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Abstract

Tables have their own structure, calling for dedicated tabular learning methods
with the right inductive bias. These methods outperform direct applications of
language models, which struggle with the heterogeneous features typical in tables,
such as numerical data or dates. Yet, many tables contain text that refers to real-
world entities, and most tabular learning methods ignore the external knowledge
that such strings could unlock. Which knowledge-rich representations should
tabular learning leverage? While large language models (LLMs) encode implicit
factual knowledge, knowledge graphs (KGs) share the relational structure of tables
and come with the promise of better-controlled knowledge. Studying tables in
the wild, we assemble 105 tabular learning datasets comprising text. We find that
knowledge-rich representations from LLMs or KGs boost prediction and, combined
with simple linear models, markedly outperform strong tabular baselines. Larger
LLMs and larger KGs both provide greater gains. On datasets where all entities are
linked to a KG, LLMs and KG models of similar size perform similarly, suggesting
that the benefit of LLMs over KGs is to solve the entity linking problem. Our
results highlight that external knowledge is a powerful but underused ingredient
for advancing tabular learning.

1 Introduction: background knowledge for tabular learning

Tabular data is prominent in machine learning, often containing text entries that refer to real-world
entities such as company names, drugs, or locations. While methods like gradient-boosted decision
trees and modern table foundation models excel with numerical data [Chen and Guestrin, 2016,
Hollmann et al., 2025], the text processing is relegated to a preprocessing step that typically relies on
superficial encodings (e.g., character n-grams), discarding the rich, real-world knowledge embedded
in these strings. This is a missed opportunity, as external knowledge could significantly boost
predictive power, especially in low-data regimes.

A scalable way to inject this knowledge is to use vector representations pretrained on large-scale
sources [Cvetkov-Iliev et al., 2023, Grinsztajn et al., 2023, Lefebvre and Varoquaux, 2025]. Two
main paradigms exist for this: knowledge graphs (KGs) and large language models (LLMs). General-
purpose KGs [Bollacker et al., 2008, Vrandečić and Krötzsch, 2014, Suchanek et al., 2024] offer
structured, curated facts, but their use is hampered by incompleteness and the difficult "symbol
grounding" problem of linking messy text to canonical entities [Mendes et al., 2011]. In contrast,
LLMs implicitly encode vast world knowledge from web-scale text and can embed any string,
effectively sidestepping the entity linking challenge. However, this comes at the cost of reliability, as
their knowledge is statistical, not factual, and prone to hallucination [Ji et al., 2023].

This raises a critical question: which source of knowledge is more effective for tabular learning? To
investigate this, we conduct a large-scale empirical study on 105 tabular datasets, assembled from
three diverse sources. We compare knowledge-rich representations from LLMs and KG models,
evaluating their impact on downstream prediction tasks. Our key findings are:
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1. Good representations matter more than sophisticated downstream tabular learners:
Both LLM and KG embeddings, when paired with a simple linear model, outperform strong
tabular baselines that use superficial text encodings.

2. Scale brings gains: Performance improves with the size of both LLMs and KGs.
3. Entity linking is the key bottleneck: On a subset of tables where entities are pre-linked to

a KG, KG embeddings perform on par with LLMs of similar size. This suggests that the
primary advantage of LLMs is not superior knowledge, but their ability to implicitly solve
the entity linking problem.

2 Related work

Tabular learning with text features Tabular learning has long been dominated by gradient-boosted
decision trees [Chen and Guestrin, 2016], but recent deep learning approaches, including table
foundation models [Hollmann et al., 2025, Ma et al., 2024, Qu et al., 2025], now often outperform
them [Erickson et al., 2025]. A shared limitation, however, is the absence of specific handling of
text features, which are typically vectorized using superficial methods like TF-IDF that ignore the
semantics and external knowledge embedded in the strings.

To address this, recent work has explored using external knowledge sources. One approach leverages
LLMs by serializing table rows into text to be processed by an LLM [Hegselmann et al., 2023,
Gardner et al., 2024]. An alternative paradigm uses KGs to pretrain tabular models [Kim et al., 2024,
2025]. Prior comparative studies have shown that embeddings from language models outperform
traditional substring-based encoders, especially in diverse-entry and low-data regimes [Grinsztajn
et al., 2023, Kasneci and Kasneci, 2024]. However, these works do not provide a direct comparison
between knowledge sourced from LLMs versus structured KGs, a gap our study aims to fill.

Learning representations from knowledge sources Knowledge can be extracted from KGs by
learning embeddings from the graph structure [Bordes et al., 2013, Yang et al., 2014, Trouillon et al.,
2016, Sun et al., 2019] or by using language models to encode the textual descriptions of entities
and relations [Wang et al., 2021, Saxena et al., 2022]. A related line of work refines general-purpose
LLMs on knowledge-base data to improve their factual grounding and performance on knowledge-
intensive tasks [Sun et al., 2020, Feng et al., 2023]. Our work evaluates and contrasts these different
representation strategies in the context of tabular learning.

3 Methodology: a benchmark for table background knowledge

Table 1: Task distribution across sources of tables.
Source b-clf m-clf reg Total
TextTabBench 5 2 10 17
CARTE 11 0 40 51
WikiDBs 1 21 15 37
Total 17 23 65 105

Table 2: Knowledge graph datasets. All graphs
use the same 822 relations.

# entities # triples deg.
Wikidata5M 4.6M 20.6M -

Wikidata3M 3.2M 15.5M 3
Wikidata2M 2.1M 11.5M 4
Wikidata1M 1.1M 6.8M 6
Wikidata500k 0.5M 3.1M 9

105 tabular datasets We assemble a diverse
benchmark from three sources: TextTabBench
[Mráz et al., 2025], CARTE [Kim et al., 2024],
and WikiDBs [Vogel et al., 2024], covering re-
gression, binary, and multi-class classification
tasks (Table 1). To focus on text-based knowl-
edge, we remove all numerical columns and apply
standard preprocessing (see Appendix A), ensur-
ing each dataset has at least 1,050 rows. For a
controlled comparison between LLMs and KGs,
we identify a subset of 15 tables where entries
are unambiguously linked to Wikidata5M [Wang
et al., 2021]. This allows us to evaluate pure
KG models in a setting where the entity linking
problem is solved. We also create smaller KG
versions by filtering out low-degree entities and
retaining the largest connected component, to
study the impact of KG size (Table 2).

Evaluation pipeline Figure 4 shows our pipeline to evaluate representations on downstream tasks.
For each dataset, we sample 1,024 training rows, and 1,024 testing rows (or all remaining rows if
fewer are available), and average results over 10 random seeds.
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Embedding models We compare a wide array of representations:

• Non-pretrained baseline: TF-IDF followed by SVD, via the Skrub library.

• Pure LLMs: A diverse set including Llama 3 [Dubey et al., 2024], Qwen3 [Zhang et al.,
2025], RoBERTa [Liu et al., 2019], and others to study the effect of scale and architecture.

• Hybrid LLM+KG models: Models that refine LLMs on relational data, such as ERNIE
2.0, KGT5, and TabuLa-8B, each time compared against their corresponding base LLM.

• Pure KG models: For linked tables, we use classic KG embeddings (DistMult, TransE,
ComplEX, and RotatE) trained on Wikidata5M and its subsets.

Table serialization and downstream estimators We serialize each table row into a natural language
prompt (e.g., “The <col_a> is <val_a>. The <col_b> is <val_b>.”, details in Appendix A),
enabling LLMs to generate context-aware embeddings. These embeddings are then used to train three
representative tabular learners: Ridge regression, XGBoost, and the TabPFNv2 foundation model.
For the latter two, we use PCA to reduce dimensionality to d = 300 and d = 500, respectively.

4 Results: knowledge representations for tabular learning

4.1 Knowledge-rich representations boost tabular learning

Good representations matter more than advanced tabular models Our central finding is that
text representation quality is paramount. As shown in Figure 1a, a simple linear model (Ridge) fed
with high-quality embeddings from modern LLMs consistently outperforms sophisticated tabular
learners like XGBoost and TabPFNv2 that use superficial text encodings. This suggests that for tables
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Figure 1: Performance gain of the various knowledge-rich representations compared to a non-
pretrained baseline – a. Comparisons including three tabular learners: Ridge, XGBoost, and
TabPFNv2; absolute scores. – b. Relative improvements to non-pretrained string representations,
when using a ridge model as a tabular learner; normalized scores (0 is 10% worse, 1 is the best score
observed). – Appendix Figure 5 gives critical difference diagrams across all methods and datasets.
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rich in text, the primary performance bottleneck is not the downstream learning algorithm but the
semantic poverty of the input features.

Modern tabular models struggle with high-dimensional embeddings Interestingly, the per-
formance benefit of advanced tabular learners disappears when they are given knowledge-rich
embeddings. XGBoost and TabPFNv2, when paired with LLM embeddings, underperform the simple
Ridge model (Figure 1a). A likely cause is the need for aggressive dimensionality reduction (PCA) to
make these embeddings compatible with the tabular learners, which may discard valuable information.
This could also come from a mismatch between the inductive biases of current tabular models and
the dense, rotationally-invariant nature of modern text representations [Grinsztajn et al., 2022].

The benefit of refining LLMs on relational data is unclear We find no consistent evidence that
refining LLMs on relational data (hybrid models) improves performance. As seen in Figure 1b,
while ERNIE 2.0 shows a clear gain over its RoBERTa base, KGT5 does not improve upon T5,
and TabuLa-8B is on par with its Llama base. The effectiveness of such refinement appears highly
dependent on the specific model and pretraining strategy, warranting further investigation.

4.2 LLMs vs. KGs: entity linking is the bottleneck

To isolate the value of knowledge from the challenge of entity linking, we evaluate performance on a
subset of 15 tables where all text entries are pre-linked to Wikidata5M entities. This allows a direct
comparison between pure LLM embeddings and pure KG embeddings.
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Figure 2: Comparing pure-KG to pure-LLM ap-
proaches on matched tables. Performance scales
with model size for both. On fully linked data, KG
embeddings match LLMs of similar size.

Scale is key Figure 2 shows a clear trend for
both LLMs and KGs: bigger is better. Perfor-
mance improves steadily with the size of the
LLM and the size of the KG used for training
embeddings. For KGs, smaller graphs cover
fewer entities, leading to a sharp performance
drop as entity coverage decreases. LLMs exhibit
a softer degradation, as they can still generate a
(less informed) embedding for any string.

When linking is solved, KGs match LLMs
Crucially, on these fully linked tables, the best
KG embedding models perform on par with
LLMs of a similar parameter count (Figure 2).
This suggests that the primary advantage of
LLMs in the general setting is not that they en-
code superior knowledge, but that they implic-
itly solve the difficult "symbol grounding" prob-
lem of linking messy, real-world text to canoni-
cal entities. When this problem is removed, the structured knowledge from KGs is just as effective.
This also implies that for these tasks, the advanced language understanding capabilities of LLMs
beyond entity recognition provide little additional benefit.

5 Conclusion

Our large-scale study demonstrates that for tabular learning with text, the quality of text representa-
tions is crucial. Knowledge-rich embeddings from LLMs or KGs bring more gains than complex
downstream models. Thus, the focus should shift from the learning algorithm to the quality of the
input features. When entity linking is provided, pure KG models are just as powerful as LLMs of
similar size, suggesting that the main advantage of LLMs for tabular data is not superior knowledge,
but their ability to bridge the gap between unstructured text and canonical entities. The clear benefit
of scale points to a crucial direction for future research: next-generation tabular foundation models
should be built upon large language models to leverage their powerful entity linking and knowledge
encoding capabilities. Tapping into massive knowledge bases like the full Wikidata could unlock
significant performance gains and lead to more powerful and versatile tabular learning systems.
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Figure 3: Statistics distribution across sources.

A More details on the experiments

Table 3: Task distribution across sources, for
linked tables.

Source b-clf m-clf reg Total
CARTE 0 0 3 3
WikiDBs 1 3 8 12
Total 1 3 11 15

Table 4: Embedding dimensions for the dif-
ferent baseline models.

Model Dimension
TF-IDF + SVD 30 per column

FastText 300
TARTE 768

Llama-3.2-1B 2048
Llama-3.2-3B 3072
Llama-3.1-8B 4096
TabuLa-8B 4096

Qwen3-0.6B 1024
Qwen3-4B 2560
Qwen3-8B 4096

RoBERTa (base, large) 768, 1024
ERNIE 2.0 (base, large) 768, 1024

e5-v2 (small, base) 384, 768
T5 (small, base) 512, 768
KGT5 (small, base) 512, 768

OPT-1.3B 2048
Knowledge card 2048

Dataset selection and properties TextTabBench
and CARTE are established benchmarks for tabu-
lar learning, providing real-world tables with varied
text features, from short entity names to longer de-
scriptions. Each table is associated with a predefined
prediction task (regression, binary, or multi-class clas-
sification). WikiDBs is a large corpus of over 1.6
million semi-synthetic tables generated from Wiki-
data. To create meaningful tasks from this source, we
first filtered for tables with at least 1,200 rows, then
manually curated a subset of 37 tables for which we
could define a relevant prediction problem. Table 1
summarizes the final distribution of tasks across the
three sources, and Table 6 gives general properties of
the tables. Further details on each individual dataset
are provided in Table 7, Table 8, and Table 9.

Figure 3 gives statistics about table sizes, proportion
of missing values, and mean column cardinality.

Data preprocessing We adopt the original pre-
processing from TextTabBench and CARTE. For
WikiDBs, we apply a procedure similar to Text-
TabBench. We also ensure that multi-class classi-
fication tasks have at most 10 classes, each with at
least 105 samples. For all 105 datasets, we then apply
the following preprocessing pipeline: (1) we remove
all numerical columns to focus our study on text-
based knowledge; (2) we log-transform regression
targets with wide-ranging distributions; (3) we down-
sample majority classes in multi-class problems to
create balanced datasets; and (4) we discard any table
with fewer than 1,050 rows post-processing to ensure
sufficient data for evaluation. We also exclude one
dataset from TextTabBench with excessively long text entries that exceed the context limits of some
of our baselines.

Experiments on linked tables We have 15 linked tables, 4 for classification and 11 for regression.
Details on these tables are provided in Table 3.

For the KG embedding models (DistMult, TransE, ComplEx and RotatE), we use d = 300 for the
embedding dimension, and train them for 100 epochs with a batch size of 8192 and a learning rate of
10−3, and use the default parameters of their PyKEEN implementation [Ali et al., 2021].
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For KGs smaller than Wikidata5M (see Table 2), some rows of the linked tables are not matched to
the KG. In that case, after embedding the rows corresponding to matched entities, we impute missing
values using the mean along each column. If no row at all is matched in a table, we simply replace
the missing values with zeros.

The number of parameters reported in Figure 2 for KG models is the number of entities in the KG
multiplied by the embedding dimension d.

Extracting embeddings from LLMs We generated sentence-level embeddings from the serialized
rows using the SentenceTransformer framework [Reimers and Gurevych, 2019], which provides
a unified interface for a wide range of transformer-based models. We used it to extract representations
from the following models: Llama 3 [Dubey et al., 2024], Qwen3 [Zhang et al., 2025], RoBERTa [Liu
et al., 2019], T5 [Raffel et al., 2020], e5-v2 [Wang et al., 2022], OPT [Zhang et al., 2022], TabuLa
[Gardner et al., 2024], ERNIE 2.0 [Sun et al., 2020], Knowledge Card [Feng et al., 2023], and KGT5
[Saxena et al., 2022] families, using pretrained checkpoints available on the Hugging Face Hub [Wolf
et al., 2020]. For TARTE [Kim et al., 2025] and FastText [Bojanowski et al., 2017], we directly use
the output embeddings of the model.

Table 5: Search space for XGBoost hyperparameters.
Hyperparameter Distribution Range
n_estimators Integer [50, 1000]
max_depth Integer [2, 6]
min_child_weight Log-uniform [1, 100]
subsample Uniform [0.5, 1.0]
learning_rate Log-uniform [10−5, 1]
colsample_bylevel Uniform [0.5, 1.0]
colsample_bytree Uniform [0.5, 1.0]
gamma Log-uniform [10−8, 7]
reg_lambda Log-uniform [1, 4]
alpha Log-uniform [10−8, 100]

Table 6: Aggregated features of tabular datasets across
sources. The cardinality is computed on 1,024 rows.

TextTabBench CARTE WikiDBs
# columns 15.65 6.76 6.73
cardinality 286.36 371.44 463.70
string length 975.29 298.80 203.62
string similarity1 0.16 0.10 0.08

1 cosine similarity of TF-IDF across rows

Table serialization To generate em-
beddings from LLMs, we serialize each
table row into a natural language prompt.
Following Gardner et al. [2024], we use
the format: “The <col_a> is <val_a>.
The <col_b> is <val_b>. What is
the value of <target>?". For KGT5,
we adapt the prompt to better match
its pretraining format: “<col_a> |
<val_a>. <col_b> | <val_b>. Pre-
dict: <target>". Constructing the
embeddings across multiple columns
(as opposed to the study of Grinsz-
tajn et al. [2023]) is important because
it enables the context (column name,
other entries on the same row) to in-
form the representation, e.g. leading to
disambiguate “Cambridge; UK” from
“Cambridge; Massachusetts” in a ta-
ble with columns “city; country”.

Embedding dimensions Table 4 re-
ports the embedding dimensions for the
different baseline models used.

Metrics and score normalization We evaluate performance using the R2 score for regression and
the ROC-AUC score for classification. To aggregate results across datasets of varying difficulty, we
normalize scores for each dataset and random seed. Following Grinsztajn et al. [2022], we establish a
normalized scale where the best-performing model scores 1 and the model at the 10th performance
percentile scores 0. Other models’ scores are mapped to this [0, 1] range via an affine transformation.
For regression, we clip scores at 0 to mitigate the impact of poor-performing outliers.

Uncertainty estimation To account for statistical variability, we repeat each experiment 10 times
with different random seeds. The error bars in our result figures represent the standard error of the
mean across these runs.

XGBoost hyperparameter tuning For the XGBoost estimator, we perform hyperparameter op-
timization via a randomized search with 100 iterations. We use 5-fold cross-validation, repeated 5
times on the training set, to evaluate each hyperparameter configuration. The detailed search space is
provided in Table 5.
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Figure 4: An overview of our evaluation pipeline. For each dataset, we sample training and test sets.
We then serialize the rows and use the embedding model to generate a vector representation for each
row. Finally, we train a tabular learning estimator to evaluate these embeddings.

Overview of the evaluation pipeline Figure 4 summarizes our evaluation pipeline.

B Additional results

B.1 Runtime analysis

The benefits of leveraging external knowledge come at a computational cost. Table 10 details the
average runtimes for embedding generation and estimator fitting (ridge) across different embedding
models and training sizes. As expected, larger models introduce a significant computational overhead.
For instance, generating embeddings with an 8-billion-parameter LLM is, on average, over 100
times slower than using the non-pretrained baseline. This highlights the trade-off between predictive
performance and the computational resources required for knowledge integration.

Table 7: Overview of TextTabBench datasets used in our benchmark. Table statistics after preprocess-
ing.

Dataset Task # rows # columns # classes # linked rows
Diabetes b-clf 17,000 5 2 -
Job Frauds b-clf 1,732 12 2 -
Kickstarter b-clf 18,720 10 2 -
Lending Club b-clf 11,254 13 2 -
Osha Accidents b-clf 3,598 16 2 -

Customer Complaints m-clf 1,384 9 4 -
Spotify m-clf 10,000 4 10 -

Airbnb reg 3,818 33 - -
Beer reg 2,914 6 - -
California Houses reg 11,349 14 - -
Covid Trials reg 1,165 14 - -
Insurance Complaints reg 37,484 9 - -
IT Salary reg 1,253 17 - -
Mercari reg 12,000 5 - -
San Francisco Permits reg 183,794 13 - -
Stack Overflow reg 19,427 90 - -
Wine reg 1,281 13 - -
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Figure 5: Critical difference diagram across all data sources and methods.

B.2 Overall model ranking

Figure 5 presents a critical difference diagram comparing the mean ranks of all embedding methods
when paired with a Ridge predictor. It also includes the performance of more advanced estimators on
non-pretrained representations for context.

B.3 Performance analysis by data source

Figure 6 illustrates the relative improvements of knowledge-rich representations over non-pretrained
ones, broken down by data source. The benefits of external knowledge vary with dataset characteris-
tics; tables from WikiDBs and CARTE, which are more knowledge-intensive, gain more from these
representations than those from TextTabBench.

Table 6 also shows that TextTabBench table entries are less varied than the ones of CARTE and
WikiDBs. This probably adds regularities that non-pretrained features combined with TabPFNv2 can
leverage, explaining their better performance on these datasets.
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Table 8: Overview of CARTE datasets used in our benchmark. Table statistics after preprocessing.

Dataset Task # rows # columns # classes # linked rows
Chocolate Bar Ratings b-clf 2,218 7 2 -
Coffee Ratings b-clf 1,670 9 2 -
Michelin b-clf 6,774 6 2 -
NBA Draft b-clf 1,550 5 2 -
Ramen Ratings b-clf 3,726 5 2 -
Roger Ebert b-clf 2,668 6 2 -
Spotify b-clf 41,096 8 2 -
US Accidents Severity b-clf 20,930 10 2 -
Whisky b-clf 1,788 7 2 -
Yelp b-clf 60,088 9 2 -
Zomato b-clf 60,302 8 2 -

Movies reg 7,224 8 - 7,095
US Accidents Counts reg 22,623 7 - 14,697
US Presidential reg 19,857 7 - 13,221
Anime Planet reg 14,391 7 - -
Babies R Us reg 5,085 5 - -
Beer Ratings reg 3,197 6 - -
Bikedekho reg 4,786 6 - -
Bikewale reg 8,992 6 - -
Buy Buy Baby reg 10,718 5 - -
Cardekho reg 37,813 14 - -
Clear Corpus reg 4,724 11 - -
Company Employees reg 10,941 8 - -
Employee Remuneration reg 35,396 3 - -
Employee Salaries reg 9,211 7 - -
Fifa22 Players reg 18,085 10 - -
Filmtv Movies reg 41,205 7 - -
Journal JCR reg 9,615 5 - -
Journal SJR reg 27,931 10 - -
Japanese anime reg 15,535 12 - -
K-Drama reg 1,239 9 - -
ML/DS salaries reg 10,456 8 - -
Museums reg 11,467 15 - -
Mydramalist reg 3,400 11 - -
Prescription Drugs reg 1,714 6 - -
Rotten Tomatoes reg 7,158 11 - -
Used Cars 24 reg 5,918 7 - -
Used Cars Benz Italy reg 16,391 6 - -
UsedCars.com reg 4,009 9 - -
Used Cars Pakistan reg 72,655 5 - -
Used Cars Saudi Arabia reg 5,507 8 - -
Videogame Sales reg 16,410 5 - -
Wikiliq Beer reg 13,461 8 - -
Wikiliq Spirit reg 12,275 6 - -
Wina Poland reg 2,247 13 - -
Wine.com Prices reg 15,254 7 - -
Wine.com Ratings reg 4,095 7 - -
WineEnthusiasts Prices reg 120,975 9 - -
WineEnthusiasts Ratings reg 129,971 9 - -
WineVivino Price reg 13,834 6 - -
WineVivino Rating reg 13,834 7 - -
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Table 9: Overview of WikiDBs datasets used in our benchmark. Table statistics after preprocessing.

Dataset Task # rows # columns # classes # linked rows
CC Authors b-clf 16,224 8 2 1,302

Defenders m-clf 18,610 11 10 8,700
Philosophers m-clf 4,230 9 10 1,656
US Music Albums m-clf 3,270 11 10 2,180
Artist Copyrights m-clf 2,000 10 10 -
Artworks Catalog m-clf 1,210 9 10 -
Forward Players m-clf 1,400 11 10 -
Geographers m-clf 1,130 10 10 -
Historic Buildings m-clf 27,980 7 10 -
Islands m-clf 19,650 4 10 -
Kindergarten Locations m-clf 2,790 7 3 -
Magic Narratives m-clf 1,062 5 9 -
Museums m-clf 9,550 5 10 -
Noble Individuals m-clf 1,400 10 10 -
Notable Trees m-clf 1,408 5 8 -
Parish Churches m-clf 1,350 5 10 -
Sculptures m-clf 3,720 7 10 -
Spring Locations m-clf 5,930 3 10 -
State Schools m-clf 2,800 4 10 -
Scientific Articles m-clf 2,760 14 10 -
Sub Post Offices m-clf 1,530 4 10 -
Transport Stations m-clf 4,640 9 10 -

Business Locations reg 16,821 5 - 16,438
Dissolved Municipalities reg 13,462 7 - 1,656
Geopolitical Regions reg 1,114 7 - 1,066
Historical Figures reg 11,260 12 - 2,134
Municipal District Capitals reg 1,658 6 - 1,267
Poets reg 60,240 11 - 21,564
Territorial Entities reg 36,717 8 - 34,189
WWI Personnel reg 30,675 12 - 16,227
Artworks Inventory reg 10,635 6 - -
Drawings Catalog reg 63,130 9 - -
Eclipsing Binary Stars reg 297,934 7 - -
Registered Ships reg 4,644 7 - -
Research Articles reg 6,962 7 - -
Research Article Citations reg 4,115 10 - -
Ukrainian Villages reg 21,355 4 - -
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Table 10: Average runtimes (in seconds) for embedding extraction and ridge fitting, for varying train
set sizes.

Train-size

Models 64 256 1 024

TabuLa-8B 124± 141 145± 166 216± 258
Llama-3.1-8B 119± 133 140± 157 209± 247
Llama-3.2-3B 43± 51 51± 60 76± 93
Llama-3.2-1B 18± 20 21± 24 32± 37

Qwen3-8B 120± 144 140± 169 210± 262
Qwen3-4B 65± 82 76± 96 114± 150
Qwen3-0.6B 12± 13 14± 15 21± 22

Knowledge-card 25± 29 30± 34 45± 53
OPT-1.3B 23± 29 27± 34 40± 53

ERNIE-large 8± 6 10± 7 15± 9
RoBERTa-large 8± 6 10± 7 14± 9

ERNIE-base 5± 4 6± 4 8± 6
RoBERTa-base 4± 3 5± 3 7± 4

KGT5 5± 3 6± 4 8± 5
T5-base 5± 6 7± 7 9± 11

KGT5-small 3± 3 4± 3 6± 4
T5-small 4± 3 4± 3 6± 4

TARTE 4± 4 5± 5 8± 6
FastText 2± 4 3± 4 4± 6

Non-pretrained 0.5± 0.7 1± 1 2± 2
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Figure 6: Relative improvements to non-pretrained string representations, when using a ridge model
as a tabular learner. For each source, larger models consistently yield better performances: a.
TextTabBench b. CARTE c. WikiDBs.

15


	Introduction: background knowledge for tabular learning
	Related work
	Methodology: a benchmark for table background knowledge
	Results: knowledge representations for tabular learning
	Knowledge-rich representations boost tabular learning
	LLMs vs. KGs: entity linking is the bottleneck

	Conclusion
	More details on the experiments
	Additional results
	Runtime analysis
	Overall model ranking
	Performance analysis by data source


