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Abstract
We present quantum algorithms for sampling
from possibly non-logconcave probability distri-
butions expressed as π(x) ∝ exp(−βf(x)) as
well as quantum algorithms for estimating the
partition function for such distributions. We also
incorporate a stochastic gradient oracle that im-
plements the quantum walk operators inexactly
by only using mini-batch gradients when f can
be written as a finite sum. One challenge of quan-
tizing the resulting Markov chains is that they
do not satisfy the detailed balance condition in
general. Consequently, the mixing time of the
algorithm cannot be expressed in terms of the
spectral gap of the transition density matrix, mak-
ing the quantum algorithms nontrivial to analyze.
We overcame these challenges by first building a
reference reversible Markov chain that converges
to the target distribution, then controlling the dis-
crepancy between our algorithm’s output and the
target distribution by using the reference Markov
chain as a bridge to establish the total complex-
ity. Our quantum algorithms exhibit polynomial
speedups in terms of dimension or precision de-
pendencies when compared to best-known classi-
cal algorithms under similar assumptions.

1. Introduction
Many problems in statistics, physics, finance, machine learn-
ing, optimization, and molecular dynamics involve sampling
from a distribution with a density proportional to e−βf(x),
known as Gibbs-Boltzmann distribution. For instance, tech-
niques for sampling from such a distribution play a central
role in statistical mechanics in probing equilibrium states
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of physical systems, understanding phase transition, and
estimating thermodynamic properties (Chandler, 1987). In
machine learning, sampling from these distributions aids
in exploring the posterior distribution in Bayesian learn-
ing (Neal et al., 2011; Ahn et al., 2012; Cheng et al., 2018),
enabling parameter estimation, uncertainty quantification,
and model comparison (Murphy, 2022). In convex geom-
etry, an effective sampling strategy is central to estimating
the volume of a convex body that can be applied to problems
in statistics, theoretical computer science, and operations
research (Vempala, 2007).

A well-known classical method for Gibbs sampling is
Markov Chain Monte Carlo (MCMC) method, where a
Markov chain with desired stationary density is constructed.
Then, the samples can be generated by running the Markov
chain for a sufficiently long time. One such Markov chain
can be obtained through careful discretization of Langevin
diffusion equation and this technique inspired a large family
of gradient-based sampling algorithms.

Langevin diffusion is a continuous stochastic differential
equation that converges to the desired Gibbs distribution. A
simple, yet common, discretization of Langevin diffusion
is Euler-Maruyama method with sufficiently small step size
η > 0, resulting in an MCMC algorithm (See Appendix B.3
for more details). However, due to finite-sized discretization,
the Markov chain is asymptotically biased. That is, it only
converges to the neighborhood of the desired Gibbs distri-
bution, prohibiting one from using large step sizes because
of this discrepancy. To overcome this bias, one can adjust
the Markov chain by introducing Metropolis-Hastings fil-
ter, which is used as a conditional rejection to guarantee
that the chain is time-reversible (See Appendix B.1 for the
definition of reversibility) and it converges to the desired
distribution. This algorithm is sometimes referred to as
Metropolis-adjusted Langevin algorithm (MALA), and the
algorithm without the rejection step is conventionally called
unadjusted Langevin algorithm (ULA). We refer the reader
to Appendix B for more details about these algorithms.

In the past decade, notable progress has been witnessed
in the theoretical development of quantum algorithms for
various machine learning and optimization problems. It
is natural to expect that quantum computers also provide
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provable speedups for general sampling problems. If we
could prepare a quantum state whose amplitudes corre-
spond to some desired distribution, then measuring this
state yields a random sample from this probability distribu-
tion. Unfortunately, quantum speedups in such sampling
models probably do not hold in general as this will im-
ply SZK ⊆ BQP (Aharonov & Ta-Shma, 2003). While
the hardness barrier exists for a quantum speedup for gen-
eral sampling problems, in some special cases, it has been
shown that quantum algorithms can achieve polynomial
speedups over classical algorithms. Such examples include
quantum algorithms for uniform sampling on a 2D lat-
tice (Richter, 2007), for estimating partition functions (Woc-
jan & Abeyesinghe, 2008; Wocjan et al., 2009; Montanaro,
2015; Harrow & Wei, 2020; Arunachalam et al., 2021; Cor-
nelissen & Hamoudi, 2023), and for estimating volumes of
convex bodies (Chakrabarti et al., 2023).

Recently, a quantum MALA algorithm based on quantum
simulated annealing is introduced (Childs et al., 2022),
which leverages the fact that a coherent quantum state corre-
sponding to desired logconcave distribution can be prepared
using fewer number of calls to gradient and evaluation oracle
than the classical counterparts. Inspired by this, an inter-
esting question arises: Can we attain quantum speedups
for more general distributions, such as non-logconcave dis-
tributions? Moreover, one intriguing open question posed
in (Childs et al., 2022) was the possibility of speeding up
unadjusted Langevin algorithm using similar techniques.
The main challenge for analyzing quantum version of ULA
(or stochastic ULA) is that the transition density does not
satisfy the detailed balance condition due to lack of the
Metropolis-Hastings filter. Hence the Markov chain is not
time reversible which is the main assumption for almost all
quantum walk based algorithms (Szegedy, 2004; Wocjan &
Abeyesinghe, 2008; Magniez et al., 2011; Apers & Sarlette,
2019). The current quantum walk frameworks leverage the
fact that a symmetric discriminant matrixDxy =

√
PxyPyx

can be related to the spectrum of the classical transition ma-
trix P . Then the eigenstate of D with unique singular value
1 encodes the coherent quantum state whose amplitudes are
the desired Gibbs density. Then, by extracting this eigen-
state using a quantum computer can prepare the Gibbs state
quadratically faster than the classical computers in spectral
gap parameter. However, for non-reversible Markov chains
the spectral connection between D and P are not straight-
forward. In fact, the discriminant matrix for non-reversible
chains might have zero singular value gap (Magniez et al.,
2011), which breaks down the entire quantum algorithm.
We also touch upon this technical difficulty of quantizing
non-reversible Markov chains in Section 4 in more detail.

One particular reason to analyze ULA and stochastic ULA
is that implementing one step of MALA requiresN function
and gradient evaluations when f can be decomposed into

a sum of N terms, whereas ULA only uses N gradient
evaluations as it does not do any adjustment. We prove
that stochastic ULA only needs O(d) gradient evaluations
to converge which is a significant improvement especially
when d ≪ N . Therefore, we believe each algorithm is
suited to specific use cases, depending on the size of the
data set, problem dimension, and hardness of function and
gradient evaluations.

Main Contributions

• We analyzed the mixing time of quantum MALA algo-
rithm (Theorem 4.1) for non-logconcave distributions,
extending the work done in (Childs et al., 2022). The
main challenge in analyzing quantum MALA for non-
logconcave distributions is to characterize the phase gap
of the quantum walk and to show the existence of a quan-
tum annealing schedule that guarantees a large overlap
between successive distributions since the target distri-
bution does not satisfy the concentration inequalities as
in log-concave case. By using the conductance analysis
done in (Zou et al., 2021), we characterized the phase gap.
Next, we showed that by using isoperimetric inequalities,
the length of the annealing schedule is Õ(

√
d) 1 similar to

non-logconcave case (Section 3).

• We analyzed quantum ULA algorithm (Theorem 4.2) us-
ing a novel perturbation analysis with respect to quantum
MALA to show, for the first time, that quantum comput-
ers can provide speedups even for non-reversible Markov
chains. Since quantum MALA is time-reversible (as it
satisfies Equation (34)) and asymptotically unbiased, it
converges to target distribution, allowing us to express
our algorithms’ error with respect to Gibbs distribution.
In the construction of our algorithms, we use standard
quantum simulated annealing techniques as in (Childs
et al., 2022) while the underlying Markov chain is non-
reversible. Although perturbation techniques have been
used in classical analysis of Markov chains (Zou et al.,
2021; Raginsky et al., 2017; Xu et al., 2018), these results
cannot be transferred to quantum setting as the quantum
Monte Carlo algorithms are fundamentally different. That
is, while classical algorithms run in an iterative fashion to
generate candidate samples, quantum algorithms use lin-
ear algebraic techniques to rotate the input state towards
the eigenvector in the invariant subspace. We believe
this technique can be useful for the analysis of other non-
reversible Markov chains as an independent tool.

• We further incorporated stochastic gradient oracle to make
the implementation of quantum walk efficient and pro-
vided the mixing time of our stochastic quantum sampling
algorithm in Theorem 4.3. In addition to the error due to

1Throughout this paper, we use the notation Õ(·) to hide the
poly-logarithmic dependencies on β, ϵ, d, ρ, and cLSI.
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the lack of Metropolis-Hastings filter, the stochastic al-
gorithm introduces additional errors because of the noisy
gradients. We use concentration techniques to show that
even with noisy unitaries, the quantum algorithm gives the
correct distribution with high probability.

• We combined our sampling algorithms with recently de-
veloped efficient quantum product estimator (Cornelissen
& Hamoudi, 2023) and proposed algorithms for comput-
ing the partition function for non-logconcave distributions
in Section 5. Our algorithm might have other application
areas such as computing volumes for non-convex bod-
ies although this would require additional assumptions
and techniques to express the volume estimation as an ap-
proximate counting problem where one can use partition
function estimation to solve.

Problem formulation In this paper, we focus on design-
ing and analyzing quantum algorithms for sampling from
the Gibbs density ∝ e−βf(x) where f(x) is not necessarily
convex. An important scenario in machine learning is when
f(x) admits a decomposition,

f(x) =
1

N

N∑
k=1

fk(x), (1)

where N ≫ 1 is large. One typical example is where x
comes from the model parameter, and f(x) is the empirical
loss defined on a large data set. Clearly, this will cause a
significant slowdown of quantum MALA algorithm due to
function and gradient evaluations when f is given in this
finite sum form. We further make the following assumptions
on f . These assumptions are realistic as they are satisfied
in many applications and are widely assumed in the non-
logconcave sampling literature (Raginsky et al., 2017; Zou
et al., 2021).

Assumption 1.1 (Smoothness). There exists a positive con-
stant L such that for any x, y ∈ Rd and all functions
fk(x), k ∈ [N ], it holds that

∥∇fk(x)−∇fk(y)∥ ≤ L∥x− y∥. (2)

Assumption 1.2 (Dissipativeness). There are absolute con-
stants m > 0 and b ≥ 0 such that

⟨∇f(x), x⟩ ≥ m∥x∥2 − b. (3)

The first assumption ensures that small changes in the input
parameters result in bounded changes in gradients whereas
the second one implies that f(x) grows like a quadratic
form outside a ball.
Remark 1.3. Classical works used in Table 1 has slightly
different assumptions than Assumptions 1.1 and 1.2. In the
work of Ma et al. (2019b), the function f is assumed to be

strongly convex outside a sufficiently large ball with radius.
This shares the same intuition with the dissipative condition,
i.e., sufficiently fast growth in the far field. Moreover it im-
plies the dissipative condition. The isoperimetry condition
in Vempala & Wibisono (2019) relies on log-Sobolev in-
equality, which can be proved from the dissipative condition
together with the Lipschitz condition (See proposition 3.2
in Raginsky et al. (2017)). In fact, this is why we do not add
log-Sobolev equality as an additional assumption.

Next, we give the following definitions that are commonly
used in the analysis of non-logconcave sampling.

Definition 1.4 (Cheeger Constant). Let ν be a probability
measure on Ω. Then ν satisfies the isoperimetric inequality
with Cheeger constant ρ if for any A ⊆ Ω, it holds that

lim
h→0+

inf
ν(Ah)− ν(A)

h
≥ ρmin{ν(A), 1− ν(A)}, (4)

where Ah = {x ∈ Ω : ∃y ∈ A, ∥x− y∥ ≤ h} .

Definition 1.5 (Log-Sobolev Inequality). Let ν be a prob-
ability measure on Ω. We say that ν satisfies log-Sobolev
inequality with constant cLSI if for any smooth function g
on Rd, satisfying

∫
x
g(x)ν(x) dx = 1, it holds that∫

g(x) log(g(x))ν(x) dx ≤ 1

2cLSI

∫
∥∇g(x)∥2

g(x)
ν(x) dx.

(5)

While the Cheeger constant measures the bottleneck of a
space, the log-Sobolev constant resembles the PL (Polyak-
Łojasiewicz) constant in optimization space. That is, it
quantifies the distance between an iterate to optimum in
terms of the norm of the gradient.

Oracle model We assume that we have the access to
the following quantum oracles to implement our algorithm.
These oracles are virtually classical oracles while empow-
ering superposition access. We first define the full gradient
oracle for f as follows:

O∇f |x⟩ |0⟩ = |x⟩ |∇f(x)⟩ . (6)

Similarly, we define a stochastic gradient oracle,

O∇̃f |x⟩ |0⟩ = |x⟩ |∇̃f(x)⟩ . (7)

where ∇̃f(x) = 1
B

∑
k∈S

∇fk(x) where S is a subset of size

B data samples chosen randomly without replacement. Note
thatO∇̃f possibly outputs a different state for the same input
state depending on the internal random batch. Finally, the
evaluation oracle is defined by

Of |x⟩ |0⟩ = |x⟩ |f(x)⟩ . (8)
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We note that although we quantified the complexity of our
algorithm in terms of the number of calls to these oracles,
the evaluation oracle and full gradient oracle are slower than
the stochastic gradient oracle for finite sum form due to
evaluation of N terms. One of our contributions is to use a
stochastic gradient oracle to make quantum walk implemen-
tation more efficient.

We also emphasize that our gradient oracles, including those
for stochastic gradients, operate classically with superpo-
sition access. Since classical circuits can be simulated by
quantum circuits with a constant overhead, implementation
cost of these oracles is on par with the classical oracles.
Therefore, any speedups with respect to the number of calls
to these oracles are not suppressed by their implementation
cost. Furthermore, our quantum algorithms are robust to a
small error in these oracles. This is because a small error in
gradient will introduce a perturbation of the Markov chain
and the resulting quantum walk. The analysis in this pa-
per, which is precisely based on quantifying the difference
between two Markov chains (a time-irreversible and a time-
reversible chain), can quantify how the gradient error can
propagate in the algorithm. In fact, our analysis for quan-
tum ULA with stochastic gradients show that the algorithm
works for even noisy gradients.

Notation The notation ∥ · ∥ denotes the spectral norm for
operators and the ℓ2 norm for quantum states. For Markov
chains, we use the notation P (x, .) to denote the transition
probability distribution for point x ∈ Ω, whereas we use
P (x, y) or pxy to denote the probability of transitioning
from point x to y. For a distribution p(x) and a function
q(x), the notation p(x) ∝ q(x) means p is proportional to q
up to a normalization factor. The ket notation |ν⟩ is some-
times referred to the coherent quantum state corresponding
to probability distribution ν and is not explicitly stated when
it is clear from the context. For distributions, ∥·∥TV denotes
the total variation distance, ∥ · ∥H Hellinger distance and fi-
nally W2(·, ·) denotes the Wasserstein-2 distance. The total
variation distance between two probability distributions P
and Q on Ω is defined as:

∥P −Q∥TV := sup
A⊆Ω

|P (A)−Q(A)|, (9)

and the Hellinger distance is defined as,

∥P −Q∥H :=
(1
2

∫
x∈Ω

(√
P (dx)−

√
Q(dx)

)2)1/2
,

(10)

and finally, Wasserstein-2 distance is defined as,

W2(P,Q) :=
(

inf
z∈Γ(P,Q)

∫
Rd×Rd

∥x− y∥2 dz(x, y)
)1/2

(11)
where Γ is the set of all couplings between P and Q.

2. Related Work
Extensive research has been conducted to understand the
non-asymptotic dynamics of Langevin based algorithms for
both log-concave and non-logconcave densities under vari-
ous settings. This section reviews a selection of significant
works to provide context for our study, given the extensive
literature available.

For log-concave distributions, a significant body of research
has been conducted to understand the dynamics of the
Langevin Monte Carlo (LMC) based algorithms (Bubeck
et al., 2015; Dalalyan, 2017a;b; Durmus et al., 2019; Li
et al., 2022). Sampling from non-logconcave distributions
under various assumptions have also been analyzed broadly
(Lee et al., 2018; Vempala & Wibisono, 2019; Ma et al.,
2019b; Xu et al., 2018). The convergence of LMC under
the condition that the target density satisfies isoperimetry
condition is shown by Vempala & Wibisono (2019). Al-
though the gradient descent methods are known to be su-
perior to sampling-based optimization in convex cases, Ma
et al. (2019b) showed that sampling-based methods could
provide speedups over local optimization methods in non-
convex setting which motivates us to explore the quantum
algorithms for non-logconcave densities. The stochastic ex-
tension of the algorithm (SGLD) in non-logconcave setting
has been investigated recently in several works. The hitting
time of the stochastic Langevin dynamics to a neighborhood
of the minima is analyzed in Zhang et al. (2017) and they
showed that SGLD can escape suboptimal local minima
that only exist in the empirical risk function. More notably
Zou et al. (2021) and Xu et al. (2018) analyzed the mixing
time of SGLD to the stationary distribution in total variation
distance using similar techniques to ours. They used pertur-
bation analysis to show that output of SGLD is closed to a
reversible chain. Unfortunately, their result does not trans-
fer to the quantum setting due to fundamental difference
between quantum and classical Monte Carlo algorithms.

We also note the classical sampling algorithms that uses
more sophisticated techniques to improve the mixing time
in terms of various distances. One such popular technique
is called Hamiltonian Monte Carlo method (Brooks et al.,
2011) which uses the momentum and leapfrog integrator
to reduce the error of discretization which improves the
sampling time. Based on underdamped Langevin Monte
Carlo algorithm, (Shen & Lee, 2019) proposed randomized
midpoint method to sample from log-concave distributions
with better dependencies compared to unadjusted Langevin
algorithm. Furthermore, (Fan et al., 2023) used proximal
sampling algorithm to improve the dimension dependence
to d1/2 under the log-Sobolev inequality. However, their
assumption is ℓ1 smoothness which differs from our As-
sumption 1.1.

We only compare our results to the classical ones that use
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Table 1. The comparison of our sampling algorithm to classical results with similar assumptions. Here we focus the dependencies on d
and ϵ (See the discussion for other parameters Appendix F).

Algorithm Query Complexity Oracle Assumptions
ULA (Ma et al., 2019b) Õ(d/ϵ2) Full Gradient Local non-convex

MALA (Ma et al., 2019b) Õ(d2) Full Gradient and Evaluation Local non-convex
ULA (Vempala & Wibisono, 2019) Õ(d/ϵ2) Full Gradient Isoperimetry

SGLD (Zou et al., 2021) Õ(d4/ϵ2) Stochastic Gradient Dissipative Gradients
Quantum MALA (Theorem 4.1) Õ(d) Full Gradient and Evaluation Dissipative Gradients
Quantum ULA (Theorem 4.2) Õ(d3/2/ϵ) Full Gradient Dissipative Gradients

Stochastic Quantum ULA (Theorem 4.3) Õ(d5/2/ϵ2) Stochastic Gradient Dissipative Gradients

the same or very similar assumptions and only claim our
polynomial speedups with respect to these results. The
comparison is summarized in Table 1.

The quantum walk operators used in this paper is devel-
oped in (Szegedy, 2004). Although it is not easy to speed
up the mixing time of a general random walks, (Wocjan &
Abeyesinghe, 2008) showed that for slowly varying Markov
chains, it is possible to achieve quadratic speed up if the
stationary distributions of successive Markov chains have
large overlap and the initial distribution could be prepared
efficiently. This technique has recently been used in quan-
tum optimization problems such as estimating the partition
function (Montanaro, 2015), or volume estimation of con-
vex bodies (Chakrabarti et al., 2023). The speedup of non-
reversible Markov chains has been discussed by Magniez
et al. (2011) in the context of quantum search. However,
their construction implements time reversal of the Markov
chain p⋆yx = pxyπ(x)/π(y) which requiresN function eval-
uations in our case. Therefore, this construction would lead
to an algorithm somewhat similar to quantum MALA algo-
rithm.

3. Annealing Schedule for Non-Logconcave
Distributions

Wocjan & Abeyesinghe (2008) showed that it is possible to
speedup classical Markov chains by using slowly changing
Markov chains. Their constructions is first to define a series
of Markov chains with stationary distributions π1, ..., πM .
Then for each Markov chain, they implement the quan-
tum walk to iteratively drive the initial state |π1⟩ to final
state |πM ⟩ using amplitude amplification. If the overlap
| ⟨πi|πi+1⟩ | ≥ Ω(1) for all i ∈ [1,M − 1], then the cost of
the algorithm becomes M times the cost of implementing
quantum walk for each Markov chain.

To implement slowly varying Markov chains for non-
logconcave distributions, we prove the following lemma
to construct the annealing schedule. It shows that there
exists an annealing schedule of length Õ(

√
d) such that

the adjacent quantum states have large overlap. Our con-
struction is similar to Ge et al. (2020) in that we start from
quantum Gaussian state and slowly decrease the Gaussian
component of the distribution so that final state is very close
to target Gibbs state.

Lemma 3.1 (Quantum Annealing). Under Assump-
tions 1.1 and 1.2, there exists a series of quantum states
|µ0⟩ , |µ1⟩ , . . . , |µM ⟩ satisfying the following properties:

1. There exists an efficient quantum algorithm to prepare
initial state |µ0⟩ without using any function queries.

2. For all i ∈ {0, . . . ,M − 1} , |µi⟩ and |µi+1⟩ has at
least constant overlap, i.e.,

| ⟨µi|µi+1⟩ | ≥ Ω(1). (12)

3. The final state |µM ⟩ has at least constant overlap with
the target Gibbs state |π⟩,

| ⟨µM |π⟩ | ≥ Ω(1). (13)

4. The number of quantum states M ≤ Õ(c−1
LSId

1/2).

We give the details of this schedule and the proofs in Ap-
pendix C. We believe, our analysis for this annealing sched-
ule for non-logconcave distributions can have other applica-
tions. For instance, Li & Zhang (2022) used an annealing
schedule to optimize approximately-convex functions and
they showed applications for stochastic bandits. In their
construction, they assumed that the objective function can
be written as a uniform perturbation of a convex function
in the entire domain. Our construction can allow design
of optimization algorithms for more general non-convex
functions as Assumption 1.1 and Assumption 1.2 are not
too restrictive.
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4. Quantum Algorithms for Sampling
4.1. Tools from quantum computation

Quantum sampling problem is to create the coherent version
of the desired probability distribution:

|π⟩ =
∫

x∈Rd

dx
√
π(x) |x⟩ . (14)

Then a measurement on this state yields the basis |x′⟩ with
probability π(x′). Let π1/2 denote the diagonal matrix with
entries

√
π(x). For a time reversible Markov chain, the

discriminant matrix D is defined by,

D(P ) = π1/2Pπ−1/2. (15)

This follows from the detailed balance condition as follows:

Dxy =
∑
z,l

π1/2
xz Pzlπ

−1/2
ly (16)

=
√
π(x)Pxy

√
π(y) (17)

=
√
PxyPyx. (18)

Therefore, the spectrum of P matches the spectrum of D.
Furthermore,

D(P ) |π⟩ = |π⟩ . (19)

Therefore the state |π⟩ is an eigenvector ofD(P ) with eigen-
value 1. Then eigenstate of D with eigenvalue 1 on the
relevant subspace can then be prepared using singular value
transformations (Gilyén et al., 2019) or phase estimation
(Wocjan et al., 2009). We use the second approach in this
paper. For non-reversible Markov chains we cannot write
D in the form of Equation (15), therefore the connection
between |π⟩ and D is broken. Therefore, in general one
cannot expect to prepare |π⟩ using quantum linear algebra
techniques in the similar fashion.

Quantum walk Classical Markov chains can be quan-
tized on a quantum computer using Szgedy’s quantum walk
operators introduced in (Szegedy, 2004) by constructing a
unitary operator on H = CN⊗CN . To be able to implement
the quantum walk, one needs to implement the following
mapping on a quantum computer.

|x⟩ |0⟩ 7→ |ψx⟩ (20)

where
|ψx⟩ =

∫
y

dy
√
pxy |x⟩ |y⟩ (21)

The unitary operator U can be realized as:

U := S
(
2

∫
x

|ψx⟩ ⟨ψx| − I
)
, (22)

where S =
∫
xy

|x⟩ |y⟩ ⟨x| ⟨y| is the swap operator. Next we
show how to implement this mapping described above.

Implementing quantum walk operators We describe
the implementation of quantum walk operator for stochastic
case here. For full gradient case, we just need to replace the
oracle to full gradient oracle. We use the stochastic gradient
oracle O∇̃f to prepare the following state,

|x⟩ |0⟩ 7→ |x⟩ |∇̃f(x)⟩ . (23)

Since the transition density of unadjusted Langevin algo-
rithm is Gaussian, then one step of the walk can be im-
plemented efficiently on a quantum computer using first
Box-Muller transformation (Chakrabarti et al., 2023) and
applying a shift operation based on the gradient.

|x⟩ |0⟩ 7→ |x⟩
∫
Rd

dy
√
pxy |y⟩ , (24)

where

pxy =

(
1

2π

)d/2

e−
1
2∥y−η∇̃f(x)∥2

2 . (25)

The query complexity of this operation is O(B) due to B
gradient evaluations required to implement the oracle in
Equation (23). Note that the we present the quantum states
and operators in the continuous-space representation. The
analysis in continuous-space simplifies the analysis, while
the implementations are always in a discretized space (as we
only have finite bits of precision for real numbers). We refer
to (Chakrabarti et al., 2023) for the error analysis caused by
the discretization, which is not dominating other errors. For
quantum MALA, we update the target register conditionally
similar to (Childs et al., 2022).

Implementing reflection operators To implement ampli-
tude amplification, one needs reflection operator around
the target state |π⟩. This reflection operator can be ap-
proximately implemented using phase estimation circuit
(Wocjan & Abeyesinghe, 2008) by using Õ(1/

√
γ) calls

to controlled U operators where γ is the spectral gap of
the transition density matrix. If U is a quantum walk cor-
responding to quantum MALA algorithm, we can directly
amplify the amplitude of |π⟩ thanks to reversibility. How-
ever, in quantum ULA or stochastic ULA, the reflection
operators are implemented with a bias. Consequently, we
converge to a state in the neighborhood of |π⟩. We quanti-
fied this discrepancy and bound the step size for sufficiently
small error.

Amplitude amplification Once we have the appropriate
reflection operators, we can use fixed point amplitude ampli-
fication technique introduced in (Grover, 2005) to drive the
initial state to the target state by applying reflection opera-
tors iteratively. It is also possible to use quantum Zeno effect
to keep the quantum state close to the Gibbs density by us-
ing projective measurements after each phase estimation
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(Somma et al., 2007; 2008), it results in worse dependency
on the schedule length than the amplitude amplification.

A note on the practicality of the quantum sampling As
opposed to a family of quantum machine learning algo-
rithms where the data needs to be encoded into a quantum
state, our sampling algorithms uses the data by the gradi-
ent and evaluation oracles which are simulated classically.
Since the unitary evolutions only use constant number of
calls to these oracles, our speedups are not suppressed by
other hidden costs such as input preparations etc. However,
the overall implementation of quantum sampling algorithm
still requires a fault-tolerant quantum computer that can im-
plement the phase estimation circuit with high fidelity. It
is an open question whether these speedups can be imple-
mented in near term quantum computers.

Next, we present our results for the sampling algorithms.

4.2. Quantum Metropolis Adjusted Langevin Algorithm

The following theorem establishes the query complexity of
quantum MALA algorithm. Since it is a time reversible
Markov chain, this result is obtained by characterizing the
spectral gap of its transition density (Appendix D.1) using
conductance analysis. Then the phase gap of the quantum
MALA algorithm scales as 1/η1/2 for sufficiently small
step size η. Once the phase gap is characterized, the rest of
the proof is to combine it with the annealing schedule.
Theorem 4.1 (Quantum MALA). Let π ∝ e−βf(x) denote
a probability distribution with inverse temperature β > 0
such that f(x) satisfies Assumptions 1.1 and 1.2. Then,
there exists a quantum algorithm that outputs a random
variable distributed according to µ such that,

∥µ− π∥TV ≤ ϵ, (26)

where ∥.∥TV is the total variation distance, using
Õ
(
βdρ−1c−1

LSI

)
queries to O∇f and Of .

4.3. Quantum Unadjusted Langevin Algorithm

Since unadjusted Langevin algorithm is not a reversible
chain, we cannot follow the same procedure since there is
no direct relation between the spectral gap and the mixing
time of the quantum algorithm. We defer the proof of this
theorem to Appendix D.2 and give only the proof sketch
here. Our quantum algorithm follows the same procedure
as in quantum MALA algorithm, however we implement
the quantum walk operators using the transition density of
ULA algorithm instead of MALA algorithm. Let U⋆ and
U be the quantum walk operator associated with quantum
MALA and quantum ULA respectively. The key idea in
our proof is to show that for sufficiently small step size η,
the operator norm of the difference ∥U⋆ − U∥ ≤ Õ(ηd).
Then, using this one step error between quantum walks and

due to the fact that error accumulates at most linearly with
K, the total discrepancy between two algorithms becomes
Õ(ηdK) where K is the total number of calls to U⋆ in
quantum MALA algorithm with the same step size. Finally,
we set the step size sufficiently small so that the total error
between two algorithms are smaller than ϵ. Since K is
proportional to 1/η1/2, this allows us to characterize K.

Theorem 4.2 (Quantum ULA). Let π ∝ e−βf(x) denote
a probability distribution with inverse temperature β > 0
such that f(x) satisfies Assumptions 1.1 and 1.2. Then,
there exists a quantum algorithm that outputs a random
variable distributed according to µ such that,

∥µ− π∥TV ≤ ϵ, (27)

where ∥.∥TV is the total variation distance, using
Õ
(
βd3/2ϵ−1ρ−1c−1

LSI

)
queries to O∇f .

4.4. Quantum Unadjusted Langevin Algorithm with
Stochastic Gradients

The construction for the stochastic quantum ULA algorithm
is similar to quantum ULA. The stochastic ingredient here
is realized by replacing full gradient ∇f with a stochastic
gradient gℓ = 1

B

∑
k∈Sℓ ∇fk in implementing the quan-

tum walk operator where Sℓ is a batch randomly uniformly
drawn from the set {A ⊆ [N ] : |A| = B}. The next theo-
rem, proved in Appendix D.3, quantifies the query complex-
ity of stochastic quantum Langevin algorithm with respect
to stochastic gradient oracle. The proof of the query com-
plexity is similar to ULA, however, due to noisy gradients,
we need to use matrix concentration to show that the quan-
tum walks are close to each other with high probability
for sufficiently small step size. The rigorous proof of the
following theorem is deferred to Appendix D.3.

Theorem 4.3 (Quantum ULA with stochastic gradient). Let
π ∝ e−βf(x) denote a probability distribution with inverse

temperature β > 0 such that f(x) = 1
N

N∑
k=1

fk(x) satisfies

Assumptions 1.1 and 1.2. Then, there exists a quantum algo-
rithm that outputs a random variable distributed according
to µ such that,

∥µ− π∥TV ≤ ϵ, (28)

where ∥.∥TV is the total variation distance, using
Õ
(
β2d3/2ϵ−2ρ−2c−1

LSI

)
2 queries to O∇̃f and each O∇̃f

involves O(d) gradient calculations.

Remark 4.4. The Cheeger and log-Sobolev constants de-
pend on the function landscape and might have different
dependence on problem dimension depending on the under-
lying assumption. For instance, assuming that the function

2As each O∇̃f uses Õ(d) gradient calculations, the number of
total gradient calculations scale as d5/2 as shown Table 1.
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is locally non-convex gives a dimension independent cLSI,
whereas in general they might have exponential dependence.
See (Zou et al., 2021) for a more detailed discussion on
these constants. We discuss the dependence of the quantum
algorithm on these constants in more detail in Appendix F.
Remark 4.5. In a special scenario where an initial quantum
state that has at least constant overlap with |π⟩ is provided
(e.g. a constant warm state), it is possible to obtain an addi-
tional speed up in d dependence by saving up toO(d1/2c−1

LSI)
using a single Markov chain instead of using simulated an-
nealing.

5. Partition Function Estimation
Computing the partition functions in low temperature
regime is a challenging problem that has applications in
convex geometry (Chakrabarti et al., 2023), linear algebra
(Jerrum et al., 2004), and graph theory (Stefankovic et al.,
2009). Even though computing the partition function ex-
actly is a hard problem, it can be approximated up to a
multiplicative constant using MCMC methods.

In this section, we describe the method and analysis for
estimating the partition function for a non-logconcave dis-
tribution defined as,

Z =

∫
x∈Rd

e−f(x) dx. (29)

The partition function can be estimated using the following
telescoping product:

Z = Z1

M∏
i=1

Zi+1

Zi
, (30)

where Zi is the normalizing constant of the distribution
µi ∝ exp

(
−−∥x∥2

2σ2
i

+ f(x)
)

and ZM+1 = Z where σ1 ≤
σ2 ≤ · · · ≤ σM and σM+1 = ∞. We then approximate

ZM+1 = Z1

M∏
i=1

Zi+1

Zi
= Z1

∏M
i=1 Eµi [gi], where

gi = exp

(
1

2

(
1

σ2
i

− 1

σ2
i+1

)
∥x∥2

)
(31)

for i ∈ [M ] where σi is defined in proof of Lemma 3.1. To
be able estimate this product, we use the technique proposed
by Cornelissen & Hamoudi (2023). Their idea is to esti-
mate each expectation in the product using nearly unbiased
quantum mean estimation. Since each term in the product
can be estimated faster on a quantum computer than the
classical counterparts, the overall algorithm both exploits
the fast mean estimation and sampling.

Theorem 5.1. Let Z =
∫
x
e−f(x) dx be the partition

with f(x) function satisfying assumptions Assumptions 1.1

and 1.2. Then, there exists quantum algorithms that output
an estimate Z̃ such that,

(1− ϵ)Z ≤ Z̃ ≤ (1 + ϵ)Z (32)

with probability at least 3/4 using,

• Õ
(
d5/4ϵ−1ρ−1c−1

LSI

)
queries to O∇f and Of , or

• Õ
(
d7/4ϵ−2ρ−1c−1

LSI

)
queries to O∇f , or

• Õ
(
d11/4ϵ−3ρ−2c−1

LSI

)
queries to O∇̃f .

We defer the rigorous proof of this theorem to Appendix E.
Unfortunately, we are not aware of any classical algorithm
for computing the partition function under the same as-
sumptions as ours, therefore we are unable to make a solid
comparison.

6. Conclusion and Outlook
We have analyzed algorithms for quantum sampling and
estimating partition functions for non-logconcave distribu-
tions by quantizing popular techniques in classical sampling
literature. We believe our techniques and analysis can be
useful tools for developing future quantum Monte Carlo
algorithms especially based on non-reversible chains. We
list the following theoretical open problems for future work.

• Our quantum algorithms utilize the first order sampling
methods used in classical literature. It is known that un-
derdamped Langevin algorithm is the accelerated variant
of sampling similar to Nesterov’s acceleration in optimiza-
tion (Ma et al., 2019a). It is an interesting direction to
analyze the possible quantum speedups using such so-
phisticated classical techniques. Analyzing these possible
quantum algorithms in terms of other distance metrics
such as Wasserstein or KL distance is also another chal-
lenge as these distance metrics are not invariant under
unitary transformations.

• Langevin Monte Carlo algorithm is obtained by discretiza-
tion of the continuous stochastic differential equation
known as Langevin diffusion. Analyzing the continuous
SPDE in quantum domain directly might be another way
of getting around reversibility issue and we might obtain
more efficient quantum algorithms.

• Fast forwarding of quantum Markov chains to obtain the
transient dynamics rather than its stationary density is also
interesting direction and Apers & Sarlette (2019) proposed
a quantum algorithm to solve this problem for reversible
chains. Using similar perturbation analysis can potentially
be used to show that non-reversible chains can also be
fast-forwarded under special settings faster than classical
counterparts.
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A. Appendix

B. Preliminaries
B.1. Classical MCMC

Monte Carlo Markov Chain (MCMC) methods are powerful computational techniques used for simulating and exploring
complex probabilistic systems. In the context of sampling, MCMC involves constructing a Markov chain over the
distribution’s state space Ω, where each state represents a potential sample. By iteratively transitioning between states
according to carefully designed transition probabilities, MCMC methods generate a sequence of samples that converge to
the target distribution.

Let P be the transition matrix of a Markov chain over a finite state space Ω, and let π be the stationary distribution of this
chain. A stationary distribution π is a probability distribution over the states that remain unchanged under the transition
dynamics of the Markov chain. Mathematically, it satisfies the balance equation, πTP = πT . Hence π is left eigenvector of
P with eigenvalue 1. The mixing time of a Markov chain can be defined as follows:

For any 0 < ϵ < 1, the mixing time tmix(ϵ) is the smallest positive integer t such that for all initial distributions x in Ω:

∥P t(x, ·)− π∥TV ≤ ϵ. (33)

Here, P t(x, ·) is the distribution of states after t steps starting from initial distribution x, and ∥ · ∥TV represents the total
variation distance between two probability distributions. The mixing time tmix(ϵ) characterizes the rate at which the chain
approaches its stationary distribution within a specified tolerance ϵ. Bounding the mixing time of the Markov chain is often
a primary obstacle when it comes to proving algorithm’s total run time. Ergodicity and reversibility are crucial properties
that significantly simplify the estimation of mixing time in Markov chains. A chain is said to be ergodic if it is irreducible
(any state can be reached from any other state) and aperiodic (the chain does not return to the same state with periodic
intervals). A Markov chain that satisfies the detailed balance condition is known as time-reversible and it is a fundamental
property for establishing the mixing time in terms of spectral gap or conductance. Mathematically, it can be expressed as:

Pxyπy = Pyxπx. (34)

This condition also guarantees that the Markov chain will converge to a stationary distribution. Furthermore, for a reversible
Markov chain, it holds that

tmix(ϵ) ≤
1

γ
· log

(
1

π⋆ϵ

)
. (35)

where π⋆ = min
x∈Ω

π(x) and γ is the spectral gap defined as the difference between the first and the second-largest eigenvalue

(in absolute value) of the transition matrix.

B.2. Langevin Diffusion

Langevin diffusion, often referred to as Langevin dynamics, is a fundamental stochastic differential equation that describes
the dynamics of a particle undergoing random motion in a fluid or a complex environment. It is widely used in various
scientific disciplines, including physics, chemistry, and biology, to model systems exhibiting Brownian motion or other
forms of random behavior. It can be expressed as a continuous-time stochastic process Xt in the following form:

dXt = −∇f(Xt) dt+
√
2dWt, (36)

where Wt is the standard Brownian motion.

Langevin diffusion provides a probabilistic approach to optimization by simulating the motion of particles under the influence
of both deterministic gradient forces and random noise. This allows the optimization process to explore the parameter space
more extensively, potentially escaping local optima and reaching a broader range of solutions. By simulating Langevin
dynamics, machine learning practitioners can sample from the posterior distribution of the model parameters, enabling
Bayesian inference and uncertainty estimation.
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B.3. Unadjusted Langevin Algorithm (ULA)

Under certain conditions on f , Equation (36) accepts e−f(x) as its stationary density. Therefore, it is natural to discretize the
Langevin diffusion using step size η > 0. The simplest discretization scheme is known as Euler-Maruyama method and it
gives the following update rule:

xk+1 = xk − η∇f(xk) +
√
2ηβ−1zk, (37)

where z{0,1,...} are i.i.d Gaussian random vectors in Rd.

Algorithm 1 Unadjusted Langevin Algorithm (ULA)
Input: x0, (η > 0)
Output: xK

for k = 1, ...,K do
xk = xk−1 − η∇f(xk−1) +

√
2η/βzk−1

end for
Return xK

B.4. Metropolis Adjusted Langevin Algorithm (MALA)

Although ULA algorithm seems appealing due to its simplicity, it comes with a catch. Due to naive discretization of a
continuous differential equation, the chain is asymptotically biased. That is, its stationary distribution is different than the
stationary distribution of Langevin equation where the size of discrepancy depends on the step size, feature dimension and
properties of f . Furthermore, the chain does not satisfy the detailed balance condition, which is the standard assumption in
the mixing time analysis of Markov chains. A common practice is to apply Metropolis-Hasting correction at the end of
each step to make the Markov chain reversible. This way, the chain converges to the desired target state and becomes time
reversible. The update of the algorithm is modified such that if the following condition is satisfied, the iterates stay the same
rather than applying Equation (37).

p(xk|xk+1)π(xk)

p(xk+1|xk)π(xk+1)
< u, (38)

where u ∼ U [0, 1]. This algorithm is called Metropolis adjusted Langevin algorithm (MALA).

Algorithm 2 Metropolis Adjusted Langevin Algorithm (MALA)
Input: x0, (η > 0)
Output: xK

for k = 1, ...,K do
xk = xk−1 − η∇f(xk−1) +

√
2ηβ−1zk−1

α = p(xk−1|xk)π(xk−1)
p(xk|xk−1)π(xk)

u ∼ U [0, 1]
if α < u then
xk = xk−1

end if
end for
Return xK

However, in many optimization problems, computing the gradient and applying Metropolis step can become highly costly
in terms of computation time. For example, in large-scale machine learning the objection function consists of a sum with
a large number of terms and MALA requires Ω(N) function evaluations for data size N . Motivated by the large-scale
optimization problems, we focus on unadjusted version of the algorithm with stochastic gradients and we believe it is
worthwhile to study the possible speed-up that could be achieved on a quantum computer.
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C. Proofs for Annealing Schedule
We first restate the following useful lemmas from previous works as we use them repeatedly in our proofs. The first one
lower bounds f(x) by a quadratic function whereas the second one upper bounds the norm of the gradient by a linear
function. We refer the readers to the original papers for their proofs and we don’t repeat here for readability.

Lemma C.1 (Lemma A.1 in (Zou et al., 2021)). Under Assumption 1.2, the objective function f(x) satisfies,

f(x) ≥ m

4
∥x∥2 + f(x⋆)− b/2, (39)

where f(x⋆) = minx f(x).

Lemma C.2 (Lemma 3.1 in (Raginsky et al., 2017)). Under Assumption 1.1, there exists a constant G =
maxk∈[N ] ∥∇fk(0)∥ such that for any x ∈ Rd and k ∈ [n], it holds that,

∥∇fk(x)∥ ≤ L∥x∥+G. (40)

The next three technical lemmas are presented to make the proof of the annealing schedule concise. From more technical per-
spective, these lemmas generalizes the work done in (Ge et al., 2020) for non-logconcave distributions under Assumption 1.1
and Assumption 1.2.

Lemma C.3. Suppose π(x) ∝ e−f(x) is a Gibbs measure and f satisfies Assumptions 1.1 and 1.2. Then, we have

Eπ

[
exp
(
−s∥x∥2

)]
Eπ

[
exp
(
s∥x∥2

)]
≤ O(exp

(
dLs2/(mc2s)

)
), (41)

where c2s is the log-Sobolev constant of the distribution πs ∝ πes∥x∥
2

.

Proof. Let h(s) = Eπ

[
exp
(
−s∥x∥2

)]
Eπ

[
exp
(
s∥x∥2

)]
, then

h′(s)

h(s)
=

(
Eπ

[
∥x∥2 exp

(
s∥x∥2

)]
Eπ [exp(s∥x∥2)]

−
Eπ

[
∥x∥2 exp

(
−s∥x∥2

)]
Eπ [exp(−s∥x∥2)]

)
(42)

=

∫ s

−s

v′(t),dt, (43)

where v(t) is defined as,

v(t) =
Eπ

[
∥x∥2 exp

(
t∥x∥2

)]
Eπ [exp(t∥x∥2)]

. (44)

Computing v′(t) gives,

v′(t) =
Eπ

[
∥x∥4 exp

(
t∥x∥2

)]
Eπ

[
exp
(
t∥x∥2

)]
− (Eπ

[
∥x∥2 exp

(
t∥x∥2

)]2
(Eπ [exp(t∥x∥2)])2

(45)

= Varπt
∥x∥2, (46)

where πt is a distribution defined as,

πt(x) ∝ π(x) exp
(
t∥x∥2

)
. (47)

Suppose π satisfies the log-Sobolev inequality with constant cLSI, it also satisfies the Poincare inequality with the same
constant (e.g (Goel, 2004)).

Varπt
[∥x∥2] ≤ 1

ct
Eπt

[∥x∥2] ≤ O(Ld/(mc2t )), (48)

where ct is LSI constant of πt and the second inequality is due to Lemma C.5. Therefore,

h′(s)

h(s)
=

∫ s

−s

v′(t) dt = O(dLs/(mc2s)). (49)
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Hence,

log(h(s))− log(h(0)) =

∫ s

0

h′(t)

h(t)
dt = O(dLs2/(mc2s)). (50)

Since h(0) = 1, we conclude the proof.

Lemma C.4. Suppose π(x) ∝ e−f(x) is a Gibbs measure and f satisfies the log-Sobolev inequality with constant cLSI.
Then under Assumptions 1.1 and 1.2,

Eπ

[
exp
(
−(1 + α)∥x∥2

)]
Eπ

[
exp
(
−(1− α)∥x∥2

)]
(Eπ[exp(−∥x∥2)])2

≤ O(exp
(
dLα2/(c2LSIm)

)
) (51)

for 0 ≤ α ≤ 1/2.

Proof. This follows from Lemma C.3, by setting π̃ ∝ π exp
(
−∥x∥2

)
. Then,

Eπ

[
exp
(
−(1 + α)∥x∥2

)]
Eπ

[
exp
(
−(1− α)∥x∥2

)]
(Eπ[exp(−∥x∥2)])2

= Eπ̃

[
exp
(
−α∥x∥2

)]
Eπ̃

[
exp
(
α∥x∥2

)]
(52)

≤ O(exp
(
dLα2/(mc2α)

)
) (53)

≤ O(exp
(
dLα2/(mc2LSI)

)
) (54)

with cα is LSI constant of πα ∝ π exp
(
−(1− α)∥x∥2

)
. The last step follows from the fact that cα ≥ cLSI for α ≤ 1/2.

Lemma C.5. Suppose π(x) ∝ e−f(x) is a Gibbs measure and f satisfies Assumptions 1.1 and 1.2. Then

Eπs(x)[e
s∥x∥2

∥x∥2] ≤ O(Ld/(mcs)), (55)

where πs is a probability distribution proportional to π(x)es∥x∥
2

for a constant s ≤ m
8 and cs is the log-Sobolev constant

of πs.

Proof. Our proof follows the idea presented in proof of Lemma 6 in (Ma et al., 2019b) without the assumption of local
non-convexity. We choose an auxiliary random variable x′ following the law of p ∝ e−(L−s)∥x∥2

and couples optimally
with xs ∼ πs : (xs, x

′) ∼ γ ∈ Γopt(πs, p).

Eπs
∥x∥2 = E(xs,x′∼γ)∥x′ − x′ + xs∥2 (56)

≤ 2Ep∥x′∥2 + 2E(xs,x′∼γ)∥x′ − xs∥2 (57)

=
2d

L− s
+ 2W2

2(p, πs) (58)

≤ 2d

L− s
+

2

cs
KL(p, πs), (59)

where cπs is LSI constant of πs. The first inequality follows from Young’s inequality and second inequality is due to
generalized Talagrand inequality (Otto & Villani, 2000). KL divergence can be bounded,

KL(p, πs) =

∫
x

dx log

(
p(x)

πs(x)

)
p(x) (60)

≤ sup
x

log

(
p(x)

πs(x)

)∫
x

dx p(x) (61)

= sup
x

log

(
p(x)

πs(x)

)
. (62)
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We can further bound p(x)
πs(x)

for any x ∈ Ω,

p(x)

πs(x)
=

e−(L−s)∥x∥2∫
x
dx e−(L−s)∥x∥2

∫
dx e−f(x)es∥x∥

2

e−f(x)es∥x∥2 (63)

=

∫
dx es∥x∥

2−f(x)∫
dxe−(L−s)∥x∥2 e

−L∥x∥2+f(x) (64)

≤
∫
dx es∥x∥

2−m∥x∥2/4+b/2−f(x⋆)∫
dxe−(L−s)∥x∥2 e−L∥x∥2+f(x) (65)

≤
∫
dx es∥x∥

2−m∥x∥2/4+b/2−f(x⋆)∫
dxe−(L−s)∥x∥2 eL∥x⋆∥2+f(x⋆) (66)

= eb/2+L∥x⋆∥2 (L− s)d/2

(m/4− s)d/2
, (67)

where the first inequality is due to Assumption 1.2 and Lemma C.1. Second inequality follows from Equation (70). Hence,
KL divergence is bounded by,

KL(p, πs) ≤ sup
x

(
p(x)

πs(x)

)
≤ b/2 + L∥x⋆∥+ d

2
log

(
L− s

m/2− 2s

)
. (68)

This implies that,

Eπs∥x∥2 ≤ 2d

L− s
+

2

cs
(b/2 + L∥x⋆∥2 + d

2
log

(
L− s

m/2− 2s

)
= O(Ld/(mcs)) (69)

for s ≤ m/8.

Finally we are ready to prove our result for quantum annealing procedure. The key idea in this proofs is to show that two
consequent Gibbs distributions in our annealing scheme are close to each other so that the Markov chains become slowly
changing. Furthermore, we show that the final distribution is close to desired Gibbs distribution.

Lemma 3.1 (Quantum Annealing). Under Assumptions 1.1 and 1.2, there exists a series of quantum states
|µ0⟩ , |µ1⟩ , . . . , |µM ⟩ satisfying the following properties:

1. There exists an efficient quantum algorithm to prepare initial state |µ0⟩ without using any function queries.

2. For all i ∈ {0, . . . ,M − 1} , |µi⟩ and |µi+1⟩ has at least constant overlap, i.e.,

| ⟨µi|µi+1⟩ | ≥ Ω(1). (12)

3. The final state |µM ⟩ has at least constant overlap with the target Gibbs state |π⟩,

| ⟨µM |π⟩ | ≥ Ω(1). (13)

4. The number of quantum states M ≤ Õ(c−1
LSId

1/2).

Proof. Our construction and analysis are similar to the annealing scheme used in (Childs et al., 2022), however our proof
does not require any convexity assumption for f(x). The construction is as follows:

1. |µ0⟩ =
∑
x

√
p0(x) |x⟩, where p0(x) =

exp

(
− ∥x∥2

2σ2
1

)
Z0

.

2. For all i ∈ [1,M − 1], |µi⟩ =
∑
x∈Ω

√
pi(x) |x⟩, where pi(x) =

exp

(
−f(x)− ∥x∥2

2σ2
i

)
Zi

such that σ2
i+1 = σ2

i (1 + α) with

α = Õ(d−1/2cLSI).
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Here, Z0 =
∫
dx exp

(
−∥x∥2

2σ2
1

)
and Zi =

∫
dx exp

(
−f(x)− ∥x∥2

2σ2
i

)
. The first property in the lemma statement holds,

since p0 corresponds to a Gaussian distribution and the coherent quantum state corresponding to Gaussian distributions can
be efficiently prepared by using Box-Muller technique without using any evaluation of f or ∇f . Next, we prove the second
property. We first start with i = 0 as the base case: ⟨µ0|µ1⟩ ≥ Ω(1). To prove this, Let f(x⋆) = min

x∈Ω
f(x). We fix β = 1

without loss of generality. Then, we can write,

f(x) ≤ f(x⋆) + ⟨∇f(x⋆), x− x⋆⟩+ L

2
∥x− x⋆∥2 ≤ f(x⋆) + L∥x⋆∥2 + L∥x∥2, (70)

where the first inequality is well known due to Assumption 1.1 (see (Nesterov, 2018)) and second inequality is due to
Young’s inequality. Using this upper bound on f(x), we have,

| ⟨µ0|µ1⟩ | =

∫
dx exp

(
− 1

2f(x)−
∥x∥2

2σ2
1

)
(2πσ2

1)
d/4

√
Z1

(71)

≥

∫
dx exp

(
− 1

2f(x
⋆)− 1

2L∥x∥
2 − 1

2L∥x
⋆∥2 − ∥x∥2

2σ2
1

)
(2πσ2

1)
d/4

√∫
dx exp

(
−f(x⋆)− ∥x∥2

4σ2
1

) (72)

=
exp
(
−L

2 ∥x
⋆∥2
)

(2πσ2
1)

d/4

πd/2(L/2 + 1/(2σ2
1))

−d/2

(2πσ2
1)

d/4
(73)

= exp

(
−L
2
∥x⋆∥2

)
(Lσ2

1 + 1)−d/2 (74)

≥ exp

(
−L
2
∥x⋆∥2 − dLσ2

1

2

)
. (75)

Choosing σ2
1 = ϵ

2dL yields | ⟨µ0|µ1⟩ | ≥ Ω(1). Next, we consider 1 ≤ i ≤M − 1. Letting σ2 = σ2
i+1, we have

| ⟨µi|µi+1⟩ | =
∫

dx
exp(−fi(x)/2)√

Zi

exp(−fi+1(x)/2)√
Zi+1

(76)

=

∫
dx

exp
(
−f(x)− ∥x∥2

4σ2
i
− ∥x∥2

4σ2
i+1

)
√
ZiZi+1

(77)

=
Eπ

[
exp
(
− 1+α/2

2σ2 ∥x∥2
)]

Eπ

[
exp
(−1+α

2σ2 ∥x∥2
)]1/2 Eπ

[
exp
( −1
2σ2 ∥x∥2

)]1/2 , (78)

where the last step follows from the fact that the numerator can be written as,∫
dx exp

(
−f(x)− ∥x∥2

4σ2
i

− ∥x∥2

4σ2
i+1

)
=
Z
∫
dx exp

(
−f(x)− 1+α/2

2σ2 ∥x∥2
)

Z
= ZEπ

[
exp

(
−1 + α/2

2σ2
∥x∥2

)]
,

(79)

and similarly, Zi and Zi+1 can be simplified as,

Zi =

∫
dxe

−f(x)− 1

2σ2
i

∥x∥2

=
Z
∫
dx exp

(
−f(x)− (1+α)

2σ2 ∥x∥2
)

Z
= ZEπ

[
exp

(
− (1 + α)

2σ2
∥x∥2

)]
(80)

Zi+1 =

∫
dxe

−f(x)− 1

2σ2
i+1

∥x∥2

=
Z
∫
exp
(
−f(x)− 1

2σ2 ∥x∥2
)

Z
= ZEπ

[
exp

(
−∥x∥2

2σ2

)]
. (81)

Defining α′ = α
α+2 and σ′2 = σ2

1+α/2 , we have

| ⟨µi|µi+1⟩ | =
Eπ

[
exp
( −1
2σ′2 ∥x∥2

)]
Eπ

[
exp
(
− 1+α′

2σ′2 ∥x∥2
)]1/2 Eπ

[
exp
(
− 1−α′

2σ′2 ∥x∥2
)]1/2 (82)

≥ Ω(exp
(
−2dLα′2/(mc2LSI)

)
), (83)
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where the last inequality is due to Lemma C.4. Setting α2 = Õ(c2LSIm/(dL)), we have | ⟨µi|µi+1⟩ | ≥ Ω(1). Having
established the second property, we move on to the third property.

| ⟨µM |π⟩ | =
∫

dx
exp
(
−f(x)− ∥x∥2

4σ2
M

)
√
ZM

√
Z

(84)

= Eρ′

[
exp

(
− 1

4σ2
M

∥x∥2
)]−1/2

Eρ′

[
exp

(
1

4σ2
M

∥x∥2
)]−1/2

(85)

≥ 1− Ω(dL/(mσ4
Mc

2
LSI)), (86)

where ρ′ ∝ π(x) exp
(
−∥x∥2

4σ2
M

)
. The last step is due to Lemma C.3. Setting σ2

M =
√
dL/(mc2LSI) satisfies | ⟨µM |π⟩ | ≥

Ω(1). The final property follows from the fact that α = Õ(
√
c2LSIm/(dL)), since,

σM = σ0(1 + α)M , (87)

and solving this for M yields M = Õ(
√
dL/(mc2LSI)).

D. Proofs for Quantum Sampling Algorithms
For technical reasons, we set the domain Ω = Rd ∩B(0, R) where R is sufficiently large enough to show that the truncated
distribution π⋆ in Ω is ϵ close to the original Gibbs distribution. More specifically, we work on sufficiently large but bounded
domain to show that the norm of the gradients are bounded and derive our results in terms of R. The truncation is done
by only considering the sum of projectors up to ∥x∥ ≤ R in the implementation of the quantum walk. Then we use the
following lemma to characterize R,

Lemma D.1 (Lemma 6 in (Zou et al., 2021)). For any ϵ ∈ (0, 1) set R = R̄(ϵ/12) and let π⋆ be the truncated distribution
in Ω. Then the total variation distance between π⋆ and π is upper bounded by ∥π⋆ − π∥ ≤ ϵ/4, where

R̄(z) =

[
max

{
625d log(4/z)

mβ
,
4d log(4L/m)

mβ
,
4d+ 8

√
d log(1/z) + 8 log(1/z)

mβ
)

}]1/2
. (88)

D.1. Proofs for Quantum MALA

The lemma below characterizes the conductance parameter of the classical MALA algorithm constructed with stochastic
gradients under given assumptions. Though similar results are given for full gradient case in (Ma et al., 2019b), we use the
stochastic version and remove B dependent condition on the step size when we apply this lemma in full gradient case by
setting B ≫ d.

Lemma D.2 (Lemma 6.5 in (Zou et al., 2021)). Under Assumptions 1.1 and 1.2, if the step size meets the condition
η ≤ min

{
35(Ld+ (LR+G)2βd/B)]−1, [25β(LR+G)2]−1

}
, then there exists absolute constant c0 such that, the

conductance parameter ϕ for Metropolis adjusted Stochastic Langevin Algorithm satisfies,

ϕ ≥ c0ρ
√
η/β, (89)

where ρ is the Cheeger constant of the truncated distribution π⋆.

The following lemma is useful to characterize the phase gap of quantum walk operator for a reversible Markov chain in
terms of its conductance parameter and it is the source of the quantum speed up for mixing time for reversible chains.

Lemma D.3. Let Q be a reversible Markov chain with conductance parameter ϕ(Q) and let eigenvalues for the transition
density of Q be λ0 = 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λm|. Let W be a unitary quantum walk operator constructed with the
transition density of Q. Then the phase gap ∆(W ) := 2 arccos |λ1| is lower bounded by,

∆(W ) ≥
√
2ϕ(Q). (90)
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Proof. Let γ(Q) = 1− λ1 denote the spectral gap of Q. Using Cheeger’s inequality (Cheeger, 1971), γ(Q) can be bounded
in terms of the conductance parameter, √

2γ(Q) ≤ ϕ(Q). (91)

Let θ = arccos |λ1|. Then we can write,

∆(W ) ≥ |1− e2iθ| = 2
√
1− λ21 ≥ 2

√
γ(Q). (92)

By combining Equation (91) and Equation (92), we obtain ∆(Q) ≥
√
2ϕ(Q).

Having established the phase gap of the quantum walk operator associated with quantum MALA algorithm, we are now
ready to prove the following theorem.

Theorem 4.1 (Quantum MALA). Let π ∝ e−βf(x) denote a probability distribution with inverse temperature β > 0
such that f(x) satisfies Assumptions 1.1 and 1.2. Then, there exists a quantum algorithm that outputs a random variable
distributed according to µ such that,

∥µ− π∥TV ≤ ϵ, (26)

where ∥.∥TV is the total variation distance, using Õ
(
βdρ−1c−1

LSI

)
queries to O∇f and Of .

Proof. Let |µ0⟩ , |µ1⟩ , ..., |µM−1⟩ be the series of quantum states described in Lemma 3.1. We start with the preparation
of the initial Gaussian state |µ0⟩ which can be done efficiently by applying the Box-Muller transformation to the uniform
distribution state (see Appendix A.3 in Chakrabarti et al. (2023) for more details). Then, for each i ∈ [0,M − 2], we
drive each state |µi⟩ to |µi+1⟩ using π/3-fixed-point amplitude amplification algorithm (Grover, 2005). The amplitude
amplification uses the following reflection operators,

Vi = eiπ/3 |µi⟩ ⟨µi|+ (I − |µi⟩ ⟨µi|), (93)

Vi+1 = eiπ/3 |µi+1⟩ ⟨µi+1|+ (I − |µi+1⟩ ⟨µi+1|). (94)

Each state |µi⟩ is the unique eigenvector of quantum MALA operator U⋆
i for fi(x) = f(x)+ ∥x∥2

2σ2
i

since the classical MALA
is time reversible and its stationary distribution is µi. Therefore, the operator |µi⟩ ⟨µi| is a projector operator to the eigenstate
of U⋆

i with eigenphase 0. Then, by Corollary 4.1 in (Chakrabarti et al., 2023), the operator Vi can be implemented with ϵ
accuracy using Õ(1/∆(U⋆

i )) calls to controlled-U⋆ operators where ∆(·) is the phase gap. By Lemma D.2, Lemma D.1, and
Lemma D.3, ∆ ≥ ρ

√
2η/β for step size smaller than O(min{d−1, β−1}). Then, using Õ(ρ−1η−1/2β) calls to controlled-

U⋆
i operators, we can implement a quantum reflection Ṽi such that,

∥Ṽi − Vi∥ ≤ ϵ, (95)

for each i. Then, given |µi⟩, we can drive |µi⟩ to |µ̃i+1⟩ using constant number of Ṽi operators because,

| ⟨µi|µ̃i+1⟩ | ≥ Ω(1), (96)

such that ∥ |µ̃i+1⟩− |µi+1⟩ ∥ ≤ ϵ. Then we apply the same steps M times to drive µ0 to π with at most error ϵ. Note that the
error in each step does not accumulate linearly. This is because we can drive µ̃i to µ̃i+1 with logarithmic cost in applying
reflection operators. Since M = Õ(c−1

LSI

√
d), the total complexity of the annealing procedure is Õ(d1/2c−1

LSIρ
−1η−1/2β) =

Õ(c−1
LSIρ

−1βd). Each U⋆ operator can be implemented using constant number of calls to full gradient and evaluation oracles,
the algorithm uses Õ(c−1

LSIρ
−1βd) full gradient and function evaluations.

D.2. Proofs for Quantum ULA

Since unadjusted Langevin algorithm is not a reversible chain, we cannot follow the same procedure since there is no
direct relation between the conductance and phase gap. The following lemma, proved in Appendix D.2, quantifies the error
between two quantum walk operators corresponding to different Markov chains in spectral norm.
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Lemma D.4. Let U and Ũ be two quantum walk operators associated with two classical Markov chains with transition
densities P (x→ y) = pxy and P̃ (x→ y) = p̃xy , respectively. Then,

∥U − Ũ∥ ≤ 4
√
2max

x
∥P (x, .)− P̃ (x, .)∥H, (97)

where ∥P (x, .)− P̃ (x, .)∥H denotes the Hellinger distance between the probability densities P (x, .) and P̃ (x, .) for any
x ∈ Ω.

Proof. We first define the following quantum states,

|ψx⟩ =
∑
y

√
pxy |x⟩ |y⟩ , (98)

|ψ̃x⟩ =
∑
y

√
p̃xy |x⟩ |y⟩ . (99)

Then, using the definition of quantum walk operators, the spectral norm of difference of operators can be bounded as,

∥U − Ũ∥ = ∥S(2
∑
x∈Ω

|ψx⟩ ⟨ψx| − I)− S(2
∑
x∈Ω

|ψ̃x⟩ ⟨ψ̃x| − I)∥ (100)

≤ 2
∥∥∥∑
x∈Ω

|ψx⟩ ⟨ψx| −
∑
x∈Ω

∣∣∣ψ̃x

〉〈
ψ̃x

∣∣∣∥∥∥ (101)

≤ 2
∥∥∥∑
x∈Ω

(|ψx⟩ − |ψ̃x⟩) ⟨ψx|+
∑
x∈Ω

|ψ̃x⟩ (⟨ψx| − ⟨ψ̃x|)
∥∥∥ (102)

≤ 2
∥∥∥∑
x∈Ω

(|ψx⟩ − |ψ̃x⟩) ⟨ψx|
∥∥∥+ 2

∥∥∥∑
x∈Ω

(|ψx⟩ − |ψ̃x⟩) ⟨ψ̃x|
∥∥∥, (103)

where the first inequality is due to unitarity of S and the third inequality is due to triangular inequality. Let |ϕ⟩ and |ϕ′⟩ are
the states defined as the maximizers,∥∥∥∑

x∈Ω

(|ψx⟩ − |ψ̃x⟩) ⟨ψx|
∥∥∥ = max

|ϕ⟩

∥∥∥∑
x∈Ω

(|ψx⟩ − |ψ̃x⟩) ⟨ψx|ϕ⟩
∥∥∥, (104)

and ∥∥∥∑
x∈Ω

(|ψx⟩ − |ψ̃x⟩) ⟨ψ̃x|
∥∥∥ = max

|ϕ′⟩

∥∥∥∑
x∈Ω

(|ψx⟩ − |ψ̃x⟩) ⟨ψ̃x|ϕ′⟩
∥∥∥. (105)

Notice that, for any x ∈ Ω, we have ⟨ψ̃x|ψ̃y⟩ = δxy and ⟨ψx|ψy⟩ = δxy . Therefore, we can write |ϕ⟩ =
∑
x∈Ω

cx |ψx⟩+ |ξ⟩

and |ϕ′⟩ =
∑
x∈Ω

c̃x |ψ̃x⟩+ |ξ̃⟩ where ⟨ξ̃|ψ̃x⟩ = ⟨ξ|ψx⟩ = 0 for all x ∈ Ω. Hence,

∥U − Ũ∥ ≤ 2
∥∥∥∑

x

cx( |ψ̃x⟩ − |ψx⟩)
∥∥∥+ 2

∥∥∥∑
x

c̃x( |ψ̃x⟩ − |ψx⟩)
∥∥∥ (106)

≤ 4max
x

∥ |ψ̃x⟩ − |ψx⟩ ∥. (107)

Finally, we can write,

∥ |ψ̃x⟩ − |ψx⟩ ∥ =
∥∥∥∑

y

(
√
pxy −

√
p̃xy) |x⟩ |y⟩

∥∥∥ (108)

=
(∑

y

(
√
pxy −

√
p̃xy)

2
)1/2

(109)

≤
√
2∥P (x, .)− P̃ (x, .)∥H, (110)

where the last step follows from the definition of Hellinger distance.
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To be able to apply Lemma D.4, we bound the Hellinger distance between the probability distributions of MALA and ULA
algorithm through the next lemma, which is proved in Appendix D.2.
Lemma D.5. Let P (x→ y) = pxy and P ⋆(x→ y) = p⋆xy be the transition densities for Unadjusted Langevin Algorithm
(ULA) and Metropolis Adjusted Langevin Algorithm (MALA) respectively. Then under Assumptions 1.1 and 1.2 and for step
size η ≤ d(β(LR+G)2)−1,

max
x

∥P (x, .)− P̃ (x, .)∥H ≤ 4ηdL, (111)

where G is a positive constant that satisfies ∥∇f(0)∥ ≤ G.

Proof. For the sake of the proof, we use the lazy version of the Markov chains as it does not change the stationary density.
Let qxy = 1

(4πη/β)d/2
exp
(
−∥y−x+η∇f(x)∥2

2η/β

)
, then we can write

pxy =
1

2
δxy +

1

2
qxy, (112)

and

p⋆xy =

{
αx(y)pxy, if x ̸= y
pxy +

∑
z∈Ω

pxz(1− αx(z)) if x = y

}
, (113)

where δxy is Kronecker delta function and αx(y) is the acceptance probability given by

αx(y) = min

1,
exp
(
−βf(y)− ∥x−y+η∇f(y)∥2

4η/β

)
exp
(
−βf(x)− ∥y−x+η∇f(x)∥2

4η/β

)
 . (114)

By this definition, αx(y) ≤ 1. Suppose αx(y) ≥ 1− e(x, y). Then for x ̸= y,

(
√
p⋆xy −

√
pxy)

2 = pxy(1−
√
αxy)

2 (115)

≤ pxy(1−
√
1− e(x, y))2 (116)

≤ pxye(x, y)
2, (117)

where the second inequality is due to the fact that for 0 ≤ x ≤ 1,

1−
√
1− x =

(1−
√
1− x)(1 +

√
1− x)

(1 +
√
1 + x)

=
1− (1− x)

1 +
√
1 + x

=
x

1 +
√
1 + x

≤ x. (118)

For x = y,

(
√
p⋆xy −

√
pxy)

2 = pxy

(√
1 +

1− Epxy
(αx(y))

pxy
− 1

)2

(119)

≤ pxy

(
1 +

1− Epxy (αx(y))

2pxy
− 1

)2

(120)

≤
(1− Epxy

(αx(y)))
2

4pxy
(121)

≤
Epxy

(e(x, y))2

2
, (122)

where the second inequality follows from
√
1 + x ≤ 1 + x

2 for x ≥ 0 and the third inequality holds since pxy ≥ 1
2 for

x = y because of laziness of the Markov chains. Therefore,∫
y∈Ω

(
√
p⋆xy −

√
pxy)

2 dy =

∫
y∈Ω

δxy(
√
p⋆xy −

√
pxy)

2 dy +

∫
y∈Ω

(1− δxy)(
√
p⋆xy −

√
pxy)

2 dy (123)

≤ Epxy (e(x, y)
2) +

Epxy
(e(x, y))2

2
(124)

≤
Eqxy

(e(x, y)2)

2
+

Eqxy
(e(x, y))2

8
, (125)
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where the extra factors of 1/2 and 1/4 in the second inequality comes from the laziness of the chain. Now, we need to
bound e(x, y). Starting from

αx(y) ≥
exp
(
−βf(y)− ∥x−y+η∇f(y)∥2

4η/β

)
exp
(
−βf(x)− ∥y−x+η∇f(x)∥2

4η/β

) (126)

= exp

(
−β(f(y)− f(x)− 2η⟨y − x,∇f(y) +∇f(x)⟩+ η2∥∇f(y)∥2 − η2∥∇f(x)∥2

4η
)

)
(127)

≥ exp

(
−βL∥x− y∥2

2
− βη2∥∇f(y)∥2 − η2∥∇f(x)∥2

4η

)
) (128)

≥ exp

(
−βL∥x− y∥2

2
− βηL(LR+G)∥x− y∥

2

)
(129)

≥ 1− βL∥x− y∥2

2
− βηL(LR+G)∥x− y∥

2
. (130)

The second inequality holds because of the smoothness of f(x) since,

f(x) ≤ f(y) + ⟨y − x,∇f(x)⟩+ L∥x− y∥2

2
, (131)

f(y) ≤ f(x) + ⟨x− y,∇f(y)⟩+ L∥x− y∥2

2
, (132)

which implies the following inequality

|f(y)− f(x)− 1

2
⟨y − x,∇f(x) +∇f(y)⟩| ≤ L∥x− y∥2

2
. (133)

To obtain the third inequality, we use Lemma C.2 to show that,

∥∇f(x)∥ ≤ G+ L∥x∥ ≤ LR+G, (134)

where the last inequality is due to fact that the domain is a ball with radius R. Then,

∥∇f(x)∥2 − ∥∇f(y)∥2 = ∥∇f(x)−∇f(y)∥∥∇f(x) +∇f(y)∥ ≤ 2(LR+G)L∥x− y∥. (135)

Consequently, e(x, y) ≤ βL∥x−y∥2

2 + βηL(LR+G)∥x−y∥
2 . Finally, we need to bound∫

(
√
p⋆xy −

√
pxy)

2 dy ≤
Eq(x,.)(e(x, y)

2)

2
+

Eq(x,.)(e(x, y))
2

8
(136)

≤ 5

8
Eqxy

(e(x, y)2) (137)

≤ 5

8
Eqxy

(
βL∥x− y∥2

2
+
βηL(LR+G)∥x− y∥

2

)2

(138)

≤ 5

8
β2L2Eqxy

∥x− y∥4 + 5

8
β2η2L2(LR+G)2Eqxy

∥x− y∥2, (139)

where the second inequality uses Jensen’s inequality due to convexity of e(x, y) and the last inequality is due to Young’s
inequality. Next, we need to compute the expectation values. Notice that since qxy is a Gaussian, the variable β∥y−x+∇f(x)∥2

η
is a chi-squared distributed random variable with mean d and variance 2d.

Eqxy
∥x− y∥2 = Eqxy

∥x− y + η∇f(x)− η∇f(x)∥2 (140)

≤ 2Eqxy∥x− y − η∇f(x)∥2 + 2η2Eqxy∥∇f(x)∥2 (141)

≤ 2ηd/β + 2η2(LR+G)2 (142)
≤ 4ηd/β, (143)
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since the mean of chi squared distribution is d and η ≤ d
β(LR+G)2 . Furthermore,

Eqxy∥x− y∥4 = Varqxy∥x− y∥2 + (Eqxy∥x− y∥2)2 (144)

≤ 2dη2/β2 + (4ηd/β)2 (145)

≤ 2dη2/β2 + 16η2d2/β2, (146)

since variance of chi squared distribution is 2d. Putting things together, we have for any x ∈ Ω,

∥P (x, .)− P̃ (x, .)∥2H ≤ 5dη2L2

4
+ 10η2d2L2 +

5η3dβL2(LR+G)2

2
(147)

≤ 16η2L2d2, (148)

for η ≤ d
β(LR+G)2 . Hence, ∥P (x, .)− P̃ (x, .)∥H ≤ 4ηdL.

As the quantum walk operator is the basic building block of the reflection operators used in amplitude amplification, we
present the following result to relate the error in quantum walk operator to the projection operators.
Lemma D.6. Let W be a unitary operator with phase gap ∆ and assume that W has a unique eigenvector |ψ0⟩ with
eigenvalue 1. Suppose that we have W̃ such that,

∥W − W̃∥ ≤ δ. (149)

Let Π<∆ and Π̃<∆ be operators that project any quantum state onto the space of eigenvectors of W and W̃ with phases
smaller than ∆ respectively. Then,

∥Π<∆ − Π̃<∆∥ ≤ δπ

4∆
. (150)

Proof. Let W =
∑
m
e2iϕm |ψm⟩ ⟨ψm| where ϕ0 = 0. Similarly, let W̃ =

∑
m
e2iϕ̃m |ψ̃m⟩ ⟨ψ̃m|.

∥Wψ0 − W̃ψ0∥2 =
∥∥∥∑

m

(
1− e2iϕ̃m

)
|ψ̃m⟩ ⟨ψ̃m|ψ0⟩

∥∥∥2 (151)

=
∑
m

|1− e2iϕ̃m |2
∣∣∣ ⟨ψ̃m|ψ0⟩

∣∣∣2 (152)

≥
∑

m:ϕ̃m≥∆

|1− e2iϕ̃m |2
∣∣∣ ⟨ψ̃m|ψ0⟩

∣∣∣2 (153)

≥ 16∆2/π2
∑

m:ϕ̃m≥∆

∣∣∣ ⟨ψ̃m|ψ0⟩
∣∣∣2 , (154)

where the second inequality is due to |1− eix| ≥ 2|x|/π whenever −π ≤ x ≤ π. Since ∥W − W̃∥ ≤ δ, we have∑
m:ϕ̃m<∆

∣∣∣ ⟨ψ̃m|ψ0⟩
∣∣∣2 ≥ 1− δ2π2

16∆2
. (155)

Let |χ⟩ = α0 |ψ0⟩ + α1

∣∣ψ⊥
0

〉
be an arbitrary quantum state such that α1, α2 ∈ C and |α1|2 + |α2|2 = 1. Then due to

triangular inequality

∥Π<∆ |χ⟩ − Π̃<∆ |χ⟩ ∥ ≤ |α0|∥Π<∆ |ψ0⟩ − ˜|Π<∆ |ψ0⟩ ∥+ |α1|∥Π<∆

∣∣ψ⊥
0

〉
− Π̃<∆

∣∣ψ⊥
0

〉
∥. (156)

We first focus on the first term:

∥Π<∆ |ψ0⟩ − Π̃<∆ |ψ0⟩ ∥ = ∥ |ψ0⟩ −
∑

m:ϕ̃m<∆

|ψ̃m⟩ ⟨ψ̃m|ψ0⟩ ∥ (157)

=
(
2− 2

∑
m:ϕ̃m<∆

∣∣∣ ⟨ψ̃m|ψ0⟩
∣∣∣2)1/2 (158)

≤ δπ

4∆
. (159)
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Similarly, for the second term,

∥|Π<∆

∣∣ψ⊥
0

〉
− Π̃<∆

∣∣ψ⊥
0

〉
∥ =

∥∥∥ ∑
m:ϕ̃m<∆

|ψ̃m⟩ ⟨ψ̃m|ψ⊥
0 ⟩
∥∥∥ (160)

=
( ∑
m:ϕ̃m<∆

∣∣∣〈ψ̃m

∣∣∣ψ⊥
0

〉∣∣∣2)1/2 (161)

=
(
1−

∑
m:ϕ̃m≥∆

|
〈
ψ̃m

∣∣∣ψ0

〉
|2
)1/2

(162)

≤ δπ

4∆
. (163)

Since both terms are smaller than δπ
4∆ , we conclude that for any state |χ⟩, the projectors are at most δπ/(4∆) apart in spectral

norm.

Next lemma, also proved in Appendix D.2, quantifies the number of required controlled-U operators to implement the
reflection operators.

Lemma D.7. Let U be the quantum walk operator associated with Unadjusted Langevin algorithm. Under Assumptions 1.1
and 1.2 the reflection operator V = eiπ/3 |π⟩ ⟨π| + (I − |π⟩ ⟨π|) can be implemented with ϵ accuracy in spectral norm
using Õ(ρ−1βdLϵ−1) controlled-U operators.

Proof. Let P ⋆ and P be the transition density of Metropolis Adjusted Langevin algorithm and Unadjusted Langevin
algorithm respectively. Let U⋆ and U be the quantum walk operators built using P ⋆ and P respectively. We can write U⋆ in
spectral form:

U⋆ =
∑
m

e2iϕm |ψm⟩ ⟨ψm| . (164)

The phase gap ∆ of U⋆ is defined to be 2|ϕ1|. Since P ⋆ is a reversible Markov chain, U⋆ accepts |π⟩ as its eigenvector
with eigenvalue 1. Furthermore, |π⟩ is the unique eigenvector of U⋆ with eigenvalue 1 (see (Magniez et al., 2011) for more
details). Notice that, R can be written as,

V = eiπ/3Π⋆
∆ + (I −Π⋆

∆), (165)

where Π⋆
∆ is the projector that projects any quantum state onto the eigenstate of U⋆ with eigenphase smaller than ∆. This is

because the only eigenvector of U⋆ with phase smaller than ∆ is |π⟩. This operator can be implemented in ϵ accuracy using
techniques such as quantum singular value transformation technique introduced in (Gilyén et al., 2019) or phase estimation
based method ((Magniez et al., 2011)) using Õ(1/∆) calls to quantum walk operator. Suppose that we replaced each U⋆

with U and implement the following operator instead:

Ṽ = eiπ/3Π∆ + (I −Π∆), (166)

where Π is the projector similarly defined for U which is the quantum walk operator constructed for the unadjusted Langevin
algorithm. Therefore, we can characterize the error,

∥V − Ṽ ∥ ≤ 2∥Π⋆
∆ −Π∆∥ (167)

≤ ∥U − U⋆∥
2∆/π

. (168)

The last inequality follows from Lemma D.6. By Lemma D.3 and Lemma D.2, ∆(U⋆) ≥ c0ρ
√
2η/β for step size smaller

than O(d−1β−1). Therefore,

∥V − Ṽ | ≤ c016
√
2πηdL/∆ (169)

≤ c016π
√

2ηβdL/ρ, (170)

24



Stochastic Quantum Sampling for Non-Logconcave Distributions and Estimating Partition Functions

where the first inequality is due to Lemma D.4 and Lemma D.5. Therefore, by setting η ≤ ϵ2ρ2

c016
√
2πd2L2β

, we have

∥V − Ṽ ∥ ≤ ϵ. (171)

The total number of calls to U is Õ(1/∆) = Õ(ρ−1η−1/2/β−1/2) = Õ(ρ−1βdL/ϵ).

We are now ready to prove the query complexity of quantum ULA algorithm. We restate our result and give its proof next.

Theorem 4.2 (Quantum ULA). Let π ∝ e−βf(x) denote a probability distribution with inverse temperature β > 0 such that
f(x) satisfies Assumptions 1.1 and 1.2. Then, there exists a quantum algorithm that outputs a random variable distributed
according to µ such that,

∥µ− π∥TV ≤ ϵ, (27)

where ∥.∥TV is the total variation distance, using Õ
(
βd3/2ϵ−1ρ−1c−1

LSI

)
queries to O∇f .

Proof. Let P ⋆(x → y) = p⋆xy and P (x → y) = pxy denote the transition densities of MALA and ULA algorithms
respectively. Similarly, let U⋆ and U be the quantum walk operators associated with P ⋆ and P constructed. We use the
same algorithm described in proof of quantum MALA algorithm. That is, we iteratively drive each state |µi⟩ to |µi+1⟩ using
π/3 fixed point amplitude amplification algorithm. However, since accessing U⋆ requires evaluation oracle, we instead
use U to implement the reflection operator inexactly. The reflection operators can be implemented using Õ(ρ−1βdLϵ−1)
calls to controlled U operator by Lemma D.7. Since the length of annealing schedule in Lemma 3.1 is Õ(c−1

LSI

√
d), the

total complexity is Õ(c−1
LSIρ

−1d3/2βϵ−1). Implementing U only requires full gradient oracle constant number of times, we
establish the result.

D.3. Proofs for Quantum Stochastic ULA

The next lemma, proved in Appendix D.3, quantifies the expectation value of Uℓ over ℓ with respect to a deterministic
unitary U .

Lemma D.8. Let Uℓ = S
(
2
∑
x

|ψ(ℓ)
x ⟩⟨ψ(ℓ)

x | − I
)

be a quantum walk operator where |ψ(ℓ)
x ⟩ =

∑
y

√
p
(ℓ)
xy |y⟩ is a quantum

state constructed with stochastic gradient gℓ. Let U = S
(
2
∑

x |ψx⟩ ⟨ψx| − I
)

. Then, we have

∥EℓUℓ − U∥ ≤ 6max
x∈Ω

∥Eℓ |ψ(ℓ)
x ⟩ − |ψx⟩ ∥. (172)

Proof.

∥EℓUℓ − U∥ ≤ 2
∥∥∥Eℓ

∑
x

|ψ(ℓ)
x ⟩ ⟨ψ(ℓ)

x | −
∑
x

|ψx⟩ ⟨ψx|
∥∥∥ (173)

= 2
∥∥∥Eℓ

∑
x

|ψ(ℓ)
x ⟩ ( ⟨ψ(ℓ)

x | − ⟨ψx|) +
∑
x

( |ψ(ℓ)
x ⟩ − |ψx⟩) ⟨ψx|

∥∥∥ (174)

≤ 2
∥∥∥Eℓ

∑
x

|ψ(ℓ)
x ⟩ ( ⟨ψ(ℓ)

x | − ⟨ψx|)
∥∥∥+ 2

∥∥∥∑
x

( |ψ(ℓ)
x ⟩ − |ψx⟩) ⟨ψx|

∥∥∥, (175)

where the second inequality follows from triangular inequality. First, we focus on the second term,∥∥∥Eℓ

∑
x

( |ψ(ℓ)
x ⟩ − |ψx⟩) ⟨ψx|

∥∥∥ = max
|ϕ⟩

∥∥∥Eℓ

∑
x

( |ψ(ℓ)
x ⟩ − |ψx⟩) ⟨ψx|ϕ⟩

∥∥∥. (176)
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We can expand the state that maximizes this equation as |ϕ⟩ =
∑

x cx |ψx⟩+ |ξ⟩ where ⟨ξ|ψx⟩ = 0 for any x ∈ Ω. This is
true because ⟨ψx|ψy⟩ = δxy . Therefore, ⟨ψx|ϕ⟩ = cx. Then,∥∥∥Eℓ

∑
x

( |ψ(ℓ)
x ⟩ − |ψx⟩) ⟨ψx|

∥∥∥ =
∥∥∥Eℓ

∑
x

cx( |ψ(ℓ)
x ⟩ − |ψx⟩)

∥∥∥ (177)

=
(∑

x

|cx|2∥Eℓ |ψ(ℓ)
x ⟩ − |ψx⟩ ∥2

)1/2
(178)

≤ max
x

(
∥Eℓ |ψ(ℓ)

x ⟩ − |ψx⟩ ∥2
)1/2

(179)

= max
x

∥Eℓ |ψ(ℓ)
x ⟩ − |ψx⟩ ∥. (180)

Again, the first equality is due to ⟨ψx|ψy⟩ = δxy and the first inequality is due to fact that
∑

x |cx|2 ≤ 1. The first term can
be written as

2
∥∥∥Eℓ

∑
x

|ψ(ℓ)
x ⟩ ( ⟨ψ(ℓ)

x | − ⟨ψx|)
∥∥∥ = 2

∥∥∥Eℓ

∑
x

( |ψ(ℓ)
x ⟩ − |ψx⟩)( ⟨ψ(ℓ)

x | − ⟨ψx|) + Eℓ

∑
x

|ψx⟩ ( ⟨ψ(ℓ)
x | − ⟨ψx|)

∥∥∥ (181)

≤ 2
∥∥∥Eℓ

∑
x

( |ψ(ℓ)
x ⟩ − |ψx⟩)( ⟨ψ(ℓ)

x | − ⟨ψx|)∥ (182)

+ 2
∥∥∥Eℓ

∑
x

|ψx⟩ ( ⟨ψ(ℓ)
x | − ⟨ψx|)

∥∥∥. (183)

The second term is bounded by maxx ∥ψx − Eℓψ
(ℓ)
x ∥ and the first term,∥∥∥Eℓ

∑
x

(|ψx⟩ − |ψ(ℓ)
x ⟩)(⟨ψx| − ⟨ψ(ℓ)

x |)
∥∥∥ ≤ max

x

∥∥∥Eℓ(|ψx⟩ − |ψ(ℓ)
x ⟩)(⟨ψx| − ⟨ψ(ℓ)

x |)
∥∥∥ (184)

= max
x

max
|ϕ⟩

∥Eℓ(|ψx⟩ − |ψ(ℓ)
x ⟩)(⟨ψx| − ⟨ψ(ℓ)

x |) |ϕ⟩ ∥ (185)

≤ max
x

∥Eℓ(|ψx⟩ − |ψ(ℓ)
x ⟩)∥, (186)

the first inequality is due to the fact that for different x, y ∈ Ω, (⟨ψx| − ⟨ψ(ℓ)
x |)(|ψy⟩ − |ψ(ℓ)

y ⟩) = 0 and the last inequality
is because |(⟨ψx| − ⟨ψ(ℓ)

x |) |ϕ⟩ | ≤ 1.

The next lemma is the application of Lemma D.8 on quantum Langevin algorithms.
Lemma D.9. Let U be the quantum walk operator for unadjusted Langevin algorithm computed using exact gradients. Let
Uℓ be a quantum walk operator for unadjusted Langevin algorithm constructed by computing the gradient on random mini
batch ℓ of size B. Then, under Assumptions 1.1 and 1.2, we have

∥EℓUℓ − U∥ ≤ 6
√
2ηβ(LR+G)d1/2/B1/2, (187)

where G is a positive constant that satisfies ∥∇f(0)∥ ≤ G.

Proof.

∥U − EℓUℓ∥2 ≤ 36max
x∈Ω

∥ψx − Eℓψ
(ℓ)
x ∥2 (188)

≤ 36max
x∈Ω

∥
∫
y∈Rd

dy (
√
pxy − Eℓ

√
pℓxy) |x⟩ |y⟩ ∥2 (189)

= 36max
x∈Ω

(∫
y∈Rd

dy pxy +

∫
y∈Rd

dy
(
Eℓ

√
pℓxy

)2
− 2Eℓ

∫
y∈Rd

dy
√
pxypℓxy

)
(190)

≤ 36max
x∈Ω

(∫
y∈Rd

√
pxy + Eℓ

∫
y∈Rd

dy pℓxy − 2Eℓ

∫
y∈Rd

dy
√
pxypℓxy

)
(191)

= 36max
x∈Ω

(
2− 2Eℓ

∫
y∈Rd

dy
√
pxypℓxy

)
, (192)

26



Stochastic Quantum Sampling for Non-Logconcave Distributions and Estimating Partition Functions

where the first inequality is due to Lemma D.8 and the second inequality is due to Jensen’s inequality since square root is a
concave function.∫
y∈Rd

dy
√
pxypℓxy =

1

(4πη/β)d/2

∫
y∈Rd

dy exp

(
−∥y − x+ η∇f(x)∥2

4η/β

)
exp

(
−∥y − x+ ηgℓ(x)∥2

4η/β

)
(193)

=
1

(4πη/β)d/2

∫
y∈Rd

dy exp

(
−2∥y − x∥2 + 2η⟨y − x,∇f(x) + gℓ(x)⟩+ η2∥∇f(x)∥2 + η2gℓ(x)

2

4η/β

)
(194)

=
1

(4πη/β)d/2

∫
y∈Rd

dy exp

(
−∥y − x+ η(∇f(x) + gℓ(x))/2∥2

2η/β

)
exp

(
−η

2∥∇f(x)− gℓ(x)∥2

2η/β

)
(195)

= exp

(
−η

2∥∇f(x)− gℓ(x)∥2

2η/β

)
, (196)

where E[gℓ] = ∇f . Therefore,

∥U − EUℓ∥2 ≤ 36max
x∈Ω

(
2− 2E exp

(
−η

2∥∇f(x)− gℓ(x)∥2

2η/β

))
(197)

≤ 36(2− 2 exp
(
−η2β2(LR+G)2/B

)
) (198)

≤ 72η2dβ2(LR+G)2/B, (199)

where the first inequality follows from lemma B.2 from (Zou et al., 2021),

E exp(⟨a, gℓ(x)−∇f⟩) ≤ exp
(
M2∥a∥22/B

)
, (200)

where M is the upper bound on ∥gℓ(x)−∇f(x)∥ with batch size B.

The next lemma upper bounds the difference of two random unitary quantum walk operators.

Lemma D.10. Let Uℓ1 and Uℓ2 be two random quantum walk operators constructed with two different stochastic gradients
gℓ1 and gℓ2 for unadjusted Langevin algorithm. Then, under Assumptions 1.1 and 1.2, we have

∥Uℓ1 − Uℓ2∥ ≤ 8
√
ηβ(LR+G)2, (201)

where G is a positive constant that satisfies ∥∇f(0)∥ ≤ G.

Proof. By Lemma D.4, the difference of quantum walk operators is bounded by,

∥Uℓ1 − Uℓ2∥2 ≤ 32max
x

∥Pℓ1 − Pℓ2∥2H , (202)

where Pℓ1 and Pℓ2 are Gaussian transition densities of ULA computed with gradients on mini batches ℓ1 and ℓ2. This is
squared Hellinger distance between two Gaussian distributions with the same variance and different mean. This is a known
result (Pardo, 2018) and equal to following.

∥Pℓ1 − Pℓ2∥H = 1− exp

(
−η

2∥gℓ1(x)− gℓ2(x)∥2

2η/β

)
≤ η2∥gℓ1(x)− gℓ2(x)∥2

2η/β
. (203)

Since ∥∇f(x)∥ ≤ L∥x∥+G ≤ LR+G, ∥gℓ1(x)− gℓ2(x)∥ ≤ 2(LR+G), therefore for any x ∈ Ω,

∥Uℓ1 − Uℓ2∥2 ≤ 64(LR+G)2ηβ. (204)

Taking the square root, we obtain the result in the statement.

Finally we prove the following theorem to conclude the analysis of stochastic quantum sampling algorithm.
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Theorem 4.3 (Quantum ULA with stochastic gradient). Let π ∝ e−βf(x) denote a probability distribution with inverse

temperature β > 0 such that f(x) = 1
N

N∑
k=1

fk(x) satisfies Assumptions 1.1 and 1.2. Then, there exists a quantum algorithm

that outputs a random variable distributed according to µ such that,

∥µ− π∥TV ≤ ϵ, (28)

where ∥.∥TV is the total variation distance, using Õ
(
β2d3/2ϵ−2ρ−2c−1

LSI

)
3 queries to O∇̃f and each O∇̃f involves O(d)

gradient calculations.

Proof. Let Uℓ be a unitary quantum walk operator defined as,

Uℓ = S
(
2
∑
x

|ψ(ℓ)
x ⟩ ⟨ψ(ℓ)

x | − I
)
, (205)

where |ψ(ℓ)
x ⟩ is the state,

|ψ(ℓ)
x ⟩ =

∑
y

√
p
(ℓ)
xy |x⟩ |y⟩ , (206)

where p(ℓ)xy = 1
(4πη/β) exp

(
−∥y−x+gℓ(x)∥2

2η/β

)
, and gℓ is the stochastic gradient computed on randomly selected data points of

size B, i.e.,

gℓ(x) :=
1

B

∑
i∈Sℓ⊆[N ]

∇fi(x). (207)

The number of gradient evaluations for implementing unitary Uℓ is O(B) since we only need to compute gradient on B
data points. The key idea in proof of the quantum ULA is the fact that the following operator can be implemented using
controlled-U operators:

V = eiπ/3Π∆ +Π⊥
∆, (208)

where ∆ is the phase gap of quantum MALA walk operator. Suppose that we replace every controlled-U operator with a
unitary Uℓ. Note that each U in the circuit might be possibly replaced by different unitary due to randomness of stochastic
gradients. Let’s denote this circuit by Ṽ . Now, we show that with high probability ∥V − Ṽ ∥ ≤ ϵ for sufficiently small step
size. Since the algorithm uses 1/∆(U⋆) calls to U ,

∥V − E(Ṽ )∥ ≤ 1

∆
∥U⋆ − EℓUℓ∥ (209)

≤ 1

∆
∥U − U⋆∥+ ∥U − EℓUℓ∥ (210)

≤ (ρ−1
√
β/η)ηdL+ (ρ−1

√
β/η)(ηβ(LR+G)

√
d/B) (211)

= ρ−1η1/2β1/2dL+ ρ−1β3/2η1/2(LR+G)d1/2/B1/2. (212)

Setting η ≤ min
(

ϵ2ρ2

2βd2L2 ,
ϵ4ρ2B

4β3d(LR+G)2

)
and B = d, we guarantee that,

∥V − EṼ ∥ ≤ ϵ/2. (213)

3As each O∇̃f uses Õ(d) gradient calculations, the number of total gradient calculations scale as d5/2 as shown Table 1.
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Next, we use the McDiarmid’s inequality to obtain high probability bound:

P(∥Ṽ − EṼ ∥ ≥ ϵ/2) ≤ 2 exp

(
− ϵ2∆

2∥Uℓ1 − Uℓ2∥2

)
(214)

≤ 2 exp

(
− ϵ2ρη1/2

2β1/2∥Uℓ1 − Uℓ2∥2

)
(215)

≤ 2 exp

(
− ϵ2ρη1/2

128β1/2ηβ(LR+G)2

)
(216)

= 2 exp

(
− ϵ2ρ

128β3/2η1/2(LR+G)2

)
. (217)

Setting η ≤ ϵ4ρ2

1282(LR+G)4β3 , guarantees that with at least constant probability,

∥Ṽ − EṼ ∥ ≤ ϵ/2. (218)

The probability can be boosted in logarithmic number of steps to obtain high probability. Therefore, with high probability,

∥V − Ṽ ∥ ≤ ∥V − EṼ ∥+ ∥EṼ − Ṽ ∥ ≤ ϵ. (219)

Then, to implement the operator V up to ϵ accuracy with high probability, we need Õ(1/∆) = (ρ−1η1/2β−1/2) =
Õ(ρ−2dβ/ϵ2) calls to Uℓ. Since each Uℓ requires B = d gradient computations and we need to prepare Õ(c−1

LSI

√
d)

reflections, the total gradient complexity is Õ(c−1
LSIρ

−2d5/2/ϵ2).

E. Proofs for Partition Function Estimation
Before we prove the main theorem for partition functions, we give the following lemmas. The following lemma shows that
Z1 can be estimated up to ϵ multiplicative constant from a Gaussian.

Lemma E.1 (Lemma 3.1 of (Ge et al., 2020)). Letting σ2
1 = ϵ

2dL , it holds that(
1− ϵ

2

)∫
x∈Rd

exp

(
−∥x∥2

2σ2
1

)
dx ≤ Z1 ≤

∫
x∈Rd

exp

(
−∥x∥2

2σ2
1

)
dx. (220)

The next lemma uses unbiased quantum mean estimation to compute the product of ℓ random variables.

Lemma E.2 (Theorem 3.3 of (Cornelissen & Hamoudi, 2023)). LetB > 1 and ϵ ∈ (0, 1). Consider a sequenceX1, · · · , Xℓ

of ℓ independent random variables with support size n, bounded relative second moment E[X2
i ]

E[Xi]2
≤ B and bounded fidelity

|
〈
πXi

∣∣πXi+1

〉
|2 ≥ 1/B for all i. Denote their product as X = X1 . . . Xℓ. Then, there exists a quantum algorithm that

outputs a multiplicative-error estimate p̃ such that

∣∣∣p̃− E
[ ℓ∏
i=1

Xi

]∣∣∣ ≤ ϵE
[ ℓ∏
i=1

Xi

]
(221)

with probability at least 2/3. It uses O(B) copies of |πX1⟩ and Õ(B2ℓ3/2/ϵ + Bℓ log(n)) reflections through the states
|µX1

⟩ , · · · , |πXℓ
⟩ in expectation.

Finally, we combine our sampling algorithms with the annealing schedule and product estimator to obtain our result for the
partition function estimation.

Theorem 5.1. Let Z =
∫
x
e−f(x) dx be the partition with f(x) function satisfying assumptions Assumptions 1.1 and 1.2.

Then, there exists quantum algorithms that output an estimate Z̃ such that,

(1− ϵ)Z ≤ Z̃ ≤ (1 + ϵ)Z (32)

with probability at least 3/4 using,
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• Õ
(
d5/4ϵ−1ρ−1c−1

LSI

)
queries to O∇f and Of , or

• Õ
(
d7/4ϵ−2ρ−1c−1

LSI

)
queries to O∇f , or

• Õ
(
d11/4ϵ−3ρ−2c−1

LSI

)
queries to O∇̃f .

Proof. By Lemma E.1, we can estimate Z1 with ϵ accuracy using normalization constant of Gaussian distribution with
variance σ2

1 . Then, we show that gi has constant relative variance for all i ∈ [M ]. Since the partition function can be
written in telescoping product given in Equation (30), we can use Lemma E.2 to estimate the remaining product up to ϵ
multiplicative constant with high probability. First, for gM ,

EµM
[g2M ]

EµM
[gM ]2

= Eπ

[
exp

(
− 1

2σ2
M

∥x∥2
)]

Eπ

[
exp

(
1

2σ2
M

∥x∥2
)]

(222)

≤ O(exp
(
dL/(mσ4

Mc
2
LSI)

)
) (223)

by Lemma C.3. Setting σ2
M = Ω(

√
dL/(mc2LSI)) implies EµM

[g2
M ]

EµM
[gM ]2 ≤ O(1). Similarly, for i ∈ [1,M − 1],

Eµi
[g2i ]

Eµi [gi]
2
=

Eπ

[
exp
(
− (1+α)

2 ∥x∥2
)]

Eπ

[
exp
(
− (1−α)

2 ∥x∥2
)]

(Eπ[exp(−∥x∥2/2)])2
(224)

≤ O(exp
(
dLα2/(mc2LSI)

)
(225)

by Lemma C.4. Therefore, for α2 = Õ(mc2LSI/(dL)),
Eµi

[g2
i ]

Eµi
[gi]2

≤ O(1). Having established that the relative variance is

constant for all gi, by Lemma E.2, we conclude that the product form can be estimated by using Õ(M3/2/ϵ) = Õ(d3/4/ϵ)
reflection operators. We can choose quantum MALA, quantum ULA or stochastic quantum ULA algorithms to implement
the reflection operators. Since the complexities given in Theorem 4.1, Theorem 4.2, Theorem 4.3 are the complexities of
implementing reflection operator times M , we just need to multiply these results with Õ(M1/2) = Õ(d1/4) to conclude the
proof.

F. Dependence on Isoperimetric Constants
The dependency on the isoperimetric constants for quantum MALA, ULA and stochastic ULA are ρ−1c−1

LSI, ρ
−1c−1

LSI and
ρ−2c−1

LSI respectively as given in the Theorems 4.1 to 4.3. On the other hand, the dependency for the classical algorithms in
Table 1 are c−2

LSI, c
−2
LSI and ρ−4. Unfortunately, there is no tight relation between cLSI and ρ and this makes hard to make

comparison without further structure on f . Although it is not fully rigorous, it is still possible to make a comparison by
converting both Cheeger constants and log-Sobolev constants to Poincare constant (cp) which is another way of expressing
the global properties of the function landscape. Using ρ ≥ Ω(d−1/2cp), and cLSI ≥ cp (Buser, 1982), we can show that
quantum algorithms have the complexity d3/2c−2

p , d5/2c−2
p , d7/2c−3

p for quantum MALA, ULA and stochastic ULA. On
the other hand, the classical complexities become d2c−2

p , dc−2
p and d6c−4

p . Note that this conversion does not change ϵ
dependency. Hence, our quantum algorithm have the same dependency on cp for MALA and ULA, whereas it has better
dependency (c−3

p vs c−4
p ) for stochastic ULA. As claimed in the main text, by expressing the bounds in terms of cp, we also

maintain the improvement in d for MALA and stochastic ULA. Unfortunately, Buser’s inequality is not always tight and this
argument both loosens classical and quantum bounds. For the sake of keeping the bounds sharp, we did not include this kind
of comparison in Table 1.

We also note that in the most general case, the isoperimetric constants may be exponentially small on d, L and b. Therefore,
in stochastic case, we might obtain a significant speedup. However, since the runtime is dominated by c−1

LSI and ρ−1, the
dimension speedup for quantum MALA may not be as important. However, for certain non-convex functions encountered in
machine learning, the dependency on d might not be exponential. For example, for locally non-convex function, which
models the Gaussian mixtures, considered in (Ma et al., 2019b), c−1

LSI scales as O(exp
(
LR2

)
) where R is the radius of the

non-convex region.

30


