(TK)
2β

1+2β

MN

)
+ Õ

(
1
3√
T

)
.
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4.3 DISCUSSION

Here we give some insight inside theorems and corollaries above :
Remark 4.4 (Influential Factors of the Generalization Error). Fixing model, loss, and dataset essen-
tially makes β, σ, and ζ constants throughout. Theorem bounds clearly suggest: (i) enlarging per-
client sample size N ; (ii) increasing the number of clients M ; (iii) reducing optimization distance to
shrink supt ∥∇RS(ω

(t))∥22 in A⋆; (iv) using a smaller stepsize η while still preserving convergence.
Choosing more i.i.d. data further lowers ζ and thereby tightens the bound significantly.
Remark 4.5 (Stepsize Choice). In convex problems, square-root and harmonic decay yield quite
similar leading-order bounds; thus square-root is usually simpler to tune effectively. In non-convex
settings, square-root’s cumulative step size causes e2βSt to blow up rapidly, destabilizing the train-
ing, while harmonic decay keeps the stability term bounded, thereby improving robustness. Though
square-root can sometimes speed early optimization (Li & Lyu, 2023; Han et al., 2024), harmonic
decay preserves tighter generalization and successfully avoids exponential growth.
Remark 4.6 (Impact of Participation). In SSL, longer gradient paths naturally amplify output sen-
sitivity: selecting M̃ clients per round adds gradients, so the bound usually grows with M̃ . SFL
averages gradients each round, maintaining better stability even with consistently high participation.
For convex cases, bounds typically scale with O

(
q

1−q

)
; smaller q generally improves the overall

generalization. In non-convex settings, participation effects drop down to lower-order terms.
Remark 4.7 (When to choose SSL or SFL). SSL’s per-round averaging suits large T and sparse edge
devices; SFL benefits dense participation by aggregating many diverse gradients. For very large T

with non-convex objectives, both achieve essentially the same leading rate Õ
(
(TK)

2β
1+2β /(MN)

)
;

practical gaps stem mainly from subtle step-size and aggregation nuances.

Due to the limint of pages, more discussion about comparison to other generalization bounds in
other multi agent algorithms (like FedAvg and D-SGD) is in Appendix C

5 EXPERIMENTAL RESULTS

In this Section, we validate our theory with classification experiments on logistic regression (Sec-
tion 5.1) and ResNet (Section 5.2), and study how key factors affect stability errors.

5.1 LOGISTIC REGRESSION

In the validation of the convex objectives, we adopt classical logistic regression problem to validate
the generalization in the training. We conduct experients on MINST dataset LeCun et al. (2002).

The experimental results in Figure 2 shows : (i) Square-root decay yields faster growth of instabil-
ity ∥ωt − ω′

t∥, whereas harmonic decay converges more gently (Fig. 2(a)(d)), consistent with our
theorem : slower decay suppresses cumulative perturbations and lowers ϵgen. (ii) With a constant
learning rate and fixed total iterations TK, increasing local updates K markedly amplifies instability
(Fig. 2(b)(e)), indicating larger client drift . (iii) Higher client participation consistently improves
stability (Fig. 2(c)(f)), mitigating gradient variance and drift accumulation.

5.2 RESNET-18

We also conduct the experiments on ResNet-18 He et al. (2016) with CIFAR-10Krizhevsky et al.
(2009) dataset to validate the properties in non-convex objectives.

The experimental results in Figure 3 shows : (i) Larger learning rates cause pronounced instabil-
ity ∥ωt − ω′

t∥ in both SSL and SFL (Fig. 3(a)(d)), confirming our on-average ℓ2 stability analysis:
slower decay or smaller steps better control parameter drift and reduce ϵgen. (ii) Increasing the
number of total client number markedly reduces instability and smooths the trajectories in SSL and
SFL (Fig. 3(b)(e)), as averaging across more clients lowers gradient variance and mitigates the im-
pact of heterogeneity ζ. (iii) Higher client participation consistently improves stability (Fig. 3(c)(f)),
mitigating gradient variance and drift accumulation. Overall, these non-convex results further val-

8
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Figure 2: Generalization errors for a convex objective.
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Figure 3: Generalization errors for a non-convex objective.

idate our stability bounds and show the same key levers—moderate learning rate, controlled local
updates, and broad participation—are essential for reducing ϵgen even beyond the convex case.

6 CONCLUSION

This paper provides the first comprehensive analysis of generalization error bounds for Split Learn-
ing (SL), focusing on Sequential Split Learning (SSL) and Split Federated Learning (SFL) in non-
convex settings. Using an on-average stability framework, we quantify model responses to perturba-
tions, offering generalization guarantees without assuming L-Lipschitz loss. Our findings highlight
how client drift, aggregation schemes, and data heterogeneity affect stability and generalization,
clarifying SSL and SFL behavior under different strategies. We show harmonic learning rate sched-
ules mitigate transient effects of square-root decay, enhancing convergence in both convex and non-
convex settings. Experiments on benchmark datasets validate our theoretical insights.

Limitation. The impact of cut layer placement on client drift and stability remains under-explored,
with limited research on its convergence properties, which is a key direction for future work.
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A APPENDIX: NOTATIONS

Table 2: Unified notation used throughout the paper.

Symbol Meaning

M, M Set of clients and its size: M = {1, . . . ,M}, M = |M|.
m, j Client index (m or j ∈ {1, . . . ,M}).
N, i Local sample count per client N ; sample index i ∈ {1, . . . , N}.
Dm, Z Data distribution of client m (Dm); sample space Z .
S, Sm Training set S = (S1, . . . , SM ); client-m dataset Sm = {Z1m, . . . , ZNm}.
S(ij) Neighbor dataset that differs from S only at client j’s i-th sample.
cm Aggregation weight with

∑
m cm = 1 (typically proportional to |Sm|).

f(ω; z) Per-sample loss function.
R(ω) Population risk: R(ω) =

∑
m cm EZ∼Dm [f(ω;Z)].

RS(ω), RSm(ω) Empirical risks: RS(ω) =
∑

m cmRSm(ω), where RSm(ω) = 1
N

∑N
n=1 f(ω;Znm).

ω⋆, ω⋆
S Population/empirical risk minimizers

εgen, εopt, εexc Generalization error, optimization error, and excess risk .
T, t Communication rounds and their index.
K, k Local steps per round and their index.
ηt,k, ηt, η Learning rates.
k0 Positive offset in the step-size schedule (k0 > 1).
β Smoothness constant.
σ2 Variance bound of stochastic gradients.
ζ2 Client heterogeneity measure.
L Lipschitz constant (only appears in referenced lemmas).
ω(t) Global parameter at round t (if round-averaged output is used: ω(T ) = 1

T

∑T
t=1 ω

(t)).
ω

(t,k)
m Client-m local parameter at step k in round t .

g
(t,k)
m g

(t,k)
m := ∇f(ω

(t,k)
m ;ZIt,k,m); for client/server shards g(t,k)C,m , g(t,k)S,m .

M̃ the number of active clients in per round .
π = (π1, . . . , πM̃ ) Random permutation in SSL;
Mt Active-client set in SFL at round t .
q Participation rate in SFL: q =

∑
m∈Mt

cm ≤ 1.
Lc Cut-layer index in split models.
ω

(t)
C , ω

(t)
S Client-/server-side parameters of the split model .

a
(t,k)
m , ∇a

(t,k)
m Smashed data (cut-layer activations) and its gradient.

A(·) Randomized learning algorithm .
∆t Parameter gap between two neighbor runs at round t: ∆t = ∥ω(t) − ω̃(t)∥2.
St, Ht, Qt Step-size aggregates: St =

∑
k ηt,k, Ht =

∑
k η

2
t,k, Qt =

∑
k η

2
t,k

∑
s≤k η

2
t,s.

Φt, Ψt(k) Φt =
∏

r(1 + βηt,r)
2, Ψt(k) =

∏K−1
r=k+1(1 + βηt,r)

2.
A⋆ Aggregated gradient-scale constant: A⋆ := σ2 + ζ2 + supt ∥∇RS(ω

(t))∥2 .
γ Tuning constant in converting stability to generalization bounds.
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B APPENDIX: MORE DETAILS ABOUT SPILT LEARNING

Algorithm 1 Sequential Split Learning (SSL)

1: Input: clients M = {1, . . . ,M}; rounds T ; local steps K; stepsizes {η(t,k)}; cut layer Lc;
datasets {Dm}

2: Initialize: global models ω(0)
C , ω(0)

S
3: for t = 0, . . . , T − 1 do
4: Sample permutation π = (π1, . . . , πM )

5: Set carry state: ω(t,0)
C,π1
←ω

(t)
C , ω

(t,0)
S,π1
←ω

(t)
S

6: for m = 1 to M̃ do

7: ω
(t,0)
s,πm ←

{
ω

(t)
s if m = 1

ω
(t,Kπm−1

)
s,πm−1 otherwise

ω
(t,0)
c,πm ←

{
ω

(t)
c,πm if m = 1

ω
(t,Kπm−1

)
c,πm−1 otherwise

8: for k = 0, . . . ,K − 1 do
9: Client πm forward: sample z

(t,k)
πm ∼Dπm

; compute a
(t,k)
πm = fwd

(
ω

(t,k)
C,πm

, z
(t,k)
πm ;Lc

)
;

send (a
(t,k)
πm , z

(t,k)
πm ) // Com.

10: Server πm fwd/bwd: evaluate f
(
ω

(t,k)
S,πm

; a
(t,k)
πm , z

(t,k)
πm

)
; backprop to get ∇a(t,k)πm ; send

∇a(t,k)πm // Com.
11: Client update: ω

(t,k+1)
C,πm

← ω
(t,k)
C,πm

− η(t,k) g
(t,k)
C,πm

12: Server update: ω
(t,k+1)
S,πm

← ω
(t,k)
S,πm

− η(t,k) g
(t,k)
S,πm

13: end for
14: end for
15: Round output: ω

(t+1)
C ←ω

(t,K)
C,πM̃

, ω
(t+1)
S ←ω

(t,K)
S,πM̃

; broadcast (ω(t+1)
C ,ω

(t+1)
S )

16: end for
17: Output: final models (ω(T )

C = 1
T

∑T
t=1 ω

(t)
C ,ω

(T )
S = 1

T

∑T
t=1 ω

(t)
S )

Algorithm 2 Split Federated Learning (SFL-V1)

1: Input: clients M = {1, . . . ,M}, rounds T , local steps K, stepsizes {η(t,k)}, cut layer Lc,
datasets {Dm}, aggregation weights {cm}Mm=1 with

∑
m cm = 1

2: Initialize: global models ω(0)
C , ω(0)

S ; set ω(0,0)
C,m ←ω

(0)
C , ω(0,0)

S,m ←ω
(0)
S for all m

3: for t = 0, . . . , T − 1 do
4: for k = 0, . . . ,K − 1 do
5: Client-side forward: for each m ∈ M, sample a set of samples S

(t,k)
m ∼ Dm, compute

a
(t,k)
m = fwd

(
ω

(t,k)
C,m , S

(t,k)
m ;Lc

)
and send (a

(t,k)
m , y

(t,k)
m ) to server // Com.

6: Server-side training: compute f
(
ω

(t,k)
S,m ; a

(t,k)
m , y

(t,k)
m

)
, backprop to get ∇a(t,k)m , update

ω
(t,k+1)
S,m = ω

(t,k)
S,m − η(t,k)g

(t,k)
S,m , send ∇a(t,k)m to client m // Com.

7: Client-side backward : update ω
(t,k+1)
C,m = ω

(t,k)
C,m − η(t,k)g

(t,k)
C,m using ∇a(t,k)m

8: end for
9: Model aggregation: ω(t+1)

C ←
∑M

m=1 cm ω
(t,K)
C,m , ω

(t+1)
S ←

∑M
m=1 cm ω

(t,K)
S,m

10: Broadcast: set ω(t+1,0)
C,m ←ω

(t+1)
C , ω

(t+1,0)
S,m ←ω

(t+1)
S for all m

11: end for
12: Output: final models (ω(T )

C ,ω
(T )
S )

15
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Algorithm 3 Split Federated Learning (SFL-V2)

1: Input: clientsM = {1, . . . ,M}, rounds T , local epochs E, stepsizes {η(t), η(t,e)}, cut layer
Lc, datasets {Dm}, aggregation weights {cm}Mm=1 with

∑
m cm = 1

2: Initialize: global models ω(0)
C , ω(0)

S ; set ω(0)
C,m←ω

(0)
C for all m

3: for t = 0, . . . , T − 1 do
4: Client-side forward (parallel): for each m∈M, sample a set of samples S(t)

m ∼Dm, compute
a
(t)
m = fwd

(
ω

(t)
C,m, S

(t)
m ;Lc

)
and send (a

(t)
m , y

(t)
m ) to server // Com.

5: Server-side sequential training: draw a random permutation πt overM;
for m in πt do compute f

(
ω

(t)
S ; a

(t)
m , y

(t)
m

)
, backprop to get∇a(t)m and server gradient g(t)

S ;

update ω
(t)
S ←ω

(t)
S − η(t)g

(t)
S , send ∇a(t)m to client m // Com.

6: Client-side backward (parallel, E epochs): for each m ∈M do for e = 1, . . . , E do use
∇a(t)m to compute g

(t,e)
C,m and update ω

(t)
C,m←ω

(t)
C,m − η(t,e)g

(t,e)
C,m

7: Model aggregation & broadcast: ω(t+1)
C ←

∑M
m=1 cm ω

(t)
C,m, ω

(t+1)
C,m ← ω

(t+1)
C ∀m

8: Carry server: set ω(t+1)
S ←ω

(t)
S

9: end for
10: Output: final models (ω(T )

C ,ω
(T )
S )

This subsection provides a structured explanation to complement Algorithms 1–3.

In Sequential Split Learning (SSL)Algorithms 1, clients are visited sequentially during each com-
munication round, following a random permutation. The client-side and server-side model slices are
carried along this sequence. At each visited client, the algorithm performs K forward and backward
steps, transmitting activations to the server and receiving activation gradients in return. The server
and client updates occur in lockstep, and the terminal state of the chain becomes the round output,
which is broadcast to all clients as the initialization for the subsequent round. There is no explicit
averaging across clients; rather, the contributions from the clients are combined along a single, time-
ordered trajectory. Under data heterogeneity, updates from earlier clients may induce drift relative
to later clients, but the synchronous, step-by-step updates along the chain progressively correct this
mismatch. The round output can thus be viewed as a temporal integration of client signals, consis-
tent with the on-average L2 stability perspective in which perturbations dissipate along the update
path.

In Split Federated Learning (SFL), the split-model approach is maintained, but with distinct time-
lines and aggregation points.

In Variant 1 (SFL-V1)2, clients train in parallel. Each client retains its own client-side slice paired
with a server-side slice, and all clients perform K local updates within a round. At the end of the
round, weighted averages of both slices are computed, producing new global client and server slices,
which are then broadcast to all clients. This end-of-round averaging reduces drift and ensures that all
clients begin the next round from the same initialization. The design increases wall-clock throughput
on sufficiently provisioned servers but necessitates the server retaining per-client server-side replicas
prior to aggregation.

Variant 2 (SFL-V2)2 differs primarily in the server update procedure. On the client side, V2 mirrors
V1: clients train in parallel, and client-side slices are averaged at the end of the round before being
broadcast. On the server side, however, there exists only a single global server model. Within a
round, the server processes client activations sequentially in a random order, updating the server
model after each client and returning the corresponding activation gradients to the clients. At the
end of the round, the server model is transferred to the next round without averaging. This approach
reduces the server’s memory footprint and enhances its responsiveness to recent cross-client signals,
while client-side averaging continues to mitigate drift. It is important to note that the update rule in
SFL-V2 is fundamentally consistent with that of SFL-V1. In both variants, each round is structured
by parallel client-side local updates, followed by end-of-round weighted averaging on the client
side; the primary distinction is whether the server utilizes in-round sequential updates (V2) or end-
of-round averaging of per-client replicas (V1). From the analytical framework employed in this
paper, this difference does not alter the treatment of the core quantities governing error propagation
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and dissipation under on-average L2 stability. To avoid redundancy, the main text provides detailed
derivations solely for SFL-V1.

C COMPARATIVE ANALYSIS

Table 3: Our generalization bounds under convex settings .

Algorithm Learning Rate Result (scaling)

SSL Õ
(

1√
tK+k

)
Õ

(√
M̃ (log(TK)+β2K)

MN T + β M̃ (log(TK)+β2K)
MN T

)
SSL Õ

(
1

tK+k

)
Õ

(√
M̃

MN T + β M̃
MN T

)
SFL Õ

(
1√

tK+k

)
Õ
(√

q (log(TK)+β2K)
MN (1−q) + β q (log(TK)+β2K)

MN (1−q)

)
SFL Õ

(
1

tK+k

)
Õ
(√

q
MN (1−q) + β q

MN (1−q)

)

Table 4: Our generalization bounds under non-convex settings.

Algorithm Learning Rate Result (scaling)
SSL Õ

(
1√

tK+k

)
Õ

(
(TK)

2β
1+2β

MN
+

M̃

MN T
(TK)

β
1+2β K

1
2 ec(TK)

1−β
2(1+2β)

)

+ Õ

√ M̃

MN T
(TK)

β
2(1+2β)K

1
4 e

c
2
(TK)

1−β
2(1+2β)


SSL Õ

(
1

tK+k

)
Õ

 (TK)
2β

1+2β

MN
+

M̃

MN TK
log T +

√
M̃ log T

MN TK


SFL Õ

(
1√

tK+k

)
Õ

(
(TK)

2β
1+2β

MN
+

q

MN(1− q)
(TK)

β
1+2β K

1
2 ec(TK)

1−β
2(1+2β)

)

+ Õ

(√
q

MN(1− q)
(TK)

β
2(1+2β)K

1
4 e

c
2
(TK)

1−β
2(1+2β)

)

SFL Õ
(

1
tK+k

)
Õ

(
(TK)

2β
1+2β

MN
+

q

MN(1− q)K
log T +

√
q log T

MN(1− q)K

)

Remark C.1 (Lower Generation Error ). In both convex and non-convex settings, SL algorithms
(SSL and SFL) exhibit lower generalization error compared to FedAvg and D-SGD. In convex set-

tings, SSL and SFL achieve bounds scaling as
√

1
T or 1

T , significantly outperforming FedAvg’s

slower terms (T 3/4, T 2/3) and D-SGD’s linear T scaling. In non-convex settings, SL bounds scale
with (TK)

2β
1+2β , which is tighter than FedAvg’s T 5/6 or T 3/4 and D-SGD’s T

β
β+1 , ensuring better

generalization as the number of iterations T increases.
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Table 5: Previous works under convex settings .

Algorithm Learning Rate Result (scaling)

FedAvg Sun et al. (2024) Õ
(

1
tK+k

)
Õ

(
T
N

ζ +
∆

1/4
0 T3/4

N(KM)1/4
+

∆
1/3
0 ζ1/6 T2/3

N
+

∆
1/2
0 T1/2

N
+ σT

n

)
D-SGD Bellet et al. (2024) Õ

(
1
t

)
Õ
(

T
MN

)
D-SGD (Strong Covex)Ye et al. (2025a) Õ

(
1
t

)
Õ
(

∆2
0

µMN
+ σ2

µMN
+ δ2

µMN

)
Table 6: Previous works under non-convex settings.

Algorithm Learning Rate Result (scaling)

FedAvg Sun et al. (2023) Õ
(

1
tK+k

)
Õ

(
1
N

(
M̃

β
1+β

M

)
(TK)

β
1+β

)
FedAvg Sun et al. (2024) Õ

(
1

tK+k

)
Õ

(
T

1
24 log T

N
(ζ + σ) +

(
∆0
KM

) 1
4 T

5
6

N
+
(
∆2

0ζ
) 1

6 T
3
4

N
+

√
∆0T

7
12

N

)
D-SGD Bellet et al. (2024) Õ

(
1
t

)
Õ

(
T

β
β+1

NM
1

β+1

)

Remark C.2 (Robustness to Heterogeneity and Noise). The generalization bounds of SSL and SFL
are less sensitive to initial conditions (∆0) and noise (σ) compared to FedAvg, which includes terms
dependent on these factors. SSL and SFL rely on parameters like β (data heterogeneity) and M̃ ,
providing robustness in heterogeneous or noisy federated learning environments. D-SGD’s strong
convex bound depends on the strong convexity parameter µ, limiting its applicability, whereas SL
algorithms are more general.

D APPENDIX: ADDITIONAL DEFINITION, TECHNICAL LEMMAS AND
PROPOSITIONS

Definition D.1. An update rule G(ω) is said to be ν-expansive if:

sup
ω,ω′

∥G(ω)−G(ω′)∥2
∥ω − ω′∥2

≤ ν.

Lemma D.1 (Expansivity of Gη,z ). (Hardt et al., 2016) If f is β-smooth, we have:

1. Gη,z(ω) is (1 + ηβ)-expansive;

2. Assume in addition that f(·; z) is convex and η < 2/β. Then Gη,z(ω) is 1-expansive;

Lemma D.2 (Growth Recursion). (Hardt et al., 2016) Fix an arbitrary sequence of gradient update
rule Gη1,z1 , . . . , GηT ,zT and another sequence Gη1,z′

1
, . . . , GηT ,z′

T
with same loss function f . Let

ω0 = ω′
0 be a starting point in Td and define δt = ∥ωt − ω′

t∥ where ωt,ω
′
t are defined recursively

through
ωt+1 = Gηt,zt(ωt), ω′

t+1 = Gη′
t,z

′
t
(ω′

t).

Then, we have the recurrence relation
δ0 = 0

δt+1 ≤
{
νδt if Gηt,zt = Gηt,z′

t
is ν-expansive

min{1, ν}δt + 2ηtL if f is L-Lipschitz and Gηt,zt is ν-expansive

Lemma D.3 (Gradient Bound). Let Assumptions 4.1, 4.2, and 4.3 hold. Denoting A⋆ ≜ δ2+ ζ2+

supt
∥∥∇RS(ω

(t))
∥∥2
2
, then for any round t, the (sample- and client-) averaged squared gradient at

the round reference ω(t) satisfies

1

MN

M∑
j=1

N∑
i=1

ES,A

[∥∥∥∇f(ω(t);Zji

)∥∥∥2] ≤ 3δ2 + 3ζ2 + 3∥∇RS(ω
(t))∥22 ≤ 3A⋆.
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Proof. Write the global and per-client empirical risks as RS(ω) =
1

MN

∑M
j=1

∑N
i=1 f(ω;Zji) and

RSj
(ω) = 1

N

∑N
i=1 f(ω;Zji). For each sample (j, i) at the common iterate ω(t), add and subtract

the client and global empirical gradients:

∇f(ω(t);Zji) =
(
∇f(ω(t);Zji)−∇RSj

(ω(t))
)

︸ ︷︷ ︸
(I)

+
(
∇RSj

(ω(t))−∇RS(ω
(t))
)

︸ ︷︷ ︸
(II)

+∇RS(ω
(t))︸ ︷︷ ︸

(III)

.

By the inequality ∥a+ b+ c∥2 ≤ 3(∥a∥2 + ∥b∥2 + ∥c∥2), we have:

1

MN

M∑
j=1

N∑
i=1

ES,A

[
∥∇f(ω(t);Zji)∥22

]
≤ 3

1

M

M∑
j=1

ES,A

[
EZ∼Sj

∥∇f(ω(t);Z)−∇RSj
(ω(t))∥22

]
︸ ︷︷ ︸

≤ δ2

+ 3
1

M

M∑
j=1

∥∇RSj (ω
(t))−∇RS(ω

(t))∥22︸ ︷︷ ︸
≤ ζ2

+3∥∇RS(ω
(t))∥22.

Here the first bound uses Assumption 4.2, the second uses Assumption 4.3, and the last term is
deterministic given S. This yields the claimed inequality.

Lemma D.4 (Local Gradient with Client Drift Bound). Under Assumptions 4.1–4.3, for any client
m, round t, and local step k, denoting

A⋆ ≜ δ2 + ζ2 + sup
t

∥∥∇RS(ω
(t))
∥∥2
2

, then the local stochastic gradient in split learning satisfies

∥g(t,k)m ∥22 ≤
(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)(
4δ2 + 4ζ2 + 4∥∇RS(ω

(t))∥22
)
≤ 4
(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)
A⋆.

Proof. Consider the local update at client m, ω
(t,k)
m = ω

(t,k−1)
m − η(t,k−1)g

(t,k−1)
m ,. For any

k ≥ 1, expand the squared distance to the round reference ω(t) and add/subtract ∇RSm(ω(t))
and ∇RS(ω

(t)):

∥ω(t) − ω(t,k)
m ∥22 =

∥∥∥ω(t) − ω(t,k−1)
m + η(t,k−1)g(t,k−1)

m

∥∥∥2
2

=
∥∥∥ω(t) − ω(t,k−1)

m + η(t,k−1)
(
g(t,k−1)
m −∇RSm

(ω(t)) +∇RSm
(ω(t))−∇RS(ω

(t)) +∇RS(ω
(t))
)∥∥∥2

2
.

Taking expectation over the sampling at step (t, k − 1) and using ∥a + b + c + d∥2 ≤ 4(∥a∥2 +
∥b∥2 + ∥c∥2 + ∥d∥2) gives

E
[
∥ω(t) − ω(t,k)

m ∥22
]
≤ ∥ω(t) − ω(t,k−1)

m ∥22 + 4
(
η(t,k−1)

)2(
σ2 + ζ2 + ∥∇RS(ω

(t))∥22
)
,

where σ2 bounds the stochastic variance of the local gradient around its client empirical mean and
ζ2 bounds the client–global gradient discrepancy (Assumption 4.3). Unrolling from k to 0 and using
ω

(t,0)
m = ω(t) yields

E
[
∥ω(t) − ω(t,k)

m ∥22
]
≤ 4

k∑
s=0

(
η(t,s)

)2(
σ2 + ζ2 + ∥∇RS(ω

(t))∥22
)
. (1)

Next, decompose g
(t,k)
m around the client/global empirical means at the same iterate ω

(t,k)
m and

around ω(t):

∥g(t,k)m ∥22 ≤ 4∥∇fm(ω(t,k)
m )−∇RSm

(ω(t,k)
m )∥22 + 4∥∇RSm

(ω(t,k)
m )−∇RSm

(ω(t))∥22
+ 4∥∇RSm

(ω(t))−∇RS(ω
(t))∥22 + 4∥∇RS(ω

(t))∥22.
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By β-smoothness (Assumption 4.1), ∥∇RSm
(ω

(t,k)
m ) − ∇RSm

(ω(t))∥2 ≤ β∥ω(t,k)
m − ω(t)∥2.

By bounded stochastic noise(Assumption 4.2) and inter-client heterogeneity (Assumption 4.3),
E∥∇fm(ω

(t,k)
m ) − ∇RSm(ω

(t,k)
m )∥22 ≤ δ2 and ∥∇RSm(ω(t)) − ∇RS(ω

(t))∥22 ≤ ζ2. Taking ex-
pectations, applying these bounds, and invoking equation 1, we obtain

E∥g(t,k)m ∥22 ≤ 4δ2 + 4β2 E∥ω(t) − ω(t,k)
m ∥22 + 4ζ2 + 4∥∇RS(ω

(t))∥22

≤ 4δ2 + 16β2
k∑

s=0

(
η(t,s)

)2(
σ2 + ζ2 + ∥∇RS(ω

(t))∥22
)
+ 4ζ2 + 4∥∇RS(ω

(t))∥22.

Finally, observe that 4δ2 + 16β2
∑k

s=0(η
(t,s))2 σ2 ≤

(
1 + 4β2

∑k
s=0(η

(t,s))2
)
· 4δ2, so, after

grouping terms,

E∥g(t,k)m ∥22 ≤
(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)(
4δ2 + 4ζ2 + 4∥∇RS(ω

(t))∥22
)
.

Dropping the expectation on the left-hand side yields the claimed bound.

E PROOF OF THEOREM

E.1 PROOF OF SSL

E.1.1 SETUP

Let S = {Zij : i ∈ [N ], j ∈ [M ]} denote the dataset, and let S(ij) be the neighboring dataset
obtained by replacing Zij with an independent copy Z̃ij . We run Sequential Split Learning (SSL)
on both S and S(ij) using the same internal randomness (e.g., client permutations and data indices).
Denote the global models after round t by ω(t) and ω̃(t), respectively, with ω(0) = ω̃(0). In each
round t, a random permutation π = (π1, . . . , πM ) of the clients is sampled, and M̃ ≤M clients
participate sequentially. Each active client m performs K local gradient descent steps starting from
the output of the previous client (sequential-pass rule):

ω(t,0)
π1

= ω(t), ω(t,0)
πm

= ω(t,K)
πm−1

(m > 1), ω(t+1) = ω(t,K)
πM̃

.

Define the outer-run distance ∆t := ∥ω(t)−ω̃(t)∥2, and the SSL outputs at round T by A(S) = ω(T )

and A(S(ij)) = ω̃(T ).

E.1.2 PROOF OF THEOREM 4.3 (SSL ON CONVEX CASE)

One-step local stability. For a fixed local step (t, k,m), write z = Z
I
(t,k)
πm , πm

and z′ = Z̃
I
(t,k)
πm , πm

.

By Lemma D.1, the GD update Φz,η(x) = x− η∇f(x; z) is 1-expansive when η(t,k) ≤ 2/β, hence

∥ω(t,k+1)
πm

− ω̃(t,k+1)
πm

∥2 ≤ ∥ω(t,k)
πm
− ω̃(t,k)

πm
∥2 + η(t,k)

∥∥∇f(ω̃(t,k)
πm

; z)−∇f(ω̃(t,k)
πm

; z′)
∥∥
2
. (2)

The second term is nonzero only when (I
(t,k)
πm , πm) = (i, j). Since (i, j) is uniform in MN samples,

the collision probability is 1/(MN). Using Young’s inequality and taking expectation yields

E∥ω(t,k+1)
πm

− ω̃(t,k+1)
πm

∥22 ≤ E∥ω(t,k)
πm
− ω̃(t,k)

πm
∥22 +

4(η(t,k))2

MN
E
∥∥∇f(ω(t,k)

πm
;Z

I
(t,k)
πm , πm

)
∥∥2
2
. (3)

Summing equation 3 over k = 0 to K − 1 and using ω
(t,0)
πm = ω(t), ω̃(t,0)

πm = ω̃(t) gives

E
[
∥ω(t,K)

πm
− ω̃(t,K)

πm
∥22
]
≤ E[∆2

t ] +
4

MN

K−1∑
k=0

(
η(t,k)

)2 E∥∥g(t,k)πm

∥∥2
2
, (4)

where g
(t,k)
πm := ∇f(ω(t,k)

πm ;Z
I
(t,k)
πm , πm

).
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Sequential pass with partial participation. Summing equation 4 over the active clients m =
1, . . . , M̃ (sequentially passed within round t) and using non-expansivity of the pass/aggregation,
we obtain

E[∆2
t+1] ≤ E[∆2

t ] +
4

MN

M̃∑
m=1

K−1∑
k=0

(η(t,k))2 E
∥∥g(t,k)πm

∥∥2
2

Lemma D.4
≤ E[∆2

t ] +
16M̃A⋆

MN

K−1∑
k=0

(
η(t,k)

)2(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)
. (5)

Define the blockwise sums Ht =
∑K−1

k=0 (η(t,k))2, Qt =
∑K−1

k=0 (η(t,k))2
∑k

s=0(η
(t,s))2. Then

E[∆2
t+1]− E[∆2

t ] ≤
16M̃A⋆

MN

(
Ht + 4β2Qt

)
. (6)

Averaged round T output. Summing equation 6 over t = 0, . . . , T − 1 and using ∆0 = 0, for
the averaged output ω(T ) = 1

T

∑T−1
t=0 ω(t), Jensen’s inequality implies

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≤ 1

T

T−1∑
t=0

E[∆2
t ] ≤

16M̃A⋆

MNT

T−1∑
t=0

(
Ht + 4β2Qt

)
. (7)

Evaluating two common step-sizes. (i) Square-root decay η(t,k) = 1√
tK+k+k0

(k0 > 1):
T−1∑
t=0

Ht ≤ log

(
TK + k0 − 1

k0 − 1

)
,

T−1∑
t=0

Qt ≤
K + 1

2(k0 − 1)
.

Substituting into equation 7 gives

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≤ 16M̃A⋆

MNT

[
log

(
TK + k0 − 1

k0 − 1

)
+

2β2(K + 1)

(k0 − 1)

]
. (8)

(ii) Harmonic decay η(t,k) = 1
tK+k+k0

(k0 > 1):
T−1∑
t=0

Ht ≤
1

k0 − 1
,

T−1∑
t=0

Qt ≤
1

2

(
1

K(k0 − 1)
+

1

3(k0 − 1)3

)
.

Substituting into equation 7 yields

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≤ 16M̃A⋆

MNT

[
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

]
. (9)

From stability to generalization. By Theorem 4.1, for any γ > 0,

ϵgen ≤
3A⋆

2γ
+

β

2
S +

γ

2
S, where S := E

∥∥∥ω(T ) − ω̃
(T )
∥∥∥2
2
.

Minimizing the RHS in γ gives γ⋆ =
√

3A⋆

S and

ϵgen ≤
β

2
S +

√
3A⋆S.

(i) Square-root decay. Using equation 8:

ϵgen ≤ 4
√
3A⋆

√
M̃

MN T

√
log

(
TK + k0 − 1

k0 − 1

)
+

2β2(K + 1)

k0 − 1
+

8β M̃A⋆

MN T

[
log

(
TK + k0 − 1

k0 − 1

)
+

2β2(K + 1)

k0 − 1

]
. (10)

(ii) Harmonic decay. Using equation 9:

ϵgen ≤ 4
√

3A⋆

√
M̃

MN T

√√√√ 1

k0 − 1
+ O

(
β2

K(k0 − 1)

)
+

8β M̃A⋆

MN T

[
1

k0 − 1
+ 2β

2

(
1

K(k0 − 1)
+

1

3(k0 − 1)3

)]
. (11)

This complete the proof.
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E.1.3 PROOF OF THEOREM 4.4 (SSL ON NON-CONVEX CASE)

Proof. Proof. We adopt the local update rule

ω(t,k+1)
πm

= ω(t,k)
πm
− η(t,k)g(t,k)πm

, ω(t,0)
πm

=

{
ω(t), m = 1,

ω
(t,K)
πm−1 , m > 1,

(12)

where in each round t the server hands the current model to the first active client and then passes the
updated model sequentially along the M̃ active clients.

One-step local stability after the burn-in index t0. Write ∆
(t,k)
πm := ω

(t,k)
πm − ω̃

(t,k)
πm . By

Lemma D.1, for stepsizes η(t,k), the one-step update is (1 + βη(t,k))-expansive. As in the con-
vex case, conditioning on whether the touched sample coincides gives

w.p. 1− 1
MN : ∥∆(t,k+1)

πm
∥22 ≤ (1 + βη(t,k))2∥∆(t,k)

πm
∥22, (13)

w.p. 1
MN : ∥∆(t,k+1)

πm
∥22 ≤ (1 + βη(t,k))2∥∆(t,k)

πm
∥22 + 4(η(t,k))2∥g(t,k)πm

∥22. (14)

Taking expectation over the internal randomness,

E
[
∥∆(t,k+1)

πm
∥22
]
≤ (1 + βη(t,k))2E

[
∥∆(t,k)

πm
∥22
]
+

4

MN
(η(t,k))2 E

[
∥g(t,k)πm

∥22
]
. (15)

Unrolling over local steps k = 0, . . . ,K − 1. Define the amplification factors

Φt :=

K−1∏
r=0

(
1 + βη(t,r)

)2
, Ψt(k) :=

K−1∏
r=k+1

(
1 + βη(t,r)

)2
(≤ Φt).

Iterating equation 49 yields, for each active client m,

E
[
∥∆(t,K)

πm
∥22
]
≤ Φt E

[
∥∆(t,0)

πm
∥22
]
+

4

MN

K−1∑
k=0

(η(t,k))2 Ψt(k)E
[
∥g(t,k)πm

∥22
]
. (16)

Using log(1 + x) ≤ x and (1 + x)2 ≤ e2x, with St :=
∑K−1

r=0 η(t,r),

Ψt(k) ≤ Φt = exp
(
2

K−1∑
r=0

log(1 + βη(t,r))
)
≤ e2βSt . (17)

Sequential pass with partial participation. Unrolling equation 16 over m = 1, . . . , M̃ yields a
linear accumulation of the noise terms (no extra exponential in M̃ ):

E
[
∥∆(t+1)∥22

]
= E

[
∥∆(t,K)

πM̃
∥22
]

≤ Φt E
[
∥∆T ∥22

]
+

4 e2βSt

MN

M̃∑
m=1

K−1∑
k=0

(η(t,k))2 E
[
∥g(t,k)πm

∥22
]

≤ Φt E
[
∥∆T ∥22

]
+

4 M̃ e2βSt

MN

K−1∑
k=0

(η(t,k))2 E
[
∥g(t,k)πm

∥22
]
. (18)

Averaging round T−t0 output. Assume a burn-in where the two runs coincide at t0, i.e., ∆(t0) =
0. Averaging equation 18 over t = t0, . . . , T − 1 and using equation 17 gives

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
=

1

T − t0

T−1∑
t=t0

E
[
∥∆(t+1)∥22

]
≤ 4 M̃

MN(T − t0)

T−1∑
t=t0

e2βSt

K−1∑
k=0

(η(t,k))2 E
[
∥g(t,k)πm

∥22
]
.

(19)

By Lemma D.4, for all (t, k), introduce

Ht :=

K−1∑
k=0

(
η(t,k)

)2
, Qt :=

K−1∑
k=0

(
η(t,k)

)2 k∑
s=0

(
η(t,s)

)2
.
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Then equation 19 becomes

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≤ 16 M̃ A⋆

MN(T − t0)

T−1∑
t=t0

e2βSt

(
Ht + 4β2Qt

)
. (20)

Generalization from on-average stability. By the standard stability-to-generalization conversion
(with a tunable γ > 0),

ϵgen = min
γ,t0

B(γ, t0) ≤
t0

MN
+

β + γ

2
E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
+

3A⋆

2γ
. (21)

We will use log(1 + x) ≤ x, (1 + x)2 ≤ e2x, and 1 + x ≤ ex for x ≥ 0.

(i) Square-root schedule η(t,k) =
1√

tK + k + k0
.

By Riemann-sum bounds,

St =

K−1∑
k=0

1√
tK + k + k0

≤ 2
(√

tK + k0 +K −
√
tK + k0

)
≤ K√

tK + k0
, (22)

and

Ht =

K−1∑
k=0

1

tK + k + k0
≤ log

tK + k0 +K

tK + k0
, Qt ≤ H2

t . (23)

Plugging equation 22–equation 23 into equation 20 gives

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≤ 16 M̃ A⋆

MN(T − t0)

T−1∑
t=t0

exp
(

2β K√
tK+k0

)(
K

tK+k0
+ 4β2 K2

(tK+k0)2

)
. (24)

With u = tK + k0 (du = K dt), u runs from u0 := t0K + k0 to U := TK + k0. Using the change
of variables v =

√
u and w = 2βK

v , we get the tidy bound

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2

≲
16 M̃ A⋆

βMN(T − t0)
·
√
u0

K
exp
(2β K
√
u0

)
, u0 = t0K + k0. (25)

Substitute t0 = (TK)
2β

1+2β for optimization of B(γ, t0). For large TK,
√
u0

K
≍ (TK)

β
1+2β− 1

2 ,
2βK
√
u0

= 2β (TK)
1−β

2(1+2β) .

Hence

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2

≲
16 M̃ A⋆

βMN T
(TK)

β
1+2β− 1

2 exp
(
2β (TK)

1−β
2(1+2β)

)
. (26)

Using equation 21 and T − t0 ≍ T , and minimizing B(γ, t0) at γ⋆ =

√
3A⋆/E∥ω(T ) − ω̃

(T )∥22,
we obtain

ϵgen ≲
(TK)

2β
1+2β

MN
+

8 M̃ A⋆

MN T
(TK)

β
1+2β

− 1
2 e 2β (TK)

1−β
2(1+2β)

+ 4A⋆

√
3M̃

βMN T
(TK)

β
2(1+2β)

− 1
4 e β (TK)

1−β
2(1+2β)

.

(27)

Compared with prior (incorrect) versions, the exponential factor no longer contains M̃ ; M̃ appears only linearly
in the prefactor.
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(ii) Harmonic schedule η(t,k) =
1

tK + k + k0
.

We have

St =

K−1∑
k=0

1

tK + k + k0
≤ log

tK + k0 +K

tK + k0
, Ht =

K−1∑
k=0

1

(tK + k + k0)2
≤ 1

tK + k0
, (28)

Qt ≤ H2
t ≤ 1

(tK + k0)2
. (29)

Thus

e2βSt ≤
(
tK + k0 +K

tK + k0

)2β

≤ exp

(
2β K

tK + k0

)
≤ 1 +

2β K

tK + k0
.

Plugging equation 29 into equation 20 and expanding gives

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≤ 16 M̃ A⋆

MN(T − t0)

T−1∑
t=t0

(
1

tK + k0
+

2β K

(tK + k0)2
+

4β2

(tK + k0)2
+

8β3 K

(tK + k0)3

)
.

(30)

With u = tK + k0 and the estimates
T−1∑
t=t0

1

tK + k0
≤ 1

K
log

T

t0
,

T−1∑
t=t0

1

(tK + k0)2
≤ 1

K u0
,

T−1∑
t=t0

1

(tK + k0)3
≤ 1

2K u2
0

, (31)

where u0 := t0K + k0, U := TK + k0, we obtain

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≤ 16 M̃ A⋆

MN(T − t0)

[
1

K
log

T

t0
+

2β

u0
+

4β2

K u0
+

4β3

u2
0

]
. (32)

Substitute t0 = (TK)
2β

1+2β for optimization. Noting u0 ≍ t0K = (TK)
2β

1+2β K and T − t0 ≍ T , the log
term dominates for large TK, and we get

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≲

16 M̃ A⋆

MN T K
· 1

1 + 2β
log T. (33)

Using equation 21 and γ⋆ =
√

3A⋆/S with S given by equation 33, we obtain

ϵgen ≲
(TK)

2β
1+2β

MN
+

8β

1 + 2β
· M̃ A⋆ log T

MN T K
+ 4A⋆

√
3

1 + 2β

√
M̃ log T

MN T K
. (34)

This complete the proof.

E.2 PROOF OF SFL

E.2.1 SETUP.

Let the training set be S = {Zij : i ∈ [N ], j ∈ [M ]}, with M clients each holding N examples.
Let S(ij) denote the neighbour dataset obtained from S by replacing the single example Zij with an
independent copy Z̃ij . Run the SFL algorithm on S and on S(ij) with identical internal randomness
(same seeds for client participation, permutations, and data indices). Denote the global models after
round t by ω(t) and ω̃(t), respectively, with common initialization ω(0) = ω̃(0). Within each round
t, client m performs K local gradient steps

ω(t,k+1)
m = ω(t,k)

m − η(t,k)∇fπm

(
ω(t,k)

m ;Z
I
(t,k)
m ,m

)
, k = 0, . . . ,K − 1,

where I
(t,k)
m ∈ [N ] is sampled uniformly (independently across t, k,m), and (π1, . . . , πM ) is the

client permutation for round t. Aggregation is by averaging over the active clients At (we write
Mt = |At|); for clarity we present full participation Mt = M (the partial-participation case fol-
lows mutatis mutandis with Mt). Assume the per-sample loss f(·; z) is β-smooth; when specified,
convexity is also assumed. Define the round-t discrepancy

∆t ≜
∥∥ω(t) − ω̃(t)

∥∥
2
.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.2.2 PROOF OF THEOREM 4.5 (SFL ON CONVEX CASE)

One-step local stability. Fix t, k,m. For brevity write z = Z
I
(t,k)
m ,m

and z′ = Z̃
I
(t,k)
m ,m

. Because

the gradient step map Φz,η(x) = x− η∇f(x; z) is 1-expansive for η(t,k) ≤ 2/β (Lemma D.1), we
have
∥ω(t,k+1)

m − ω̃(t,k+1)
m ∥2 =

∥∥Φz,η(t,k)(ω(t,k)
m )− Φz′,η(t,k)(ω̃(t,k)

m )
∥∥
2

≤
∥∥Φz,η(t,k)(ω(t,k)

m )− Φz,η(t,k)(ω̃(t,k)
m )

∥∥
2
+ η(t,k)

∥∥∇f(ω̃(t,k)
m ; z)−∇f(ω̃(t,k)

m ; z′)
∥∥
2

≤ ∥ω(t,k)
m − ω̃(t,k)

m ∥2 + η(t,k)
∥∥∇f(ω̃(t,k)

m ; z)−∇f(ω̃(t,k)
m ; z′)

∥∥
2
. (35)

The second term is nonzero only when the sampled pair (I(t,k)m ,m) coincides with the replaced index
(i, j). Since the replaced pair (i, j) is uniform over the MN samples, the probability of collision is
1/(MN). Using Young’s inequality yields for the second term in equation 35:

E
[
∥ω(t,k+1)

m − ω̃(t,k+1)
m ∥22

]
≤ E

[
∥ω(t,k)

m − ω̃(t,k)
m ∥22

]
+

4
(
η(t,k)

)2
MN

∥∥g(t,k)m

∥∥2
2
. (36)

Summing equation 36 over the K local steps and using ω
(t,0)
m = ω(t), ω̃(t,0)

m = ω̃(t) gives

E
[
∥ω(t,K)

m − ω̃(t,K)
m ∥22

]
≤ ∆2

t +
4

MN

K−1∑
k=0

(
η(t,k)

)2∥∥g(t,k)πm

∥∥2
2
. (37)

Aggregation over clients . Under partial participation (
∑M̃

m=1 cm = q ≤ 1), Jensen’s inequality
gives

E[∆2
t+1] = E

∥∥∥ M∑
m=1

cm
(
ω(t,K)

m − ω̃(t,K)
m

)∥∥∥2
2
≤

M∑
m=1

cm E
∥∥ω(t,K)

m − ω̃(t,K)
m

∥∥2
2

≤ q∆2
t +

4q

MN

K−1∑
k=0

(
η(t,k)

)2 ∥∥g(t,k)m

∥∥2
2

lem: D.4
≤ q∆2

t +
16q

MN

K−1∑
k=0

(
η(t,k)

)2(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)
A⋆. (38)

Train outer round T . Introduce the blockwise sums

Ht ≜
K−1∑
k=0

(
η(t,k)

)2
, Qt ≜

K−1∑
k=0

(
η(t,k)

)2 k∑
s=0

(
η(t,s)

)2
.

Then from equation 38,

E[∆2
t+1] ≤ q∆2

t +
16qA⋆

MN
Ht +

64qβ2A⋆

MN
Qt. (39)

Assume ∆0 = 0, telescope equation 39 from t = 0 to T − 1 to get

E
∥∥∥ω(T ) − ω̃

(T )
∥∥∥2
2
≤

T−1∑
t=0

E[∆2
t ] ≤

16qA⋆

MN(1− q)

T−1∑
t=0

Ht +
64qβ2A⋆

MN(1− q)

T−1∑
t=0

Qt. (40)

Let ak ≜ (η(t,k))2. Then

Qt =

K−1∑
k=0

ak

k∑
s=0

as =
∑

0≤s≤k≤K−1

asak =
1

2

((K−1∑
k=0

ak

)2
+

K−1∑
k=0

a2k

)
=

1

2

(
H 2

t +

K−1∑
k=0

(η(t,k))4

)
,

where we swap the summation order to symmetrize the (s, k) pairs.

Consequently,
1
2H

2
t ≤ Qt ≤ H 2

t .

This identity (and bounds) lets us express equation 40 purely in terms of Ht (plus a small quartic
correction), which simplifies step-size–specific evaluations.
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Evaluating Two common step-size. (i) For square-root decay step-size η(t,k) =
1√

tK + k + k0
.

Ht =

K−1∑
k=0

1

tK + k + k0
and

T−1∑
t=0

Ht =

TK−1∑
n=0

1

n+ k0
≤ log

(TK + k0 − 1

k0 − 1

)
.

For each block t we also have the elementary bound:

Ht ≤ log
( tK +K + k0 − 1

tK + k0 − 1

)
≤ K

tK + k0 − 1
,

where we used log(1 + x) ≤ x.

Consequently,
T−1∑
t=0

H2
t ≤

T−1∑
t=0

K2

(tK + k0 − 1)2
≤ K

k0 − 1
, (41)

the last inequality following from the comparison of the arithmetic progression tK + k0 − 1 with
the harmonic tail and the bound

∑
n≥b n

−2 ≤ 1/(b− 1) for b > 1.

For the fourth-order terms,
T−1∑
t=0

K−1∑
k=0

(η(t,k))4 =

T−1∑
t=0

K−1∑
k=0

1

(tK + k + k0)2
=

TK−1∑
n=0

1

(n+ k0)2
≤ 1

k0 − 1
.

Then we get:
T−1∑
t=0

Qt ≤
1

2

( T−1∑
t=0

H2
t +

T−1∑
t=0

K−1∑
k=0

(η(t,k))4
)
≤ K + 1

2(k0 − 1)
. (42)

Plugging equation 41 and equation 42 into equation 40 yields the explicit squared stability bound
for the square-root schedule:

E
[
∆2

T

]
≤ 16qA⋆

MN(1− q)

(
log
(TK + k0 − 1

k0 − 1

)
+

2β2(K + 1)

(k0 − 1)

)
. (43)

(ii) For harmonic decay step-size η(t,k) =
1

tK + k + k0
. Now

(
η(t,k)

)2
= 1

(tK+k+k0)2
.

Ht =

K−1∑
k=0

1

(tK + k + k0)2
≤
∫ tK+K+k0−1

tK+k0−1

dx

x2
=

1

tK + k0 − 1
− 1

tK +K + k0 − 1
.

Summing t = 0, . . . , T − 1 yields
T−1∑
t=0

Ht ≤
1

k0 − 1
− 1

TK + k0 − 1
≤ 1

k0 − 1
. (44)

T−1∑
t=0

H2
t ≤

T−1∑
t=0

1

(tK + k0 − 1)2
≤ 1

K(k0 − 1)
,

T−1∑
t=0

K−1∑
k=0

(η(t,k))4 =

TK−1∑
n=0

1

(n+ k0)4
≤

∞∑
n=k0

1

n4
≤ 1

3(k0 − 1)3
,

Therefore,
T−1∑
t=0

Qt ≤
1

2

( 1

K(k0 − 1)
+

1

3(k0 − 1)3

)
. (45)

Substituting equation 44 and equation 45 into equation 40 yields the explicit squared stability bound
for the harmonic schedule:

E
[
∆2

T

]
≤ 16qA⋆

MN(1− q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
. (46)
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From stability to generalization. By Theorem ??, to obtain the tightest bound, minimize the
right-hand side with respect to γ > 0. The generalization bound is then

min
γ

B(γ) =
3A⋆

2γ
+

β + γ

2
E
[
∆2

T

]
, γ∗ =

√
3A⋆

E
[
∆2

T

] .
(i) For square-root decay, using equation 43, the generalization bound is

ϵgen ≤ 4
√
3A⋆

√√√√ q

MN(1 − q)

(
log

TK + k0 − 1

k0 − 1
+

2β2(K + 1)

k0 − 1

)
+

8β q A⋆

MN(1 − q)

(
log

TK + k0 − 1

k0 − 1
+

2β2(K + 1)

k0 − 1

)
.

For large T,K,M and constant k0:

ϵgen ≤ Õ

(√
q (log(TK) + β2K)

MN(1− q)
+

β q (log(TK) + β2K)

MN(1− q)

)
.

(ii) For harmonic decay, using equation 46, the generalization bound is

ϵgen ≤ 4
√
3A⋆

√√√√ q

MN(1 − q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
+

8β q A⋆

MN(1 − q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
.

For large K and constant k0:

ϵgen ≤ Õ

(√
q

NM(1− q)
+

β q

NM(1− q)

)
.

This completes the proof.

E.2.3 PROOF OF THEOREM 4.6 (SFL ON NON-CONVEX CASE)

One-step local stability after the burn-in index t0. Write ∆
(t,k)
m := ω

(t,k)
m − ω̃

(t,k)
m . Under

Assumption 4.1 and Lemma D.1, the one-step update is (1 + βη(t,k))-expansive. Conditioning on
whether the touched sample coincides:

w.p. 1− 1
MN : ∥∆(t,k+1)

m ∥22 ≤ (1 + βη(t,k))2∥∆(t,k)
m ∥22, (47)

w.p. 1
MN : ∥∆(t,k+1)

m ∥22 ≤ (1 + βη(t,k))2∥∆(t,k)
m ∥22 + 4(η(t,k))2∥g(t,k)m ∥22. (48)

Taking expectation:

E
[
∥∆(t,k+1)

m ∥22
]
≤ (1 + βη(t,k))2E

[
∥∆(t,k)

m ∥22
]
+

4

MN
(η(t,k))2 E

[
∥g(t,k)m ∥22

]
. (49)

Unrolling over local steps k = 0, . . . ,K − 1. Define

Φt :=

K−1∏
r=0

(
1 + βη(t,r)

)2
, Ψt(k) :=

K−1∏
r=k+1

(
1 + βη(t,r)

)2
(≤ Φt).

Iterating equation 49 yields

E
[
∥∆(t,K)

m ∥22
]
≤ Φt E

[
∥∆(t,0)

m ∥22
]
+

4

MN

K−1∑
k=0

(η(t,k))2 Ψt(k)E
[
∥g(t,k)πm

∥22
]
. (50)

With St :=
∑K−1

k=0 η(t,k) and using log(1 + x) ≤ x, (1 + x)2 ≤ e2x,

Ψt(k) ≤ Φt = exp
(
2

K−1∑
r=0

log(1 + βη(t,r))
)
≤ exp

(
2

K−1∑
r=0

βη(t,r)
)
= e2βSt . (51)
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Aggregation over active clients. Let the server aggregate by weighted averaging ω̄(t,K) :=∑
m∈Mt

cm ω
(t,K)
m with cm ≥ 0,

∑
m∈Mt

cm = q ≤ 1, and ω(t+1) := ω̄(t,K). By Jensen’s
inequality and equation 50,

E
[
∥∆(t+1)∥22

]
= E

[∥∥∥ ∑
m∈Mt

cm
(
ω(t,K)

m − ω̃(t,K)
m

)∥∥∥2
2

]
≤

∑
m∈Mt

cm E
[
∥∆(t,K)

m ∥22
]

≤ qΦt E
[
∥∆t∥22

]
+

4q

MN

K−1∑
k=0

(η(t,k))2 Ψt(k)E
[
∥g(t,k)πm

∥22
]
. (52)

Accumulating from t0 (with ∆(t0) = 0) to T − 1 and summing the geometric factor coming from
qΦt gives

E
[
∥∆T ∥22

]
=

T−1∑
t=t0

E
[
∥∆(t+1)∥22

]

≤ 4q

MN(1− q)

T−1∑
t=t0

e2βSt

K−1∑
k=0

(η(t,k))2 E
[
∥g(t,k)πm

∥22
]
. (53)

By Lemma D.4, define Ht :=
∑K−1

k=0

(
η(t,k)

)2
, Qt :=

∑K−1
k=0

(
η(t,k)

)2∑k
s=0

(
η(t,s)

)2
. Then

from equation 53,

E
[
∥∆T ∥22

]
≤ 16qA⋆

MN(1− q)

T−1∑
t=t0

e2βSt

(
Ht + 4β2Qt

)
. (54)

Generalization via stability. For any γ > 0 and burn-in t0,

ϵgen = min
γ,t0

{ t0
MN

+
β + γ

2
E
[
∥∆T ∥22

]
+

3A⋆

2γ

}
. (55)

It remains to bound St, Ht, Qt.

(i) Square-root schedule η(t,k) =
1√

tK + k + k0
. Using St ≤ K√

tK+k0
, Ht ≤ K

tK+k0
, Qt ≤

K2

(tK+k0)2
, equation 54 becomes

E
[
∥∆T ∥22

]
≤ 16qA⋆

MN(1− q)

T−1∑
t=t0

exp
(

2βK√
tK+k0

)(
K

tK+k0
+ 4β2 K2

(tK+k0)2

)
. (56)

Let u = tK + k0 (du = K dt) and v =
√
u. As in the SSL analysis, one obtains∫ U

u0

exp
(

2βK√
u

)(
K
u + 4β2K2

u2

)
du ≲

2K
√
u0

β
e

2βK√
u0 , u0 := t0K + k0, U := TK + k0.

(57)

Therefore

E
[
∥∆T ∥22

]
≲

16qA⋆

βMN(1− q)

√
u0 exp

(2βK
√
u0

)
. (58)

Choosing t0 = (TK)
2β

1+2β gives

√
u0 ≍ (TK)

β
1+2β K1/2,

2βK
√
u0

= 2β (TK)
1−β

2(1+2β) .
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Hence

E
[
∥∆T ∥22

]
≲

16qA⋆

βMN(1− q)
(TK)

β
1+2β K

1
2 exp

(
2β (TK)

1−β
2(1+2β)

)
. (59)

Using equation 55 with γ⋆ =
√
3A⋆/E∥∆T ∥2,

ϵgen ≲
(TK)

2β
1+2β

MN
+

8qA⋆

MN(1 − q)
(TK)

β
1+2β K

1
2 e

2β (TK)

1−β
2(1+2β)

+ 4
√
3A⋆

√
q

β MN(1 − q)
(TK)

β
2(1+2β) K

1
4 e

β (TK)

1−β
2(1+2β)

.

(60)

(ii) Harmonic schedule η
(t,k)

=
1

tK + k + k0

. Here St ≤ log
( tK+k0+K

tK+k0

)
, Ht ≤ 1

tK+k0
, Qt ≤ 1

(tK+k0)2
, and e2βSt ≤

exp
( 2βK
tK+k0

)
≤ 1 + 2βK

tK+k0
. Summing by integral comparison gives, with u0 := t0K + k0 ,

T−1∑
t=t0

1

tK + k0

≤
1

K
log

T

t0
,

T−1∑
t=t0

1

(tK + k0)2
≤

1

K u0

,

T−1∑
t=t0

1

(tK + k0)3
≤

1

2K u2
0

. (61)

Thus

E
[
∥∆T ∥22

]
≤

4qA⋆

MN(1 − q)

[
1

K
log

T

t0
+

2β

u0

+
4β2

K u0

+
4β3

u2
0

]
. (62)

Choose t0 = (TK)
2β

1+2β , so that the log term dominates:

E
[
∥∆T ∥22

]
≲

4qA⋆

MN(1 − q)
·

1

K
·

1

1 + 2β
log T. (63)

Plugging equation 63 into equation 55 with γ⋆ yields

ϵgen ≲
(TK)

2β
1+2β

MN
+

2β

1 + 2β
· qA⋆ log T

MN(1− q)K
+ 2A⋆

√
3q

(1 + 2β)MN(1− q)K

√
log T . (64)

This complete the proof.
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