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Abstract: Surface finishing is a critical yet challenging task in manufacturing,
often requiring significant manual effort and expertise. This paper presents a
novel approach to automate surface finishing using collaborative robots that learn
from human demonstrations. By leveraging user-friendly programming meth-
ods and ergodic control techniques, our system enables real-time task execution
and interaction. The proposed method maps human demonstrations onto a two-
dimensional parametric space, learns the task description using a Gaussian mix-
ture model, and employs an ergodic controller to guide the robot. Evaluation on
a 7-DoF torque controlled robot demonstrates the effectiveness of our approach
in generating accurate task descriptions and facilitating user interaction during
execution.
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1 Introduction

Collaborative robots, or cobots, are designed to work alongside humans in shared environments, set-
ting them apart from traditional robots that operate in isolation. What distinguishes cobots is their
ability to interact with human partners safely and intuitively, adapting to dynamic and uncertain
environments. While recent advancements in learning-based systems have significantly improved
these interactions, fully integrating cobots into everyday tasks remains a substantial challenge. This
paper addresses these challenges in the context of surface finishing tasks. Surface finishing oper-
ations, such as polishing, grinding, and sanding, are essential in manufacturing and construction,
particularly in industries like woodworking where surface quality relies heavily on treatment meth-
ods [1, 2]. These tasks are typically repetitive, time-consuming, and hazardous to human health, so
automation offers great advantages and several benefits for both workers and the economy. It reduces
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health risks by limiting exposure to harmful dust and noise, while also increasing efficiency, cutting
costs, and improving accuracy and quality in manufacturing. Robotic systems offer the flexibility
needed to automate surface finishing tasks, even for complex geometries [3, 4, 5].

However, automating these processes is difficult due to the challenges in quantifying surface quality
and predicting machining effects. As a result, surface finishing remains one of the least automated
processes, with most of the work still performed manually by human workers [6, 7]. Additionally,
programming robots for these tasks poses significant challenges, particularly in developing intu-
itive, user-friendly programming methods and a straightforward way to communicate task instruc-
tions, specifying precisely what the robot should do. These instructions must be flexible enough
to accommodate changes in the environment and adapt to user feedback. Current offline program-
ming methods often lack the adaptability required, resulting in areas being either under-processed
or over-processed. Despite these obstacles, there is growing interest in advancing robotic systems
for surface finishing, due to the substantial benefits they offer to both workers and industries.

Ergodic control is a method used to ensure that a robot’s trajectory covers a given space in a manner
that is proportional to a specified probability distribution. Unlike traditional control methods that
follow a predefined path, ergodic control dynamically adjusts the robot’s movements to achieve a
desired spatial coverage. This is particularly useful in tasks where thorough exploration [8, 9] or
coverage of an area is required, such as for cleaning tasks [10] or search and rescue operations [11].

Building on ergodic imitation methods as shown in [12], our approach infers robotic tasks using
learning from demonstration without the need to code. To efficiently cover surfaces, we introduce
an ergodic controller that dynamically guides the robot during task execution. The task is param-
eterized using probability distributions leveraging Learning from Demonstration (LfD) [13]. This
simplifies programming and makes it more intuitive. Additionally, the system supports real-time
user interaction, allowing users to adjust the robot’s position during task execution to interrupt un-
wanted behavior, and direct the robot to specific areas as needed. A key feature of our approach
is the use of a variable impedance scheme within a state machine, which facilitates smooth and
effective interaction by adjusting the robot’s stiffness based on the distance to the surface.

2 Approach

In our approach, a human operator demonstrates the surface finishing task by guiding the robot over
the surface of a workpiece (e.g. shown in fig. 1a). This involves the operator manually moving the
robot to perform actions such as sanding, polishing, or grinding to achieve the desired surface qual-
ity. During this process, the robot records position data, which is later used to develop a probabilistic
model of the task. This model captures key aspects of the surface finishing process, including the
specific areas to be processed and the required intensity of the finishing.

(a) Demonstration (b) Learned distribution (c) Robot execution

Figure 1: The figure shows the human demonstration of the surface finishing task (a), the desired
distribution learned from the demonstration using a Gaussian mixture model in the two-dimensional
parametric space (b), and the robot execution (c).
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2.1 Learning the Task Description and Inferring the Robot Path

To facilitate learning, the complex surface of the workpiece is mapped to a two-dimensional space
using an as-close-as-possible isometric surface parametrization, as shown in related work [14]. This
transformation reduces the three-dimensional position data from the human demonstration to a two-
dimensional space. The position data is then used to learn a probability distribution that serves as
the reference distribution for the ergodic controller. This reference distribution, which we also refer
to as the task description, is achieved using a Gaussian mixture model (GMM), which can be learned
from the data using the expectation-maximization (EM) algorithm to find the maximum likelihood
estimation for the data. The EM algorithm iteratively performs a expectation and a maximization
step to update the parameters of the GMM. The maximization problem for the GMM is to find the
parameters θ that maximize the log-likelihood function as

log p(X | θ) =
N∑
i=1

log

(
C∑

c=1

πcN (xi|µc,Σc)

)
,

θ∗ = argmax
θ

log p(X | θ),

where θ = {πc,µc,Σc}Cc=1 represents the parameters of the GMM, πc are the mixing coefficients,
N (xi|µc,Σc) is the Gaussian distribution with mean µc and covariance Σc, and N is the number
of data points. Here, X = {x1,x2, . . . ,xN} denotes the dataset consisting of the two-dimensional
position data x ∈ R2 from the human demonstration, where x represents the end-effector coordi-
nates on the surface coordinate system. The GMM provides a probabilistic framework that allows
the robot to understand and replicate the task by following the learned distribution.

For execution, an ergodic controller is used to guide the robot along the task description in real-
time, optimizing ergodicity. In this work, we are using the SMC (Spectral Multiscale Coverage)
[15, 16, 17] approach to guide the robot along the task description, where ergodic control aims to
achieve a desired coverage, represented by a probability density function p(x), which is the task
description learned from human demonstrations as

p(x) := p(x | θ∗).

Alternative, it can also be pre-defined, as shown in [16]. The coverage at time t of a single agents is
calculated as

c(x, t) =
1

Mt

M∑
i=1

∫ t

0

δ(x− xi(t)) dt,

where δ(x) is the Dirac delta function. This coverage function keeps track of the history of the
agent across multiple interrupted paths M , indicating which areas of the state space have already
been covered. The cost function, denoted as Φ(t), quantifies the deviation of the coverage c(x, t)
from the target distribution p(x). It is defined as

Φ(t) =
∑
k∈K

Λk(pk − ck(t))
2,

where pk and ck(t) are the Fourier coefficients for the two-dimensional wave-number vector k ∈ K
of the desired probability density function p(x) and the coverage c(x, t), respectively. For more
details on the ergodic control formulation, we refer to [16]. The action u of the ergodic controller is
derived from the optimal control formulation as

u∗ = argmin
u

Φ(t+ dt) subject to ∥u∥2 = umax.
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The solution to this optimization problem is given by

u∗ = −umax
b(t)

∥b(t)∥2
,

where b(t) is defined as

b(t) =
∑
k∈K

Λk(pk − ck(t))∇fk(x(t)),

and fk are the Fourier basis functions.

Given the control action at each time step, the robot’s trajectory is generated by integrating these
actions over time. The ergodic controller continuously guides the robot according to the task spec-
ification, ensuring efficient and thorough coverage of the task space in real-time. Additionally, the
controller allows for dynamic adjustments, enabling the robot to replan at each time step in response
to user interaction or changes in the desired coverage distribution.

2.2 State Machine and Stiffness Adaptation for Task Execution and Interaction

The robot employs impedance control [18] with a force overlay F d to generate the desired force
normal to the surface during task execution as

τ = J⊺(q)[GP (xd − x) +GD(ẋd − ẋ) + F d]

where GP is the stiffness matrix and GD the damping gains, J(q) = dx/dq denotes the Jacobian
for configuration q, and xd, x the end-effector desired and current position. To facilitate seamless
interaction and task execution, the robot operates using a state machine that manages different states
based on the distance to the surface. This state machine allows the user to interact with the robot
during task execution to change the robot’s position on the surface. The stiffness of the impedance
is adjusted depending on the distance to the surface. During task execution, the stiffness is set to a
higher value to follow the task description, while during interaction, the stiffness is set to a lower
value to make it easier for the user to move the robot. The transitions between these states are
governed by specific conditions related to the height difference ∆h between the tool center point
and surface:

• Idle State: The robot lifts the tool from the surface and waits for the user input to start the
task.

• Surface Finishing State: When the height difference is below the threshold dmin, the robot
switches to the surface finishing state, where the robot follows the task description using
ergodic control. This state is always active if the robotic surface finishing tool is in contact
with the surface and can be interrupted when the user lifts the robot off from the surface.

• Interaction State: If the height difference exceeds the threshold dmin, the robot switches
to the interaction state. In this state, the robot is not in contact with the surface, allowing
the user to easily reposition it. So, the robot is in interaction state if it does not touch the
surface. Depending on the distance to the surface, the robot, using impedance control, will
set a lower or higher stiffness to make it easier to move. If the user releases the robot, it
will slowly move back to the surface and switch back to the ergodic control state.

The stiffness of the robot’s impedance control is adapted based on the height difference to ensure
smooth transitions and effective task execution. The interpolation between two stiffnesses based on
the height difference to the surface is calculated as

GP = λG0 + (1− λ)G1,
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Interaction State Surface Finishing State

Idle State

surface contact

lift off from surface

start stop

∆h < dmin

dmin < ∆h

Figure 2: Robot collaboration state machine

where

λ =


0 if ∆h ≤ dmin

∆h−dmin

dmax−dmin
if dmin < ∆h < dmax

1 if dmax ≤ ∆h

.

The matrix

G0 =

[
100 0 0
0 100 0
0 0 100

]
N

m

is the stiffness in the interaction state and

G1 =

[
1000 0 0
0 1000 0
0 0 800

]
N

m

is the stiffness during task execution. This interpolation ensures a smooth transition between states,
allowing the robot to adapt its behavior based on the distance to the surface.

3 Experimental Results

The approach is evaluated on a surface finishing task using a 7-DoF torque-controlled robot. A
convex, curved surface workpiece is used to demonstrate the method. Initially, a human operator
demonstrates the task to the robot, which then follows the task description generated by the Gaussian
mixture model. During task execution, the user can interact with the robot to adjust its position.
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Figure 3: Interpolation between different stiffnesses and discreate states using the shortest distance
to the surface
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Figure 4: Comparison between execution with the proposed approach using the state machine inter-
rupting the ergodic control path 15 times (bottom left) and execution of a single ergodic control path
(bottom right) for a uniform distribution.

Fig. 4 compares two execution scenarios of the proposed approach. The image (top left) shows the
Gaussian mixture model learned from human demonstrations, which is used as the desired probabil-
ity density function for the ergodic controller. The plot (top right) shows the ergodic cost function for
the following two scenarios over the time steps. In the first scenario (bottom left), the robot follows
the task description while enabling user interaction to modify its position. This capability ensures
that the robot can adapt to changes in and user inputs, providing a more flexible and intuitive surface
finishing process. In this experiment, the user interrupts the ergodic control path 15 times, which
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causes the state machine to switch to the interaction state and allows the user to reposition the robot
during task execution. In the illustration green dots mark the starting points of trajectories, and blue
dots mark the end positions. The state machine effectively manages transitions between interaction
and task execution states, ensuring smooth and efficient operation. In the second scenario (bottom
right), the robot executes a single uninterrupted ergodic control path. The total execution time for
this scenario is approximately 10 minutes. In contrast, the first scenario takes additional time due
to user interactions. In both scenarios, the robot effectively follows the task description and ensures
thorough coverage of the workpiece surface. The ergodic cost function converges at a similar rate in
both scenarios, demonstrating that the robot can adapt to the user’s interactions without significantly
compromising the efficiency or accuracy of task execution. We further evaluated the approach with
a uniform distribution on another surface region, as shown in the appendix A.

4 Conclusion

In this paper, we presented an approach to automate surface finishing tasks using collaborative robots
that learn from human demonstrations. By leveraging ergodic control techniques and user-friendly
programming methods, our system enables real-time task adaptation, where the user can interact
with the robot and correct it’s position, while the ergodic controller keeps track of the history already
covered by the robot. The stiffness of the impedance control is adapted based on the distance to the
surface to ensure smooth transitions. The approach is evaluated on a surface finishing task using a
7-DoF torque controlled robot. Experiments show that the robot adapts to the user’s input without
significantly affecting the execution of the tasks, with the ergodic costs decrease with the same
tendency.

Future work will focus on improving the system’s robustness and adaptability to handle more com-
plex and varied surface geometries. This can be achieved by incorporating surface segmentation
techniques as demonstrated in related works [19, 20, 21], which will allow the robot to handle dif-
ferent segments of a surface as discrete states. This will enable users to interactively switch between
segments during the task. Additionally, optimizing the coverage and effectiveness of the task by
considering different contact points on the surface finishing tool, as explored in [22], can be further
investigated. This will allow the robot to adapt its contact strategy based on the specific requirements
of the surface being finished.
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A Experiment with Uniform Coverage
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Figure 5: This figure illustrates the comparison between two execution scenarios using the proposed
approach with a uniform distribution, which differs from the Gaussian mixture model used in the
previous figure. The bottom left shows the robot’s path when the state machine interrupts the ergodic
control path 12 times, allowing for user interaction. The bottom right depicts the robot’s path during
a single uninterrupted ergodic control execution.
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[9] C. Bilaloglu, T. Löw, and S. Calinon. Whole-body ergodic exploration with a manipulator
using diffusion. IEEE Robotics and Automation Letters, 8(12):8581–8587, 2023. doi:10.1109/
LRA.2023.3329755.
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