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Abstract

This paper presents a text classification algorithm inspired by the notion of superpo-
sition of states in quantum physics. By regarding text as a superposition of words,
we derive the wave function of a document and we compute the transition probabil-
ity of the document to a target class according to Born’s rule. Two complementary
implementations are presented. In the first one, wave functions are calculated
explicitly. The second implementation embeds the classifier in a neural network
architecture. Through analysis of three benchmark datasets, we illustrate several
aspects of the proposed method, such as classification performance, explainability,
and computational efficiency. These ideas are also applicable to non-textual data.

1 Introduction

In quantum physics, the superposition principle is the idea that a system can be in multiple states at
the same time (e.g., a cat is simultaneously alive and dead in Schrödinger’s thought experiment [22]).
Here we show that text can be formally treated as a quantum system in a superposition of words.
Our superposition-of-words model is a bag-of-words model where each word is treated as a quantum
state. By exploiting this representation, we develop a supervised classifier based on key postulates of
quantum mechanics, namely the Born rule [4].

The Born rule provides a link between the mathematical formalism of quantum theory and experiment,
and as such is almost single-handedly responsible for practically all predictions of quantum physics.1
In this paper, we represent documents and classes as quantum objects and we compute the probability
of a document to collapse in a target class by applying the Born rule.

The paper is structured as follows. Section 2 presents the motivation of this work. Section 3
introduces the notation and some preliminary notions in quantum mechanics. Section 4 develops our
classification algorithm. Section 5 embeds the classifier in a neural network architecture. Section 6
presents our empirical results. Finally, Section 7 gives our concluding remarks and discusses
extensions to semantics and non-textual data.

To simplify extensions to this work, we implement our classification algorithm in scikit-learn [17] and
we embed the classifier in a neural network architecture using pytorch [16]. All the code is available
at https://github.com/eguidotti/bornrule.

1We refer the reader to [14] for an introduction to the Born rule.
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2 Motivation

In its most general form, the no-free-lunch theorem [23] implies that only prior knowledge makes it
possible to generalize from the training examples to novel test examples. As quantum mechanics
represents our understanding of nature at the deepest level [13], we wonder whether quantum-
inspired machine learning may incorporate a fundamental form of prior knowledge. Our hope
is that such knowledge results in more efficient algorithms, with better generalization ability and
shorter computational times. Such algorithms would be also beneficial in terms of explainability and
interpretability [8], as their interpretation is immediately inherited from the physical model [18].2

This work should not be confused with quantum computing, which harnesses the properties of
quantum states to perform calculations [1], or with quantum machine learning [3], which explores
how to devise and implement quantum software that could enable machine learning that is faster than
that of classical computers [6]. We refer to our work as quantum-inspired machine learning, in that
we use quantum theory to derive machine learning algorithms that can run on classical computers.
Although this is not the first time quantum theory is applied to machine learning (see e.g., [15]),
this is, to our knowledge, the first step to develop a new general-purpose algorithm for supervised
classification based on key postulates of quantum mechanics, namely the Born rule.

Here we focus on text classification, as the analogy with quantum systems is straightforward.3
However, the formalism we present is general and the implementations we derive can be used in
practice as general-purpose classifiers.

3 Notation

Let x be a feature vector with elements xj for j = 1, ..., J . Let y be a probability vector with
elements yk ≥ 0 for k = 1, ...,K, and such that

∑
k yk = 1. Our goal is to learn a function g such

that y = g(x). Then, given a test instance x′, we predict the probabilities y′ = g(x′) and select the
class k∗ = argmaxk y

′
k for classification.

We start by giving some preliminary notions in quantum mechanics.

Wave function. In quantum physics, a system is regarded as a superposition of states |s〉 and, using
Dirac’s notation [7], it is represented by a wave function |ψ〉:

|ψ〉 =
∑
s

ψs|s〉 with ψs ∈ C. (1)

Born rule. In the Copenhagen interpretation, the modulus squared of the inner product is interpreted
as the (unnormalized) probability of the wave function |ψ〉 collapsing to a new wave function |ϕ〉:

P (ψ → ϕ) = |〈ϕ|ψ〉|2 =
∣∣∣∑
s

ϕ̄sψs

∣∣∣2, (2)

where ϕ̄s denotes the complex conjugate of ϕs. This is known as the Born rule, and it is one of the
fundamental postulates of quantum mechanics.

Wave coefficients. From (1) and (2), we notice that the coefficient |ψs|2 represents the (unnormal-
ized) probability of the wave function |ψ〉 to collapse in state |s〉:

P (ψ → s) = |〈s|ψ〉|2 = |ψs|2. (3)

4 Classification Algorithm

Let the feature vector x contain only non-negative elements such that xj ≥ 0 for all j (e.g., word
counts or tf-idf weights). We regard xj as the (unnormalized) probability of the data instance (e.g.,
document) to collapse in the j-th feature (e.g., word). We represent the j-th feature as a quantum state

2We refer the reader to [19] for an introduction to quantum mechanics and its interpretation.
3We refer the reader to [2, 5, 21, 27, 28] for quantum language models.
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|j〉, and we represent the data instance with a superposition of states |ψ〉 =
∑
j ψj |j〉. According

to (3) we have xj = P (ψ → j) = |ψj |2, which implies the natural choice ψj =
√
xj .

|ψ〉 =
∑
j

ψj |j〉 =
∑
j

√
xj |j〉 (4)

In a similar way, we represent the k-th class with a wave function |ϕ(k)〉 =
∑
j ϕ

(k)
j |j〉, and we

obtain the coefficients ϕ(k)
j by setting the transition probability from |ϕ(k)〉 to |j〉 equal to the

conditional probability of feature j given class k, which we write as Pj|k. According to (3) we have
Pj|k = P (ϕ(k) → j) = |ϕ(k)

j |2, which implies the natural choice ϕ(k)
j =

√
Pj|k.

|ϕ(k)〉 =
∑
j

ϕ
(k)
j |j〉 =

∑
j

√
Pj|k|j〉 (5)

Finally, we obtain the classification probability yk by computing the probability of |ψ〉 to collapse in
|ϕ(k)〉. By substituting (4) and (5) in (2), the unnormalized probabilities are:

uk = P (ψ → ϕ(k)) = |〈ϕ(k)|ψ〉|2 =
∣∣∣∑
j

ϕ̄
(k)
j ψj

∣∣∣2=
(∑

j

√
Pj|kxj

)2
, (6)

and the normalized probabilities are yk = uk/
∑
k uk.

4.1 Training

To obtain the conditional probability Pj|k in (6) we proceed as follows. Given a training set
{(x(n),y(n))}n=1,...,N , we normalize each feature vector x(n) such that it sums up to 1:

z
(n)
j =

x
(n)
j∑
j′ x

(n)
j′

. (7)

Then, we compute the conditional probability Pj|k from the (unnormalized) joint probability Pjk:

Pjk =
∑
n

z
(n)
j y

(n)
k , Pj|k =

Pjk∑
j′ Pj′k

. (8)

4.2 Regularization

We observe that if Pj|k is constant for k = 1, ...,K, then the j-th addend increases the summation
in (6) by the same value for all classes. As uk is a monotonic transformation of the summation,
the j-th addend does not alter the ranking of the probabilities uk, thus being irrelevant for the
final classification k∗ = argmaxk yk = argmaxk uk. To regularize the predictions, we shrink the
contribution of irrelevant addends towards zero by re-weighting the summation in (6).

Let us rewrite, for ease of notation, the probabilities Pj|k as some weights Wjk ≥ 0. Then, j is
irrelevant if Wjk is constant for all k. We normalize Wjk such that the weights of the classes k sum
up to 1 for each j, that is:

Wk|j =
Wjk∑
k′Wjk′

. (9)

An irrelevant j maximizes the entropyHj = −
∑
kWk|j ln(Wk|j), as Wk|j is uniformly distributed

across the classes k. Thus, we introduce the following weights that range between 0 (irrelevant j
with maximum entropy) and 1 (relevant j with null entropy):

Hj = 1− Hj
Hmax

= 1 +

∑
kWk|j ln(Wk|j)

ln(
∑
k 1)

. (10)

Finally, we use Hj in (10) to re-weight the summation in (6), which becomes:

uk =
(∑

j

Hj

√
Pj|kxj

)2
. (11)
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4.3 Generalization

To simplify ablation studies, we generalize (11) as follows:

uk =
(∑

j

Hh
jW

a
jkx

a
j

) 1
a

with Wjk =
Pjk

(
∑
j′ Pj′k)b(

∑
k′ Pjk′)

1−b , (12)

where Hj is given in (9)–(10), Pjk is given in (8), and a > 0, b ≥ 0, and h ≥ 0 are the model
hyper-parameters. Here, we are mainly interested in the choice a = 1

2 , b = 1, and h = 1, which
corresponds to the original model in (11). Another special configuration is a = 1, b = 0, and h = 0,
which corresponds to uk =

∑
j Pk|jxj where Pk|j is the conditional probability of k given j. This

configuration offers a natural benchmark for our quantum approach in that it computes uk according
to classical probability theory.

4.4 Explainability

The contribution of the j-th feature to the total probability uk (local explanation) is given by the
addend Hh

jW
a
jkx

a
j in (12). Therefore, the most influential feature for the classification k∗ is given

by j∗ = argmaxj H
h
jW

a
jk∗x

a
j . In general, we use Hh

jW
a
jk∗x

a
j to rank the features by the degree in

which they contribute to the classification k∗.

The explanation at the class level (global explanation) is obtained by investigating the productHh
jW

a
jk

in (12), regardless of the vector x. The global most influential feature for each class k is given by
j∗k = argmaxj H

h
jW

a
jk. In general, we use Hh

jW
a
jk to rank the features by their global importance

with respect to class k.

4.5 Computational Complexity

In the training phase, the algorithm in (11), and more generally (12), learns the joint probability Pjk
in (8) by multiplying the J ×N matrix of elements z(n)j with the N ×K matrix of elements y(n)k .
Entry Pjk is given by the inner product of the j-th row of the left matrix (which has N entries) and
the k-th column of the right matrix (which has N entries), so computing it takes time O(N). We do
this once per element. Since the output matrix has dimension J ×K, there are O(JK) elements to
consider and the total work is done in O(NJK). That is, the training time is at most linear in the
number of samples (N ), in the number of features (J), and in the number of classes (K).

In the prediction phase, we compute uk (and yk) in (11), and more generally (12). As these are all
elementwise operations on the J ×K matrix of elements Pjk, the total work is done in time O(JK).
That is, the prediction time is at most linear in the number of features (J), and in the number of
classes (K), and it does not depend on the number of training samples (N ).

Finally, we notice that the computational complexity can be further improved by using sparse matrices,
and all the operations involved in the training and prediction phases can be easily parallelized (e.g.,
on GPUs). Thus, we expect the method to be highly scalable.

5 Neural Architecture

A major limitation of the algorithm presented in Section 4 is that it can be applied only when xj ≥ 0.
Here we embed the method in a more flexible architecture that admits xj ∈ C.

Let us assume that a data instance (e.g., document) can be represented as a superposition of some
hidden states |s〉 for s = 1, ..., S (e.g., word embeddings). Then, we write its wave function
|ψ〉 =

∑
s ψs|s〉 where the coefficients ψs generally depend on the feature vector x (e.g., words).

We represent such coefficients with a neural network ψs = ψs(x) that maps the feature vector
x ∈ CJ to the vector of wave coefficients ψ ∈ CS . Then, we write the wave function of class k as
|ϕ(k)〉 =

∑
s ϕ

(k)
s |s〉 where the coefficients ϕ(k)

s depend on k and s, but not on the feature vector x.
Finally, we use the Born rule in (2) to compute the probability of |ψ〉 to collapse in |ϕ(k)〉:

uk = P (ψ → ϕ(k)) = |〈ϕ(k)|ψ〉|2 =
∣∣∣∑
s

ϕ̄(k)
s ψs(x)

∣∣∣2. (13)
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Equation (13) is read as a neural network u = σ(Φv) where Φ is a matrix of elements Φks = ϕ̄
(k)
s ,

v = ψ(x) is the output of the previous layer, Φv denotes the matrix product
∑
s Φksvs, and the

activation function σ(·) = | · |2 is the modulus squared. Finally, we apply a normalization layer to
obtain the probabilities yk = uk/

∑
k uk ∈ [0, 1]. An illustration is given in Figure 1.

Figure 1: Born Layer (BL) architecture.

Our method is similar to the usual approach where the first part of a network is assumed to learn
log-probabilities, and the final classification layer converts them into probabilities by applying the
softmax function. Here, the first part of the network is assumed to learn the coefficients of a wave
function, and the final classification layer converts them into probabilities by applying the Born rule.

5.1 Initialization

We initialize the weights Φks such that the wave function |ϕ(k)〉 has an equal probability to collapse
in any state |s〉. To this end, let us write the complex-valued weights Φks = ρkse

iθks , where i
is the imaginary unit, ρks ≥ 0, and θks ∈ [0, 2π). We recall from (3) that the probability of
|ϕ(k)〉 to collapse in |s〉 is P (ϕ(k) → s) = |ϕ(k)

s |2 = |Φks|2 = ρ2ks. We set ρ2ks = ρ2 so that
the (unnormalized) probability is constant for all k and s. To normalize the probability, we set
Sρ2 = 1, where S is the number of states (input dimension of the layer). We obtain ρ = 1/

√
S,

which resembles the initialization in [9] and [10]. Finally, we sample θks from a uniform distribution
in the interval [0, 2π), such that the weights Φks are uniformly distributed in the complex circle
(isotropy).

Φks =
eiθks

√
S

with θks ∼ U(0, 2π). (14)

When the feature vector x is a (unnormalized) probability vector as in Section 4, then (11) can be
written as the neural network in (13) where we use S = J and ψs(x) =

√
xs. In this case, it is

interesting to initialize the weights in (13) with the corresponding weights developed in (11), that is
Φks = Hs

√
Ps|k.4

5.2 Explainability

We notice that the probabilities yk are invariant under scaling and rotation of the coefficients ϕ̄(k)
s

in (13). To show that, we multiply ϕ̄(k)
s by a scaling factor ρ and a phase factor eiθ. Then, we

substitute ϕ̄(k)
s → ρeiθϕ̄

(k)
s in (13). The phase factor eiθ vanishes when computing the modulus and

the scaling factor ρ vanishes when the probabilities are normalized.

The invariance by scaling and rotation implies that the weights Φks have no absolute meaning, and
they become meaningful only in relation with each other. To inspect the relations among states s, for
a given class k, it is interesting to visualize the weights Φks in the complex plane (with unlabelled
axes). Here, the length of the vectors can be used to rank the states by importance, while the direction
of the vectors produce constructive or destructive interference among the states (see Figure 5 for an
illustration). For local explanations, Φksvs is used instead of Φks.

4More precisely, we scale the weights by dividing them by their mean and by the square root of the number
of features to mimic (14). This does not alter the model, which is invariant under scaling (see Section 5.2), but it
helps to prevent vanishing or exploding gradients during backpropagation.
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6 Empirical Results

We illustrate several aspects of our classifier using three well-established text classification bench-
marks: 20Newsgroup5, and the R8 and R52 subsets of Reuters 215786. We perform tokenization
using the function nltk.word_tokenize7 and vectorize the text with TfidfVectorizer8. No other text trans-
formation or cleaning procedure is performed. The final datasets are composed by (20Newsgroup)
20 classes, 204 817 words, 11 314 training documents, and 7 532 test documents; (R8) 8 classes,
33 593 words, 5 485 training documents, 2 189 test documents; (R52) 52 classes, 38 132 words,
6 532 training documents, and 2 568 test documents.

All the results are obtained using Python 3.9 on a Google Cloud Virtual Machine equipped with
CentOS 7, 12 vCPU Intel Cascade Lake 85 GB RAM, 1 GPU NVIDIA Tesla A100, and CUDA 11.5.

6.1 Training time, prediction time, and accuracy score

We compare our methodology against a baseline of six classifiers on the 20Newsgroup dataset. With
Born Classifier (BC), we refer to the algorithm presented in Section 4, where weights are computed
as in equation (8) and classification probabilities are calculated as in equation (11). The baseline is
composed by the algorithms Decision Tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF),
Support Vector Machine (SVM), Multinomial Naive Bayes (MNB), and Logistic Regression (LR). For
all the algorithms in the baseline, we use the corresponding implementation in scikit-learn. All the
classifiers are executed on CPU with default parameters.

Figure 2: From left to right: training time, prediction time, and accuracy score on the 20Newsgroup
dataset (y-axis) for several classifiers, in function of the fraction of data used for training (x-axis).

The comparison between BC and the baseline is reported in Figure 2, where we show the training
time, prediction time, and accuracy score in function of the fraction of data used for training in 10
independent executions. Figure 2 shows that BC is fast to train, is fast to predict, can be accelerated
on GPU, and it achieves the highest accuracy regardless of the size of the dataset. Moreover, as the
amount of training data decreases, the accuracy gap between BC and the other classifiers widens.

6.2 Imbalanced data

While 20Newsgroup is almost balanced in terms of documents per class, R8 and R52 are not. In
particular, the most frequent class in R52 contains 2 840 training samples, while the least frequent
class contains only 1 document in the training set. Figure 3 reports the F1-macro score for BC and
the baseline on the three datasets, which are increasingly imbalanced. BC outperforms the baseline
models and the performance gap widens for more imbalanced data. The native capability of BC to
work with imbalanced data can be traced back to (8), which computes the conditional probability of
the features given the classes. Dividing the joint probability by the marginal effectively normalizes
by the class imbalance.

5http://qwone.com/~jason/20Newsgroups
6http://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld
7See https://www.nltk.org/book/
8See https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Figure 3: F1-macro score (y-axis) on 20Newsgroup, R8, R52, for several classifiers, in function of
the fraction of data used for training (x-axis).

6.3 Hyper-parameters and ablation study

We now compare the overall accuracy score and runtime of BC with the results of the fine-tuned
baseline on 20Newsgroup (see Table 1). We then conduct an ablation study on BC (see Figure 4).

Model Accuracy (%) Runtime (s)

DT 53.9 5,583.156
KNN 55.6 640.574
RF 77.5 49,686.936
SVM 79.4 45,639.071
LR 82.9 6,066.966
MNB 84.1 15.320

BC (11) 87.3 0.043

Table 1: Accuracy score and runtime for several
classifiers on the 20Newsgroup dataset. The run-
time is the (CPU) time to optimize the model’s
hyper-parameters by 5-fold cross-validated grid-
search on the training set, plus the time to refit
the selected model. The accuracy score is the
accuracy achieved by the model on the test set.

Figure 4: Ablation study on the 20Newsgroup
dataset. The figure displays the test accuracy
scores of the model in (12) for several val-
ues of the hyper-parameters a, b, and h. The
biggest point identifies the configuration of hyper-
parameters a = 1

2 , b = 1, h = 1, which corre-
sponds to the original model in (11).

In Table 1, we tune the baseline classifiers via grid-search using 5-fold cross-validation. Except
for BC, which needs no tuning, all the other classifiers use between 20 and 50 combinations of
hyper-parameters (reported in the replication code). BC still achieves the highest accuracy by a
remarkable margin. Furthermore, the overall time required to classify the dataset is several orders of
magnitude smaller than than that required by the baseline algorithms. This is partly due to the speed
of execution of BC (see Figure 2) and partly due to the fact that BC has no hyper-parameters to tune.

The ablation study is reported in Figure 4. Here we display the test accuracy scores of the model
corresponding to equation (12) for several values of the hyper-parameters a, b, and h. The config-
uration a = 1

2 , b = 1, h = 1, corresponds to BC in equation (11) and it achieves an accuracy of
87.3%. Selecting the hyper-parameters via cross validation also achieves a test accuracy of 87.3%,
suggesting that our prior generalizes well. The classical configuration a = 1, b = 0, h = 0, discussed
in Section 4.3, achieves an accuracy of 83.3%. Removing the regularization (h = 0) from our
model leads to a large drop in performance: from 87.3% to 77.7%. On the other hand, adding the
regularization (h = 1) to the classical configuration does not lead to any performance gain: from
83.3% to 82.0%. These results can be understood by recalling that the classical configuration uses
the conditional probability of the classes given the features (Pk|j), while BC uses the conditional
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probability of the features given the classes (Pj|k). As Pj|k gives larger weight to more frequent
features, then BC is dominated by noise when the features irrelevant for classification are also the
most frequent (as is typical in text). Regularization becomes important to reduce the influence of
frequent features that are slightly skewed. Instead, in the classical configuration, regularization is
redundant as Pk|j already limits the influence of such features.

6.4 Embedding in a neural network architecture

With Born Layer (BL), we refer to the neural architecture displayed in Figure 1 that takes in input ψ(x)
and returns the classification probabilities according to equation (13). Here we choose ψs(x) =

√
xs

so that the transformation in equations (11) and (13) are the same, and they can be directly compared
(in general, ψ(x) may be an arbitrary transformation to exploit e.g., semantics, as discussed in
Section 7). BL is initialized as in (14) and it is optimized on the L1-loss using Adam [12] with
default parameters. We also initialize BL with the weights computed by BC as discussed at the end of
Section 5.1. We refer to this version with BC+BL.

We stress-test BC and BL (which only rely on word counts) against a variety of deep learning
approaches reported in literature (which exploit more sophisticated representations of the document).
In Table 2, we include cooperative neural networks (CoNN) [20], models that learn distributed
representations of entities and documents from a knowledge base (TextEnt) [25], graph convolutional
networks (TextGCN) [20], the neural attentive bag-of-entities model (NABoE) [24], and the diversified
ensemble neural network (DEns) [29].

We find that BC achieves state-of-the-art accuracy on the 20Newsgroup dataset, and it is up to a
million times faster than alternative approaches (0.001s). This confirms that the weights computed
explicitly in (11) are a good prior. Also BL matches state-of-the-art performance, but it requires
significantly longer computational times (about 34s). Initializing BL with BC requires few training
epochs to further improve performance, suggesting that BC+BL can be fine-tuned relatively fast (about
3s). Finally, we notice that, while BL optimizes complex-valued weights, BC+BL uses real-valued
weights. This suggests that the reason for good performance lies in the transformation itself (13),
rather than in the usage of complex numbers.

Accuracy (%) Runtime (s)
20NG R8 R52 20NG R8 R52

CoNN [20] 83.7 N/A N/A 120.000 N/A N/A
TextEnt [25] 84.5 96.7 N/A 923.089 556.020 N/A
TextGCN [26] 86.3 97.1 93.6 1206.372 109.184 186.531
NABoE [24] 86.8 97.1 N/A 152.154 24.110 N/A
DEns [29] 87.1 97.7 94.3 N/A N/A N/A

BC (11) 87.3 95.4 88.0 0.001 0.001 0.001
BL (1 epoch) 84.6 96.5 87.9 0.347 0.276 0.274
BL (10 epochs) 86.2 96.8 92.6 3.451 2.747 2.723
BL (100 epochs) 87.1 97.1 92.7 34.461 27.452 27.171

BC+BL (1 epoch) 86.9 97.5 91.8 0.348 0.278 0.276
BC+BL (10 epochs) 87.4 97.7 95.2 3.458 2.764 2.724
BC+BL (100 epochs) 87.4 97.2 94.4 34.521 27.494 27.124

Table 2: Accuracy score and runtime for several methods on the 20Newsgourp, R8, and R52 datasets.
The runtime is the (GPU) time to train the model. The accuracy score is the average score achieved
by the model on the test set in 10 independent runs. Standard deviations are below 0.1 (%) and are
omitted from the table. The runtime for CoNN is taken from the original paper [20]. The runtime for
the other methods are obtained by running the corresponding code on our hardware infrastructure.
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6.5 Explanation

To exemplify the explanation provided by BC, we extract the global weights described in Section 4.4
and we report the 10 most influential words (out of more than 200 000) for a subset of classes in
20Newsgroup. Table 3 shows that the words do not contain stopwords or punctuation, or terms that
are too general to be representative of a specific class. The ability of BC to filter out noise can be
traced back to the regularization in Section 4.2 that shrinks to zero the weights of words with little
discriminatory power.

# Baseball Hockey Autos Graphics Macintosh Windows Cryptography

1 Phillies NHL car polygon Centris ’AX encryption
2 Braves hockey cars TIFF Quadra Windows Clipper
3 pitching Leafs eliot graphics Apple 3.1 clipper
4 Alomar team SHO 3D Mac windows crypto
5 Baseball Devils automotive 3DO Duo W4WG NSA
6 Players ESPN Callison CView LCIII cica escrow
7 Mets Wings Dumbest POV LC font key
8 Sox Pens rmt6r cview C650 BJ-200 DES
9 Cubs playoffs Thigpen tdawson BMUG NDIS Amanda
10 baseball playoff Toyota MPEG IIsi Win wiretap

Table 3: Global explanation on 20Newsgroup as described in Section 4.4. The table shows the top
10 features (words) for the classes: Baseball (rec.sport.baseball), Hockey (rec.sport.hockey), Autos
(rec.autos), Graphics (comp.graphics), Macintosh (comp.sys.mac.hardware), Windows (comp.os.ms-
windows.misc), Cryptography (sci.crypt).

In Figure 5, we train BL for two epochs and we represent the evolution of the complex-valued weights
described in Section 5.2. The figure represents the 10 weights that have the largest (and smallest)
modulus for the class rec.sport.baseball at the end of the training. Starting from weights that are
initialized randomly in all directions of the complex circle, BL learns to give larger weights to more
relevant features, smaller weights to less relevant features, and to orientate the features in different
directions. The weights converge in the same direction for words that are specifically related to the
concept of baseball. The words hockey and NHL (National Hockey League), which are still relevant
for a different class of sports, are associated with a large weight but they are also collocated in the
opposite direction with respect to the baseball-related words.

Figure 5: The figure shows the 10 most influential features (solid lines) and the 10 least influential
features (dotted lines) for the class rec.sport.baseball in the 20Newsgroup dataset, as described in
Section 5.2. The evolution of the (complex-valued) weights is represented from left to right.
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7 Conclusion

By regarding text as a superposition of words, we have introduced a supervised classification
algorithm based on key postulates of quantum mechanics, namely the Born rule. The classifier is
self-explainable, admits a closed-form expression (11), and can be embedded in neural network
architectures (13). Our method outperforms traditional algorithms on the 20Newsgroup, R8, and R52
datasets, in terms of classification performance and computational time. These results suggest that
physical principles can be successfully exploited in machine learning and may open a new class of
classification algorithms.

There are several potential improvements and extensions to this work. First, our classifier is derived
from the Born rule and the explanation for its effectiveness in the view of machine learning remains
an open question. Improving the empirical evaluation with thorough experiments would allow to
assess the limitations of the method and to describe the benefits and pitfalls in various applications
and data types. Second, whenever a data instance can be represented with a probability distribution
over some space, then a wave function can be constructed explicitly and the data may be classified
with the algorithm in Section 4. More generally, an arbitrary data instance can be classified with the
network in Section 5, where the first part of the network learns the coefficients of a wave function
and the final classification layer converts them into probabilities by applying the Born rule. Using the
transformation in (13) on top of existing architectures offers a natural way to push our framework
beyond a bag-of-words (superposition-of-words) representation of the document, to encode semantics,
and to extend the method to non-textual data. For instance, an image may be classified with the
network in (13) where ψ(x) is a convolutional layer. This corresponds to regarding the image as a
superposition of the features learnt by the convolution. Finally, an interesting research direction would
be constructing deep networks that apply the transformation in (13) repeatedly. A deep architecture of
this kind would find its biological foundations in the quantum brain hypothesis [11], which suggests
that quantum events could play a non-trivial role in neuronal cells, and contribute to an extremely
high complexity, variability and computational power of neuronal dynamics.
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