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ABSTRACT

CLIP delivers strong zero-shot classification but remains highly vulnerable to ad-
versarial attacks. Previous work of adversarial fine-tuning largely focuses on
matching the predicted logits between clean and adversarial examples, which
overlooks uncertainty calibration and may degrade the zero-shot generalization.
A common expectation in reliable uncertainty estimation is that predictive un-
certainty should increase as inputs become more difficult or shift away from the
training distribution. However, we frequently observe the opposite in the adversar-
ial setting: perturbations not only degrade accuracy but also suppress uncertainty,
leading to severe miscalibration and unreliable over-confidence. This overlooked
phenomenon highlights a critical reliability gap beyond robustness. To bridge
this gap, we propose a novel adversarial fine-tuning objective for CLIP consid-
ering both prediction accuracy and uncertainty alignments. By reparameterizing
the output of CLIP as the concentration parameter of a Dirichlet distribution, we
propose a unified representation that captures relative semantic structure and the
magnitude of predictive confidence. Our objective aligns these distributions holis-
tically under perturbations, moving beyond single-logit anchoring and restoring
calibrated uncertainty. Experiments on multiple zero-shot classification bench-
marks demonstrate that our approach effectively restores calibrated uncertainty
and achieves competitive adversarial robustness while maintaining clean accuracy.

1 INTRODUCTION

Contrastive language-image pretraining (CLIP) (Radford et al., 2021) has become a widely adopted
vision–language model, achieving strong zero-shot recognition by comparing image features with
text prompts in a shared embedding space. Its scalability (Jia et al., 2021) and adaptability through
prompting or ensembling (Zhou et al., 2022; Wortsman et al., 2022) have established it as a foun-
dation model for open-world scenarios where labeled data are scarce. Although CLIP demonstrates
impressive generalization ability, it is highly vulnerable to adversarial attacks: tiny pixel-level per-
turbations, often imperceptible to humans, can cause confident misclassifications and severe drops
in performance (Goodfellow et al., 2014; Kurakin et al., 2018; Madry et al., 2017). This contrast
between strong zero-shot generalization and fragile robustness motivates the study of adversarial
reliability in vision–language models.

Recent efforts on zero-shot adversarial robustness aim to enhance CLIP’s resistance to adversarial
perturbations while preserving zero-shot generalization (Mao et al., 2022; Schlarmann et al., 2024;
Xing et al., 2025; Zhang et al., 2025). Formally, the task assumes that only the image encoder is
adversarially fine-tuned, while the text encoder remains fixed and provides stable semantic anchors.
Existing methods fine-tune the attacked encoder on labeled data to balance clean accuracy and ad-
versarial robustness, and then evaluate transferability to unseen zero-shot datasets (Yu et al., 2024;
Wang et al., 2024; Li et al., 2024). A common strategy is to align adversarial features directly to
the ground-truth text embedding, which provides strong discriminative supervision but disregards
the relative geometry among neighboring classes. As illustrated in Figure 1a (left), the adversar-
ial alignment is enforced only toward the ground-truth text embedding, effectively pulling features
along an unconstrained direction and disregarding the relative geometry of neighboring embeddings.
However, these relations are essential as they encode inherent data ambiguity, such as semantic over-
lap between categories or the presence of multiple objects within a single image. Such ambiguity
can be naturally interpreted as a form of predictive uncertainty. This single-anchor alignment pro-
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(a) Conceptual illustration. (b) Predictive Uncertainty under AutoAttack (ϵ = 1/255).

Figure 1: (a) Conceptual illustration of hypersphere geometry. Traditional anchor-based zero-
shot adversarial robustness (ZSAR) methods align features only to the ground-truth class, while our
method preserves inter-class geometry via distributional calibration. (b) Predictive uncertainty on
16 datasets. CLIP shows reduced entropy on adversarial inputs, whereas our method UCAT restores
calibrated uncertainty. Arrows and numbers show uncertainty change (direction, magnitude).

vides strong discriminative supervision but neglects the underlying uncertainty structure, which can
limit generalization under adversarial perturbations.

While previous methods mostly focus on aligning the predicted logits, we argue that they overlook
an essential phenomenon, that is, a systematic miscalibration in CLIP’s predictive uncertainty un-
der adversarial perturbations. Figure 1b compares entropy-based uncertainty on clean (solid) and
adversarial (striped) inputs across multiple datasets. Strikingly, in many cases, the uncertainty of
adversarial predictions is lower than that of clean predictions, contradicting the widely held ex-
pectation that uncertainty should increase with input difficulty or distributional shift (Guo et al.,
2017; Hendrycks & Gimpel, 2016; Ovadia et al., 2019). This anomaly indicates that CLIP not only
fails to maintain robustness but also produces spuriously confident predictions when attacked. Such
behavior highlights a critical reliability gap beyond accuracy, underscoring the need to calibrate
uncertainty in adversarial fine-tuning.

To address both the structural and calibration issues, we propose an Uncertainty-Calibrated Ad-
versarial fine-Tuning framework for CLIP (UCAT). UCAT operates by regularizing entire Dirichlet
distributions rather than anchoring to a single class, thereby preserving inter-class semantic relations
while calibrating the overall strength of predictive evidence. This is achieved by reparameterizing
CLIP’s logits as concentration parameters of a Dirichlet distribution, yielding a unified represen-
tation for holistic alignment under perturbations. The quantitative effect of UCLIP is shown in
Figure 1b: compared to vanilla CLIP, our fine-tuned model achieves calibrated uncertainty levels,
restoring a consistent ordering: original CLIP w/ clean img. < fine-tuned CLIP w/ clean img. <
fine-tuned CLIP w/ adversarial img., which faithfully reflects increasing input difficulty. The main
contributions of this work can be summarized as follows:

1) Dirichlet-based formulation of CLIP. We reformulate CLIP’s logits as concentration pa-
rameters of a Dirichlet distribution, providing a theoretically justified and closed-form ap-
proach to estimate predictive uncertainty.

2) Uncertainty-Calibrated Adversarial fine-Tuning (UCAT). We propose a novel
uncertainty-calibrated adversarial fine-tuning method that regularizes entire Dirichlet dis-
tributions to jointly preserve inter-class relations and calibrate evidence strength.

3) Extensive empirical validation. Across 16 single-label benchmarks and the multi-label
dataset MS-COCO, we show that our method effectively calibrates uncertainty under attack
while maintaining strong clean accuracy and competitive adversarial robustness.

2 RELATED WORK

Zero-shot Adversarial Robustness. A series of works have advanced zero-shot adversarial ro-
bustness (ZSAR) for CLIP by adapting adversarial fine-tuning to the vision–language setting.
TeCoA (Mao et al., 2022) pioneered text-guided adversarial fine-tuning with a contrastive loss,
aligning adversarial features to ground-truth text prototypes. FARE (Schlarmann et al., 2024) ar-
gued that restricting alignment to a single label undermines zero-shot generalization and instead
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enforced feature consistency between clean and adversarial representations. Subsequent methods
further extended this line with prediction-level (Wang et al., 2024) or attention-level (Yu et al., 2024)
regularization. However, all of these approaches adopt the single-anchor strategy, which inevitably
drives training along an unconstrained direction and disregards the relative geometry of neighboring
embeddings. In contrast, we reformulate CLIP logits as Dirichlet evidence, allowing uncertainty to
be explicitly calibrated while preserving both semantic structure and confidence strength. This leads
to stronger adversarial robustness and improved transfer in open-world settings.

Uncertainty Calibration. Uncertainty estimation has been widely explored in settings such as
out-of-distribution detection (Hendrycks & Gimpel, 2016; Ovadia et al., 2019), adversarial train-
ing (Malinin & Gales, 2019), and large language models (Kuhn et al., 2023). A central challenge is
calibration: ideally, uncertainty should increase under harder inputs or distributional shift, yet em-
pirical studies have shown that adversarial predictions often appear spuriously confident (Guo et al.,
2017; Hendrycks & Gimpel, 2016; Ovadia et al., 2019). Dirichlet Prior Networks (Malinin & Gales,
2018; Ulmer et al., 2021) addressed this by regularizing logits into Dirichlet parameters, enforcing
higher uncertainty on adversarial (Sensoy et al., 2020; Malinin & Gales, 2019) or out-of-distribution
samples (Yoon & Kim, 2024). However, in such models the absolute magnitude of evidence is
largely an artifact of training and lacks intrinsic meaning. In contrast, CLIP’s large-scale contrastive
pre-training endows its logits with semantically meaningful absolute strength, which we exploit by
reformulating them as Dirichlet evidence. This yields a natural decomposition of predictive uncer-
tainty into aleatoric uncertainty (AU), reflecting ambiguity across semantically related classes, and
epistemic uncertainty (EU), reflecting limited evidence or distributional shift (Ulmer et al., 2021;
Ma et al., 2025). To the best of our knowledge, no prior work has established such a theoretical
account of uncertainty in CLIP. We fill this gap by proving the Dirichlet structure of CLIP logits and
leveraging it for uncertainty-calibrated adversarial robustness.

3 PRELIMINARY

3.1 CONTRASTIVE LEARNING OBJECTIVE AND ZERO-SHOT CLASSIFICATION

Contrastive Learning Objective. Contrastive learning underlies large-scale vision–language mod-
els such as CLIP (Radford et al., 2021). Let fθ : Ximg→Rd, gϕ : Xtxt→Rd denote the image and
text encoders, where d is the dimension of the embedding space. For an image–text pair (ximg

i , xtxti ),
the embeddings are normalized onto the unit hypersphere Sd−1:vi = fθ(x

img
i )/∥fθ(ximg

i )∥2, ti =
gϕ(x

txt
i )/∥gϕ(xtxti )∥2. The similarity between image i and text j can be expressed in two directional

forms: ℓv→t
ij = ⟨vi, tj⟩/τ , ℓt→v

ij = ⟨ti, vj⟩/τ , where τ > 0 is a learnable temperature parameter.
Given a batch of N aligned pairs, the symmetric InfoNCE objective is

LCLIP = − 1

2N

N∑
i=1

[
log

exp(ℓv→t
ii )∑N

j=1 exp(ℓ
v→t
ij )

+ log
exp(ℓt→v

ii )∑N
j=1 exp(ℓ

t→v
ij )

]
. (1)

Zero-shot Classification. Benefiting from its self-supervised contrastive learning objective, CLIP
exhibits strong zero-shot transfer capability for open-vocabulary recognition (Jia et al., 2021; Yao
et al., 2021; Zhai et al., 2022; Zhou et al., 2022). At inference, classification is formulated as
retrieving the most relevant text prompt for a given image, where only the image-to-text similarity
ℓv→t is evaluated. Each class label ck (k = 1, . . . , C, where C is the number of candidate classes)
is converted into a natural-language prompt (e.g., “This is a photo of a dog”), which is encoded and
normalized to yield a class prototype tk ∈ Sd−1. For a test image x, the normalized embedding
is v(x) = fθ(x)/∥fθ(x)∥2, and the logit for class ck is ℓv→t

k (x) = ⟨v(x), tk⟩/τ. The predictive
distribution over classes is obtained via the softmax

pCLIP(y = k | x) = exp(ℓv→t
k (x))∑C

j=1 exp(ℓ
v→t
j (x))

. (2)

This formulation enables recognition of categories unseen during training, relying solely on the
shared image–text embedding space.
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3.2 ADVERSARIAL ATTACKS.

Adversarial attacks perturb inputs with small, often imperceptible changes to mislead a model.
Given an image x with label y, an adversarial example is constructed as xa = x + δ, ∥δ∥q ≤ ϵ,
where ϵ bounds the perturbation magnitude under ℓq-norm. A canonical method is Projected Gra-
dient Descent (PGD, Madry et al., 2017), which iteratively updates

xat+1 = ΠBϵ(x)

(
xat + α sign

(
∇xL(Fφ(x

a
t ), y)

))
, (3)

where t is the iteration index, α is the step size, Fφ is the target model, and ΠBϵ(x) projects the
perturbed point back into the ϵ-ball around x. Intuitively, PGD moves the input a small step in the
direction that most increases the loss, then clips it to stay within the allowed perturbation range,
repeating this process until the attack succeeds.

3.3 UNCERTAINTY ESTIMATION VIA EVIDENCE

Dirichlet Parameterization with Evidence. In evidential deep learning (EDL), predictive uncer-
tainty is modeled explicitly by placing a Dirichlet distribution over class probabilities rather than
predicting a single categorical distribution (Sensoy et al., 2018; Malinin & Gales, 2018; Ulmer
et al., 2021). For a C-class problem, the network outputs non-negative concentration parameters
α = (α1, . . . , αC) ∈ RC

+, typically expressed as αk = ek + 1, ek ≥ 0, where ek denotes the
evidence assigned to class k. In the original EDL formulation, this ensures αk ≥ 1 so that zero
evidence corresponds to a uniform prior. The induced Dirichlet distribution is

Dir(π;α) =
1

B(α)

C∏
k=1

παk−1
k , B(α) =

∏C
k=1 Γ(αk)

Γ(α0)
, α0 =

C∑
k=1

αk, (4)

where π = (π1, . . . , πC) is a probability on the (C − 1)-simplex and B(α) is the polynomial Beta
function. Importantly, α0 quantifies the total evidence and serves as the precision of the distribution.

The non-negativity of α is typically enforced by activation functions such as ReLU, Softplus,
or exponential mapping used in prior works (Yoon & Kim, 2024; Malinin & Gales, 2019). In
particular, under the exponential parameterization with unconstrained logits z(x) ∈ RC and
αk(x) = exp(zk(x)), the predictive categorical distribution is obtained as the expectation under
the Dirichlet:

p(y = k | x) := Eπ∼Dir(α(x))[πk] =
αk(x)

α0(x)

αk=exp(zk)
=

exp(zk(x))∑C
j=1 exp(zj(x))

. (5)

Closed-Form Uncertainty Decomposition. The Dirichlet parameterization not only provides
a probability distribution but also admits a closed-form decomposition of predictive uncertainty
into two complementary components, aleatoric and epistemic (Der Kiureghian & Ditlevsen, 2009;
Kendall & Gal, 2017; Hüllermeier & Waegeman, 2021).

Aleatoric uncertainty (AU) captures ambiguity inherent in the data. In vision–language models, this
may arise from factors such as semantic overlap between classes (e.g., “wolf” vs. “dog”) or noisy
image–text pairs where multiple labels are plausible (Ulmer et al., 2021; Ma et al., 2025; Ji et al.,
2023). Formally, AU reflects how probability mass is distributed across classes and is quantified by
the expected Shannon entropy of the categorical distribution under the Dirichlet:

AU(x) = Eπ∼Dir(α)

[
H(π)

]
= −

C∑
k=1

αk

α0

(
ψ(αk + 1)− ψ(α0 + 1)

)
, (6)

where ψ(·) denotes the digamma function.

Epistemic uncertainty (EU) arises from limited evidence or distributional shift (Hendrycks & Gim-
pel, 2016; Sensoy et al., 2018). It reflects the overall reliability of the prediction: when the total
evidence α0 is small, the model should be considered untrustworthy. Following prior work (Charp-
entier et al., 2020; Ulmer et al., 2021; Ma et al., 2025), a widely adopted closed-form proxy is

EU(x) =
C

α0 + C
, (7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which increases as α0 decreases.

In summary, AU reflects ambiguity in the predictive distribution across classes, while EU captures
uncertainty from insufficient evidence or distributional shift. Both can be computed directly from
the Dirichlet parameters, enabling efficient uncertainty estimation in a single forward pass.

4 DIRICHLET REFORMULATION OF CLIP

Comparing CLIP’s zero-shot probability in Equation 2 with the Dirichlet expectation in Equation 5
reveals a structural correspondence: both are softmax operations over a set of logits. This motivates a
non-trivial identification that reinterprets CLIP logits as evidence governing a Dirichlet distribution
(Definition 4.1). This identification is non-trivial for three reasons: (i) it satisfies the validity of
Dirichlet evidence with tight bounds and strict monotonicity (Lemma 4.2); (ii) it exactly recovers
CLIP’s predictive rule exactly under a specific calibration (Lemma 4.3); and (iii) preserves logit
order while exposing a tunable temperature for calibration (Corollary 4.3.1).

Definition 4.1 (Concentration Parameter). Let v(x), tk ∈ Sd−1 be unit-normalized image/text em-
beddings and ℓv→t

k (x) = ⟨v(x), tk⟩/τ the CLIP logit with temperature τ > 0. We define Dirichlet
concentration parameters by

αk(x) = exp
(
h(ℓv→t

k (x))
)
, h(ℓ) =

τ ℓ+ 1

τ ′
, (8)

where τ ′ > 0 is a calibration coefficient.

Remark (Construction rationale). Since τ ℓv→t
k (x) = ⟨v(x), tk⟩ ∈ [−1, 1], we shift the cosine

similarity by +1 so that its range becomes [0, 2]. A calibration coefficient τ ′ > 0 is introduced to
rescale. Applying the exponential guarantees positivity while preserving logit order and remaining
compatible with softmax geometry.

Lemma 4.2 (Validity of Dirichlet Evidence). Under Definition 4.1, for all k:

1. αk(x) ≥ 1 and αk(x) ∈ [1, exp(2/τ ′)];

2. α = exp(h(ℓ)) is strictly increasing.

Remark (αk ≥ 1 in EDL). As introduced in Section 3.3, the classical EDL formulation enforces
αk ≥ 1 by parameterizing αk = ek +1 with non-negative evidence (Sensoy et al., 2018; 2020). We
adopt the same restriction for two reasons: (i) digamma- and trigamma-based uncertainty measures
become unstable as αk approaches 0 (Minka, 2000), and (ii) Dirichlet distributions with αk < 1
produce corner-seeking samples (Telgarsky, 2013), concentrating on a few classes even under weak
evidence. This violates the common principle that uncertainty should grow as inputs become harder
or deviate from the training distribution. Accordingly, our reformulation guarantees αk ≥ 1; all
subsequent analysis and experiments are under this regime. Proof is provided in Appendix D.1.

Lemma 4.3 (Exact Equivalence at τ = τ ′). Let s = τ/τ ′. If s = 1 (equivalently τ ′ = τ ), the
Dirichlet expectation equals to CLIP’s softmax:

pDir
k (x) =

αk∑
j αj

=
exp(h(ℓk))∑
j exp(h(ℓj))

= softmax
(
ℓ(x)

)
k
= pCLIP

k (x). (9)

Remark (Significance of exact equivalence). Lemma 4.3 shows that when τ ′ = τ , the Dirichlet
expectation coincides exactly with CLIP’s softmax prediction. This equivalence is not incidental: it
demonstrates that CLIP’s original training loss in Equation 1 implicitly optimizes a Dirichlet-based
model of evidence. Hence, our reformulation is not an ad hoc construction but a faithful probabilistic
interpretation of CLIP’s logits. A complete proof is provided in Appendix D.2.

Corollary 4.3.1 (General form and invariances). For arbitrary τ ′ > 0, s = τ/τ ′ > 0, pDir(x) =
softmax

(
s ℓ(x)

)
. Hence

argmax
k

pDir
k (x) = argmax

k
pCLIP
k (x), (10)

while the entropy of the distribution can be smoothly tuned by s: larger s yields sharper predictions,
smaller s yields flatter ones.

5
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Figure 2: Overview of our uncertainty calibration adversarial fine-tuning framework. Clean
and adversarial images are encoded by CLIP’s image encoder, while text prompts are processed by
the frozen text encoder. Our training objective combines the text-guided contrastive loss with an
uncertainty calibration regularization term that aligns adversarial Dirichlets with the original clean
distributions, thereby preserving semantic relations and calibrating evidence strength.

Remark (Connection to uniformity–tolerance in contrastive learning). In contrastive learning, the
temperature regulates the separation strength among negatives. A smaller softmax temperature
(larger s) encourages uniformity on the hypersphere by enforcing stronger separation, while a larger
temperature (smaller s) increases tolerance to near-semantic neighbors (Wang & Isola, 2020; Rad-
ford et al., 2021). We set τ ′ = 0.07, yielding s < 1 and thus softer predictions that increase tolerance
to semantically related negatives. This preserves CLIP’s intrinsic semantic structure and is particu-
larly beneficial for adversarial fine-tuning, where calibrated tolerance improves zero-shot robustness
without harming the model’s original generalization ability. Proof is deferred to Appendix D.2.1.

This reformulation establishes a principled mapping from CLIP logits to Dirichlet evidence, serving
several important implications. First, it naturally admits provides closed-form uncertainty decom-
position (Section 3.3), enabling direct and decoupled quantification of aleatoric and epistemic com-
ponents without auxiliary sampling. Second, it offers principled calibration, since the calibration
coefficient adjusts confidence sharpness without altering prediction accuracy, allowing a controllable
trade-off between uniformity and tolerance. Finally, it ensures semantic fidelity. The reformulation
not only recovers CLIP’s predictive rule in the exact equivalence case but also supports optimization
over a Dirichlet distribution that preserves relative geometry and absolute evidence strength. These
properties lay the foundation for the adversarial fine-tuning objectives introduced in the next section.

5 UNCERTAINTY CALIBRATION ADVERSARIAL FINE-TUNING OBJECTIVE

To mitigate the misaligned semantics and unreliable confidence introduced by adversarial perturba-
tions, we propose an Uncertainty Calibration Adversarial fine-Tuning (UCAT) objective. The key
insight builds on our reformulation: mapping CLIP logits to Dirichlet evidence yields closed-form
uncertainty decomposition with principled calibration, while retaining fidelity to the semantic ge-
ometry of the embedding space. UCAT exploits this property by aligning the Dirichlet distributions
of adversarial and clean samples, correcting distributional shift while simultaneously preserving
semantic relations and calibrated confidence.

As illustrated in Figure 2, our method adopts a CLIP-based adversarial fine-tuning pipeline with a
frozen text encoder and a trainable image encoder. Clean samples x and their adversarial counter-
parts xa (generated via ℓ∞-PGD (Madry et al., 2017)) are encoded into the joint embedding space,
and their logits are reformulated as Dirichlet parameters, denoted α and αadv. The clean distribution
Dir(α) captures the generalized semantics from pre-training, whereas Dir(αadv) may shift toward
distorted or overconfident states. To correct this mismatch, we introduce an uncertainty calibration
regularization objective, defined as the KL divergence between the two distributions:

Lucr = KL(Dir(αadv) ∥Dir(α)) . (11)

6
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Table 1: Zero-shot adversarial robustness on multi-label dataset MS-COCO (Lin et al., 2014).
All models are adversarially trained on TinyImageNet with the FARE2 (Schlarmann et al., 2024) 10-
step PGD (ϵ = 2/255) setting and evaluated under CW-100 (Carlini & Wagner, 2017) attacks. We
report micro-averaged Precision (P), Recall (R), and F1-score (F1) at top-3 and top-5 predictions,
together with mean Average Precision (mAP), under adversarial conditions. Best and second-best
are in bold and underline.

Methods P@3 R@3 F1@3 P@5 R@5 F1@5 mAP

CLIP (Radford et al., 2021) 17.72 25.21 25.85 25.52 20.15 34.44 25.42
TeCoA (Mao et al., 2022) 30.23 30.99 30.60 22.67 38.73 28.59 37.32
FARE (Schlarmann et al., 2024) 33.45 34.30 33.86 26.04 44.49 32.84 29.18
PMG-AFT (Wang et al., 2024) 32.32 33.15 32.72 25.40 43.40 32.04 29.75
TGA-ZSR (Yu et al., 2024) 32.95 33.79 33.36 24.58 41.99 31.00 38.23
UCAT (Ours) 36.58 37.52 37.04 28.27 48.32 35.67 37.60

Since both AU and EU are closed-form functions of Dirichlet parameters (Sec. 3.3), minimizing
Lucr aligns adversarial predictions with their clean counterparts in terms of inter-class relations
(AU) and evidence magnitude (EU), thereby preventing collapse into spuriously confident errors.
Complementarily, the text-guided cross-entropy loss

Lce = − log
exp

(
⟨v(xa), ty⟩/τ

)∑C
j=1 exp

(
⟨v(xa), tj⟩/τ

) , (12)

anchors adversarial embeddings to the ground-truth prototype ty , providing discriminative supervi-
sion that stabilizes training and improves accuracy. The final objective combines both components:

L = Lce + λLucr, (13)

where λ balances discriminative alignment and uncertainty calibration. This joint objective com-
bines discriminative supervision via the cross-entropy loss with calibrated uncertainty through dis-
tributional alignment, leading to stronger zero-shot adversarial robustness.

6 EXPERIMENTS

Implementational Details and Datasets. We adopt CLIP-B/32 (Radford et al., 2021) as the back-
bone and follow TeCoA’s training protocol (Mao et al., 2022), comparing zero-shot adversarial ro-
bustness against five baselines: CLIP (Radford et al., 2021), TeCoA, FARE (Schlarmann et al.,
2024), PMG-AFT (Wang et al., 2024), and TGA-ZSR (Yu et al., 2024). Training and evaluation are
conducted under ℓ∞ PGD regimes, including a light setting (2-step, ϵ = 1/255) following (Mao
et al., 2022) and a stronger setting (10-step, ϵ = 2/255) following (Schlarmann et al., 2024). Ro-
bustness is further assessed using 100-step PGD (Madry et al., 2017), CW (Carlini & Wagner, 2017),
and AutoAttack (Croce & Hein, 2020). We set λ = 105/β with β = 2/eτ

′
, and fix τ ′ = 0.07 fol-

lowing standard contrastive learning practices (Wu et al., 2018; He et al., 2020; Radford et al., 2021;
Yeh et al., 2022). Full implementation details and datasets are provided in the Appendix C.

6.1 EFFICIENCY ON MULTI-LABEL DATA AMBIGUITY

To assess robustness under data ambiguity, we perform zero-shot evaluation on the multi-label MS-
COCO (Lin et al., 2014) dataset (Tab. 1). All models are fine-tuned on single-label TinyImageNet
using PGD, and tested directly on COCO under CW attacks to perturb multiple labels simultane-
ously. Our method achieves the best top-k precision, recall, and F1, indicating stronger ability to
recognize multiple objects within a single image. Compared with label-guided approaches that ex-
plicitly align adversarial features to the ground-truth class, both our method and FARE benefit from
preserving the intrinsic generalization encoded in CLIP’s original features. By further incorporating
uncertainty calibration, our method balances semantic fidelity with calibrated confidence, leading to
consistently stronger robustness under multi-label ambiguity. While our mAP is also competitive,
this metric is easily influenced by low-probability noise from irrelevant categories, making top-k
evaluation a more faithful measure of robustness to label ambiguity.
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6.2 CROSS-DATASET EVALUATION OF ZERO-SHOT ADVERSARIAL ROBUSTNESS

Table 2: Zero-shot adversarial robustness across 16 single-label datasets. All methods are fine-
tuned on TinyImageNet following TGA-ZSR (Yu et al., 2024), adversarial training uses 2-step
PGD (Madry et al., 2017) with ϵ = 1/255. Average is the mean across datasets. H is the har-
monic mean between Clean and the corresponding robust score. Best and second-best are in bold
and underline.
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CLIP (Radford et al., 2021) 57.96 88.03 60.45 97.03 57.26 83.89 87.41 65.49 40.64 42.66 20.16 59.15 85.32 81.73 52.02 52.08 64.45
TeCoA (Mao et al., 2022) 71.24 67.56 38.26 85.89 36.01 28.23 61.30 32.04 24.95 16.13 5.19 32.89 72.16 59.00 20.28 50.11 43.83
FARE (Schlarmann et al., 2024) 41.86 79.81 48.27 94.24 46.15 58.90 80.98 47.63 23.09 24.19 15.63 42.93 78.22 72.05 43.96 50.02 53.00
PMG-AFT (Wang et al., 2024) 48.60 74.73 43.59 90.41 51.70 56.52 79.40 48.43 32.45 21.76 11.79 46.74 82.49 73.59 41.21 56.13 53.72
TGA-ZSR (Yu et al., 2024) 76.60 79.18 47.37 90.65 43.10 38.90 68.44 39.81 25.69 19.70 8.82 39.27 76.42 66.31 28.44 49.92 49.91
UCAT (Ours) 74.46 81.81 54.45 91.88 41.06 53.58 74.16 47.57 31.92 19.29 10.95 43.20 82.39 71.53 37.32 51.20 54.17

PG
D

CLIP (Radford et al., 2021) 0.19 9.57 3.07 23.64 0.62 0.34 0.64 1.62 2.22 0.00 0.00 0.48 5.65 7.19 0.02 0.06 3.46 6.56
TeCoA (Mao et al., 2022) 50.96 39.33 21.64 69.78 20.07 13.50 37.80 19.17 18.30 11.88 2.16 18.47 56.00 42.38 9.33 46.92 29.86 35.52
FARE (Schlarmann et al., 2024) 3.78 7.83 2.80 48.18 5.66 2.45 10.93 6.52 5.75 0.08 0.54 5.20 33.21 20.70 2.31 48.97 12.81 20.63
PMG-AFT (Wang et al., 2024) 19.18 51.39 27.23 72.63 20.05 16.88 44.59 26.43 20.05 11.49 3.21 18.09 61.13 43.46 14.80 55.52 31.63 39.82
TGA-ZSR (Yu et al., 2024) 50.68 42.16 22.82 72.18 21.57 16.53 39.96 22.44 17.82 11.75 2.88 20.39 58.05 46.18 11.40 48.05 31.55 38.66
UCAT (Ours) 47.56 43.81 25.16 73.83 20.44 22.86 45.11 26.79 19.47 2.99 3.45 22.22 65.32 50.47 15.30 30.37 32.20 40.39

C
W

CLIP (Radford et al., 2021) 0.14 9.91 3.34 26.01 1.16 0.51 0.87 2.03 2.55 0.01 0.00 1.10 6.82 8.17 2.32 0.04 4.06 7.64
TeCoA (Mao et al., 2022) 50.16 38.62 20.76 69.55 18.84 12.46 37.37 18.12 17.23 11.63 2.10 17.70 55.62 41.70 9.23 46.88 29.25 35.08
FARE (Schlarmann et al., 2024) 4.10 4.12 2.96 43.35 6.07 3.17 15.15 5.66 4.52 0.12 1.11 5.34 32.50 20.85 4.38 48.86 12.64 20.41
PMG-AFT (Wang et al., 2024) 13.16 42.10 21.31 65.69 13.12 11.43 28.05 17.53 12.55 8.51 0.99 11.72 52.84 35.68 7.06 14.26 22.25 31.47
TGA-ZSR (Yu et al., 2024) 50.80 42.24 22.64 71.99 20.83 16.03 40.20 21.52 16.97 11.56 2.85 20.01 57.72 45.84 11.23 48.03 31.28 38.46
UCAT (Ours) 47.08 43.30 23.92 73.55 19.20 21.68 45.38 24.95 17.87 2.41 3.21 21.14 64.63 49.54 14.75 29.89 31.41 39.76

A
ut

o
A

tta
ck

CLIP (Radford et al., 2021) 0.00 2.54 1.11 3.18 0.05 0.03 0.03 0.02 0.19 0.17 0.23 0.04 0.10 0.26 0.07 0.12 0.51 1.01
TeCoA (Mao et al., 2022) 49.44 37.87 20.45 69.31 17.41 12.19 36.58 17.81 17.29 11.42 1.86 17.19 54.95 41.19 8.16 46.79 28.74 34.72
FARE (Schlarmann et al., 2024) 0.12 0.03 0.21 10.18 0.84 0.19 0.93 0.60 1.92 0.07 0.06 0.86 10.26 5.59 0.21 5.15 2.33 4.45
PMG-AFT (Wang et al., 2024) 8.22 41.86 21.18 65.45 7.95 7.34 18.94 12.59 3.13 7.17 0.51 7.90 44.91 28.29 3.22 7.41 17.88 26.83
TGA-ZSR (Yu et al., 2024) 49.26 40.92 21.75 71.55 19.88 15.32 38.84 20.98 17.02 11.26 2.34 19.12 57.11 45.16 9.87 48.00 30.52 37.88
UCAT (Ours) 45.80 42.32 23.03 73.15 18.26 20.52 44.02 24.54 18.14 2.26 2.61 20.15 63.73 48.66 12.60 29.51 30.58 39.09

To verify the effectiveness of our approach under single-label settings, we analyze results across 16
datasets (Table 2). Our method achieves consistently strong performance, ranking best or second-
best in nearly all cases. When trained with a single PGD regime, it generalizes effectively to mul-
tiple adversarial attacks while maintaining both the highest clean accuracy and adversarial robust-
ness. The only exceptions are two domain-specific datasets (PCAM (Veeling et al., 2018) and Eu-
roSAT (Helber et al., 2019)), which exhibit the highest predictive uncertainty (high PU in Fig. 1b,
high AU in Fig. 5, and low EU in Fig. 6) and strong semantic overlap, where highly specialized se-
mantics limit the gains of our distributional alignment strategy. Nevertheless, by capturing broader
semantic structures and evidence strength, our method achieves state-of-the-art robustness and gen-
eralization across the full evaluation suite. We further extend our evaluation to larger-scale training
and stronger attack settings, with results reported in Appendix F.

6.3 ABLATION AND PARAMETER SENSITIVITY

Table 3: Ablation study. Trained on TinyImageNet
with 1-step PGD and evaluated under 100-step PGD,
CW, and AutoAttack (AA) with ϵ = 1/255. Results
are averaged over 16 datasets. Best and second-best
are in bold and underline.

Methods Clean PGD CW AA

CLIP 64.45 0.05 4.06 0.51
Lce 43.83 29.86 29.25 28.74
Lce+KL(p(xa)∥p(x)) 45.05 29.98 29.28 28.80
Lce+KL(Dir(αadv∥α)) 54.17 32.20 31.41 30.58

We conduct an ablation study to disentan-
gle the role of different loss components
in Table 3. Using only the text-guided
cross-entropy Lce already improves robust-
ness compared to vanilla CLIP by providing
discriminative supervision. Aligning proba-
bility distributions at the softmax level fur-
ther improves performance by preserving
relative class geometry, but this approach
discards absolute evidence magnitude due to
normalization, limiting its effect. In con-
trast, our Dirichlet-level alignment preserves
both relative relationships and absolute evi-
dence strength, thereby calibrating uncertainty more effectively. This joint design yields the best
balance between clean accuracy and adversarial robustness across diverse datasets and attacks.

Varying λ reveals stable performance across a broad range, with the best trade-off at 105/β (Fig. 3a).
At this point, clean accuracy reaches 54.17%, robust accuracy reaches 32.20%, and the harmonic
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(a) Sensitivity analysis. (b) Uncertainty calibration analysis.

Figure 3: (a) Sensitivity analysis of the regularization strength λ. We evaluate λ · β ∈
{104, 5× 104, 105, 5× 105, 106}, β = 2/eτ

′
on all 16 datasets, reporting averages of clean ac-

curacy, PGD-100 (Madry et al., 2017) robustness, and their harmonic mean. (b) Comprehensive
evaluation under strong adversarial training (PGD-10, ϵ = 2/255) and AutoAttack (Croce
& Hein, 2020) testing. X-axis shows calibration error (ECE, lower is better), while Y-axis shows
robustness accuracy. Bubble color indicates AU-AUROC and bubble size indicates EU-AUROC,
reflecting the discriminative power of aleatoric and epistemic uncertainty.

mean peaks at 40.39%. This setting is particularly meaningful, as it balances Lce and Lucr to con-
tribute comparably during training. Smaller λ under-regularizes and limits the benefit of uncertainty
calibration, while larger values overweight distributional alignment and degrade robustness.

6.4 ROBUSTNESS, CALIBRATION, AND UNCERTAINTY UNDER STRONG ATTACKS

Fig. 3b provides a comprehensive evaluation under AutoAttack (Croce & Hein, 2020) with ϵ =
2/255. We report four complementary metrics. Expected Calibration Error (ECE) (x-axis) mea-
sures how well predicted confidence matches actual correctness (lower is better), while robustness
accuracy (y-axis) captures the ability to resist adversarial perturbations (higher is better). Bub-
ble color denotes AU-AUROC, reflecting how aleatoric uncertainty helps identify errors caused by
class ambiguity, and bubble size denotes EU-AUROC, reflecting how epistemic uncertainty captures
errors due to insufficient evidence. An ideal model should lie toward the top-left of the plot (high ro-
bustness, low ECE) with large and bright bubbles (high AU-AUROC and EU-AUROC). Our method
is closest to this desirable region: it achieves the highest robustness accuracy, maintains lower cal-
ibration error than existing baselines, and exhibits stronger uncertainty discrimination as shown by
larger and brighter bubbles. This demonstrates that our uncertainty calibration not only strengthens
adversarial robustness but also improves predictive reliability under attack.

7 CONCLUSION

In this paper, we identified that adversarial perturbations in zero-shot CLIP not only reduce accuracy
but also often suppress predictive uncertainty, leading to severe miscalibration. To address this, we
reformulated CLIP logits as Dirichlet concentration parameters, yielding a representation that pre-
serves both semantic structure and confidence strength. Building on this foundation, we introduced
an uncertainty calibration adversarial finetuning method that aligns the Dirichlet distributions of
clean and perturbed samples, ensuring robustness preservation and calibrated uncertainty. Extensive
experiments demonstrate that our approach improves adversarial robustness, handles data ambigu-
ity, and provides reliable uncertainty estimates. Beyond CLIP, our contrastive-theoretic perspective
suggests a principled way to analyze and extend uncertainty modeling to other contrastive learning
frameworks.
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Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine learning, 110(3):457–506, 2021.

Yatai Ji, Junjie Wang, Yuan Gong, Lin Zhang, Yanru Zhu, Hongfa Wang, Jiaxing Zhang, Tetsuya
Sakai, and Yujiu Yang. Map: Multimodal uncertainty-aware vision-language pre-training model.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
23262–23271, 2023.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pp. 4904–4916.
PMLR, 2021.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? Advances in neural information processing systems, 30, 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
ages.(2009), 2009.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99–112. Chapman and Hall/CRC, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Xiao Li, Wei Zhang, Yining Liu, Zhanhao Hu, Bo Zhang, and Xiaolin Hu. Language-driven anchors
for zero-shot adversarial robustness. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24686–24695, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Huan Ma, Jingdong Chen, Joey Tianyi Zhou, Guangyu Wang, and Changqing Zhang. Estimating
llm uncertainty with evidence. arXiv preprint arXiv:2502.00290, 2025.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. Advances in
neural information processing systems, 31, 2018.

Andrey Malinin and Mark Gales. Reverse kl-divergence training of prior networks: Improved un-
certainty and adversarial robustness. Advances in neural information processing systems, 32,
2019.

Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot
adversarial robustness for large-scale models. arXiv preprint arXiv:2212.07016, 2022.

Thomas Minka. Estimating a dirichlet distribution, 2000.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Yidong Ouyang, Liyan Xie, and Guang Cheng. Improving adversarial robustness through the
contrastive-guided diffusion process. In International Conference on Machine Learning, pp.
26699–26723. PMLR, 2023.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in neural information processing
systems, 32, 2019.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Christian Schlarmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Un-
supervised adversarial fine-tuning of vision embeddings for robust large vision-language models.
arXiv preprint arXiv:2402.12336, 2024.

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classifica-
tion uncertainty. Advances in neural information processing systems, 31, 2018.

Murat Sensoy, Lance Kaplan, Federico Cerutti, and Maryam Saleki. Uncertainty-aware deep clas-
sifiers using generative models. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 5620–5627, 2020.

Matus Telgarsky. Dirichlet draws are sparse with high probability. arXiv preprint arXiv:1301.4917,
2013.

Dennis Ulmer, Christian Hardmeier, and Jes Frellsen. Prior and posterior networks: A survey on
evidential deep learning methods for uncertainty estimation. arXiv preprint arXiv:2110.03051,
2021.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
ariant cnns for digital pathology. In International Conference on Medical image computing and
computer-assisted intervention, pp. 210–218. Springer, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sibo Wang, Jie Zhang, Zheng Yuan, and Shiguang Shan. Pre-trained model guided fine-tuning for
zero-shot adversarial robustness. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 24502–24511, 2024.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International conference on machine learning, pp.
9929–9939. PMLR, 2020.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7959–7971, 2022.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Enze Xie, Jian Ding, Wenhai Wang, Xiaohang Zhan, Hang Xu, Peize Sun, Zhenguo Li, and Ping
Luo. Detco: Unsupervised contrastive learning for object detection. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 8392–8401, 2021a.

Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. Propagate yourself:
Exploring pixel-level consistency for unsupervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 16684–16693,
2021b.

Songlong Xing, Zhengyu Zhao, and Nicu Sebe. Clip is strong enough to fight back: Test-time
counterattacks towards zero-shot adversarial robustness of clip. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 15172–15182, 2025.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training.
arXiv preprint arXiv:2111.07783, 2021.

Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann LeCun. De-
coupled contrastive learning. In European conference on computer vision, pp. 668–684. Springer,
2022.

Taeseong Yoon and Heeyoung Kim. Uncertainty estimation by density aware evidential deep learn-
ing. arXiv preprint arXiv:2409.08754, 2024.

Lu Yu, Haiyang Zhang, and Changsheng Xu. Text-guided attention is all you need for zero-shot
robustness in vision-language models. Advances in Neural Information Processing Systems, 37:
96424–96448, 2024.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 18123–18133, 2022.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pp. 7472–7482. PMLR, 2019.

Mingkun Zhang, Keping Bi, Wei Chen, Jiafeng Guo, and Xueqi Cheng. Clipure: Purifica-
tion in latent space via clip for adversarially robust zero-shot classification. arXiv preprint
arXiv:2502.18176, 2025.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

We used large language models (e.g., ChatGPT, GPT-5) solely for language editing and clarity
improvement of the manuscript. All research ideas, experimental design, implementation, analyses,
and conclusions were fully developed and verified by the authors.

B EXTENDED RELATED WORK

B.1 CONTRASTIVE LEARNING

Self-supervised contrastive learning has proven highly effective in learning transferable represen-
tations across tasks such as classification (Chen et al., 2020; Grill et al., 2020), detection (Xie
et al., 2021a;b), and segmentation (He et al., 2020; Caron et al., 2021). Building on this founda-
tion, CLIP (Radford et al., 2021) extends contrastive pre-training to large-scale image–text pairs
and achieves remarkable zero-shot recognition performance. Its scalability (Jia et al., 2021) and
adaptability through fine-tuning or ensembling (Zhou et al., 2022; Wortsman et al., 2022) further
establish vision–language models as a powerful paradigm for open-world scenarios where labeled
data is scarce.

Recent theoretical analyses further clarify why contrastive objectives are effective. The align-
ment–uniformity framework (Wang & Isola, 2020) explains how positive pairs encourage semantic
consistency while negatives enforce diversity on the hypersphere, and subsequent studies refine our
understanding of how loss geometry and temperature schedules shape representation quality (Yeh
et al., 2022). Beyond accuracy, contrastive pre-training has also been examined from the perspective
of robustness. Prior work shows that robustness may not automatically transfer from contrastive
pre-training to downstream fine-tuning (Mao et al., 2022), motivating approaches that explicitly
integrate contrastive signals into adversarial training or synthetic data generation (Ouyang et al.,
2023). Together, these studies indicate that contrastive learning not only underpins the success of
large-scale vision–language models, but also implicitly encodes semantic geometry and confidence
cues, laying the foundation for uncertainty-aware robustness.

B.2 ZERO-SHOT ADVERSARIAL ROBUSTNESS

Adversarial robustness has traditionally been studied through supervised adversarial training, with
methods such as PGD-based minimax optimization (Madry et al., 2017) and regularized formula-
tions like TRADES (Zhang et al., 2019) offering strong baselines. However, these approaches rely
on labeled data and do not directly address the zero-shot setting of vision–language models. Recent
works therefore explore adversarial robustness of CLIP without requiring task-specific supervision.
TeCoA (Mao et al., 2022) aligns adversarial features with text prototypes to preserve zero-shot trans-
fer, while FARE (Schlarmann et al., 2024) emphasizes maintaining the original visual embedding
geometry. Other strategies such as PMG-AFT (Wang et al., 2024) and TGA-ZSR (Yu et al., 2024)
incorporate prompt-based or gradient-aligned objectives to enhance robustness. Despite their dif-
ferences, these methods share the challenge of balancing robustness with CLIP’s inherent semantic
structure, highlighting the need for approaches that explicitly model uncertainty and reliability under
adversarial perturbations.

B.3 UNCERTAINTY ESTIMATION WITH EVIDENCE

Uncertainty estimation has been widely explored to improve the reliability of deep neural net-
works. Classical approaches include Bayesian neural networks (Blundell et al., 2015), Monte Carlo
dropout (Gal & Ghahramani, 2016), and deep ensembles (Lakshminarayanan et al., 2017), which
approximate predictive distributions through sampling or model averaging. More recent work in ev-
idential learning proposes to represent predictions as parameters of a Dirichlet distribution (Sensoy
et al., 2018; Malinin & Gales, 2018), naturally decomposing predictive uncertainty into aleatoric
and epistemic components. This evidential perspective has been applied to tasks such as calibra-
tion (Ulmer et al., 2021) and out-of-distribution detection (Yoon & Kim, 2024), demonstrating both
theoretical interpretability and empirical effectiveness. In adversarial settings, evidential models
have shown promise in capturing distributional shifts and mitigating overconfident errors (Malinin &
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Gales, 2019). Most recently, evidence-based uncertainty estimation has also been extended to large
language models, where LogTokU (Ma et al., 2025) treats logits as Dirichlet evidence to decouple
aleatoric and epistemic uncertainty, further underscoring the importance of evidence modeling as a
principled framework for reliable predictions.

C IMPLEMENTATION DETAILS

Dataset. The same zero-shot evaluation suite as in other ZSAR baselines (e.g., Mao et al.
(2022)): ImageNet/tinyImageNet (Deng et al., 2009), CIFAR10/100 (Krizhevsky et al., 2009),
STL10 (Coates et al., 2011), Caltech101 (Fei-Fei et al., 2004), Caltech256 (Griffin et al., 2007),
OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Food101 (Bossard et al., 2014),
Flowers102 (Nilsback & Zisserman, 2008), FGVC-Aircraft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), DTD (Cimpoi et al., 2014), and two domain-specialized sets PCAM (Veeling et al., 2018)
and EuroSAT (Helber et al., 2019). To further assess robustness under semantic ambiguity, we
additionally include the multi-label dataset MS-COCO (Lin et al., 2014).

We adopt CLIP-B/32 (Radford et al., 2021) as the backbone and follow TeCoA’s optimizer and
training schedule (Mao et al., 2022), using a batch size of 256 and 10 training epochs unless other-
wise stated. We benchmark five methods: CLIP (Radford et al., 2021), TeCoA (Mao et al., 2022),
FARE (Schlarmann et al., 2024), PMG-AFT (Wang et al., 2024), and TGA-ZSR (Yu et al., 2024).

Training Attacks. We adopt two regimes: (i) a light regime following TeCoA, using ℓ∞ PGD-2 with
ε = 1/255 and step size α = 1/255; and (ii) a stronger regime following FARE, using ℓ∞ PGD-10
with ε = 2/255 and step size α = 2/255.

Evaluation Attacks. Robustness is further assessed using ℓ∞ PGD-100 (Madry et al., 2017) (with
the same ε as the training regime and α = ε), CW-100 (Carlini & Wagner, 2017), and AutoAt-
tack (Croce & Hein, 2020) (the rand version ensembling APGD-CE and APGD-DLR).

Loss Weights. We set λ = 105/β with β = 2/eτ
′
, where τ ′ = 0.07 follows standard contrastive

learning practices (Wu et al., 2018; He et al., 2020; Radford et al., 2021; Yeh et al., 2022). Here
β corresponds to the upper bound of the mapping function h(ℓ) that converts logits ℓ into non-
negative evidence. Using this bound guarantees that λ remains numerically stable across different
temperature values, preventing uncontrolled scaling when τ ′ varies.

D PROOF OF LEMMA

D.1 LEMMA 1: VALIDITY OF DIRICHLET EVIDENCE

Lemma D.1 (Validity of Dirichlet Evidence). Under Definition 4.1, for all k:

1. αk(x) ≥ 1 and αk(x) ∈ [1, exp(2/τ ′)];

2. α = exp(h(ℓ)) is strictly increasing.

Proof. Since ∥v(x)∥2 = ∥tk∥2 = 1, we have ⟨v(x), tk⟩ ∈ [−1, 1]. By the logit definition,
τ ℓv→t

k (x) = ⟨v(x), tk⟩ ∈ [−1, 1]. Therefore,

h(ℓv→t
k (x)) =

τ ℓv→t
k (x) + 1

τ ′
∈
[
0,

2

τ ′

]
.

Exponentiating yields

αk(x) = exp
(
h(ℓv→t

k (x))
)
∈
[
e0, e2/τ

′ ]
=

[
1, exp(2/τ ′)

]
,

and both endpoints are attainable when ⟨v(x), tk⟩ = −1 and +1, respectively.

For monotonicity, differentiate αk(x) with respect to ℓv→t
k (x):

dαk(x)

d ℓv→t
k (x)

=
τ

τ ′
exp

(τ ℓv→t
k (x) + 1

τ ′

)
=

τ

τ ′
αk(x) > 0,

since τ > 0, τ ′ > 0, and αk(x) > 0. Hence αk is strictly increasing in ℓv→t
k , which preserves both

strict and non-strict order between any pair of logits.
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D.2 LEMMA 2: CONSISTENCY WITH DIRICHLET EXPECTATIONS

Lemma D.2 (Exact Equivalence at τ = τ ′). Let s = τ/τ ′. If s = 1 (equivalently τ ′ = τ ), the
Dirichlet expectation equals to CLIP’s softmax:

pDir
k (x) =

αk∑
j αj

=
exp(h(ℓk))∑
j exp(h(ℓj))

= softmax
(
ℓ(x)

)
k
= pCLIP

k (x).

Proof. From the definition of the Dirichlet expectation in Equation 5,

pDir
k (x) = Eπ∼Dir(α(x))[πk] =

αk(x)

α0(x)
, α0(x) =

C∑
j=1

αj(x).

By construction,

αk(x) = exp(h(ℓv→t
k (x))), h(ℓv→t

k (x)) =
τℓv→t

k (x) + 1

τ ′
=

1

τ ′
+
τ

τ ′
ℓv→t
k (x).

Let s = τ/τ ′ > 0. Then

pDir
k (x) =

exp(1/τ ′ + s ℓv→t
k (x))∑C

j=1 exp(1/τ
′ + s ℓv→t

j (x))
=

exp(s ℓv→t
k (x))∑C

j=1 exp(s ℓ
v→t
j (x))

= softmax(s ℓv→t(x))k,

since the additive constant 1/τ ′ cancels out. When s = 1 (equivalently, τ ′ = τ ), this reduces to

pDir
k (x) = softmax(ℓv→t(x))k,

which matches exactly the original CLIP prediction pCLIP
k (x).

Corollary D.2.1 (General form and invariances). For arbitrary τ ′ > 0, s = τ/τ ′ > 0, pDir(x) =
softmax

(
s ℓ(x)

)
. Hence

argmax
k

pDir
k (x) = argmax

k
pCLIP
k (x)

while the entropy of the distribution can be smoothly tuned by s: larger s yields sharper predictions,
smaller s yields flatter ones.

Proof. For any logits ℓ ∈ RC and scalar s > 0,

argmax
k

ℓk = argmax
k

sℓk.

Since the softmax assigns the maximum probability to the index with maximum input, we have

argmax
k

pCLIP
k (x) = argmax

k
pDir
k (x).

Thus both distributions yield the same classification decision, proving the accuray invariance.

For calibaration control, observe that pDir
k (x) = esℓk/

∑
j e

sℓj becomes increasingly peaked as
s → ∞, converging to a one-hot vector, and tends to the uniform distribution as s → 0+. The
entropy

H(pDir(x)) = −
∑
k

pDir
k (x) log pDir

k (x)

decreases monotonically with s. Thus s leaves classification accuracy unchanged while directly
modulating the calibration of predictive confidence.

E EXTENDED UNCERTAINTY ANALYSIS

E.1 IMPLEMENTATION DETAILS FOR UNCERTAINTY QUANTIFICATION

Recall the decomposition of predictive uncertainty under the Dirichlet parameterization into
aleatoric uncertainty (AU) and epistemic uncertainty (EU) in Section 3.3.

AU(x) = Eπ∼Dir(α)

[
H(π)

]
= −

C∑
k=1

αk

α0

(
ψ(αk + 1)− ψ(α0 + 1)

)
, EU(x) =

C

α0 + C
.
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Our reformulation αk(x) = exp
(
h(ℓv→t

k (x))
)
, h(ℓ) = τ ℓ+1

τ ′ , adopts a linear definition of the
evidence mapping h(ℓ), for which Section 4 and Appendix D have established the theoretical equiv-
alence between CLIP logits and Dirichlet distributions.

In practice, however, the learnable temperature coefficient τ may become very small during train-
ing (e.g., τ = 0.01), which leads to excessively large logits after exponentiation and renders the
raw uncertainty values numerically unstable. To address this, we introduce an additional activation
h′(ℓ) = softplus(h(ℓ)), which is commonly adopted in EDL to smooth the outputs and map them
into a numerically stable range suitable for analysis Sensoy et al. (2018); Malinin & Gales (2018).

Moreover, when τ is too small (e.g., τ = 0.01), EU degenerates towards 0 and AU coincides with
PU. To avoid this issue, we adopt τ = 0.07 for computing EU, while keeping τ = 0.01 for AU.
This choice is theoretically acceptable: both the softplus mapping and the rescaling by τ affect
only the magnitude of uncertainty values, not their ordering. As a result, the reliability of AUROC
evaluation, which depends only on ranking, is unaffected. For ECE, we use PU directly computed
from probabilities, which is independent of τ and activation adjustments.

These practical adjustments ensure stable and meaningful AU/EU quantification without altering the
comparative reliability of our uncertainty metrics.

Figure 4: Effect of strong white-box attacks (ϵ = 1/255, 100 steps) on accuracy and predictive
uncertainty across 16 datasets. Each panel shows the change under a single attack type (left: PGD,
center: CW, right: AutoAttack); for each dataset the filled light bars plot ∆PU = PUattacked−PUclean
(left axis) and the hatched bars plot ∆Acc = Accattacked −Accclean in percentage points (right axis).
Negative values therefore indicate decreases caused by the attack. Results demonstrate that all three
attacks induce simultaneous drops in accuracy and predictive uncertainty on most datasets, with the
magnitude of degradation varying by dataset and attack.

Figure 5: Comparison of aleatoric uncertainty on clean and adversarial samples across 16 datasets
between CLIP and our method, adversarially trained on tinyImageNet under 10-step PGD with
ϵ = 2/255.
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Figure 6: Comparison of epistemic uncertainty on clean and adversarial samples across 16 datasets
between original CLIP and our method, adversarially trained on tinyImageNet under 10-step PGD
with ϵ = 2/255.

E.2 ADDITIONAL VISUALIZATIONS OF UNCERTAINTY

To complement the main results, we provide extended visualizations of predictive uncertainty under
adversarial attacks. Figure 4 reports the degradation of accuracy and predictive uncertainty (PU)
across 16 datasets under three strong white-box attacks (PGD, CW, AutoAttack). Figures 5 and 6
further decompose the uncertainty into aleatoric and epistemic components, respectively, comparing
CLIP with our method on both clean and adversarial samples. These results illustrate how adversar-
ial perturbations simultaneously reduce accuracy and distort uncertainty, while our method consis-
tently provides more reliable AU/EU estimates across diverse datasets, thereby achieving effective
uncertainty calibration.

F EVALUATION UNDER LARGER DATASETS AND STRONGER ATTACKS

We additionally evaluate two extended settings. First, following TeCoA (Mao et al., 2022), we train
on ImageNet-1k with 2-step PGD at ϵ = 1/255 to assess performance on a larger training dataset
across 15 benchmarks (tinyImageNet is excluded, as it was not reported in TeCoA’s original paper).

Second, following the stronger configuration of FARE (Schlarmann et al., 2024), we train on

Table 4: Zero-shot adversarial robustness across 15 datasets. All methods are fine-tuned on
ImageNet following TeCoA (Mao et al., 2022), adversarial training uses 2-step PGD Madry et al.
(2017) with ϵ=1/255. Average is the mean across datasets; H is the harmonic mean between Clean
and the corresponding robust score. Best and second-best are in bold and underline.
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TeCoA Mao et al. (2022) 78.12 49.68 93.30 51.28 55.37 81.58 50.92 34.15 27.57 13.89 63.87 83.51 76.51 33.30 49.01 56.14
FARE Schlarmann et al. (2024) 84.75 59.85 95.69 53.97 75.58 86.92 60.48 36.86 24.74 17.10 85.01 85.01 80.57 49.71 45.06 62.75C

le
an

UCAT (Ours) 83.78 58.11 95.65 53.98 68.84 86.05 58.30 37.18 23.02 15.24 70.48 84.64 80.27 44.96 46.56 60.47

CLIP Radford et al. (2021) 9.57 4.55 35.40 1.02 3.95 2.72 1.19 2.50 0.04 0.00 1.72 24.63 7.19 0.27 0.10 0.05 0.10
TeCoA Mao et al. (2022) 59.28 34.13 83.45 29.81 27.99 62.61 30.69 22.88 15.18 5.10 41.88 69.07 59.54 13.37 23.87 38.59 45.74
FARE Schlarmann et al. (2024) 50.96 28.48 80.88 26.66 34.36 61.43 31.91 24.31 14.12 5.28 32.11 68.19 59.95 18.52 25.74 37.53 46.97
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CLIP Radford et al. (2021) 2.54 1.11 3.18 0.05 0.03 0.03 0.02 0.19 0.17 0.23 0.04 0.10 0.26 0.07 0.12 0.54 1.08
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UCAT (Ours) 49.00 26.42 81.73 27.85 31.88 66.86 30.64 22.45 10.76 4.50 45.59 70.12 61.64 17.40 25.37 38.15 46.78

TinyImageNet with 10-step PGD at ϵ = 2/255 to assess performance under a stronger adversarial
attack.

Overall, our method remains consistently strong across both extended settings, confirming its ro-
bustness under larger-scale training and stronger adversarial attacks.
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Table 5: Zero-shot adversarial robustness across 16 datasets. All methods are fine-tuned on
TinyImageNet following FARE (Yu et al., 2024), adversarial training uses 10-step PGD (Madry
et al., 2017) with ϵ=2/255. Average is the mean across datasets; H is the harmonic mean between
Clean and the corresponding robust score. Best and second-best are in bold and underline.
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PG
D

CLIP 0.00 0.94 0.28 0.45 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.77 0.19 0.00 0.00 0.00 0.00
TeCoA (Mao et al., 2022) 35.74 23.57 14.47 53.50 10.20 6.58 22.90 10.96 10.75 11.72 0.57 10.53 40.27 27.02 3.61 49.31 20.73 26.50
FARE (Schlarmann et al., 2024) 8.62 18.19 5.67 41.10 3.46 2.88 7.01 5.22 5.21 9.29 0.96 3.47 31.98 15.47 1.73 50.02 13.14 16.29
PMG-AFT (Wang et al., 2024) 0.12 24.10 3.76 16.34 0.16 0.04 0.30 0.23 2.29 0.50 0.00 0.23 4.53 2.02 0.01 47.90 6.41 11.44
TGA-ZSR (Yu et al., 2024) 30.74 20.17 12.02 51.99 9.46 6.69 20.58 12.47 10.85 11.22 0.63 10.28 40.63 29.06 3.56 49.97 20.02 29.10
Ours 35.38 25.81 15.67 58.44 11.48 11.17 26.82 15.04 13.94 4.53 1.20 13.13 51.34 34.60 6.72 34.02 22.45 30.01

G LIMITATIONS AND FUTURE WORK

While our study is focused on a specific setting, it highlights several opportunities for future explo-
ration. First, in the current setting we only consider adversarial perturbations applied to the image
encoder, while future work may extend to more comprehensive bidirectional attacks that also target
the text encoder. Second, our framework requires fine-tuning, whereas recent work has explored
test-time defenses based on prior assumptions without additional training (Xing et al., 2025; Zhang
et al., 2025). However, such approaches often show instability under adaptive attacks such as Au-
toAttack. Incorporating our uncertainty-based analysis as a principled prior into test-time defenses
is a promising future direction. Finally, our experiments are restricted to CLIP, and it will be valu-
able to investigate the applicability of our Dirichlet-based uncertainty calibration to larger and more
diverse vision–language models.
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