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ABSTRACT

CLIP delivers strong zero-shot classification but remains highly vulnerable to ad-
versarial attacks. Previous work of adversarial fine-tuning largely focuses on
matching the predicted logits between clean and adversarial examples, which
overlooks uncertainty calibration and may degrade the zero-shot generalization.
A common expectation in reliable uncertainty estimation is that predictive un-
certainty should increase as inputs become more difficult or shift away from the
training distribution. However, we frequently observe the opposite in the adversar-
ial setting: perturbations not only degrade accuracy but also suppress uncertainty,
leading to severe miscalibration and unreliable over-confidence. This overlooked
phenomenon highlights a critical reliability gap beyond robustness. To bridge
this gap, we propose a novel adversarial fine-tuning objective for CLIP consid-
ering both prediction accuracy and uncertainty alignments. By reparameterizing
the output of CLIP as the concentration parameter of a Dirichlet distribution, we
propose a unified representation that captures relative semantic structure and the
magnitude of predictive confidence. Our objective aligns these distributions holis-
tically under perturbations, moving beyond single-logit anchoring and restoring
calibrated uncertainty. Experiments on multiple zero-shot classification bench-
marks demonstrate that our approach effectively restores calibrated uncertainty
and achieves competitive adversarial robustness while maintaining clean accuracy.

1 INTRODUCTION

Contrastive language-image pretraining (CLIP) (Radford et al., 2021) has become a widely adopted
vision—language model, achieving strong zero-shot recognition by comparing image features with
text prompts in a shared embedding space. Its scalability (Jia et al., 2021) and adaptability through
prompting or ensembling (Zhou et al., 2022; Wortsman et al., 2022) have established it as a foun-
dation model for open-world scenarios where labeled data are scarce. Although CLIP demonstrates
impressive generalization ability, it is highly vulnerable to adversarial attacks: tiny pixel-level per-
turbations, often imperceptible to humans, can cause confident misclassifications and severe drops
in performance (Goodfellow et al., 2014; Kurakin et al., 2018; Madry et al., 2017). This contrast
between strong zero-shot generalization and fragile robustness motivates the study of adversarial
reliability in vision—language models.

Recent efforts on zero-shot adversarial robustness aim to enhance CLIP’s resistance to adversarial
perturbations while preserving zero-shot generalization (Mao et al., 2022; Schlarmann et al., 2024;
Xing et al., 2025; Zhang et al., 2025). Formally, the task assumes that only the image encoder is
adversarially fine-tuned, while the text encoder remains fixed and provides stable semantic anchors.
Existing methods fine-tune the attacked encoder on labeled data to balance clean accuracy and ad-
versarial robustness, and then evaluate transferability to unseen zero-shot datasets (Yu et al., 2024;
Wang et al., 2024; Li et al., 2024). A common strategy is to align adversarial features directly to
the ground-truth text embedding, which provides strong discriminative supervision but disregards
the relative geometry among neighboring classes. As illustrated in Figure la (left), the adversar-
ial alignment is enforced only toward the ground-truth text embedding, effectively pulling features
along an unconstrained direction and disregarding the relative geometry of neighboring embeddings.
However, these relations are essential as they encode inherent data ambiguity, such as semantic over-
lap between categories or the presence of multiple objects within a single image. Such ambiguity
can be naturally interpreted as a form of predictive uncertainty. This single-anchor alignment pro-
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(a) Conceptual illustration. (b) Predictive Uncertainty under AutoAttack (¢ = 1/255).

Figure 1: (a) Conceptual illustration of hypersphere geometry. Traditional anchor-based zero-
shot adversarial robustness (ZSAR) methods align features only to the ground-truth class, while our
method preserves inter-class geometry via distributional calibration. (b) Predictive uncertainty on
16 datasets. shows reduced entropy on adversarial inputs, whereas our method restores
calibrated uncertainty. Arrows and numbers show uncertainty change (direction, magnitude).

vides strong discriminative supervision but neglects the underlying uncertainty structure, which can
limit generalization under adversarial perturbations.

While previous methods mostly focus on aligning the predicted logits, we argue that they overlook
an essential phenomenon, that is, a systematic miscalibration in CLIP’s predictive uncertainty un-
der adversarial perturbations. Figure 1b compares entropy-based uncertainty on clean (solid) and
adversarial (striped) inputs across multiple datasets. Strikingly, in many cases, the uncertainty of
adversarial predictions is lower than that of clean predictions, contradicting the widely held ex-
pectation that uncertainty should increase with input difficulty or distributional shift (Guo et al.,
2017; Hendrycks & Gimpel, 2016; Ovadia et al., 2019). This anomaly indicates that CLIP not only
fails to maintain robustness but also produces spuriously confident predictions when attacked. Such
behavior highlights a critical reliability gap beyond accuracy, underscoring the need to calibrate
uncertainty in adversarial fine-tuning.

To address both the structural and calibration issues, we propose an Uncertainty-Calibrated Ad-
versarial fine-Tuning framework for CLIP (UCAT). UCAT operates by regularizing entire Dirichlet
distributions rather than anchoring to a single class, thereby preserving inter-class semantic relations
while calibrating the overall strength of predictive evidence. This is achieved by reparameterizing
CLIP’s logits as concentration parameters of a Dirichlet distribution, yielding a unified represen-
tation for holistic alignment under perturbations. The quantitative effect of UCLIP is shown in
Figure 1b: compared to vanilla CLIP, our fine-tuned model achieves calibrated uncertainty levels,
restoring a consistent ordering: original CLIP w/ clean img. < fine-tuned CLIP w/ clean img. <
fine-tuned CLIP w/ adversarial img., which faithfully reflects increasing input difficulty. The main
contributions of this work can be summarized as follows:

1) Dirichlet-based formulation of CLIP. We reformulate CLIP’s logits as concentration pa-
rameters of a Dirichlet distribution, providing a theoretically justified and closed-form ap-
proach to estimate predictive uncertainty.

2) Uncertainty-Calibrated Adversarial fine-Tuning (UCAT). We propose a novel
uncertainty-calibrated adversarial fine-tuning method that regularizes entire Dirichlet dis-
tributions to jointly preserve inter-class relations and calibrate evidence strength.

3) Extensive empirical validation. Across 16 single-label benchmarks and the multi-label
dataset MS-COCO, we show that our method effectively calibrates uncertainty under attack
while maintaining strong clean accuracy and competitive adversarial robustness.

2 RELATED WORK

Zero-shot Adversarial Robustness. A series of works have advanced zero-shot adversarial ro-
bustness (ZSAR) for CLIP by adapting adversarial fine-tuning to the vision-language setting.
TeCoA (Mao et al., 2022) pioneered text-guided adversarial fine-tuning with a contrastive loss,
aligning adversarial features to ground-truth text prototypes. FARE (Schlarmann et al., 2024) ar-
gued that restricting alignment to a single label undermines zero-shot generalization and instead
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enforced feature consistency between clean and adversarial representations. Subsequent methods
further extended this line with prediction-level (Wang et al., 2024) or attention-level (Yu et al., 2024)
regularization. However, all of these approaches adopt the single-anchor strategy, which inevitably
drives training along an unconstrained direction and disregards the relative geometry of neighboring
embeddings. In contrast, we reformulate CLIP logits as Dirichlet evidence, allowing uncertainty to
be explicitly calibrated while preserving both semantic structure and confidence strength. This leads
to stronger adversarial robustness and improved transfer in open-world settings.

Uncertainty Calibration. Uncertainty estimation has been widely explored in settings such as
out-of-distribution detection (Hendrycks & Gimpel, 2016; Ovadia et al., 2019), adversarial train-
ing (Malinin & Gales, 2019), and large language models (Kuhn et al., 2023). A central challenge is
calibration: ideally, uncertainty should increase under harder inputs or distributional shift, yet em-
pirical studies have shown that adversarial predictions often appear spuriously confident (Guo et al.,
2017; Hendrycks & Gimpel, 2016; Ovadia et al., 2019). Dirichlet Prior Networks (Malinin & Gales,
2018; Ulmer et al., 2021) addressed this by regularizing logits into Dirichlet parameters, enforcing
higher uncertainty on adversarial (Sensoy et al., 2020; Malinin & Gales, 2019) or out-of-distribution
samples (Yoon & Kim, 2024). However, in such models the absolute magnitude of evidence is
largely an artifact of training and lacks intrinsic meaning. In contrast, CLIP’s large-scale contrastive
pre-training endows its logits with semantically meaningful absolute strength, which we exploit by
reformulating them as Dirichlet evidence. This yields a natural decomposition of predictive uncer-
tainty into aleatoric uncertainty (AU), reflecting ambiguity across semantically related classes, and
epistemic uncertainty (EU), reflecting limited evidence or distributional shift (Ulmer et al., 2021;
Ma et al., 2025). To the best of our knowledge, no prior work has established such a theoretical
account of uncertainty in CLIP. We fill this gap by proving the Dirichlet structure of CLIP logits and
leveraging it for uncertainty-calibrated adversarial robustness.

3 PRELIMINARY

3.1 CONTRASTIVE LEARNING OBJECTIVE AND ZERO-SHOT CLASSIFICATION

Contrastive Learning Objective. Contrastive learning underlies large-scale vision—-language mod-
els such as CLIP (Radford et al., 2021). Let fg : Ximg — R4, 9o @ Xixt — R< denote the image and

text encoders, where d is the dimension of the embedding space. For an image—text pair (218, ztxt),

. . N ? ’ g
the embeddings are normalized onto the unit hypersphere S~ L:v; = fo(z;"%) /|| fo(z;"®)|]2, ti =
96(x) /|lg4 (") ||2. The similarity between image ¢ and text j can be expressed in two directional
forms: (77" = (v;,t;)/7, 677" = (ti,v;)/7, where 7 > 0 is a learnable temperature parameter.

Given a batch of N aligned pairs, the symmetric InfoNCE objective is

(i) L el

_— _— (1)
SN exp(£47) SN exp(€7?)

LN
Levrp = “oN Z log
=1

Zero-shot Classification. Benefiting from its self-supervised contrastive learning objective, CLIP
exhibits strong zero-shot transfer capability for open-vocabulary recognition (Jia et al., 2021; Yao
et al., 2021; Zhai et al., 2022; Zhou et al., 2022). At inference, classification is formulated as
retrieving the most relevant text prompt for a given image, where only the image-to-text similarity
¢v~t is evaluated. Each class label ¢, (k = 1,...,C, where C is the number of candidate classes)
is converted into a natural-language prompt (e.g., “This is a photo of a dog”), which is encoded and
normalized to yield a class prototype ¢, € S9~1. For a test image x, the normalized embedding
is v(z) = fo(x)/||fo(z)]|2, and the logit for class ¢y is £{7%(x) = (v(x),t)/7. The predictive
distribution over classes is obtained via the softmax

expl(ty'(z)
S esp(ly > (2)

This formulation enables recognition of categories unseen during training, relying solely on the
shared image—text embedding space.

Py =k | ) =

2
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3.2 ADVERSARIAL ATTACKS.

Adversarial attacks perturb inputs with small, often imperceptible changes to mislead a model.
Given an image « with label y, an adversarial example is constructed as 2 = = + 6, ||d]|4 < e,
where e bounds the perturbation magnitude under ¢,-norm. A canonical method is Projected Gra-
dient Descent (PGD, Madry et al., 2017), which iteratively updates

xiy =1, (2 (a:‘tl + asign(Vmﬁ(Fg,(ac?), y))), 3)

where ¢ is the iteration index, « is the step size, F, is the target model, and Ilp_(,) projects the
perturbed point back into the e-ball around . Intuitively, PGD moves the input a small step in the
direction that most increases the loss, then clips it to stay within the allowed perturbation range,
repeating this process until the attack succeeds.

3.3 UNCERTAINTY ESTIMATION VIA EVIDENCE

Dirichlet Parameterization with Evidence. In evidential deep learning (EDL), predictive uncer-
tainty is modeled explicitly by placing a Dirichlet distribution over class probabilities rather than
predicting a single categorical distribution (Sensoy et al., 2018; Malinin & Gales, 2018; Ulmer
et al., 2021). For a C-class problem, the network outputs non-negative concentration parameters
a = (ag,...,ac) € RE, typically expressed as a, = ex + 1,ex > 0, where e denotes the
evidence assigned to class k. In the original EDL formulation, this ensures o, > 1 so that zero
evidence corresponds to a uniform prior. The induced Dirichlet distribution is

C C C
; . 1 ap—1 Hk:l F(ak)
Dlr(”aa):m e B(a):w, 040:20%, “)
k=1 k=1
where 7 = (71, ..., m¢) is a probability on the (C' — 1)-simplex and B(«) is the polynomial Beta

function. Importantly, cig quantifies the total evidence and serves as the precision of the distribution.

The non-negativity of « is typically enforced by activation functions such as ReLU, Softplus,
or exponential mapping used in prior works (Yoon & Kim, 2024; Malinin & Gales, 2019). In
particular, under the exponential parameterization with unconstrained logits z(x) € R and
ai(z) = exp(zi(z)), the predictive categorical distribution is obtained as the expectation under
the Dirichlet:

Oék(I) ak:Cip(Zk) exp(zk(x))

p(y =k | x) := Erpir(a@) [Tk] = a0 () = m~ &)

Closed-Form Uncertainty Decomposition. The Dirichlet parameterization not only provides
a probability distribution but also admits a closed-form decomposition of predictive uncertainty
into two complementary components, aleatoric and epistemic (Der Kiureghian & Ditlevsen, 2009;
Kendall & Gal, 2017; Hiillermeier & Waegeman, 2021).

Aleatoric uncertainty (AU) captures ambiguity inherent in the data. In vision—language models, this
may arise from factors such as semantic overlap between classes (e.g., “wolf” vs. “dog”) or noisy
image—text pairs where multiple labels are plausible (Ulmer et al., 2021; Ma et al., 2025; Ji et al.,
2023). Formally, AU reflects how probability mass is distributed across classes and is quantified by
the expected Shannon entropy of the categorical distribution under the Dirichlet:

C
AU() = Brepirto)[H(m)] = = 30 2 (lo + 1) ~ ¥ao + 1)), ©
k=1

where 9)(-) denotes the digamma function.

Epistemic uncertainty (EU) arises from limited evidence or distributional shift (Hendrycks & Gim-
pel, 2016; Sensoy et al., 2018). It reflects the overall reliability of the prediction: when the total
evidence oy is small, the model should be considered untrustworthy. Following prior work (Charp-
entier et al., 2020; Ulmer et al., 2021; Ma et al., 2025), a widely adopted closed-form proxy is

C

EU(z) = et O @)
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which increases as o decreases.

In summary, AU reflects ambiguity in the predictive distribution across classes, while EU captures
uncertainty from insufficient evidence or distributional shift. Both can be computed directly from
the Dirichlet parameters, enabling efficient uncertainty estimation in a single forward pass.

4 DIRICHLET REFORMULATION OF CLIP

Comparing CLIP’s zero-shot probability in Equation 2 with the Dirichlet expectation in Equation 5
reveals a structural correspondence: both are softmax operations over a set of logits. This motivates a
non-trivial identification that reinterprets CLIP logits as evidence governing a Dirichlet distribution
(Definition 4.1). This identification is non-trivial for three reasons: (i) it satisfies the validity of
Dirichlet evidence with tight bounds and strict monotonicity (Lemma 4.2); (ii) it exactly recovers
CLIP’s predictive rule exactly under a specific calibration (Lemma 4.3); and (iii) preserves logit
order while exposing a tunable temperature for calibration (Corollary 4.3.1).

Definition 4.1 (Concentration Parameter). Let v(z),t;, € S! be unit-normalized image/text em-
beddings and 0} (z) = (v(x), tx) /T the CLIP logit with temperature T > 0. We define Dirichlet
concentration parameters by

» Tl+1
ar(e) = exp((i (@), bl = ——, (8)
where 7/ > 0 is a calibration coefficient.
Remark (Construction rationale). Since 7 ¢y (z) = (v(z),tx) € [—1,1], we shift the cosine

similarity by +1 so that its range becomes [0, 2]. A calibration coefficient 7/ > 0 is introduced to
rescale. Applying the exponential guarantees positivity while preserving logit order and remaining
compatible with softmax geometry.

Lemma 4.2 (Validity of Dirichlet Evidence). Under Definition 4.1, for all k:

1. ag(z) > 1and ar(x) € [1,exp(2/7")];
2. a = exp(h(l)) is strictly increasing.

Remark (o, > 1 in EDL). As introduced in Section 3.3, the classical EDL formulation enforces
oy > 1 by parameterizing oy, = ej + 1 with non-negative evidence (Sensoy et al., 2018; 2020). We
adopt the same restriction for two reasons: (i) digamma- and trigamma-based uncertainty measures
become unstable as ay approaches 0 (Minka, 2000), and (ii) Dirichlet distributions with o < 1
produce corner-seeking samples (Telgarsky, 2013), concentrating on a few classes even under weak
evidence. This violates the common principle that uncertainty should grow as inputs become harder
or deviate from the training distribution. Accordingly, our reformulation guarantees o, > 1; all
subsequent analysis and experiments are under this regime. Proof is provided in Appendix D.1.

Lemma 4.3 (Exact Equivalence at 7 = 7). Let s = 7/7. If s = 1 (equivalently 7' = T), the
Dirichlet expectation equals to CLIP’s softmax:

_ o exp(h(lr))
20 > exp(h(f)))

Remark (Significance of exact equivalence). Lemma 4.3 shows that when 7/ = 7, the Dirichlet
expectation coincides exactly with CLIP’s softmax prediction. This equivalence is not incidental: it
demonstrates that CLIP’s original training loss in Equation 1 implicitly optimizes a Dirichlet-based
model of evidence. Hence, our reformulation is not an ad hoc construction but a faithful probabilistic
interpretation of CLIP’s logits. A complete proof is provided in Appendix D.2.

)

= softmax(€(z)), = pSUIP (1), )

Corollary 4.3.1 (General form and invariances). For arbitrary 7/ > 0,s = 7/7" > 0, pP'"(2) =
softmax (s {(x)). Hence

arg max pit(z) = arg max pSUIP (1), (10)

while the entropy of the distribution can be smoothly tuned by s: larger s yields sharper predictions,
smaller s yields flatter ones.
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Figure 2: Overview of our uncertainty calibration adversarial fine-tuning framework. Clean
and adversarial images are encoded by CLIP’s image encoder, while text prompts are processed by
the frozen text encoder. Our training objective combines the text-guided contrastive loss with an
uncertainty calibration regularization term that aligns adversarial Dirichlets with the original clean
distributions, thereby preserving semantic relations and calibrating evidence strength.

Remark (Connection to uniformity—tolerance in contrastive learning). In contrastive learning, the
temperature regulates the separation strength among negatives. A smaller softmax temperature
(larger s) encourages uniformity on the hypersphere by enforcing stronger separation, while a larger
temperature (smaller s) increases folerance to near-semantic neighbors (Wang & Isola, 2020; Rad-
ford et al., 2021). We set 7/ = 0.07, yielding s < 1 and thus softer predictions that increase tolerance
to semantically related negatives. This preserves CLIP’s intrinsic semantic structure and is particu-
larly beneficial for adversarial fine-tuning, where calibrated tolerance improves zero-shot robustness
without harming the model’s original generalization ability. Proof is deferred to Appendix D.2.1.

This reformulation establishes a principled mapping from CLIP logits to Dirichlet evidence, serving
several important implications. First, it naturally admits provides closed-form uncertainty decom-
position (Section 3.3), enabling direct and decoupled quantification of aleatoric and epistemic com-
ponents without auxiliary sampling. Second, it offers principled calibration, since the calibration
coefficient adjusts confidence sharpness without altering prediction accuracy, allowing a controllable
trade-off between uniformity and tolerance. Finally, it ensures semantic fidelity. The reformulation
not only recovers CLIP’s predictive rule in the exact equivalence case but also supports optimization
over a Dirichlet distribution that preserves relative geometry and absolute evidence strength. These
properties lay the foundation for the adversarial fine-tuning objectives introduced in the next section.

5 UNCERTAINTY CALIBRATION ADVERSARIAL FINE-TUNING OBJECTIVE

To mitigate the misaligned semantics and unreliable confidence introduced by adversarial perturba-
tions, we propose an Uncertainty Calibration Adversarial fine-Tuning (UCAT) objective. The key
insight builds on our reformulation: mapping CLIP logits to Dirichlet evidence yields closed-form
uncertainty decomposition with principled calibration, while retaining fidelity to the semantic ge-
ometry of the embedding space. UCAT exploits this property by aligning the Dirichlet distributions
of adversarial and clean samples, correcting distributional shift while simultaneously preserving
semantic relations and calibrated confidence.

As illustrated in Figure 2, our method adopts a CLIP-based adversarial fine-tuning pipeline with a
frozen text encoder and a trainable image encoder. Clean samples x and their adversarial counter-
parts ¢ (generated via £..-PGD (Madry et al., 2017)) are encoded into the joint embedding space,
and their logits are reformulated as Dirichlet parameters, denoted « and a,gy. The clean distribution
Dir(«) captures the generalized semantics from pre-training, whereas Dir(angy) may shift toward
distorted or overconfident states. To correct this mismatch, we introduce an uncertainty calibration
regularization objective, defined as the KL divergence between the two distributions:

Luer = KL(Dir(agy) || Dir(a)) . (11)
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Table 1: Zero-shot adversarial robustness on multi-label dataset MS-COCO (Lin et al., 2014).
All models are adversarially trained on TinyImageNet with the FARE? (Schlarmann et al., 2024) 10-
step PGD (e = 2/255) setting and evaluated under CW-100 (Carlini & Wagner, 2017) attacks. We
report micro-averaged Precision (P), Recall (R), and F1-score (F1) at top-3 and top-5 predictions,
together with mean Average Precision (mAP), under adversarial conditions. Best and second-best
are in bold and underline.

Methods P@3 R@3 Fl@3 P@5 R@5 Fl1@5 mAP
CLIP (Radford et al., 2021) 17.72  25.21 25.85 | 25.52 20.15 34.44 | 2542
TeCoA (Mao et al., 2022) 30.23 3099 30.60 | 22.67 38.73 28.59 | 37.32

FARE (Schlarmann et al., 2024) | 33.45 34.30 33.86 | 26.04 4449 32.84 | 29.18
PMG-AFT (Wang et al., 2024) 3232 33.15 3272 | 2540 4340 32.04 | 29.75
TGA-ZSR (Yu et al., 2024) 3295 3379 3336 | 2458 4199 31.00 | 38.23
UCAT (Ours) 36.58 37.52 37.04 | 28.27 48.32 35.67 | 37.60

Since both AU and EU are closed-form functions of Dirichlet parameters (Sec. 3.3), minimizing
L aligns adversarial predictions with their clean counterparts in terms of inter-class relations
(AU) and evidence magnitude (EU), thereby preventing collapse into spuriously confident errors.
Complementarily, the text-guided cross-entropy loss

exp ((U(aza),ty)/T)
S5y exp ((v(z), 85)/7)

anchors adversarial embeddings to the ground-truth prototype t,, providing discriminative supervi-
sion that stabilizes training and improves accuracy. The final objective combines both components:

£:£06+)\£ucra (13)

Lee = — IOg (12)

where A balances discriminative alignment and uncertainty calibration. This joint objective com-
bines discriminative supervision via the cross-entropy loss with calibrated uncertainty through dis-
tributional alignment, leading to stronger zero-shot adversarial robustness.

6 EXPERIMENTS

Implementational Details and Datasets. We adopt CLIP-B/32 (Radford et al., 2021) as the back-
bone and follow TeCoA’s training protocol (Mao et al., 2022), comparing zero-shot adversarial ro-
bustness against five baselines: CLIP (Radford et al., 2021), TeCoA, FARE (Schlarmann et al.,
2024), PMG-AFT (Wang et al., 2024), and TGA-ZSR (Yu et al., 2024). Training and evaluation are
conducted under ¢, PGD regimes, including a light setting (2-step, ¢ = 1/255) following (Mao
et al., 2022) and a stronger setting (10-step, ¢ = 2/255) following (Schlarmann et al., 2024). Ro-
bustness is further assessed using 100-step PGD (Madry et al., 2017), CW (Carlini & Wagner, 2017),
and AutoAttack (Croce & Hein, 2020). We set A = 10°/4 with 3 = 2/e” , and fix 7/ = 0.07 fol-
lowing standard contrastive learning practices (Wu et al., 2018; He et al., 2020; Radford et al., 2021;
Yeh et al., 2022). Full implementation details and datasets are provided in the Appendix C.

6.1 EFFICIENCY ON MULTI-LABEL DATA AMBIGUITY

To assess robustness under data ambiguity, we perform zero-shot evaluation on the multi-label MS-
COCO (Lin et al., 2014) dataset (Tab. 1). All models are fine-tuned on single-label TinyImageNet
using PGD, and tested directly on COCO under CW attacks to perturb multiple labels simultane-
ously. Our method achieves the best top-k precision, recall, and F1, indicating stronger ability to
recognize multiple objects within a single image. Compared with label-guided approaches that ex-
plicitly align adversarial features to the ground-truth class, both our method and FARE benefit from
preserving the intrinsic generalization encoded in CLIP’s original features. By further incorporating
uncertainty calibration, our method balances semantic fidelity with calibrated confidence, leading to
consistently stronger robustness under multi-label ambiguity. While our mAP is also competitive,
this metric is easily influenced by low-probability noise from irrelevant categories, making top-k
evaluation a more faithful measure of robustness to label ambiguity.
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6.2 CROSS-DATASET EVALUATION OF ZERO-SHOT ADVERSARIAL ROBUSTNESS

Table 2: Zero-shot adversarial robustness across 16 single-label datasets. All methods are fine-
tuned on TinyImageNet following TGA-ZSR (Yu et al., 2024), adversarial training uses 2-step
PGD (Madry et al., 2017) with € = 1/255. Average is the mean across datasets. H is the har-
monic mean between Clean and the corresponding robust score. Best and second-best are in bold
and underline.

2 E g
Z a g e " = b S
: = 8 < 5 2 &£ 3 2 5 %2 3 % § oz %
T § E 2 £ %3 $ £ g : z ¢ 2 : : 5|GB
Methods & S S 2 7 & S = a & 4 g S S @ & < =
CLIP (Radford et al., 2021) 57.96 88.03 6045 97.03 57.26 83.89 8741 6549 40.64 42.66 20.16 59.15 8532 81.73 52.02 52.08 | 64.45
TeCoA (Mao et al., 2022) 7124 6756 3826 85.89 36.01 2823 6130 3204 2495 16.13 5.19 3289 7216 59.00 20.28 50.11 |43.83
§ FARE (Schlarmann et al., 2024) | 41.86 79.81 4827 9424 46.15 58.90 80.98 47.63 23.09 24.19 15.63 4293 7822 7205 4396 50.02 | 53.00
T PMG-AFT (Wang et al., 2024) | 48.60 74.73 43.59 9041 5170 56.52 7940 4843 3245 21.76 11.79 46.74 8249 7359 41.21 56.13 | 53.72
TGA-ZSR (Yu et al., 2024) 76.60 79.18 47.37 90.65 43.10 38.90 6844 39.81 2569 1970 882 3927 7642 66.31 2844 4992|4991
UCAT (Ours) 7446 81.81 5445 9188 41.06 53.58 74.16 47.57 3192 1929 1095 4320 8239 71.53 37.32 51.20 | 54.17
CLIP (Radford et al., 2021) 0.19 957 3.07 2364 0.62 034 0.64 1.62 222 0.00 0.00 048 5.65 7.19 0.02 0.06 346 656
TeCoA (Mao et al., 2022) 5096 3933 21.64 69.78 20.07 1350 37.80 19.17 1830 11.88 2.16 1847 56.00 4238 933 46.92 | 29.86 3552
8 FARE (Schlarmann et al., 2024) | 3.78 7.83 280 48.18 566 245 1093 652 575 008 054 520 3321 2070 231 4897 | 12.81 20.63
& PMG-AFT (Wang et al., 2024) 19.18 5139 27.23 72.63 20.05 16.88 44.59 2643 20.05 1149 321 18.09 61.13 4346 1480 55.52 | 31.63 39.82
TGA-ZSR (Yu et al., 2024) 50.68 42.16 2282 7218 21.57 1653 3996 2244 17.82 11.75 2388 2039 5805 46.18 1140 4805|3155 38.66
UCAT (Ours) 47.56 43.81 25.16 73.83 2044 22.86 4511 26.79 1947 299 345 2222 6532 5047 1530 30.37 | 32.20 40.39
CLIP (Radford et al., 2021) 0.14 991 334 26.01 116 051 0.87 2.03 2.55 0.01 0.00 110 682 8.17 2.32 0.04 4.06 7.64
TeCoA (Mao et al., 2022) 50.16 38.62 20.76 69.55 18.84 1246 37.37 18.12 17.23 11.63 210 17.70 55.62 41.70 9.23 46.88 | 29.25 35.08
=z FARE (Schlarmann et al., 2024) | 4.10 412 296 4335 607 3.7 1515 566 452 012 1L.11 534 3250 2085 438 4886 | 12.64 2041
U PMG-AFT (Wang et al., 2024) 13.16 42,10 2131 6569 13.12 1143 2805 1753 1255 851 099 11.72 52.84 3568 7.06 1426|2225 3147
TGA-ZSR (Yu et al., 2024) 50.80 4224 2264 7199 2083 16.03 40.20 21.52 1697 11.56 285 20.01 57.72 45.84 11.23 48.03 | 31.28 38.46
UCAT (Ours) 47.08 4330 2392 7355 1920 21.68 4538 2495 17.87 241 321 2114 64.63 4954 1475 29.89 | 3141 39.76
- CLIP (Radford et al., 2021) 0.00 2.54 1.11 318 0.05 0.03 0.03 0.02 019 0.17 0.23 004 010 0.26 0.07 0.12 0.51 1.01
2 TeCoA (Mao et al., 2022) 49.44 37.87 2045 6931 1741 1219 36.58 17.81 1729 1142 1.86 17.19 5495 41.19 8.16 46.79 | 2874 34.72
i FARE (Schlarmann et al., 2024) 0.12  0.03 021 10.18 084 019 093 0.60 1.92 0.07 006 086 1026 559 0.21 5.15 233 445
2 PMG-AFT (Wang et al., 2024) 822 4186 21.18 6545 795 734 1894 1259 313 717 051 7.90 4491 2829 322 741 17.88 26.83
Z TGA-ZSR (Yuetal., 2024) 49.26 4092 2175 7155 19.88 1532 38.84 2098 17.02 1126 234 19.12 57.11 45.16 9.87 48.00 | 30.52 37.88
UCAT (Ours) 4580 4232 23.03 7315 1826 20.52 44.02 2454 18.14 226 261 20.15 63.73 48.66 12.60 29.51 | 30.58 39.09

To verify the effectiveness of our approach under single-label settings, we analyze results across 16
datasets (Table 2). Our method achieves consistently strong performance, ranking best or second-
best in nearly all cases. When trained with a single PGD regime, it generalizes effectively to mul-
tiple adversarial attacks while maintaining both the highest clean accuracy and adversarial robust-
ness. The only exceptions are two domain-specific datasets (PCAM (Veeling et al., 2018) and Eu-
roSAT (Helber et al., 2019)), which exhibit the highest predictive uncertainty (high PU in Fig. 1b,
high AU in Fig. 5, and low EU in Fig. 6) and strong semantic overlap, where highly specialized se-
mantics limit the gains of our distributional alignment strategy. Nevertheless, by capturing broader
semantic structures and evidence strength, our method achieves state-of-the-art robustness and gen-
eralization across the full evaluation suite. We further extend our evaluation to larger-scale training
and stronger attack settings, with results reported in Appendix F.

6.3 ABLATION AND PARAMETER SENSITIVITY

We conduct an ablation study to disentan- . ] i
gle the role of different loss components Table 3: Ablation study. Trained on TinyImageNet

in Table 3. Using only the text-guided with 1-step PGD and evaluated under 100-step PGD,
cross-entropy L already improves robust- CW, and AutoAttack (AA) with e = 1/255. Results
ness compared to vanilla CLIP by providing ~are averaged over 16 datasets. Best and second-best
discriminative supervision. Aligning proba- are in bold and underline.

bility distributions at the softmax level fur-

ther improves performance by preserving Methods Clean PGD CW  AA
relative class geometry, but this approach CLIP 6445 0.05 4.06 0.51
discards absolute evidence magnitude due to Le 43.83 29.86 29.25 2874

€
normalization, limiting its effect. In con- Lee+KL(p(z")[[p(x)) | 45.05 29.98 29.28 28.80
trast, our Dirichlet-levegi alignment preserves LoctKLDir(as ) | 5417 3220 3141 30.58
both relative relationships and absolute evi-
dence strength, thereby calibrating uncertainty more effectively. This joint design yields the best
balance between clean accuracy and adversarial robustness across diverse datasets and attacks.

Varying )\ reveals stable performance across a broad range, with the best trade-off at 10° /3 (Fig. 3a).
At this point, clean accuracy reaches 54.17%, robust accuracy reaches 32.20%, and the harmonic
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Figure 3: (a) Sensitivity analysis of the regularization strength \. We evaluate A - 5 €
{10%,5 x 10%,10%,5 x 105,106}, 8 = 2/e™ on all 16 datasets, reporting averages of clean ac-
curacy, PGD-100 (Madry et al., 2017) robustness, and their harmonic mean. (b) Comprehensive
evaluation under strong adversarial training (PGD-10, ¢ = 2/255) and AutoAttack (Croce
& Hein, 2020) testing. X-axis shows calibration error (ECE, lower is better), while Y-axis shows
robustness accuracy. Bubble color indicates AU-AUROC and bubble size indicates EU-AUROC,
reflecting the discriminative power of aleatoric and epistemic uncertainty.

mean peaks at 40.39%. This setting is particularly meaningful, as it balances L., and Ly to con-
tribute comparably during training. Smaller A under-regularizes and limits the benefit of uncertainty
calibration, while larger values overweight distributional alignment and degrade robustness.

6.4 ROBUSTNESS, CALIBRATION, AND UNCERTAINTY UNDER STRONG ATTACKS

Fig. 3b provides a comprehensive evaluation under AutoAttack (Croce & Hein, 2020) with € =
2/255. We report four complementary metrics. Expected Calibration Error (ECE) (x-axis) mea-
sures how well predicted confidence matches actual correctness (lower is better), while robustness
accuracy (y-axis) captures the ability to resist adversarial perturbations (higher is better). Bub-
ble color denotes AU-AUROC, reflecting how aleatoric uncertainty helps identify errors caused by
class ambiguity, and bubble size denotes EU-AUROC, reflecting how epistemic uncertainty captures
errors due to insufficient evidence. An ideal model should lie toward the top-left of the plot (high ro-
bustness, low ECE) with large and bright bubbles (high AU-AUROC and EU-AUROC). Our method
is closest to this desirable region: it achieves the highest robustness accuracy, maintains lower cal-
ibration error than existing baselines, and exhibits stronger uncertainty discrimination as shown by
larger and brighter bubbles. This demonstrates that our uncertainty calibration not only strengthens
adversarial robustness but also improves predictive reliability under attack.

7 CONCLUSION

In this paper, we identified that adversarial perturbations in zero-shot CLIP not only reduce accuracy
but also often suppress predictive uncertainty, leading to severe miscalibration. To address this, we
reformulated CLIP logits as Dirichlet concentration parameters, yielding a representation that pre-
serves both semantic structure and confidence strength. Building on this foundation, we introduced
an uncertainty calibration adversarial finetuning method that aligns the Dirichlet distributions of
clean and perturbed samples, ensuring robustness preservation and calibrated uncertainty. Extensive
experiments demonstrate that our approach improves adversarial robustness, handles data ambigu-
ity, and provides reliable uncertainty estimates. Beyond CLIP, our contrastive-theoretic perspective
suggests a principled way to analyze and extend uncertainty modeling to other contrastive learning
frameworks.
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A LLM USAGE DISCLOSURE

We used large language models (e.g., ChatGPT, GPT-5) solely for language editing and clarity
improvement of the manuscript. All research ideas, experimental design, implementation, analyses,
and conclusions were fully developed and verified by the authors.

B EXTENDED RELATED WORK

B.1 CONTRASTIVE LEARNING

Self-supervised contrastive learning has proven highly effective in learning transferable represen-
tations across tasks such as classification (Chen et al., 2020; Grill et al., 2020), detection (Xie
et al., 2021a;b), and segmentation (He et al., 2020; Caron et al., 2021). Building on this founda-
tion, CLIP (Radford et al., 2021) extends contrastive pre-training to large-scale image—text pairs
and achieves remarkable zero-shot recognition performance. Its scalability (Jia et al., 2021) and
adaptability through fine-tuning or ensembling (Zhou et al., 2022; Wortsman et al., 2022) further
establish vision—language models as a powerful paradigm for open-world scenarios where labeled
data is scarce.

Recent theoretical analyses further clarify why contrastive objectives are effective. The align-
ment—uniformity framework (Wang & Isola, 2020) explains how positive pairs encourage semantic
consistency while negatives enforce diversity on the hypersphere, and subsequent studies refine our
understanding of how loss geometry and temperature schedules shape representation quality (Yeh
et al., 2022). Beyond accuracy, contrastive pre-training has also been examined from the perspective
of robustness. Prior work shows that robustness may not automatically transfer from contrastive
pre-training to downstream fine-tuning (Mao et al., 2022), motivating approaches that explicitly
integrate contrastive signals into adversarial training or synthetic data generation (Ouyang et al.,
2023). Together, these studies indicate that contrastive learning not only underpins the success of
large-scale vision—language models, but also implicitly encodes semantic geometry and confidence
cues, laying the foundation for uncertainty-aware robustness.

B.2 ZERO-SHOT ADVERSARIAL ROBUSTNESS

Adpversarial robustness has traditionally been studied through supervised adversarial training, with
methods such as PGD-based minimax optimization (Madry et al., 2017) and regularized formula-
tions like TRADES (Zhang et al., 2019) offering strong baselines. However, these approaches rely
on labeled data and do not directly address the zero-shot setting of vision—language models. Recent
works therefore explore adversarial robustness of CLIP without requiring task-specific supervision.
TeCoA (Mao et al., 2022) aligns adversarial features with text prototypes to preserve zero-shot trans-
fer, while FARE (Schlarmann et al., 2024) emphasizes maintaining the original visual embedding
geometry. Other strategies such as PMG-AFT (Wang et al., 2024) and TGA-ZSR (Yu et al., 2024)
incorporate prompt-based or gradient-aligned objectives to enhance robustness. Despite their dif-
ferences, these methods share the challenge of balancing robustness with CLIP’s inherent semantic
structure, highlighting the need for approaches that explicitly model uncertainty and reliability under
adversarial perturbations.

B.3 UNCERTAINTY ESTIMATION WITH EVIDENCE

Uncertainty estimation has been widely explored to improve the reliability of deep neural net-
works. Classical approaches include Bayesian neural networks (Blundell et al., 2015), Monte Carlo
dropout (Gal & Ghahramani, 2016), and deep ensembles (Lakshminarayanan et al., 2017), which
approximate predictive distributions through sampling or model averaging. More recent work in ev-
idential learning proposes to represent predictions as parameters of a Dirichlet distribution (Sensoy
et al., 2018; Malinin & Gales, 2018), naturally decomposing predictive uncertainty into aleatoric
and epistemic components. This evidential perspective has been applied to tasks such as calibra-
tion (Ulmer et al., 2021) and out-of-distribution detection (Yoon & Kim, 2024), demonstrating both
theoretical interpretability and empirical effectiveness. In adversarial settings, evidential models
have shown promise in capturing distributional shifts and mitigating overconfident errors (Malinin &
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Gales, 2019). Most recently, evidence-based uncertainty estimation has also been extended to large
language models, where LogTokU (Ma et al., 2025) treats logits as Dirichlet evidence to decouple
aleatoric and epistemic uncertainty, further underscoring the importance of evidence modeling as a
principled framework for reliable predictions.

C IMPLEMENTATION DETAILS

Dataset. The same zero-shot evaluation suite as in other ZSAR baselines (e.g., Mao et al.
(2022)): ImageNet/tinylmageNet (Deng et al., 2009), CIFAR10/100 (Krizhevsky et al., 2009),
STL10 (Coates et al., 2011), Caltech101 (Fei-Fei et al., 2004), Caltech256 (Griffin et al., 2007),
OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Food101 (Bossard et al., 2014),
Flowers102 (Nilsback & Zisserman, 2008), FGVC-Aircraft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), DTD (Cimpoi et al., 2014), and two domain-specialized sets PCAM (Veeling et al., 2018)
and EuroSAT (Helber et al., 2019). To further assess robustness under semantic ambiguity, we
additionally include the multi-label dataset MS-COCO (Lin et al., 2014).

We adopt CLIP-B/32 (Radford et al., 2021) as the backbone and follow TeCoA’s optimizer and
training schedule (Mao et al., 2022), using a batch size of 256 and 10 training epochs unless other-
wise stated. We benchmark five methods: CLIP (Radford et al., 2021), TeCoA (Mao et al., 2022),
FARE (Schlarmann et al., 2024), PMG-AFT (Wang et al., 2024), and TGA-ZSR (Yu et al., 2024).

Training Attacks. We adopt two regimes: (i) a light regime following TeCoA, using ¢, PGD-2 with
€ = 1/255 and step size « = 1/255; and (ii) a stronger regime following FARE, using ¢, PGD-10
with e = 2/255 and step size o = 2/255.

Evaluation Attacks. Robustness is further assessed using /., PGD-100 (Madry et al., 2017) (with
the same ¢ as the training regime and o = ¢), CW-100 (Carlini & Wagner, 2017), and AutoAt-
tack (Croce & Hein, 2020) (the rand version ensembling APGD-CE and APGD-DLR).

Loss Weights. We set A = 10°/8 with 8 = 2/e™ , where 7/ = 0.07 follows standard contrastive
learning practices (Wu et al., 2018; He et al., 2020; Radford et al., 2021; Yeh et al., 2022). Here
B corresponds to the upper bound of the mapping function h(¢) that converts logits ¢ into non-
negative evidence. Using this bound guarantees that A remains numerically stable across different
temperature values, preventing uncontrolled scaling when 7/ varies.

D PROOF OF LEMMA

D.1 LEMMA 1: VALIDITY OF DIRICHLET EVIDENCE

Lemma D.1 (Validity of Dirichlet Evidence). Under Definition 4.1, for all k:
1. ax(z) > 1and ai(z) € [1,exp(2/7)];
2. a = exp(h({)) is strictly increasing.

Proof. Since |[v(z)|l2 = |[tkl]l2 = 1, we have (v(z),t;) € [~1,1]. By the logit definition,
7007 (x) = (v(x),t) € [—1,1]. Therefore,

év%t 1 2
W=t (z)) = w c [07 7]
T
Exponentiating yields
ag(@) = exp(h(6y7" (@) € [, €7 ] = [1, exp(2/7)],
and both endpoints are attainable when (v(z), t;) = —1 and +1, respectively.

For monotonicity, differentiate ay,(x) with respect to £~ (x):

detr)

since 7 > 0, 7/ > 0, and v (z) > 0. Hence v, is strictly increasing in £ %, which preserves both
strict and non-strict order between any pair of logits.

v—t
dag(z) 7 exp(M) — lak(x) >0,

7-/ 7—/
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D.2 LEMMA 2: CONSISTENCY WITH DIRICHLET EXPECTATIONS

Lemma D.2 (Exact Equivalence at 7 = 7). Let s = 7/7'. If s = 1 (equivalently 7' = 1), the
Dirichlet expectation equals to CLIP’s softmax:

p?lr( ) _ (73 _ exp(h(gk)) _ softmax(é(x))k, = pSLIP({E).

Zj Qj Z]‘ exp(h(¢;))

Proof. From the definition of the Dirichlet expectation in Equation 5,

ir QT
p? ( ) = ]EﬂNDir(a(m))[ﬂ-k] = OZOEI§7 OZO(.’L’) = Za](x)
By construction,
" " ) +1 1 T
anla) = exp((t (@), b @) = T = Ly Do)
Let s = 7/7' > 0. Then
! v—t v—t
pgir(x) = exp(1/7" + s (i (@) = exp(s £ "' (x)) = softmax(s £" 7% (x))g,

Yol exp(L/7 s 57 (@) Y exp(s 7 ()
since the additive constant 1/7’ cancels out. When s = 1 (equivalently, 7/ = 7), this reduces to
pP¥(z) = softmax(£V 7 (z)),
which matches exactly the original CLIP prediction p{™™F ().

Corollary D.2.1 (General form and invariances). For arbitrary 7' > 0,5 = 7/7’" > 0, pP¥(z) =

softmax (s ¢(x)). Hence

arg i pP (1) = axg ma pCIP ()

while the entropy of the distribution can be smoothly tuned by s: larger s yields sharper predictions,
smaller s yields flatter ones.

Proof. For any logits ¢ € R® and scalar s > 0,
arg max by, = arg max sl.

Since the softmax assigns the maximum probability to the index with maximum input, we have

CLIP( ) Dlr( ) .

arg max p = argmax py

Thus both distributions yield the same classification decision, proving the accuray invariance.

For calibaration control, observe that pP'(z) = e /> j % becomes increasingly peaked as

s — o0, converging to a one-hot vector, and tends to the uniform distribution as s — 0%. The
entropy

H D1r Z ler log ler( )

decreases monotonically with s. Thus s leaves classification accuracy unchanged while directly
modulating the calibration of predictive confidence.

E EXTENDED UNCERTAINTY ANALYSIS

E.1 IMPLEMENTATION DETAILS FOR UNCERTAINTY QUANTIFICATION

Recall the decomposition of predictive uncertainty under the Dirichlet parameterization into
aleatoric uncertainty (AU) and epistemic uncertainty (EU) in Section 3.3.

C
o+ C°

c
AU(2) = Erpir(a)|H (7)] = — Z %Z (1/1(% +1) = ¢(ao + 1))a EU(z) =

k=1
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Our reformulation ay,(z) = exp (h(€2~(x))), h(¢) = T4, adopts a linear definition of the
evidence mapping & (¢), for which Section 4 and Appendix D have established the theoretical equiv-
alence between CLIP logits and Dirichlet distributions.

In practice, however, the learnable temperature coefficient 7 may become very small during train-
ing (e.g., 7 = 0.01), which leads to excessively large logits after exponentiation and renders the
raw uncertainty values numerically unstable. To address this, we introduce an additional activation
K (£) = softplus(h(¢)), which is commonly adopted in EDL to smooth the outputs and map them
into a numerically stable range suitable for analysis Sensoy et al. (2018); Malinin & Gales (2018).

Moreover, when 7 is too small (e.g., 7 = 0.01), EU degenerates towards 0 and AU coincides with
PU. To avoid this issue, we adopt 7 = 0.07 for computing EU, while keeping 7 = 0.01 for AU.
This choice is theoretically acceptable: both the softplus mapping and the rescaling by 7 affect
only the magnitude of uncertainty values, not their ordering. As a result, the reliability of AUROC
evaluation, which depends only on ranking, is unaffected. For ECE, we use PU directly computed
from probabilities, which is independent of 7 and activation adjustments.

These practical adjustments ensure stable and meaningful AU/EU quantification without altering the
comparative reliability of our uncertainty metrics.
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Figure 4: Effect of strong white-box attacks (¢ = 1/255, 100 steps) on accuracy and predictive
uncertainty across 16 datasets. Each panel shows the change under a single attack type (left: PGD,
center: CW, right: AutoAttack); for each dataset the filled light bars plot APU = PU yucked — P Uclean
(left axis) and the hatched bars plot AAcc = AcCattacked — ACCelean i percentage points (right axis).
Negative values therefore indicate decreases caused by the attack. Results demonstrate that all three
attacks induce simultaneous drops in accuracy and predictive uncertainty on most datasets, with the
magnitude of degradation varying by dataset and attack.
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Figure 5: Comparison of aleatoric uncertainty on clean and adversarial samples across 16 datasets
between CLIP and our method, adversarially trained on tinyImageNet under 10-step PGD with
€ =2/255.
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Figure 6: Comparison of epistemic uncertainty on clean and adversarial samples across 16 datasets
between original CLIP and our method, adversarially trained on tinylmageNet under 10-step PGD
with e = 2/255.

E.2 ADDITIONAL VISUALIZATIONS OF UNCERTAINTY

To complement the main results, we provide extended visualizations of predictive uncertainty under
adversarial attacks. Figure 4 reports the degradation of accuracy and predictive uncertainty (PU)
across 16 datasets under three strong white-box attacks (PGD, CW, AutoAttack). Figures 5 and 6
further decompose the uncertainty into aleatoric and epistemic components, respectively, comparing
CLIP with our method on both clean and adversarial samples. These results illustrate how adversar-
ial perturbations simultaneously reduce accuracy and distort uncertainty, while our method consis-
tently provides more reliable AU/EU estimates across diverse datasets, thereby achieving effective
uncertainty calibration.

F EVALUATION UNDER LARGER DATASETS AND STRONGER ATTACKS

We additionally evaluate two extended settings. First, following TeCoA (Mao et al., 2022), we train
on ImageNet-1k with 2-step PGD at ¢ = 1/255 to assess performance on a larger training dataset
across 15 benchmarks (tinylmageNet is excluded, as it was not reported in TeCoA’s original paper).

Second, following the stronger configuration of FARE (Schlarmann et al., 2024), we train on

Table 4: Zero-shot adversarial robustness across 15 datasets. All methods are fine-tuned on
ImageNet following TeCoA (Mao et al., 2022), adversarial training uses 2-step PGD Madry et al.
(2017) with e=1/255. Average is the mean across datasets; H is the harmonic mean between Clean
and the corresponding robust score. Best and second-best are in bold and underline.

2 g 2 s b
— 2 = = Z o} < 4] <
s 8 = 5 2 & % § ¢ 3 § % : z|°¢
E El a z = S z a <] > g 2 £ = < 5
= = =) 3 = ° = 3 &) = < < 3 o >
Methods o o © 7} 9 [} = a m = = o o} @ -9 < ==}
CLIP Radford et al. (2021) 88.03 6045 97.03 57.26 8389 8741 6549 40.64 42.66 20.16 59.15 8532 81.73 52.02 52.08 | 64.89
§ TeCoA Mao et al. (2022) 78.12  49.68 9330 5128 5537 81.58 5092 34.15 27.57 13.89 6387 8351 7651 3330 49.01 | 56.14
T FARE Schlarmann et al. (2024) | 84.75 59.85 95.69 5397 7558 86.92 6048 3686 24.74 17.10 85.01 85.01 80.57 49.71 45.06 | 62.75
UCAT (Ours) 8378 58.11 95.65 53.98 68.84 86.05 58.30 3718 2302 1524 7048 84.64 8027 44.96 46.56 | 60.47
CLIP Radford et al. (2021) 9.57 4.55 3540 1.02 BS 2.72 1.19 2.50 0.04 0.00 1.72 24.63 7.19 0.27 0.10 0.05 0.10
TeCoA Mao et al. (2022) 59.28 34.13 8345 29.81 2799 6261 30.69 2288 1518 5.10 41.88 69.07 59.54 13.37 2387 | 38.59 4574
FARE Schlarmann et al. (2024) | 50.96 28.48 80.88 26.66 3436 61.43 3191 2431 1412 528 3211 68.19 59.95 1852 2574 | 37.53 46.97
UCAT (Ours) 50.59 28.48 82.09 2993 3372 6759 3326 2442 1265 573 4751 7111 62.71 19.62 25.84 | 39.68 47.92
2] CLIP Radford et al. (2021) 2.54 1.11 3.18 0.05 0.03 0.03 0.02 0.19 0.17 0.23 0.04 0.10 0.26 0.07 0.12 0.54 1.08
£ TeCoA Mao et al. (2022) 58.27 32.57 83.16 29.03 2579 6176 2893 20.70 13.26 4.05 4851 6840 5859 12.03 24.09 | 37.94 4528
FARE Schlarmann et al. (2024) | 49.62 2598 80.60 24.77 33.06 60.51 29.55 22.02 1295 4.08 39.81 67.21 5887 1643 2556 | 36.73 46.34
UCAT (Ours) 49.00 2642 81.73 27.85 31.88 66.86 30.64 2245 10.76 4.50 4559 70.12 61.64 17.40 25.37 | 38.15 46.78

TinyImageNet with 10-step PGD at e = 2/255 to assess performance under a stronger adversarial
attack.

Overall, our method remains consistently strong across both extended settings, confirming its ro-
bustness under larger-scale training and stronger adversarial attacks.
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Table 5: Zero-shot adversarial robustness across 16 datasets. All methods are fine-tuned on
TinylmageNet following FARE (Yu et al., 2024), adversarial training uses 10-step PGD (Madry
etal., 2017) with e=2/255. Average is the mean across datasets; H is the harmonic mean between
Clean and the corresponding robust score. Best and second-best are in bold and underline.

2 E z
5 2 = £ - 3 b 3
) =
i = 8 o 5B 2 & % 2 5 3 3 5 % szl
> & E Z 2 % £ & & : z 2 &£ £ T 2|5
Methods g T &6 5 2 £ & E &8 & 2 & S & & B | = =
CLIP 5796 88.03 6045 97.03 57.26 83.89 8741 6549 40.64 42.66 20.16 59.15 8532 81.73 52.02 52.08 | 64.45
. TeCoA (Mao et al., 2022) 6320 58.62 31.75 80.59 2571 19.15 4925 2461 1734 15.89 2.88 2470 63.04 47.67 13.11 49.97 | 36.72
§ FARE (Schlarmann et al., 2024) | 16.92 4023 1196 64.56 7.89 8.07 19.24 1182 793 1252 255 7.98 47.14 2761 6.06 50.02 | 21.41
T PMG-AFT (Wang et al., 2024) 22.16 74.05 3381 9275 55.66 72.69 83.10 5586 2830 19.83 1746 5146 80.83 7522 43.09 48.72 | 53.44
TGA-ZSR (Yu et al., 2024) 69.78 8398 5232 9136 4470 50.17 7255 4505 2692 27.58 10.68 41.84 80.04 7194 33.14 50.02 K 53.25
Ours. 67.18 66.52 41.07 86.73 30.10 36.97 62.66 36.69 2495 19.39 726 3261 7500 60.15 2639 49.66 | 45.21
- CLIP 0.00 0.05 0.14 0.00 0.02 0.03 0.03 0.02 0.13 0.17 0.23 0.03 0.02 0.06 0.07 0.12 0.07 0.14
£ TeCoA (Mao et al., 2022) 3268 2194 1317 5193 843 554 20156 992 952 1136 051 910 38.88 2535 256 4923 | 1948 2546
é‘ FARE (Schlarmann et al., 2024) | 7.00 14.81 458 3871 281 2.16 6.49 4.29 4.47 8.52 072 2.86 29.84 14.03 1.34 50.02 | 12.04 1541
S PMG-AFT (Wang et al., 2024) 0.00 0.96 0.35 0.74 0.06 0.05 0.06 0.05 0.27 0.03 0.03 0.04 0.92 0.26 0.04 0.21 0.25 0.51
<= TGA-ZSR (Yu et al., 2024) 11.28 6.29 5.53  36.76 4.00 3.27 9.27 6.18 6.33 8.94 0.18 513 3023 1957 0.96 42.88 | 1230 19.98
Ours. 32.84 24.08 1397 5715 950 9.09 2472 12.60 11.97 376 078 1111 4944 3235 471 32.62 | 20.67 28.37
CLIP 0.00 0.58 0.20 0.57 0.08 0.00 0.00 0.00 0.12 0.00 0.00 0.08 0.24 0.33 2.19 0.00 0.27 0.55
TeCoA (Mao et al., 2022) 3390 23.05 13.66 52.50 8.95 574 22.13 10.05 942 1140 0.63 9.58 39.92 26.04 3.10 49.26 | 19.96 25.86
= FARE (Schlarmann et al., 2024) | 7.04 14.64 4.63 38.94 291 220 6.68 438 4.36 8.43 0.75 2.96 30.13 1424 173 50.02 | 12.13 1548
O PMG-AFT (Wang et al., 2024) 0.02 1.63 070 273 0.09 0.02 0.03 000 032 0.00 0.00 0.11 3.03 1.13 1.87 0.00 0.73 1.44
TGA-ZSR (Yu et al., 2024) 2068 2048 1148 5153 915 643 2172 1205 963 1101 060 10.06 4079 28.67 448 49.97 | 19.86 28.93
Ours 34.64 2546 14.69 57.88 10.25 9.83 2649 1291 11.70 3.80 1.11 1195 5047 33.40 6.36  33.09 | 21.50 29.14
CLIP 0.00 0.94 0.28 045 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.77 0.19 0.00 0.00 0.00 0.00
TeCoA (Mao et al., 2022) 3574 2357 1447 5350 10.20 6.58 2290 1096 10.75 1172 0.57 10.53 40.27 27.02 3.61 4931 | 20.73 26.50
8 FARE (Schlarmann et al., 2024) | 8.62 18.19 5.67 41.10 3.46 2.88 7.01 522 521 9.29 0.96 3.47 3198 1547 1.73 50.02 ' 13.14 16.29
& PMG-AFT (Wang et al., 2024) 0.12  24.10 376 16.34 0.16 0.04 0.30 0.23 229 0.50 0.00 023 4.53 2.02 0.01 47.90 6.41 1144
TGA-ZSR (Yu et al., 2024) 30.74 2017 12.02 51.99 946 6.69 2058 1247 10.85 11.22 0.63 1028 40.63 29.06 3.56 49.97 | 20.02 29.10
Ours. 3538 25.81 15.67 58.44 1148 11.17 26.82 15.04 1394 453 1.20 13.13 5134 3460 6.72 34.02 | 2245 30.01

G LIMITATIONS AND FUTURE WORK

While our study is focused on a specific setting, it highlights several opportunities for future explo-
ration. First, in the current setting we only consider adversarial perturbations applied to the image
encoder, while future work may extend to more comprehensive bidirectional attacks that also target
the text encoder. Second, our framework requires fine-tuning, whereas recent work has explored
test-time defenses based on prior assumptions without additional training (Xing et al., 2025; Zhang
et al., 2025). However, such approaches often show instability under adaptive attacks such as Au-
toAttack. Incorporating our uncertainty-based analysis as a principled prior into test-time defenses
is a promising future direction. Finally, our experiments are restricted to CLIP, and it will be valu-
able to investigate the applicability of our Dirichlet-based uncertainty calibration to larger and more
diverse vision—language models.
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