
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STABILITY AND GENERALIZATION OF SPLIT LEARN-
ING: SEQUENTIAL AND FEDERATED

Anonymous authors
Paper under double-blind review

ABSTRACT

Split Learning (SL) has emerged as a practical paradigm for training large models
under privacy and systems constraints, showing strong performance on hetero-
geneous data and aligning well with LLM-era workloads. However, while con-
vergence analyses for SL algorithms such as Sequential Split Learning (SSL)
and Split Federated Learning (SFL) are well-established, their generalization
bounds, especially those dependent on iteration-specific factors, remain largely
unexplored, hindered by challenges like client drift and biased gradient estimates.
In this work, we introduce the first theoretical framework for analyzing the gen-
eralization error of SL algorithms, leveraging an on-average stability approach to
account for both local update drift and aggregation-induced errors. Our frame-
work provides a novel connection between optimization and generalization, re-
vealing how SSL and SFL differ in their stability profiles and generalization be-
havior. Specifically, we demonstrate that SSL excels in sparse client participation
and long-horizon training, while SFL benefits from balanced participation in non-
convex regimes, offering a clear guide for selecting the appropriate aggregation
strategy. By deriving precise stability bounds for both convex and non-convex set-
tings, we provide deep insights into the role of data heterogeneity, client drift, and
aggregation mechanisms in SL. Extensive experiments on MNIST and CIFAR-10
benchmarks validate our theoretical predictions, highlighting the robustness and
applicability of our framework across a range of practical scenarios.

1 INTRODUCTION

Pipeline parallelism is a key strategy for scaling large models, enabling efficient training and fine-
tuning on edge devices. Split Learning (SL), a fundamental approach, partitions a neural network
between clients and a central server, exchanging intermediate activations and gradients instead of
raw data. This design mitigates data heterogeneity by enabling collaborative training across diverse
data distributions without sharing raw data, while inherently enhancing privacy protection. SL is
thus well-suited for privacy-sensitive applications like large language models (LLMs) (Zhao et al.,
2024; Zhang et al., 2025b; He et al., 2025). As illustrated in 1, SL has inspired frameworks like
Sequential Split Learning (SSL) (Gupta & Raskar, 2018) and Split Federated Learning (SFL) (Thapa
et al., 2022) for deploying LLMs on edge devices with privacy-preserving features. In SSL, the
model is sequentially passed among clients, with aggregation after each update. Conversely, SFL
trains client-server splits in parallel, aggregating results per round, which enhances parallelism and
accelerates convergence. These aggregation strategies provide distinct scalability and performance
trade-offs based on application and participation constraints.

Despite significant advances in Split Learning (SL), the generalization properties—especially
iterate-dependent bounds—have received limited study. While convergence analyses for Sequen-
tial Split Learning (SSL) and Split Federated Learning (SFL) are well established (Li & Lyu, 2023;
Han et al., 2024), deriving iterate-dependent guarantees remains difficult due to SL-specific factors.
First, data heterogeneity combined with partial model splits and cut layers yields biased gradients
relative to end-to-end training. Second, SSL’s sequential aggregation and SFL’s parallel aggregation
introduce randomness and client drift, altering optimization stability. Hence, precise measurement
of client drift i.e., discrepancies in client updates induced by these aggregation schemes , is required.
These issues motivate a tailored, algorithm-dependent stability analysis for SL.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Sequential Split Learning (SSL). (b) Split Federated Learning (SFL).

Figure 1: Overviews of Split Learning paradigms.

In this paper, we propose an algorithm-dependent, on-average model stability framework (Lei &
Ying, 2020) that quantifies a model’s stability with single-sample perturbations. Under mild as-
sumptions and two common step-size schedules, our method mirrors Split Learning’s gradient flow,
embedding per-round stability analysis. Specifically, we quantify (i) local update drift at each client
and (ii) aggregation effects in Sequential Split Learning (SSL) and Split Federated Learning (SFL),
then combine them to assess stability over training for both convex and smooth non-convex settings.

Our results yield key insights: in the non-convex case, both SSL and SFL achieve a clean 1/(MN)
scaling with sublinear dependence on TK. In SSL, correction terms depend on the number of
active clients, and the method remains robust under sparse or bursty participation. By contrast,
SFL performs better when participation is moderate and stable across clients. Harmonic step-size
schedules also suppress the exponential transients associated with square-root decay.

Our Contributions.

• First work about stability and generalization in split learning. We develop an algorithm-dependent
stability calculus without L-Lipschitz loss assumptions, linking optimization to generalization.
For harmonic and square-root learning rate decays, our bounds clarify how β, T , K, M , N ,
heterogeneity ζ, and participation q, M̃ affect generalization (Table 1).

• Choosing SSL or SFL. We analyze SSL (sequential) and SFL (parallel) aggregation, showing their
impact on stability and generalization. SSL suits sparse availability (low M̃) and convex objectives
with large T . SFL excels in heterogeneous, non-convex systems with high client participation.

• Experimental Validation. We provide numerical experiments on MNIST with logistic regression
on convex case and on CIFAR-10 with ResNet-18 on non-convex case to validate our theory. The
preliminary results are consistent with our theoretical insights.

Table 1: Summary of Assumptions, Stability Tools, and Dependencies for Various Algorithms. LL:
L-Lipschitz loss (or bounded gradients); SM: β-smooth; M : number of clients; N : number of
samples per client; M̃ : active clients per round (SSL); q: participation rate (SFL); T : number of
rounds; K: local steps; η: stepsize; σ: stochastic noise; ζ: heterogeneity.

Algorithm LL SM Stability Tool M N M̃/q T K η σ ζ

FedAvg Sun et al. (2023) % ✓ Uniform stability ✓ ✓ ✓ ✓ ✓ ✓ ✓ %

FedAvg Sun et al. (2024) ✓ ✓ On-average stability (ℓ1) ✓ ✓ % ✓ % ✓ ✓ ✓

D-SGD Bellet et al.
(2024)

✓ ✓ On-average stability (ℓ1) ✓ ✓ % ✓ - ✓ % %

D-SGD Ye et al. (2025a) ✓ ✓ On-average stability (ℓ1) ✓ ✓ % ✓ - ✓ ✓ ✓

SSL/SFL (Ours) % ✓ On-average stability (ℓ2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Split Learning. Split Learning (SL) partitions a network between clients and a server, exchang-
ing intermediate activations and gradients to preserve data privacy. Early work showed feasibility
in multi-agent and healthcare settings (Gupta & Raskar, 2018; Vepakomma et al., 2018), and later
comparisons with FL quantified communication and systems trade-offs. Two paradigms dominate:
SSL and SFL (Gupta & Raskar, 2018; Thapa et al., 2022). SSL forwards partially updated models
across clients, ensuring strict privacy and low per-round communication but incurring serialization
latency (Gupta & Raskar, 2018); SSL research established convergence under heterogeneity and ex-
posed privacy risks, prompting defenses against inference, label exposure, and model inversion (Li
& Lyu, 2023; Pasquini et al., 2021; Li et al., 2021; Titcombe et al., 2021; Erdogan et al., 2022); sys-
tems reduced cost via server-side gradient averaging and learning-rate acceleration (Pal et al., 2021).
SFL integrates FL-style parallelism with SL partitioning, enabling simultaneous client updates fol-
lowed by aggregation (Thapa et al., 2022; McMahan et al., 2017); it is effective in constrained and
wireless environments and admits convergence under heterogeneous, non-convex settings (Wu et al.,
2023; Lin et al., 2024; Han et al., 2024). Applications include large-scale vision pretraining, secure
learning under label-inference threats, and distributed LLM training via FedSLLM, federated split-
ting, and VFLAIR-LLM (Wang et al., 2023; Liu et al., 2024; Gao & Zhang, 2023; Zhao et al., 2024;
Zhang et al., 2025b; Gu et al., 2025); recent systems—Hourglass, Ampere, Protocol Models—refine
SFL with communication-efficient scheduling and model parallelism, improving scalability and ac-
curacy (He et al., 2025; Zhang et al., 2025a; Ramasinghe et al., 2025).

Stability and Generalization. Algorithmic stability has long been a critical avenue for understand-
ing generalization. Bousquet & Elisseeff (2002); Elisseeff et al. (2005) formalized uniform stability,
and Hardt et al. (2016) proved that stochastic gradient descent (SGD) is uniformly stable, leading to
extensions in non-convex settings, such as SGLD (Mou et al., 2018). Recent studies have applied
uniform stability to analyze stability in Federated Learning (FL) and decentralized Stochastic Gra-
dient Descent (D-SGD) (Sun et al., 2023; Wang et al., 2024; Liu et al., 2025), as well as stochastic
weight averaging (Wang et al., 2024) and federated systems with partial client participation (Zhang
et al., 2024). On-average stability, introduced by Lei & Ying (2020); Lei et al. (2023), has been
extended to higher generalization bounds of D-SGD (Bellet et al., 2024) and complex settings such
as heterogeneous federated learning and Byzantine-resilient D-SGD (Sun et al., 2024; Ye et al.,
2025a;b). Our work builds on ℓ2 on-average stability, which alleviates the reliance on the Lipschitz
condition, providing a more flexible tool for large-scale federated learning systems.

3 PRELIMINARIES

In this section, we present some notation and define the optimization and generakization in Sec 3.1,
describe the SL update rules in Sec 3.2. For a detailed nomenclature, please refer to Appendix A.

3.1 PROBLEM SETUP

We consider a set of clients M = {1, 2, . . . ,M}, each holding a private local distribution Dm

supported on Z . The objective of Split Learning is to learn a global model, parameterized by ω, that
minimizes the population risk, as defined by:

min
ω

R(ω) ≜
M∑

m=1

cm EZ∼Dm
[f(ω;Z)] , ω∗ = argmin

ω
R(ω).

Here, f denotes the loss function, and cm ∈ (0, 1] is a weight proportional to the dataset size of
client m (typically, cm = |Dm|∑M

k=1 |Dk|
), such that

∑M
m=1 cm = 1.

In practice, we solve this problem by a random algorithm A over empirical counterpart, computed
over M local datasets S ≜ (S1, . . . , SM), where Sm = {Z1m, . . . , ZNm} denotes the dataset of
client m with Zim ∼ Dm. For simplicity, we assume all local datasets have the same size N ,
although our analysis can be extended to accommodate heterogeneous sizes. The corresponding

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

empirical risk minimization problem is formulated as:

min
ω

RS(ω) ≜
M∑

m=1

cm RSm
(ω) ≜

1

N

M∑
m=1

N∑
n=1

cm f(ω;Znm), ω∗
S = argmin

ω
RS(ω).

Definition 3.1. Given a dataset S and a randomized algorithm as a map A : S → Ω, we define:

• Generalization error is defined as ϵgen = ES,A[R(A(S)) − RS(A(S))], i.e., the expected statis-
tical discrepancy between the population and empirical risk distributions.

• Excess generalization error is defined as ϵexc = ES,A[R(A(S)) − R(ω∗)], i.e., the expected
performance gap between the population risk and the global true minimizer.

• Optimization error is defined as ϵopt = ES,A[RS(A(S)) − RS(ω
∗
S)], i.e., the expected conver-

gence gap between the population risk and the empirical risk minimizer solution.

Furthermore, the excess generalization error ϵexc can be decomposed as follows:

ϵexc = ES,A [R(A(S))−RS(A(S))]︸ ︷︷ ︸
ϵgen

+ES,A [RS(A(S))−RS(ω
∗
S)]︸ ︷︷ ︸

ϵopt

+ES,A [RS(ω
∗
S)−R(ω∗)]︸ ︷︷ ︸

≤0

.

Thus, the excess generalization error combines optimization error and generalization error together.

3.2 ALGORITHM

Split Learning (SL) works by dividing a deep model into two parts at a designated cut layer, Lc:
the client-side model, consisting of the first Lc layers, and the server-side model, consisting of the
remaining layers. The training process consists of the following steps:

Client Forward Propagation. Each client performs a forward pass on its local model to compute
the smashed data (i.e., the activations at the cut layer). These activations, along with the correspond-
ing labels, are transmitted to the server. All clients operate in parallel during this step.

Server-Side Training. After receiving the smashed data, the server proceeds with the forward pass
on its portion of the model, computes the loss, and updates the server-side parameters. It also
computes the gradient respect to the cut-layer activations and sends this gradient back to the clients.

Client Backward Propagation. Each client receives the gradient signal from the server and uses
the chain rule to complete backpropagation on its local parameters, updating the client-side model.

After several steps of local training, model aggregation or parameter passing is performed among
the involved participants, ensuring consistent global model updates.

Two representative variants of this framework are commonly considered: (i) Sequential Split Learn-
ing (SSL) Gupta & Raskar (2018), in which clients train sequentially by passing the updated param-
eters from one to the next; and (ii) Split Federated Learning (SFL) Thapa et al. (2022), in which
clients train in parallel and the global model is aggregated using federated averaging. We now de-
scribe their aggregation mechanisms and update rules in detail.

3.2.1 SEQUENTIAL SPLIT LEARNING (SSL)

We present a concise version of SSL in Algorithm 1 to illustrate its update rules. At the start
of each training round, indices π1, π2, . . . , πM̃ are randomly sampled without replacement from
{1, 2, . . . ,M}, forming a random permutation that determines the M̃ involved clients’ training or-
der. In each round, the first client, π1, receives the current global parameter vector and performs
K steps of local updates using its local dataset. The updated local parameter is passed to the next
client, and this process continues until all clients complete their local training. Let ω(t,k)

m denote the
local parameter of client πm after k updates in round t, and let ω(t) and g

(t,k)
m represents the the

model parameter and the gradient of the loss function with respect to it. Using stochastic gradient
descent (SGD) as the local solver, the SSL update rule is as follows:

Local update: ω
(t,k+1)
m = ω

(t,k)
m − η

(t,k)
m g

(t,k)
πm , with initial ω

(t,0)
m =

{
ω(t), if m = 1,

ω
(t,K)
m−1 , if m > 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Global aggregation: ω(t+1) = ω
(t,K)
πM .

3.2.2 SPLIT FEDERATED LEARNING (SFL)

In contrast to SSL, Split Federated Learning (SFL) shown in Algorithm 2 allows clients to train in
parallel. At the start of each communication round, every client downloads the latest global client-
side parameters. The clients then perform local training, interacting with the server through forward
and backward propagation, as described in the general SL framework. After K local epochs, the
server aggregates the client-side models using a weighted averaging scheme (e.g., FedAvg McMahan
et al. (2017)) to form the updated global client-side parameters. Partial participation is controlled
by the set M̃⊔, which includes the indices of the clients participating in round t. The server-side
models are also aggregated across clients to update the global server-side parameters. The update
rules for SFL are summarized as follows:

Local update: ω
(t,k+1)
m ← ω

(t,k)
m − η(t,k)g

(t,k)
m ,

Global aggregation:ω(t+1) ← ω(t)−
∑

m∈M̃⊔
cm
∑K

k=0 η
(t,k)g

(t,k)
m ,with

∑
m∈M̃⊔

cm = q ≤ 1
or more details about the two algorithms and their pseudocode, please refer to Appendix C.

4 THEORETICAL ANALYSIS

In this section, we provide the necessary assumptions in Sec 4.1, then study on-average model
stability bound and excess generalization bound of SSL and SFL in Sec 4.2. The discussion about
discovery and insight of theorems is contained in Sec 4.3.

4.1 ASSUMPTION

Assumption 4.1 (β-smoothness). The loss function f is β-smooth, i.e., there exists β > 0 such that
for all ω,ω′ ∈ Rd, z ∈ Z ,

∥∇f(ω; z)−∇f(ω′; z)∥2 ≤ β∥ω − ω′∥2.
Assumption 4.2 (Bounded Stochastic Gradient Variance). The stochastic gradients at each client
are unbiased, and their variance is bounded by σ2:

EZmn∥∇f(ω;Zmn)−∇RSm(ω)∥2 ≤ σ2,

for any agent m ∈M and ω ∈ Rd.
Assumption 4.3 (Bounded Heterogeneity). There exists ζ2 > 0 such that for any ζ ∈ Rd,

1

M

M∑
m=1

∥∇RSm
(ω)−∇RS(ω)∥2 ≤ ζ2,

Remark 4.1. The smoothness assumption is common uesd in stability analysis (Lei & Ying, 2020;
Sun et al., 2024; Bellet et al., 2024), and it is valid for many loss functions, such as logistic regres-
sion, softmax classifiers, and l2-norm regularized linear regression. The value of σ quantifies the
level of stochasticity, while a larger value of ζ2 indicates a degree of data heterogeneity.

4.2 STABILITY AND GENERALIZATION

First, we give the definition of on-average model stability as follows:
Definition 4.1 (ℓ2 On-average Model Stability). (Lei & Ying, 2020) Let S = (S1, . . . , SM)

with Sm = {Z1m, . . . , ZNm} and S̃ = (S̃1, . . . , S̃M) with S̃m = {Z̃1m, . . . , Z̃Nm} be
two independent copies such that Zim ∼ Dm and Z̃im ∼ Dm. For any i ∈ {1, . . . , N}
and j ∈ {1, . . . ,M}, we define S(ij) = (S1, . . . , Sj−1, S

(i)
j , Sj+1, . . . , SM), where S

(i)
j =

{Z1j , . . . , Zi−1j , Z̃ij , Zi+1j , . . . , ZNj} is the dataset formed from S by replacing the i-th element
of the j-th agent’s dataset with Z̃ij . Algorithm A is said to be l2 on-average model ε-stable if

ES,S̃,A

[
1

MN

N∑
i=1

M∑
j=1

∥A(S)−A(S(ij))∥22

]
≤ ε2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Remark 4.2. The definition of ℓ2 on-average model stability indicates how robust the algorithm is
to perturbations in the local datasets, which quantifies the sensitivity of the output model to the
replacement of individual data points in the datasets.
Theorem 4.1 (Generalization via on-average model stability). (Lei & Ying, 2020) LetA be an ℓ2 on-
average model ε-stable algorithm. If the convex loss function f(·; z) is nonnegative and β-smooth
for all z ∈ Z , we have the generalization bound with constant γ > 0:

ϵgen ≤ 1

2MNγ

N∑
i=1

M∑
j=1

ES,A
[
∥∇f(A(S);Zij)∥2

]
+

β + γ

2MN

N∑
i=1

M∑
j=1

ES,S̃,A

[
∥A(S)−A(S(ij))∥2

]
Theorem 4.2 (Generalization via on-average model stability). Assume that the loss function f(·, z)
is nonnegative and bounded in [0, 1], and that β-smoothness holds. For all i = 1, . . . , N and
j = 1, . . . ,M , let {ω(t)}Tt=0 and {ω̃(t)}Tt=0 denote the iterates for algorithms run on S and S(ij)

respectively, with∆t = ∥ω(t) − ω̃(t)∥22. Then, for every t0 ∈ {0, 1, . . . , T}, we have the following
bound for the generalization error with constant γ > 0:

ϵgen ≤ t0
MN

+
1

2MNγ

N∑
i=1

M∑
j=1

ES,A
[
∥∇f(A(S);Zij)∥2

]
+
β + γ

2MN

N∑
i=1

M∑
j=1

ES,S̃,A

[
∥A(S)−A(S(ij)) | ∆(t0) = 0∥2.

]
Remark 4.3. These theorem provides a generalization bound based on the smoothness and stability
of the algorithm. It suggests that the generalization error can be controlled by both the gradient
bound of the loss function and the stability of the algorithm under perturbations in the data.

According to the theorem, it suffices to control the on-average model stability of the algorithm A to
obtain the desired generalization bound. For each round t, we define basic block as below: St ≜∑K−1

k=0 η(t,k), Ht ≜
∑K−1

k=0

(
η(t,k)

)2
, Qt ≜

∑K−1
k=0

(
η(t,k)

)2∑k
s=0

(
η(t,s)

)2
, and let A⋆ ≜ σ2+

ζ2 + supt
∥∥∇RS(ω

(t))
∥∥2
2
, then we develop theorem below:

Theorem 4.3 (On-average model stability and generalization error for SSL in the convex case).
Under Assumptions 4.1–4.3, suppose that the loss function is convex, with step sizes {η(t,k)} ≤ 2

β .
Then the expected on-average model stability satisfies

1

MN

N∑
i=1

M∑
j=1

ES,S̃,A

[∥∥A(S)−A(S(ij))
∥∥2] ≤ 16 M̃ A⋆

MN T

(
T−1∑
t=0

Ht + 4β2
T−1∑
t=0

Qt

)
.

(i) For square-root decaying step sizes η(t,k) = 1√
tK+k+k0

, with k0 > 1:

ϵgen ≤ 4
√
3A⋆

√
M̃

MN T

√
1

k0 − 1
+

β2

K(k0 − 1)
+

8β M̃A⋆

MN T

[
1

k0 − 1
+ 2β2

(
1

K(k0 − 1)
+

1

3(k0 − 1)3

)]
.

(ii) For harmonically decaying step sizes η(t,k) = 1
tK+k+k0

, with k0 > 1:

ϵgen ≤ 4
√
3A⋆

√
M̃

MN T

√
1

k0 − 1
+

β2

K(k0 − 1)
+

8β M̃A⋆

MN T

[
1

k0 − 1
+ 2β2

(
1

K(k0 − 1)
+

1

3(k0 − 1)3

)]
.

Proof. See Appendix E.1.2 for the proof.

Corollary 4.1 (Excess Generalization Error). The preview work Li & Lyu (2023) provides an anal-
ysis of εopt. The convergence rate of SSL is dominated by O(1/

√
M̃KT) when η ≤ Θ

(
1/(MK)

)
.

Therefore, the excess risk of SSL in the convex case satisfies εexc = O
(√

M̃
MN T

)
+ O

(
1

M̃ K T

)
.

Theorem 4.4 (On-average model stability and generalization error for SSL in the non-convex case).
Under Assumptions 4.1–4.3, suppose that the loss function is non-convex. Then the expected on-
average model stability of the output satisfies

1

MN

N∑
i=1

M∑
j=1

ES,S(ij),A

[∥∥A(S)−A(S(ij))
∥∥2
2

]
≤ 16 M̃ A⋆

MN (T − t0)

T−1∑
t=t0

e2βSt
(
Ht + 4β2Qt

)
+

t0
MN

.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(i) For square-root decaying step sizes η(t,k) = 1√
tK+k+k0

with k0 > 1:

ϵgen ≲
(TK)

2β
1+2β

MN
+
8 M̃ A⋆

MN T
(TK)

β
1+2β

− 1
2 e 2β (TK)

1−β
2(1+2β)

+4A⋆

√
3M̃

βMN T
(TK)

β
2(1+2β)

− 1
4 e β (TK)

1−β
2(1+2β)

.

(ii) For harmonically decaying step sizes η(t,k) = 1
tK+k+k0

with k0 > 1:

ϵgen ≲
(TK)

2β
1+2β

MN
+

8β

1 + 2β
· M̃ A⋆ log T

MN T K
+ 4A⋆

√
3

1 + 2β

√
M̃ log T

MN T K
.

Proof. See Appendix E.1.3 for the proof.

Corollary 4.2 (Excess Generalization Error). According to the results in (Li & Lyu, 2023), let η ≤

Θ
(
1/(MK)

)
. Then the excess error is mainly goverment by: εexc = O

(
(TK)

2β
1+2β

MN

)
+O
(

1√
M̃KT

)
.

Theorem 4.5 (SFL On-Average Model Stability and Generalization in the Convex Case). Under
Assumptions 4.1–4.3, suppose the loss is convex and the step sizes satisfy {η(t,k)}K−1

k=0 ≤
2
β . Then

the on-average model stability of the averaged output satisfies

1

MN

N∑
i=1

M∑
j=1

ES,S(ij),A

[∥∥∥A(S)−A
(
S(ij)

)∥∥∥2] ≤ 16 q A⋆

MN(1− q)

(
T−1∑
t=0

Ht + 4β2
T−1∑
t=0

Qt

)
.

(i) For step sizes with square-root decay, η(t,k) = 1/
√
tK + k + k0 with k0 > 1:

ϵgen ≤ 4
√
3A⋆

√
q

MN(1− q)

(
log

TK + k0 − 1

k0 − 1
+

2β2(K + 1)

k0 − 1

)
+

8β q A⋆

MN(1− q)

(
log

TK + k0 − 1

k0 − 1
+

2β2(K + 1)

k0 − 1

)
.

(ii) For step sizes with harmonic decay, η(t,k) = 1/(tK + k + k0) with k0 > 1:

ϵgen ≤ 4
√
3A⋆

√
q

MN(1− q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
+

8β q A⋆

MN(1− q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
.

Proof. See Appendix E.2.2.

Corollary 4.3 (Excess Generalization Error). With the optimization results in (Han et al.,
2024) as well, the excess generalization error of SFL in non-convex case satisfies with the
εexc = Õ

(
q log(TK)
(1−q)MN

)
+ Õ

(
M√
T

)
.

Theorem 4.6 (SFL On-Average Model Stability and Generalization in the Non-Convex Case). Un-
der Assumptions 4.1–4.3, for any burn-in index t0∈{0, . . . , T − 1}, the on-average model stability
of the output satisfies

1

MN

N∑
i=1

M∑
j=1

ES,S(ij),A

[∥∥∥A(S)−A
(
S(ij)

)∥∥∥2] ≤ 16 q A⋆

MN(1− q)

T−1∑
t=t0

e2βSt

(
Ht + 4β2Qt

)
+

t0
MN

.

(i) For step sizes with square-root decay, η(t,k) = 1/
√
tK + k + k0 with k0 > 1:

ϵgen ≲
(TK)

2β
1+2β

MN
+

8 q A⋆

MN(1− q)
(TK)

β
1+2β K

1
2 e 2β (TK)

1−β
2(1+2β)

+ 4
√
3A⋆

√
q

βMN(1− q)
(TK)

β
2(1+2β)K

1
4 e β (TK)

1−β
2(1+2β)

.

(ii) For step sizes with harmonic decay, η(t,k) = 1/(tK + k + k0) with k0 > 1:

ϵgen ≲
(TK)

2β
1+2β

MN
+

2β A⋆

(1 + 2β)MN
· log T
TK

+
2
√
3A⋆√

(1 + 2β)MN
·
√

log T

TK
.

Proof. See Appendix E.2.3.

Corollary 4.4 (Excess Generalization Error). Similarly, from the convergence result in the (Han

et al., 2024), the excess generalization error satisfies εexc = Õ
(

(TK)
2β

1+2β

MN

)
+ Õ

(
1
3√
T

)
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 DISCUSSION

Here we give some insight inside theorems and corollaries above :
Remark 4.4 (Influential Factors of the Generalization Error). Fixing model, loss, and dataset essen-
tially makes β, σ, and ζ constants throughout. Theorem bounds clearly suggest: (i) enlarging per-
client sample size N ; (ii) increasing the number of clients M ; (iii) reducing optimization distance to
shrink supt ∥∇RS(ω

(t))∥22 in A⋆; (iv) using a smaller stepsize η while still preserving convergence.
Choosing more i.i.d. data further lowers ζ and thereby tightens the bound significantly.
Remark 4.5 (Stepsize Choice). In convex problems, square-root and harmonic decay yield quite
similar leading-order bounds; thus square-root is usually simpler to tune effectively. In non-convex
settings, square-root’s cumulative step size causes e2βSt to blow up rapidly, destabilizing the train-
ing, while harmonic decay keeps the stability term bounded, thereby improving robustness. Though
square-root can sometimes speed early optimization (Li & Lyu, 2023; Han et al., 2024), harmonic
decay preserves tighter generalization and successfully avoids exponential growth.
Remark 4.6 (Impact of Participation). In SSL, longer gradient paths naturally amplify output sen-
sitivity: selecting M̃ clients per round adds gradients, so the bound usually grows with M̃ . SFL
averages gradients each round, maintaining better stability even with consistently high participation.
For convex cases, bounds typically scale with O

(
q

1−q

)
; smaller q generally improves the overall

generalization. In non-convex settings, participation effects drop down to lower-order terms.
Remark 4.7 (When to choose SSL or SFL). SSL’s per-round averaging suits large T and sparse edge
devices; SFL benefits dense participation by aggregating many diverse gradients. For very large T

with non-convex objectives, both achieve essentially the same leading rate Õ
(
(TK)

2β
1+2β /(MN)

)
;

practical gaps stem mainly from subtle step-size and aggregation nuances.

Due to the limint of pages, more discussion about comparison to other generalization bounds in
other multi agent algorithms (like FedAvg and D-SGD) is in Appendix C

5 EXPERIMENTAL RESULTS

In this Section, we validate our theory with classification experiments on logistic regression (Sec-
tion 5.1) and ResNet (Section 5.2), and study how key factors affect stability errors.

5.1 LOGISTIC REGRESSION

In the validation of the convex objectives, we adopt classical logistic regression problem to validate
the generalization in the training. We conduct experients on MINST dataset LeCun et al. (2002).

The experimental results in Figure 2 shows : (i) Square-root decay yields faster growth of instabil-
ity ∥ωt − ω′

t∥, whereas harmonic decay converges more gently (Fig. 2(a)(d)), consistent with our
theorem : slower decay suppresses cumulative perturbations and lowers ϵgen. (ii) With a constant
learning rate and fixed total iterations TK, increasing local updates K markedly amplifies instability
(Fig. 2(b)(e)), indicating larger client drift . (iii) Higher client participation consistently improves
stability (Fig. 2(c)(f)), mitigating gradient variance and drift accumulation.

5.2 RESNET-18

We also conduct the experiments on ResNet-18 He et al. (2016) with CIFAR-10Krizhevsky et al.
(2009) dataset to validate the properties in non-convex objectives.

The experimental results in Figure 3 shows : (i) Larger learning rates cause pronounced instabil-
ity ∥ωt − ω′

t∥ in both SSL and SFL (Fig. 3(a)(d)), confirming our on-average ℓ2 stability analysis:
slower decay or smaller steps better control parameter drift and reduce ϵgen. (ii) Increasing the
number of total client number markedly reduces instability and smooths the trajectories in SSL and
SFL (Fig. 3(b)(e)), as averaging across more clients lowers gradient variance and mitigates the im-
pact of heterogeneity ζ. (iii) Higher client participation consistently improves stability (Fig. 3(c)(f)),
mitigating gradient variance and drift accumulation. Overall, these non-convex results further val-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Iteration

0.00

0.01

0.02

0.03

0.04

St
ab

ilit
y

x t
x′ t

harmonic decay
squareroot decay

(a) Impact of Learning Rate on ϵgen
of SSL

0 200 400 600 800 1000
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

St
ab

ilit
y

x t
x′ t

T=1000, K=1
T=500, K=2
T=250, K=4
T=125, K=8

(b) Impact of Local Update Steps
and Iteration Steps on ϵgen of SSL

0 200 400 600 800 1000
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

St
ab

ilit
y

x t
x′ t

50%
25%
12.5%
6.25%

(c) Impact of Client Participation
on ϵgen of SSL

0 200 400 600 800 1000
Iteration

0.000
0.005
0.010
0.015
0.020
0.025
0.030

St
ab

ilit
y

x t
x′ t

harmonic decay
squareroot decay

(d) Impact of Learning Rate of ϵgen
on SFL

0 200 400 600 800 1000
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

St
ab

ilit
y

x t
x′ t

T=1000, K=1
T=500, K=2
T=250, K=4
T=125, K=8

(e) Impact of Local Update Steps
and Iteration Steps on ϵgen of SFL

0 200 400 600 800 1000
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

St
ab

ilit
y

x t
x′ t

50%
25%
12.5%
6.25%

(f) Impact of Client Participation on
ϵgen of SFL

Figure 2: Generalization errors for a convex objective.

0 20 40 60 80 100 120
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

St
ab

ilit
y

x t
x′ t

lr=0.03
lr=0.02
lr=0.001
lr=0.005

(a) Impact of Learning Rate on ϵgen
of SSL

0 25 50 75 100 125 150 175 200
Round

0.00

0.05

0.10

0.15

0.20

0.25

St
ab

ilit
y

x t
x′ t

M=25
M=50
M=100
M=200

(b) Impact of Client Size on ϵgen of
SSL

0 25 50 75 100 125 150 175 200
Iteration

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

St
ab

ilit
y

x t
x′ t

20%
10%
5%
2.5%

(c) Impact of Client Participation
on ϵgen of SSL

0 20 40 60 80 100 120
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

St
ab

ilit
y

x t
x′ t

lr=0.03
lr=0.02
lr=0.001
lr=0.005

(d) Impact of Learning Rate of ϵgen
on SFL

0 25 50 75 100 125 150 175 200
Round

0.00
0.05
0.10
0.15
0.20
0.25
0.30

St
ab

ilit
y

x t
x′ t

M=25
M=50
M=100
M=200

(e) Impact of Client Size ϵgen of
SFL

0 25 50 75 100 125 150 175 200
Iteration

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

St
ab

ilit
y

x t
x′ t

20%
10%
5%
2.5%

(f) Impact of Client Participation on
ϵgen of SFL

Figure 3: Generalization errors for a non-convex objective.

idate our stability bounds and show the same key levers—moderate learning rate, controlled local
updates, and broad participation—are essential for reducing ϵgen even beyond the convex case.

6 CONCLUSION

This paper provides the first comprehensive analysis of generalization error bounds for Split Learn-
ing (SL), focusing on Sequential Split Learning (SSL) and Split Federated Learning (SFL) in non-
convex settings. Using an on-average stability framework, we quantify model responses to perturba-
tions, offering generalization guarantees without assuming L-Lipschitz loss. Our findings highlight
how client drift, aggregation schemes, and data heterogeneity affect stability and generalization,
clarifying SSL and SFL behavior under different strategies. We show harmonic learning rate sched-
ules mitigate transient effects of square-root decay, enhancing convergence in both convex and non-
convex settings. Experiments on benchmark datasets validate our theoretical insights.

Limitation. The impact of cut layer placement on client drift and stability remains under-explored,
with limited research on its convergence properties, which is a key direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Aurélien Bellet, Marc Tommasi, Kevin Scaman, Giovanni Neglia, et al. Improved stability and gen-
eralization guarantees of the decentralized sgd algorithm. In Forty-first International Conference
on Machine Learning, 2024.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning
research, 2(Mar):499–526, 2002.

Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil, and Leslie Pack Kaelbing. Stability of
randomized learning algorithms. Journal of Machine Learning Research, 6(1), 2005.

Ege Erdogan, Alptekin Küpçü, and A Ercument Cicek. Splitguard: Detecting and mitigating
training-hijacking attacks in split learning. In Proceedings of the 21st Workshop on Privacy in the
Electronic Society, pp. 125–137, 2022.

Xinben Gao and Lan Zhang. {PCAT}: Functionality and data stealing from split learning by
{Pseudo-Client} attack. In 32nd USENIX Security Symposium (USENIX Security 23), pp. 5271–
5288, 2023.

Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, and Xiaojun Ye. Vflair-llm: A comprehensive
framework and benchmark for split learning of llms. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V. 2, pp. 5470–5481, 2025.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Pengchao Han, Chao Huang, Geng Tian, Ming Tang, and Xin Liu. Convergence analysis of split
federated learning on heterogeneous data. Advances in Neural Information Processing Systems,
37:103476–103544, 2024.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Qiang He, Kaibin Wang, Zeqian Dong, Liang Yuan, Feifei Chen, Hai Jin, and Yun Yang. Hourglass:
Enabling efficient split federated learning with data parallelism. In Proceedings of the Twentieth
European Conference on Computer Systems, pp. 1317–1333, 2025.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 2002.

Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic
gradient descent. In International Conference on Machine Learning, pp. 5809–5819. PMLR,
2020.

Yunwen Lei, Tao Sun, and Mingrui Liu. Stability and generalization for minibatch sgd and local
sgd. arXiv preprint arXiv:2310.01139, 2023.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith,
and Chong Wang. Label leakage and protection in two-party split learning. arXiv preprint
arXiv:2102.08504, 2021.

Yipeng Li and Xinchen Lyu. Convergence analysis of sequential split learning on heterogeneous
data. arXiv preprint arXiv:2302.01633, 2023.

Zheng Lin, Guangyu Zhu, Yiqin Deng, Xianhao Chen, Yue Gao, Kaibin Huang, and Yuguang Fang.
Efficient parallel split learning over resource-constrained wireless edge networks. IEEE Transac-
tions on Mobile Computing, 23(10):9224–9239, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Junlin Liu, Xinchen Lyu, Qimei Cui, and Xiaofeng Tao. Similarity-based label inference attack
against training and inference of split learning. IEEE Transactions on Information Forensics and
Security, 19:2881–2895, 2024.

Yingqi Liu, Qinglun Li, Jie Tan, Yifan Shi, Li Shen, and Xiaochun Cao. Understanding the stability-
based generalization of personalized federated learning. In The Thirteenth International Confer-
ence on Learning Representations, 2025.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of sgld for non-
convex learning: Two theoretical viewpoints. In Conference on Learning Theory, pp. 605–638.
PMLR, 2018.

Shraman Pal, Mansi Uniyal, Jihong Park, Praneeth Vepakomma, Ramesh Raskar, Mehdi Bennis,
Moongu Jeon, and Jinho Choi. Server-side local gradient averaging and learning rate acceleration
for scalable split learning. arXiv preprint arXiv:2112.05929, 2021.

Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference at-
tacks on split learning. In Proceedings of the 2021 ACM SIGSAC conference on computer and
communications security, pp. 2113–2129, 2021.

Sameera Ramasinghe, Thalaiyasingam Ajanthan, Gil Avraham, Yan Zuo, and Alexander Long. Pro-
tocol models: Scaling decentralized training with communication-efficient model parallelism.
arXiv preprint arXiv:2506.01260, 2025.

Yan Sun, Li Shen, and Dacheng Tao. Which mode is better for federated learning? centralized or
decentralized. 2023.

Zhenyu Sun, Xiaochun Niu, and Ermin Wei. Understanding generalization of federated learning
via stability: Heterogeneity matters. In International conference on artificial intelligence and
statistics, pp. 676–684. PMLR, 2024.

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun.
Splitfed: When federated learning meets split learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 36, pp. 8485–8493, 2022.

Tom Titcombe, Adam J Hall, Pavlos Papadopoulos, and Daniele Romanini. Practical defences
against model inversion attacks for split neural networks. arXiv preprint arXiv:2104.05743, 2021.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Peng Wang, Li Shen, Zerui Tao, Shuaida He, and Dacheng Tao. Generalization analysis of stochastic
weight averaging with general sampling. In Forty-first International Conference on Machine
Learning, 2024.

Zhousheng Wang, Geng Yang, Hua Dai, and Chunming Rong. Privacy-preserving split learning for
large-scaled vision pre-training. IEEE Transactions on Information Forensics and Security, 18:
1539–1553, 2023.

Wen Wu, Mushu Li, Kaige Qu, Conghao Zhou, Xuemin (Sherman) Shen, Weihua Zhuang, Xu Li,
and Weisen Shi. Split learning over wireless networks: Parallel design and resource management.
IEEE Journal on Selected Areas in Communications, 41(4):1060–1078, 2023. doi: 10.1109/
JSAC.2023.3244130.

Haoxiang Ye, Tao Sun, and Qing Ling. Generalization error analysis for attack-free and byzantine-
resilient decentralized learning with data heterogeneity. arXiv preprint arXiv:2506.09438, 2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haoxiang Ye, Tao Sun, and Qing Ling. Generalization guarantee of decentralized learning with
heterogeneous data. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025b.

Hao Zhang, Chenglin Li, Wenrui Dai, Ziyang Zheng, Junni Zou, and Hongkai Xiong. Stabilizing
and accelerating federated learning on heterogeneous data with partial client participation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2024.

Zihan Zhang, Leon Wong, and Blesson Varghese. Ampere: Communication-efficient and high-
accuracy split federated learning. arXiv preprint arXiv:2507.07130, 2025a.

Zishuai Zhang, Hainan Zhang, Jiaying Zheng, Ziwei Wang, Yongxin Tong, Jin Dong, and Zhiming
Zheng. A federated splitting framework for llms: Security, efficiency, and adaptability. arXiv
preprint arXiv:2505.15683, 2025b.

Kai Zhao, Zhaohui Yang, Chongwen Huang, Xiaoming Chen, and Zhaoyang Zhang. Fedsllm: feder-
ated split learning for large language models over communication networks. In 2024 International
Conference on Ubiquitous Communication (Ucom), pp. 438–443. IEEE, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A Appendix: Notations 14

B Appendix: More Details about Spilt Learning 15

C Comparative Analysis 17

D Appendix: Additional Definition, Technical Lemmas and Propositions 18

E Proof of Theorem 20

E.1 Proof of SSL . 20

E.1.1 Setup . 20

E.1.2 Proof of Theorem 4.3 (SSL On Convex Case) . 20

E.1.3 Proof of Theorem 4.4 (SSL On Non-convex Case) 22

E.2 Proof of SFL . 24

E.2.1 Setup. 24

E.2.2 Proof of Theorem 4.5 (SFL On Convex case) . 25

E.2.3 Proof of Theorem 4.6 (SFL On Non-convex Case) 27

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX: NOTATIONS

Table 2: Unified notation used throughout the paper.

Symbol Meaning

M, M Set of clients and its size: M = {1, . . . ,M}, M = |M|.
m, j Client index (m or j ∈ {1, . . . ,M}).
N, i Local sample count per client N ; sample index i ∈ {1, . . . , N}.
Dm, Z Data distribution of client m (Dm); sample space Z .
S, Sm Training set S = (S1, . . . , SM); client-m dataset Sm = {Z1m, . . . , ZNm}.
S(ij) Neighbor dataset that differs from S only at client j’s i-th sample.
cm Aggregation weight with

∑
m cm = 1 (typically proportional to |Sm|).

f(ω; z) Per-sample loss function.
R(ω) Population risk: R(ω) =

∑
m cm EZ∼Dm [f(ω;Z)].

RS(ω), RSm(ω) Empirical risks: RS(ω) =
∑

m cmRSm(ω), where RSm(ω) = 1
N

∑N
n=1 f(ω;Znm).

ω⋆, ω⋆
S Population/empirical risk minimizers

εgen, εopt, εexc Generalization error, optimization error, and excess risk .
T, t Communication rounds and their index.
K, k Local steps per round and their index.
ηt,k, ηt, η Learning rates.
k0 Positive offset in the step-size schedule (k0 > 1).
β Smoothness constant.
σ2 Variance bound of stochastic gradients.
ζ2 Client heterogeneity measure.
L Lipschitz constant (only appears in referenced lemmas).
ω(t) Global parameter at round t (if round-averaged output is used: ω(T) = 1

T

∑T
t=1 ω

(t)).
ω

(t,k)
m Client-m local parameter at step k in round t .

g
(t,k)
m g

(t,k)
m := ∇f(ω

(t,k)
m ;ZIt,k,m); for client/server shards g(t,k)C,m , g(t,k)S,m .

M̃ the number of active clients in per round .
π = (π1, . . . , πM̃) Random permutation in SSL;
Mt Active-client set in SFL at round t .
q Participation rate in SFL: q =

∑
m∈Mt

cm ≤ 1.
Lc Cut-layer index in split models.
ω

(t)
C , ω

(t)
S Client-/server-side parameters of the split model .

a
(t,k)
m , ∇a

(t,k)
m Smashed data (cut-layer activations) and its gradient.

A(·) Randomized learning algorithm .
∆t Parameter gap between two neighbor runs at round t: ∆t = ∥ω(t) − ω̃(t)∥2.
St, Ht, Qt Step-size aggregates: St =

∑
k ηt,k, Ht =

∑
k η

2
t,k, Qt =

∑
k η

2
t,k

∑
s≤k η

2
t,s.

Φt, Ψt(k) Φt =
∏

r(1 + βηt,r)
2, Ψt(k) =

∏K−1
r=k+1(1 + βηt,r)

2.
A⋆ Aggregated gradient-scale constant: A⋆ := σ2 + ζ2 + supt ∥∇RS(ω

(t))∥2 .
γ Tuning constant in converting stability to generalization bounds.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B APPENDIX: MORE DETAILS ABOUT SPILT LEARNING

Algorithm 1 Sequential Split Learning (SSL)

1: Input: clients M = {1, . . . ,M}; rounds T ; local steps K; stepsizes {η(t,k)}; cut layer Lc;
datasets {Dm}

2: Initialize: global models ω(0)
C , ω(0)

S
3: for t = 0, . . . , T − 1 do
4: Sample permutation π = (π1, . . . , πM)

5: Set carry state: ω(t,0)
C,π1
←ω

(t)
C , ω

(t,0)
S,π1
←ω

(t)
S

6: for m = 1 to M̃ do

7: ω
(t,0)
s,πm ←

{
ω

(t)
s if m = 1

ω
(t,Kπm−1

)
s,πm−1 otherwise

ω
(t,0)
c,πm ←

{
ω

(t)
c,πm if m = 1

ω
(t,Kπm−1

)
c,πm−1 otherwise

8: for k = 0, . . . ,K − 1 do
9: Client πm forward: sample z

(t,k)
πm ∼Dπm

; compute a
(t,k)
πm = fwd

(
ω

(t,k)
C,πm

, z
(t,k)
πm ;Lc

)
;

send (a
(t,k)
πm , z

(t,k)
πm) // Com.

10: Server πm fwd/bwd: evaluate f
(
ω

(t,k)
S,πm

; a
(t,k)
πm , z

(t,k)
πm

)
; backprop to get ∇a(t,k)πm ; send

∇a(t,k)πm // Com.
11: Client update: ω

(t,k+1)
C,πm

← ω
(t,k)
C,πm

− η(t,k) g
(t,k)
C,πm

12: Server update: ω
(t,k+1)
S,πm

← ω
(t,k)
S,πm

− η(t,k) g
(t,k)
S,πm

13: end for
14: end for
15: Round output: ω

(t+1)
C ←ω

(t,K)
C,πM̃

, ω
(t+1)
S ←ω

(t,K)
S,πM̃

; broadcast (ω(t+1)
C ,ω

(t+1)
S)

16: end for
17: Output: final models (ω(T)

C = 1
T

∑T
t=1 ω

(t)
C ,ω

(T)
S = 1

T

∑T
t=1 ω

(t)
S)

Algorithm 2 Split Federated Learning (SFL-V1)

1: Input: clients M = {1, . . . ,M}, rounds T , local steps K, stepsizes {η(t,k)}, cut layer Lc,
datasets {Dm}, aggregation weights {cm}Mm=1 with

∑
m cm = 1

2: Initialize: global models ω(0)
C , ω(0)

S ; set ω(0,0)
C,m ←ω

(0)
C , ω(0,0)

S,m ←ω
(0)
S for all m

3: for t = 0, . . . , T − 1 do
4: for k = 0, . . . ,K − 1 do
5: Client-side forward: for each m ∈ M, sample a set of samples S

(t,k)
m ∼ Dm, compute

a
(t,k)
m = fwd

(
ω

(t,k)
C,m , S

(t,k)
m ;Lc

)
and send (a

(t,k)
m , y

(t,k)
m) to server // Com.

6: Server-side training: compute f
(
ω

(t,k)
S,m ; a

(t,k)
m , y

(t,k)
m

)
, backprop to get ∇a(t,k)m , update

ω
(t,k+1)
S,m = ω

(t,k)
S,m − η(t,k)g

(t,k)
S,m , send ∇a(t,k)m to client m // Com.

7: Client-side backward : update ω
(t,k+1)
C,m = ω

(t,k)
C,m − η(t,k)g

(t,k)
C,m using ∇a(t,k)m

8: end for
9: Model aggregation: ω(t+1)

C ←
∑M

m=1 cm ω
(t,K)
C,m , ω

(t+1)
S ←

∑M
m=1 cm ω

(t,K)
S,m

10: Broadcast: set ω(t+1,0)
C,m ←ω

(t+1)
C , ω

(t+1,0)
S,m ←ω

(t+1)
S for all m

11: end for
12: Output: final models (ω(T)

C ,ω
(T)
S)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3 Split Federated Learning (SFL-V2)

1: Input: clientsM = {1, . . . ,M}, rounds T , local epochs E, stepsizes {η(t), η(t,e)}, cut layer
Lc, datasets {Dm}, aggregation weights {cm}Mm=1 with

∑
m cm = 1

2: Initialize: global models ω(0)
C , ω(0)

S ; set ω(0)
C,m←ω

(0)
C for all m

3: for t = 0, . . . , T − 1 do
4: Client-side forward (parallel): for each m∈M, sample a set of samples S(t)

m ∼Dm, compute
a
(t)
m = fwd

(
ω

(t)
C,m, S

(t)
m ;Lc

)
and send (a

(t)
m , y

(t)
m) to server // Com.

5: Server-side sequential training: draw a random permutation πt overM;
for m in πt do compute f

(
ω

(t)
S ; a

(t)
m , y

(t)
m

)
, backprop to get∇a(t)m and server gradient g(t)

S ;

update ω
(t)
S ←ω

(t)
S − η(t)g

(t)
S , send ∇a(t)m to client m // Com.

6: Client-side backward (parallel, E epochs): for each m ∈M do for e = 1, . . . , E do use
∇a(t)m to compute g

(t,e)
C,m and update ω

(t)
C,m←ω

(t)
C,m − η(t,e)g

(t,e)
C,m

7: Model aggregation & broadcast: ω(t+1)
C ←

∑M
m=1 cm ω

(t)
C,m, ω

(t+1)
C,m ← ω

(t+1)
C ∀m

8: Carry server: set ω(t+1)
S ←ω

(t)
S

9: end for
10: Output: final models (ω(T)

C ,ω
(T)
S)

This subsection provides a structured explanation to complement Algorithms 1–3.

In Sequential Split Learning (SSL)Algorithms 1, clients are visited sequentially during each com-
munication round, following a random permutation. The client-side and server-side model slices are
carried along this sequence. At each visited client, the algorithm performs K forward and backward
steps, transmitting activations to the server and receiving activation gradients in return. The server
and client updates occur in lockstep, and the terminal state of the chain becomes the round output,
which is broadcast to all clients as the initialization for the subsequent round. There is no explicit
averaging across clients; rather, the contributions from the clients are combined along a single, time-
ordered trajectory. Under data heterogeneity, updates from earlier clients may induce drift relative
to later clients, but the synchronous, step-by-step updates along the chain progressively correct this
mismatch. The round output can thus be viewed as a temporal integration of client signals, consis-
tent with the on-average L2 stability perspective in which perturbations dissipate along the update
path.

In Split Federated Learning (SFL), the split-model approach is maintained, but with distinct time-
lines and aggregation points.

In Variant 1 (SFL-V1)2, clients train in parallel. Each client retains its own client-side slice paired
with a server-side slice, and all clients perform K local updates within a round. At the end of the
round, weighted averages of both slices are computed, producing new global client and server slices,
which are then broadcast to all clients. This end-of-round averaging reduces drift and ensures that all
clients begin the next round from the same initialization. The design increases wall-clock throughput
on sufficiently provisioned servers but necessitates the server retaining per-client server-side replicas
prior to aggregation.

Variant 2 (SFL-V2)2 differs primarily in the server update procedure. On the client side, V2 mirrors
V1: clients train in parallel, and client-side slices are averaged at the end of the round before being
broadcast. On the server side, however, there exists only a single global server model. Within a
round, the server processes client activations sequentially in a random order, updating the server
model after each client and returning the corresponding activation gradients to the clients. At the
end of the round, the server model is transferred to the next round without averaging. This approach
reduces the server’s memory footprint and enhances its responsiveness to recent cross-client signals,
while client-side averaging continues to mitigate drift. It is important to note that the update rule in
SFL-V2 is fundamentally consistent with that of SFL-V1. In both variants, each round is structured
by parallel client-side local updates, followed by end-of-round weighted averaging on the client
side; the primary distinction is whether the server utilizes in-round sequential updates (V2) or end-
of-round averaging of per-client replicas (V1). From the analytical framework employed in this
paper, this difference does not alter the treatment of the core quantities governing error propagation

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and dissipation under on-average L2 stability. To avoid redundancy, the main text provides detailed
derivations solely for SFL-V1.

C COMPARATIVE ANALYSIS

Table 3: Our generalization bounds under convex settings .

Algorithm Learning Rate Result (scaling)

SSL Õ
(

1√
tK+k

)
Õ

(√
M̃ (log(TK)+β2K)

MN T + β M̃ (log(TK)+β2K)
MN T

)
SSL Õ

(
1

tK+k

)
Õ

(√
M̃

MN T + β M̃
MN T

)
SFL Õ

(
1√

tK+k

)
Õ
(√

q (log(TK)+β2K)
MN (1−q) + β q (log(TK)+β2K)

MN (1−q)

)
SFL Õ

(
1

tK+k

)
Õ
(√

q
MN (1−q) + β q

MN (1−q)

)

Table 4: Our generalization bounds under non-convex settings.

Algorithm Learning Rate Result (scaling)
SSL Õ

(
1√

tK+k

)
Õ

(
(TK)

2β
1+2β

MN
+

M̃

MN T
(TK)

β
1+2β K

1
2 ec(TK)

1−β
2(1+2β)

)

+ Õ

√ M̃

MN T
(TK)

β
2(1+2β)K

1
4 e

c
2
(TK)

1−β
2(1+2β)


SSL Õ

(
1

tK+k

)
Õ

 (TK)
2β

1+2β

MN
+

M̃

MN TK
log T +

√
M̃ log T

MN TK


SFL Õ

(
1√

tK+k

)
Õ

(
(TK)

2β
1+2β

MN
+

q

MN(1− q)
(TK)

β
1+2β K

1
2 ec(TK)

1−β
2(1+2β)

)

+ Õ

(√
q

MN(1− q)
(TK)

β
2(1+2β)K

1
4 e

c
2
(TK)

1−β
2(1+2β)

)

SFL Õ
(

1
tK+k

)
Õ

(
(TK)

2β
1+2β

MN
+

q

MN(1− q)K
log T +

√
q log T

MN(1− q)K

)

Remark C.1 (Lower Generation Error). In both convex and non-convex settings, SL algorithms
(SSL and SFL) exhibit lower generalization error compared to FedAvg and D-SGD. In convex set-

tings, SSL and SFL achieve bounds scaling as
√

1
T or 1

T , significantly outperforming FedAvg’s

slower terms (T 3/4, T 2/3) and D-SGD’s linear T scaling. In non-convex settings, SL bounds scale
with (TK)

2β
1+2β , which is tighter than FedAvg’s T 5/6 or T 3/4 and D-SGD’s T

β
β+1 , ensuring better

generalization as the number of iterations T increases.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Previous works under convex settings .

Algorithm Learning Rate Result (scaling)

FedAvg Sun et al. (2024) Õ
(

1
tK+k

)
Õ

(
T
N

ζ +
∆

1/4
0 T3/4

N(KM)1/4
+

∆
1/3
0 ζ1/6 T2/3

N
+

∆
1/2
0 T1/2

N
+ σT

n

)
D-SGD Bellet et al. (2024) Õ

(
1
t

)
Õ
(

T
MN

)
D-SGD (Strong Covex)Ye et al. (2025a) Õ

(
1
t

)
Õ
(

∆2
0

µMN
+ σ2

µMN
+ δ2

µMN

)
Table 6: Previous works under non-convex settings.

Algorithm Learning Rate Result (scaling)

FedAvg Sun et al. (2023) Õ
(

1
tK+k

)
Õ

(
1
N

(
M̃

β
1+β

M

)
(TK)

β
1+β

)
FedAvg Sun et al. (2024) Õ

(
1

tK+k

)
Õ

(
T

1
24 log T

N
(ζ + σ) +

(
∆0
KM

) 1
4 T

5
6

N
+
(
∆2

0ζ
) 1

6 T
3
4

N
+

√
∆0T

7
12

N

)
D-SGD Bellet et al. (2024) Õ

(
1
t

)
Õ

(
T

β
β+1

NM
1

β+1

)

Remark C.2 (Robustness to Heterogeneity and Noise). The generalization bounds of SSL and SFL
are less sensitive to initial conditions (∆0) and noise (σ) compared to FedAvg, which includes terms
dependent on these factors. SSL and SFL rely on parameters like β (data heterogeneity) and M̃ ,
providing robustness in heterogeneous or noisy federated learning environments. D-SGD’s strong
convex bound depends on the strong convexity parameter µ, limiting its applicability, whereas SL
algorithms are more general.

D APPENDIX: ADDITIONAL DEFINITION, TECHNICAL LEMMAS AND
PROPOSITIONS

Definition D.1. An update rule G(ω) is said to be ν-expansive if:

sup
ω,ω′

∥G(ω)−G(ω′)∥2
∥ω − ω′∥2

≤ ν.

Lemma D.1 (Expansivity of Gη,z). (Hardt et al., 2016) If f is β-smooth, we have:

1. Gη,z(ω) is (1 + ηβ)-expansive;

2. Assume in addition that f(·; z) is convex and η < 2/β. Then Gη,z(ω) is 1-expansive;

Lemma D.2 (Growth Recursion). (Hardt et al., 2016) Fix an arbitrary sequence of gradient update
rule Gη1,z1 , . . . , GηT ,zT and another sequence Gη1,z′

1
, . . . , GηT ,z′

T
with same loss function f . Let

ω0 = ω′
0 be a starting point in Td and define δt = ∥ωt − ω′

t∥ where ωt,ω
′
t are defined recursively

through
ωt+1 = Gηt,zt(ωt), ω′

t+1 = Gη′
t,z

′
t
(ω′

t).

Then, we have the recurrence relation
δ0 = 0

δt+1 ≤
{
νδt if Gηt,zt = Gηt,z′

t
is ν-expansive

min{1, ν}δt + 2ηtL if f is L-Lipschitz and Gηt,zt is ν-expansive

Lemma D.3 (Gradient Bound). Let Assumptions 4.1, 4.2, and 4.3 hold. Denoting A⋆ ≜ δ2+ ζ2+

supt
∥∥∇RS(ω

(t))
∥∥2
2
, then for any round t, the (sample- and client-) averaged squared gradient at

the round reference ω(t) satisfies

1

MN

M∑
j=1

N∑
i=1

ES,A

[∥∥∥∇f(ω(t);Zji

)∥∥∥2] ≤ 3δ2 + 3ζ2 + 3∥∇RS(ω
(t))∥22 ≤ 3A⋆.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Write the global and per-client empirical risks as RS(ω) =
1

MN

∑M
j=1

∑N
i=1 f(ω;Zji) and

RSj
(ω) = 1

N

∑N
i=1 f(ω;Zji). For each sample (j, i) at the common iterate ω(t), add and subtract

the client and global empirical gradients:

∇f(ω(t);Zji) =
(
∇f(ω(t);Zji)−∇RSj

(ω(t))
)

︸ ︷︷ ︸
(I)

+
(
∇RSj

(ω(t))−∇RS(ω
(t))
)

︸ ︷︷ ︸
(II)

+∇RS(ω
(t))︸ ︷︷ ︸

(III)

.

By the inequality ∥a+ b+ c∥2 ≤ 3(∥a∥2 + ∥b∥2 + ∥c∥2), we have:

1

MN

M∑
j=1

N∑
i=1

ES,A

[
∥∇f(ω(t);Zji)∥22

]
≤ 3

1

M

M∑
j=1

ES,A

[
EZ∼Sj

∥∇f(ω(t);Z)−∇RSj
(ω(t))∥22

]
︸ ︷︷ ︸

≤ δ2

+ 3
1

M

M∑
j=1

∥∇RSj (ω
(t))−∇RS(ω

(t))∥22︸ ︷︷ ︸
≤ ζ2

+3∥∇RS(ω
(t))∥22.

Here the first bound uses Assumption 4.2, the second uses Assumption 4.3, and the last term is
deterministic given S. This yields the claimed inequality.

Lemma D.4 (Local Gradient with Client Drift Bound). Under Assumptions 4.1–4.3, for any client
m, round t, and local step k, denoting

A⋆ ≜ δ2 + ζ2 + sup
t

∥∥∇RS(ω
(t))
∥∥2
2

, then the local stochastic gradient in split learning satisfies

∥g(t,k)m ∥22 ≤
(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)(
4δ2 + 4ζ2 + 4∥∇RS(ω

(t))∥22
)
≤ 4
(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)
A⋆.

Proof. Consider the local update at client m, ω
(t,k)
m = ω

(t,k−1)
m − η(t,k−1)g

(t,k−1)
m ,. For any

k ≥ 1, expand the squared distance to the round reference ω(t) and add/subtract ∇RSm(ω(t))
and ∇RS(ω

(t)):

∥ω(t) − ω(t,k)
m ∥22 =

∥∥∥ω(t) − ω(t,k−1)
m + η(t,k−1)g(t,k−1)

m

∥∥∥2
2

=
∥∥∥ω(t) − ω(t,k−1)

m + η(t,k−1)
(
g(t,k−1)
m −∇RSm

(ω(t)) +∇RSm
(ω(t))−∇RS(ω

(t)) +∇RS(ω
(t))
)∥∥∥2

2
.

Taking expectation over the sampling at step (t, k − 1) and using ∥a + b + c + d∥2 ≤ 4(∥a∥2 +
∥b∥2 + ∥c∥2 + ∥d∥2) gives

E
[
∥ω(t) − ω(t,k)

m ∥22
]
≤ ∥ω(t) − ω(t,k−1)

m ∥22 + 4
(
η(t,k−1)

)2(
σ2 + ζ2 + ∥∇RS(ω

(t))∥22
)
,

where σ2 bounds the stochastic variance of the local gradient around its client empirical mean and
ζ2 bounds the client–global gradient discrepancy (Assumption 4.3). Unrolling from k to 0 and using
ω

(t,0)
m = ω(t) yields

E
[
∥ω(t) − ω(t,k)

m ∥22
]
≤ 4

k∑
s=0

(
η(t,s)

)2(
σ2 + ζ2 + ∥∇RS(ω

(t))∥22
)
. (1)

Next, decompose g
(t,k)
m around the client/global empirical means at the same iterate ω

(t,k)
m and

around ω(t):

∥g(t,k)m ∥22 ≤ 4∥∇fm(ω(t,k)
m)−∇RSm

(ω(t,k)
m)∥22 + 4∥∇RSm

(ω(t,k)
m)−∇RSm

(ω(t))∥22
+ 4∥∇RSm

(ω(t))−∇RS(ω
(t))∥22 + 4∥∇RS(ω

(t))∥22.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

By β-smoothness (Assumption 4.1), ∥∇RSm
(ω

(t,k)
m) − ∇RSm

(ω(t))∥2 ≤ β∥ω(t,k)
m − ω(t)∥2.

By bounded stochastic noise(Assumption 4.2) and inter-client heterogeneity (Assumption 4.3),
E∥∇fm(ω

(t,k)
m) − ∇RSm(ω

(t,k)
m)∥22 ≤ δ2 and ∥∇RSm(ω(t)) − ∇RS(ω

(t))∥22 ≤ ζ2. Taking ex-
pectations, applying these bounds, and invoking equation 1, we obtain

E∥g(t,k)m ∥22 ≤ 4δ2 + 4β2 E∥ω(t) − ω(t,k)
m ∥22 + 4ζ2 + 4∥∇RS(ω

(t))∥22

≤ 4δ2 + 16β2
k∑

s=0

(
η(t,s)

)2(
σ2 + ζ2 + ∥∇RS(ω

(t))∥22
)
+ 4ζ2 + 4∥∇RS(ω

(t))∥22.

Finally, observe that 4δ2 + 16β2
∑k

s=0(η
(t,s))2 σ2 ≤

(
1 + 4β2

∑k
s=0(η

(t,s))2
)
· 4δ2, so, after

grouping terms,

E∥g(t,k)m ∥22 ≤
(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)(
4δ2 + 4ζ2 + 4∥∇RS(ω

(t))∥22
)
.

Dropping the expectation on the left-hand side yields the claimed bound.

E PROOF OF THEOREM

E.1 PROOF OF SSL

E.1.1 SETUP

Let S = {Zij : i ∈ [N], j ∈ [M]} denote the dataset, and let S(ij) be the neighboring dataset
obtained by replacing Zij with an independent copy Z̃ij . We run Sequential Split Learning (SSL)
on both S and S(ij) using the same internal randomness (e.g., client permutations and data indices).
Denote the global models after round t by ω(t) and ω̃(t), respectively, with ω(0) = ω̃(0). In each
round t, a random permutation π = (π1, . . . , πM) of the clients is sampled, and M̃ ≤M clients
participate sequentially. Each active client m performs K local gradient descent steps starting from
the output of the previous client (sequential-pass rule):

ω(t,0)
π1

= ω(t), ω(t,0)
πm

= ω(t,K)
πm−1

(m > 1), ω(t+1) = ω(t,K)
πM̃

.

Define the outer-run distance ∆t := ∥ω(t)−ω̃(t)∥2, and the SSL outputs at round T by A(S) = ω(T)

and A(S(ij)) = ω̃(T).

E.1.2 PROOF OF THEOREM 4.3 (SSL ON CONVEX CASE)

One-step local stability. For a fixed local step (t, k,m), write z = Z
I
(t,k)
πm , πm

and z′ = Z̃
I
(t,k)
πm , πm

.

By Lemma D.1, the GD update Φz,η(x) = x− η∇f(x; z) is 1-expansive when η(t,k) ≤ 2/β, hence

∥ω(t,k+1)
πm

− ω̃(t,k+1)
πm

∥2 ≤ ∥ω(t,k)
πm
− ω̃(t,k)

πm
∥2 + η(t,k)

∥∥∇f(ω̃(t,k)
πm

; z)−∇f(ω̃(t,k)
πm

; z′)
∥∥
2
. (2)

The second term is nonzero only when (I
(t,k)
πm , πm) = (i, j). Since (i, j) is uniform in MN samples,

the collision probability is 1/(MN). Using Young’s inequality and taking expectation yields

E∥ω(t,k+1)
πm

− ω̃(t,k+1)
πm

∥22 ≤ E∥ω(t,k)
πm
− ω̃(t,k)

πm
∥22 +

4(η(t,k))2

MN
E
∥∥∇f(ω(t,k)

πm
;Z

I
(t,k)
πm , πm

)
∥∥2
2
. (3)

Summing equation 3 over k = 0 to K − 1 and using ω
(t,0)
πm = ω(t), ω̃(t,0)

πm = ω̃(t) gives

E
[
∥ω(t,K)

πm
− ω̃(t,K)

πm
∥22
]
≤ E[∆2

t] +
4

MN

K−1∑
k=0

(
η(t,k)

)2 E∥∥g(t,k)πm

∥∥2
2
, (4)

where g
(t,k)
πm := ∇f(ω(t,k)

πm ;Z
I
(t,k)
πm , πm

).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Sequential pass with partial participation. Summing equation 4 over the active clients m =
1, . . . , M̃ (sequentially passed within round t) and using non-expansivity of the pass/aggregation,
we obtain

E[∆2
t+1] ≤ E[∆2

t] +
4

MN

M̃∑
m=1

K−1∑
k=0

(η(t,k))2 E
∥∥g(t,k)πm

∥∥2
2

Lemma D.4
≤ E[∆2

t] +
16M̃A⋆

MN

K−1∑
k=0

(
η(t,k)

)2(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)
. (5)

Define the blockwise sums Ht =
∑K−1

k=0 (η(t,k))2, Qt =
∑K−1

k=0 (η(t,k))2
∑k

s=0(η
(t,s))2. Then

E[∆2
t+1]− E[∆2

t] ≤
16M̃A⋆

MN

(
Ht + 4β2Qt

)
. (6)

Averaged round T output. Summing equation 6 over t = 0, . . . , T − 1 and using ∆0 = 0, for
the averaged output ω(T) = 1

T

∑T−1
t=0 ω(t), Jensen’s inequality implies

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≤ 1

T

T−1∑
t=0

E[∆2
t] ≤

16M̃A⋆

MNT

T−1∑
t=0

(
Ht + 4β2Qt

)
. (7)

Evaluating two common step-sizes. (i) Square-root decay η(t,k) = 1√
tK+k+k0

(k0 > 1):
T−1∑
t=0

Ht ≤ log

(
TK + k0 − 1

k0 − 1

)
,

T−1∑
t=0

Qt ≤
K + 1

2(k0 − 1)
.

Substituting into equation 7 gives

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≤ 16M̃A⋆

MNT

[
log

(
TK + k0 − 1

k0 − 1

)
+

2β2(K + 1)

(k0 − 1)

]
. (8)

(ii) Harmonic decay η(t,k) = 1
tK+k+k0

(k0 > 1):
T−1∑
t=0

Ht ≤
1

k0 − 1
,

T−1∑
t=0

Qt ≤
1

2

(
1

K(k0 − 1)
+

1

3(k0 − 1)3

)
.

Substituting into equation 7 yields

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≤ 16M̃A⋆

MNT

[
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

]
. (9)

From stability to generalization. By Theorem 4.1, for any γ > 0,

ϵgen ≤
3A⋆

2γ
+

β

2
S +

γ

2
S, where S := E

∥∥∥ω(T) − ω̃
(T)
∥∥∥2
2
.

Minimizing the RHS in γ gives γ⋆ =
√

3A⋆

S and

ϵgen ≤
β

2
S +

√
3A⋆S.

(i) Square-root decay. Using equation 8:

ϵgen ≤ 4
√
3A⋆

√
M̃

MN T

√
log

(
TK + k0 − 1

k0 − 1

)
+

2β2(K + 1)

k0 − 1
+

8β M̃A⋆

MN T

[
log

(
TK + k0 − 1

k0 − 1

)
+

2β2(K + 1)

k0 − 1

]
. (10)

(ii) Harmonic decay. Using equation 9:

ϵgen ≤ 4
√

3A⋆

√
M̃

MN T

√√√√ 1

k0 − 1
+ O

(
β2

K(k0 − 1)

)
+

8β M̃A⋆

MN T

[
1

k0 − 1
+ 2β

2

(
1

K(k0 − 1)
+

1

3(k0 − 1)3

)]
. (11)

This complete the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.1.3 PROOF OF THEOREM 4.4 (SSL ON NON-CONVEX CASE)

Proof. Proof. We adopt the local update rule

ω(t,k+1)
πm

= ω(t,k)
πm
− η(t,k)g(t,k)πm

, ω(t,0)
πm

=

{
ω(t), m = 1,

ω
(t,K)
πm−1 , m > 1,

(12)

where in each round t the server hands the current model to the first active client and then passes the
updated model sequentially along the M̃ active clients.

One-step local stability after the burn-in index t0. Write ∆
(t,k)
πm := ω

(t,k)
πm − ω̃

(t,k)
πm . By

Lemma D.1, for stepsizes η(t,k), the one-step update is (1 + βη(t,k))-expansive. As in the con-
vex case, conditioning on whether the touched sample coincides gives

w.p. 1− 1
MN : ∥∆(t,k+1)

πm
∥22 ≤ (1 + βη(t,k))2∥∆(t,k)

πm
∥22, (13)

w.p. 1
MN : ∥∆(t,k+1)

πm
∥22 ≤ (1 + βη(t,k))2∥∆(t,k)

πm
∥22 + 4(η(t,k))2∥g(t,k)πm

∥22. (14)

Taking expectation over the internal randomness,

E
[
∥∆(t,k+1)

πm
∥22
]
≤ (1 + βη(t,k))2E

[
∥∆(t,k)

πm
∥22
]
+

4

MN
(η(t,k))2 E

[
∥g(t,k)πm

∥22
]
. (15)

Unrolling over local steps k = 0, . . . ,K − 1. Define the amplification factors

Φt :=

K−1∏
r=0

(
1 + βη(t,r)

)2
, Ψt(k) :=

K−1∏
r=k+1

(
1 + βη(t,r)

)2
(≤ Φt).

Iterating equation 49 yields, for each active client m,

E
[
∥∆(t,K)

πm
∥22
]
≤ Φt E

[
∥∆(t,0)

πm
∥22
]
+

4

MN

K−1∑
k=0

(η(t,k))2 Ψt(k)E
[
∥g(t,k)πm

∥22
]
. (16)

Using log(1 + x) ≤ x and (1 + x)2 ≤ e2x, with St :=
∑K−1

r=0 η(t,r),

Ψt(k) ≤ Φt = exp
(
2

K−1∑
r=0

log(1 + βη(t,r))
)
≤ e2βSt . (17)

Sequential pass with partial participation. Unrolling equation 16 over m = 1, . . . , M̃ yields a
linear accumulation of the noise terms (no extra exponential in M̃):

E
[
∥∆(t+1)∥22

]
= E

[
∥∆(t,K)

πM̃
∥22
]

≤ Φt E
[
∥∆T ∥22

]
+

4 e2βSt

MN

M̃∑
m=1

K−1∑
k=0

(η(t,k))2 E
[
∥g(t,k)πm

∥22
]

≤ Φt E
[
∥∆T ∥22

]
+

4 M̃ e2βSt

MN

K−1∑
k=0

(η(t,k))2 E
[
∥g(t,k)πm

∥22
]
. (18)

Averaging round T−t0 output. Assume a burn-in where the two runs coincide at t0, i.e., ∆(t0) =
0. Averaging equation 18 over t = t0, . . . , T − 1 and using equation 17 gives

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
=

1

T − t0

T−1∑
t=t0

E
[
∥∆(t+1)∥22

]
≤ 4 M̃

MN(T − t0)

T−1∑
t=t0

e2βSt

K−1∑
k=0

(η(t,k))2 E
[
∥g(t,k)πm

∥22
]
.

(19)

By Lemma D.4, for all (t, k), introduce

Ht :=

K−1∑
k=0

(
η(t,k)

)2
, Qt :=

K−1∑
k=0

(
η(t,k)

)2 k∑
s=0

(
η(t,s)

)2
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Then equation 19 becomes

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≤ 16 M̃ A⋆

MN(T − t0)

T−1∑
t=t0

e2βSt

(
Ht + 4β2Qt

)
. (20)

Generalization from on-average stability. By the standard stability-to-generalization conversion
(with a tunable γ > 0),

ϵgen = min
γ,t0

B(γ, t0) ≤
t0

MN
+

β + γ

2
E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
+

3A⋆

2γ
. (21)

We will use log(1 + x) ≤ x, (1 + x)2 ≤ e2x, and 1 + x ≤ ex for x ≥ 0.

(i) Square-root schedule η(t,k) =
1√

tK + k + k0
.

By Riemann-sum bounds,

St =

K−1∑
k=0

1√
tK + k + k0

≤ 2
(√

tK + k0 +K −
√
tK + k0

)
≤ K√

tK + k0
, (22)

and

Ht =

K−1∑
k=0

1

tK + k + k0
≤ log

tK + k0 +K

tK + k0
, Qt ≤ H2

t . (23)

Plugging equation 22–equation 23 into equation 20 gives

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≤ 16 M̃ A⋆

MN(T − t0)

T−1∑
t=t0

exp
(

2β K√
tK+k0

)(
K

tK+k0
+ 4β2 K2

(tK+k0)2

)
. (24)

With u = tK + k0 (du = K dt), u runs from u0 := t0K + k0 to U := TK + k0. Using the change
of variables v =

√
u and w = 2βK

v , we get the tidy bound

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2

≲
16 M̃ A⋆

βMN(T − t0)
·
√
u0

K
exp
(2β K
√
u0

)
, u0 = t0K + k0. (25)

Substitute t0 = (TK)
2β

1+2β for optimization of B(γ, t0). For large TK,
√
u0

K
≍ (TK)

β
1+2β− 1

2 ,
2βK
√
u0

= 2β (TK)
1−β

2(1+2β) .

Hence

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2

≲
16 M̃ A⋆

βMN T
(TK)

β
1+2β− 1

2 exp
(
2β (TK)

1−β
2(1+2β)

)
. (26)

Using equation 21 and T − t0 ≍ T , and minimizing B(γ, t0) at γ⋆ =

√
3A⋆/E∥ω(T) − ω̃

(T)∥22,
we obtain

ϵgen ≲
(TK)

2β
1+2β

MN
+

8 M̃ A⋆

MN T
(TK)

β
1+2β

− 1
2 e 2β (TK)

1−β
2(1+2β)

+ 4A⋆

√
3M̃

βMN T
(TK)

β
2(1+2β)

− 1
4 e β (TK)

1−β
2(1+2β)

.

(27)

Compared with prior (incorrect) versions, the exponential factor no longer contains M̃ ; M̃ appears only linearly
in the prefactor.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(ii) Harmonic schedule η(t,k) =
1

tK + k + k0
.

We have

St =

K−1∑
k=0

1

tK + k + k0
≤ log

tK + k0 +K

tK + k0
, Ht =

K−1∑
k=0

1

(tK + k + k0)2
≤ 1

tK + k0
, (28)

Qt ≤ H2
t ≤ 1

(tK + k0)2
. (29)

Thus

e2βSt ≤
(
tK + k0 +K

tK + k0

)2β

≤ exp

(
2β K

tK + k0

)
≤ 1 +

2β K

tK + k0
.

Plugging equation 29 into equation 20 and expanding gives

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≤ 16 M̃ A⋆

MN(T − t0)

T−1∑
t=t0

(
1

tK + k0
+

2β K

(tK + k0)2
+

4β2

(tK + k0)2
+

8β3 K

(tK + k0)3

)
.

(30)

With u = tK + k0 and the estimates
T−1∑
t=t0

1

tK + k0
≤ 1

K
log

T

t0
,

T−1∑
t=t0

1

(tK + k0)2
≤ 1

K u0
,

T−1∑
t=t0

1

(tK + k0)3
≤ 1

2K u2
0

, (31)

where u0 := t0K + k0, U := TK + k0, we obtain

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≤ 16 M̃ A⋆

MN(T − t0)

[
1

K
log

T

t0
+

2β

u0
+

4β2

K u0
+

4β3

u2
0

]
. (32)

Substitute t0 = (TK)
2β

1+2β for optimization. Noting u0 ≍ t0K = (TK)
2β

1+2β K and T − t0 ≍ T , the log
term dominates for large TK, and we get

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≲

16 M̃ A⋆

MN T K
· 1

1 + 2β
log T. (33)

Using equation 21 and γ⋆ =
√

3A⋆/S with S given by equation 33, we obtain

ϵgen ≲
(TK)

2β
1+2β

MN
+

8β

1 + 2β
· M̃ A⋆ log T

MN T K
+ 4A⋆

√
3

1 + 2β

√
M̃ log T

MN T K
. (34)

This complete the proof.

E.2 PROOF OF SFL

E.2.1 SETUP.

Let the training set be S = {Zij : i ∈ [N], j ∈ [M]}, with M clients each holding N examples.
Let S(ij) denote the neighbour dataset obtained from S by replacing the single example Zij with an
independent copy Z̃ij . Run the SFL algorithm on S and on S(ij) with identical internal randomness
(same seeds for client participation, permutations, and data indices). Denote the global models after
round t by ω(t) and ω̃(t), respectively, with common initialization ω(0) = ω̃(0). Within each round
t, client m performs K local gradient steps

ω(t,k+1)
m = ω(t,k)

m − η(t,k)∇fπm

(
ω(t,k)

m ;Z
I
(t,k)
m ,m

)
, k = 0, . . . ,K − 1,

where I
(t,k)
m ∈ [N] is sampled uniformly (independently across t, k,m), and (π1, . . . , πM) is the

client permutation for round t. Aggregation is by averaging over the active clients At (we write
Mt = |At|); for clarity we present full participation Mt = M (the partial-participation case fol-
lows mutatis mutandis with Mt). Assume the per-sample loss f(·; z) is β-smooth; when specified,
convexity is also assumed. Define the round-t discrepancy

∆t ≜
∥∥ω(t) − ω̃(t)

∥∥
2
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.2.2 PROOF OF THEOREM 4.5 (SFL ON CONVEX CASE)

One-step local stability. Fix t, k,m. For brevity write z = Z
I
(t,k)
m ,m

and z′ = Z̃
I
(t,k)
m ,m

. Because

the gradient step map Φz,η(x) = x− η∇f(x; z) is 1-expansive for η(t,k) ≤ 2/β (Lemma D.1), we
have
∥ω(t,k+1)

m − ω̃(t,k+1)
m ∥2 =

∥∥Φz,η(t,k)(ω(t,k)
m)− Φz′,η(t,k)(ω̃(t,k)

m)
∥∥
2

≤
∥∥Φz,η(t,k)(ω(t,k)

m)− Φz,η(t,k)(ω̃(t,k)
m)

∥∥
2
+ η(t,k)

∥∥∇f(ω̃(t,k)
m ; z)−∇f(ω̃(t,k)

m ; z′)
∥∥
2

≤ ∥ω(t,k)
m − ω̃(t,k)

m ∥2 + η(t,k)
∥∥∇f(ω̃(t,k)

m ; z)−∇f(ω̃(t,k)
m ; z′)

∥∥
2
. (35)

The second term is nonzero only when the sampled pair (I(t,k)m ,m) coincides with the replaced index
(i, j). Since the replaced pair (i, j) is uniform over the MN samples, the probability of collision is
1/(MN). Using Young’s inequality yields for the second term in equation 35:

E
[
∥ω(t,k+1)

m − ω̃(t,k+1)
m ∥22

]
≤ E

[
∥ω(t,k)

m − ω̃(t,k)
m ∥22

]
+

4
(
η(t,k)

)2
MN

∥∥g(t,k)m

∥∥2
2
. (36)

Summing equation 36 over the K local steps and using ω
(t,0)
m = ω(t), ω̃(t,0)

m = ω̃(t) gives

E
[
∥ω(t,K)

m − ω̃(t,K)
m ∥22

]
≤ ∆2

t +
4

MN

K−1∑
k=0

(
η(t,k)

)2∥∥g(t,k)πm

∥∥2
2
. (37)

Aggregation over clients . Under partial participation (
∑M̃

m=1 cm = q ≤ 1), Jensen’s inequality
gives

E[∆2
t+1] = E

∥∥∥ M∑
m=1

cm
(
ω(t,K)

m − ω̃(t,K)
m

)∥∥∥2
2
≤

M∑
m=1

cm E
∥∥ω(t,K)

m − ω̃(t,K)
m

∥∥2
2

≤ q∆2
t +

4q

MN

K−1∑
k=0

(
η(t,k)

)2 ∥∥g(t,k)m

∥∥2
2

lem: D.4
≤ q∆2

t +
16q

MN

K−1∑
k=0

(
η(t,k)

)2(
1 + 4β2

k∑
s=0

(
η(t,s)

)2)
A⋆. (38)

Train outer round T . Introduce the blockwise sums

Ht ≜
K−1∑
k=0

(
η(t,k)

)2
, Qt ≜

K−1∑
k=0

(
η(t,k)

)2 k∑
s=0

(
η(t,s)

)2
.

Then from equation 38,

E[∆2
t+1] ≤ q∆2

t +
16qA⋆

MN
Ht +

64qβ2A⋆

MN
Qt. (39)

Assume ∆0 = 0, telescope equation 39 from t = 0 to T − 1 to get

E
∥∥∥ω(T) − ω̃

(T)
∥∥∥2
2
≤

T−1∑
t=0

E[∆2
t] ≤

16qA⋆

MN(1− q)

T−1∑
t=0

Ht +
64qβ2A⋆

MN(1− q)

T−1∑
t=0

Qt. (40)

Let ak ≜ (η(t,k))2. Then

Qt =

K−1∑
k=0

ak

k∑
s=0

as =
∑

0≤s≤k≤K−1

asak =
1

2

((K−1∑
k=0

ak

)2
+

K−1∑
k=0

a2k

)
=

1

2

(
H 2

t +

K−1∑
k=0

(η(t,k))4

)
,

where we swap the summation order to symmetrize the (s, k) pairs.

Consequently,
1
2H

2
t ≤ Qt ≤ H 2

t .

This identity (and bounds) lets us express equation 40 purely in terms of Ht (plus a small quartic
correction), which simplifies step-size–specific evaluations.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Evaluating Two common step-size. (i) For square-root decay step-size η(t,k) =
1√

tK + k + k0
.

Ht =

K−1∑
k=0

1

tK + k + k0
and

T−1∑
t=0

Ht =

TK−1∑
n=0

1

n+ k0
≤ log

(TK + k0 − 1

k0 − 1

)
.

For each block t we also have the elementary bound:

Ht ≤ log
(tK +K + k0 − 1

tK + k0 − 1

)
≤ K

tK + k0 − 1
,

where we used log(1 + x) ≤ x.

Consequently,
T−1∑
t=0

H2
t ≤

T−1∑
t=0

K2

(tK + k0 − 1)2
≤ K

k0 − 1
, (41)

the last inequality following from the comparison of the arithmetic progression tK + k0 − 1 with
the harmonic tail and the bound

∑
n≥b n

−2 ≤ 1/(b− 1) for b > 1.

For the fourth-order terms,
T−1∑
t=0

K−1∑
k=0

(η(t,k))4 =

T−1∑
t=0

K−1∑
k=0

1

(tK + k + k0)2
=

TK−1∑
n=0

1

(n+ k0)2
≤ 1

k0 − 1
.

Then we get:
T−1∑
t=0

Qt ≤
1

2

(T−1∑
t=0

H2
t +

T−1∑
t=0

K−1∑
k=0

(η(t,k))4
)
≤ K + 1

2(k0 − 1)
. (42)

Plugging equation 41 and equation 42 into equation 40 yields the explicit squared stability bound
for the square-root schedule:

E
[
∆2

T

]
≤ 16qA⋆

MN(1− q)

(
log
(TK + k0 − 1

k0 − 1

)
+

2β2(K + 1)

(k0 − 1)

)
. (43)

(ii) For harmonic decay step-size η(t,k) =
1

tK + k + k0
. Now

(
η(t,k)

)2
= 1

(tK+k+k0)2
.

Ht =

K−1∑
k=0

1

(tK + k + k0)2
≤
∫ tK+K+k0−1

tK+k0−1

dx

x2
=

1

tK + k0 − 1
− 1

tK +K + k0 − 1
.

Summing t = 0, . . . , T − 1 yields
T−1∑
t=0

Ht ≤
1

k0 − 1
− 1

TK + k0 − 1
≤ 1

k0 − 1
. (44)

T−1∑
t=0

H2
t ≤

T−1∑
t=0

1

(tK + k0 − 1)2
≤ 1

K(k0 − 1)
,

T−1∑
t=0

K−1∑
k=0

(η(t,k))4 =

TK−1∑
n=0

1

(n+ k0)4
≤

∞∑
n=k0

1

n4
≤ 1

3(k0 − 1)3
,

Therefore,
T−1∑
t=0

Qt ≤
1

2

(1

K(k0 − 1)
+

1

3(k0 − 1)3

)
. (45)

Substituting equation 44 and equation 45 into equation 40 yields the explicit squared stability bound
for the harmonic schedule:

E
[
∆2

T

]
≤ 16qA⋆

MN(1− q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
. (46)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

From stability to generalization. By Theorem ??, to obtain the tightest bound, minimize the
right-hand side with respect to γ > 0. The generalization bound is then

min
γ

B(γ) =
3A⋆

2γ
+

β + γ

2
E
[
∆2

T

]
, γ∗ =

√
3A⋆

E
[
∆2

T

] .
(i) For square-root decay, using equation 43, the generalization bound is

ϵgen ≤ 4
√
3A⋆

√√√√ q

MN(1 − q)

(
log

TK + k0 − 1

k0 − 1
+

2β2(K + 1)

k0 − 1

)
+

8β q A⋆

MN(1 − q)

(
log

TK + k0 − 1

k0 − 1
+

2β2(K + 1)

k0 − 1

)
.

For large T,K,M and constant k0:

ϵgen ≤ Õ

(√
q (log(TK) + β2K)

MN(1− q)
+

β q (log(TK) + β2K)

MN(1− q)

)
.

(ii) For harmonic decay, using equation 46, the generalization bound is

ϵgen ≤ 4
√
3A⋆

√√√√ q

MN(1 − q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
+

8β q A⋆

MN(1 − q)

(
1

k0 − 1
+

2β2

K(k0 − 1)
+

2β2

3(k0 − 1)3

)
.

For large K and constant k0:

ϵgen ≤ Õ

(√
q

NM(1− q)
+

β q

NM(1− q)

)
.

This completes the proof.

E.2.3 PROOF OF THEOREM 4.6 (SFL ON NON-CONVEX CASE)

One-step local stability after the burn-in index t0. Write ∆
(t,k)
m := ω

(t,k)
m − ω̃

(t,k)
m . Under

Assumption 4.1 and Lemma D.1, the one-step update is (1 + βη(t,k))-expansive. Conditioning on
whether the touched sample coincides:

w.p. 1− 1
MN : ∥∆(t,k+1)

m ∥22 ≤ (1 + βη(t,k))2∥∆(t,k)
m ∥22, (47)

w.p. 1
MN : ∥∆(t,k+1)

m ∥22 ≤ (1 + βη(t,k))2∥∆(t,k)
m ∥22 + 4(η(t,k))2∥g(t,k)m ∥22. (48)

Taking expectation:

E
[
∥∆(t,k+1)

m ∥22
]
≤ (1 + βη(t,k))2E

[
∥∆(t,k)

m ∥22
]
+

4

MN
(η(t,k))2 E

[
∥g(t,k)m ∥22

]
. (49)

Unrolling over local steps k = 0, . . . ,K − 1. Define

Φt :=

K−1∏
r=0

(
1 + βη(t,r)

)2
, Ψt(k) :=

K−1∏
r=k+1

(
1 + βη(t,r)

)2
(≤ Φt).

Iterating equation 49 yields

E
[
∥∆(t,K)

m ∥22
]
≤ Φt E

[
∥∆(t,0)

m ∥22
]
+

4

MN

K−1∑
k=0

(η(t,k))2 Ψt(k)E
[
∥g(t,k)πm

∥22
]
. (50)

With St :=
∑K−1

k=0 η(t,k) and using log(1 + x) ≤ x, (1 + x)2 ≤ e2x,

Ψt(k) ≤ Φt = exp
(
2

K−1∑
r=0

log(1 + βη(t,r))
)
≤ exp

(
2

K−1∑
r=0

βη(t,r)
)
= e2βSt . (51)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Aggregation over active clients. Let the server aggregate by weighted averaging ω̄(t,K) :=∑
m∈Mt

cm ω
(t,K)
m with cm ≥ 0,

∑
m∈Mt

cm = q ≤ 1, and ω(t+1) := ω̄(t,K). By Jensen’s
inequality and equation 50,

E
[
∥∆(t+1)∥22

]
= E

[∥∥∥ ∑
m∈Mt

cm
(
ω(t,K)

m − ω̃(t,K)
m

)∥∥∥2
2

]
≤

∑
m∈Mt

cm E
[
∥∆(t,K)

m ∥22
]

≤ qΦt E
[
∥∆t∥22

]
+

4q

MN

K−1∑
k=0

(η(t,k))2 Ψt(k)E
[
∥g(t,k)πm

∥22
]
. (52)

Accumulating from t0 (with ∆(t0) = 0) to T − 1 and summing the geometric factor coming from
qΦt gives

E
[
∥∆T ∥22

]
=

T−1∑
t=t0

E
[
∥∆(t+1)∥22

]

≤ 4q

MN(1− q)

T−1∑
t=t0

e2βSt

K−1∑
k=0

(η(t,k))2 E
[
∥g(t,k)πm

∥22
]
. (53)

By Lemma D.4, define Ht :=
∑K−1

k=0

(
η(t,k)

)2
, Qt :=

∑K−1
k=0

(
η(t,k)

)2∑k
s=0

(
η(t,s)

)2
. Then

from equation 53,

E
[
∥∆T ∥22

]
≤ 16qA⋆

MN(1− q)

T−1∑
t=t0

e2βSt

(
Ht + 4β2Qt

)
. (54)

Generalization via stability. For any γ > 0 and burn-in t0,

ϵgen = min
γ,t0

{ t0
MN

+
β + γ

2
E
[
∥∆T ∥22

]
+

3A⋆

2γ

}
. (55)

It remains to bound St, Ht, Qt.

(i) Square-root schedule η(t,k) =
1√

tK + k + k0
. Using St ≤ K√

tK+k0
, Ht ≤ K

tK+k0
, Qt ≤

K2

(tK+k0)2
, equation 54 becomes

E
[
∥∆T ∥22

]
≤ 16qA⋆

MN(1− q)

T−1∑
t=t0

exp
(

2βK√
tK+k0

)(
K

tK+k0
+ 4β2 K2

(tK+k0)2

)
. (56)

Let u = tK + k0 (du = K dt) and v =
√
u. As in the SSL analysis, one obtains∫ U

u0

exp
(

2βK√
u

)(
K
u + 4β2K2

u2

)
du ≲

2K
√
u0

β
e

2βK√
u0 , u0 := t0K + k0, U := TK + k0.

(57)

Therefore

E
[
∥∆T ∥22

]
≲

16qA⋆

βMN(1− q)

√
u0 exp

(2βK
√
u0

)
. (58)

Choosing t0 = (TK)
2β

1+2β gives

√
u0 ≍ (TK)

β
1+2β K1/2,

2βK
√
u0

= 2β (TK)
1−β

2(1+2β) .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Hence

E
[
∥∆T ∥22

]
≲

16qA⋆

βMN(1− q)
(TK)

β
1+2β K

1
2 exp

(
2β (TK)

1−β
2(1+2β)

)
. (59)

Using equation 55 with γ⋆ =
√
3A⋆/E∥∆T ∥2,

ϵgen ≲
(TK)

2β
1+2β

MN
+

8qA⋆

MN(1 − q)
(TK)

β
1+2β K

1
2 e

2β (TK)

1−β
2(1+2β)

+ 4
√
3A⋆

√
q

β MN(1 − q)
(TK)

β
2(1+2β) K

1
4 e

β (TK)

1−β
2(1+2β)

.

(60)

(ii) Harmonic schedule η
(t,k)

=
1

tK + k + k0

. Here St ≤ log
(tK+k0+K

tK+k0

)
, Ht ≤ 1

tK+k0
, Qt ≤ 1

(tK+k0)2
, and e2βSt ≤

exp
(2βK
tK+k0

)
≤ 1 + 2βK

tK+k0
. Summing by integral comparison gives, with u0 := t0K + k0 ,

T−1∑
t=t0

1

tK + k0

≤
1

K
log

T

t0
,

T−1∑
t=t0

1

(tK + k0)2
≤

1

K u0

,

T−1∑
t=t0

1

(tK + k0)3
≤

1

2K u2
0

. (61)

Thus

E
[
∥∆T ∥22

]
≤

4qA⋆

MN(1 − q)

[
1

K
log

T

t0
+

2β

u0

+
4β2

K u0

+
4β3

u2
0

]
. (62)

Choose t0 = (TK)
2β

1+2β , so that the log term dominates:

E
[
∥∆T ∥22

]
≲

4qA⋆

MN(1 − q)
·

1

K
·

1

1 + 2β
log T. (63)

Plugging equation 63 into equation 55 with γ⋆ yields

ϵgen ≲
(TK)

2β
1+2β

MN
+

2β

1 + 2β
· qA⋆ log T

MN(1− q)K
+ 2A⋆

√
3q

(1 + 2β)MN(1− q)K

√
log T . (64)

This complete the proof.

29

	Introduction
	Related Work
	Preliminaries
	Problem Setup
	Algorithm
	Sequential Split Learning (SSL)
	Split Federated Learning (SFL)

	Theoretical Analysis
	Assumption
	Stability and Generalization
	Discussion

	Experimental Results
	Logistic Regression
	ResNet-18

	Conclusion
	Appendix: Notations
	Appendix: More Details about Spilt Learning
	Comparative Analysis
	Appendix: Additional Definition, Technical Lemmas and Propositions
	Proof of Theorem
	Proof of SSL
	Setup
	Proof of Theorem 4.3 (SSL On Convex Case)
	Proof of Theorem 4.4 (SSL On Non-convex Case)

	Proof of SFL
	Setup.
	Proof of Theorem 4.5 (SFL On Convex case)
	Proof of Theorem 4.6 (SFL On Non-convex Case)

