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Abstract

Contrastive learning (CL) has emerged as a powerful framework for learning struc-1

tured representations that enable a wide range of downstream tasks. Its applications2

span sample-efficient reinforcement learning (RL), retrieval-augmented generation,3

and improved selection of model-generated samples, among others. Despite these4

successes, its potential for combinatorial reasoning problems remains largely un-5

tapped. In this paper, we take a step in this direction by using temporal contrastive6

learning to learn representations conducive to solving combinatorial problems,7

which will reduce our reliance on planning. Our analysis reveals that standard CL8

approaches struggle to capture temporal dependencies over complex trajectories.9

To address this, we introduce a novel method that leverages negatives from the10

same trajectories. Across three complex reasoning tasks, our approach outperforms11

traditional supervised learning.12

1 Introduction13
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Figure 1: CR2 makes representations reflect the
structure of the combinatorial task. t-SNE visual-
ization of representations learned by CR2 (left) and CRL
(right) for Sokoban, with one trajectory highlighted us-
ing arrows connecting consecutive points. Colors corre-
spond to trajectories. CRL representations (right) cluster
within trajectories, making them useless for planning.

Deep contrastive learning (CL) has achieved re-14

markable progress in vision [40], control [18],15

and language modeling [54]. However, it contin-16

ues to fall short on tasks that require structured,17

combinatorial reasoning. Even relatively simple18

problems, such as planning in puzzles or verify-19

ing symbolic constraints, remain challenging for20

end-to-end learning systems [50, 31]. Address-21

ing these problems currently still requires resort-22

ing to often computationally expensive search al-23

gorithms, such as A* or Best First Search (BFS).24

This work centers on the question: Can we learn25

structured representations that reduce or elim-26

inate the need for search in combinatorial rea-27

soning tasks?1 We approach this question by leveraging temporal contrastive learning [45, 18, 15, 34].28

These self-supervised techniques are designed to acquire compact, structured representations that29

capture the problem’s temporal dynamics, enabling efficient planning directly within the latent space.30

While CL has shown promise in control tasks, we observe that its effectiveness in combinatorial31

domains is significantly limited. Specifically, we identify a critical failure mode where contrastive32

representations overfit to superficial, instance-specific context, hindering the learning of underlying33

1For instance, finding Euler paths in a graph would be trivial if a deep-learned representation could directly
provide information about the degrees of its vertices.
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environment dynamics. Consequently, models fail to adequately capture the temporal and causal34

structure that is vital for effective decision-making. This failure mode—such as when the model35

overfits to wall layouts in Sokoban (Section 4.1)—manifests as a collapse of trajectory representations36

into small, disconnected clusters, as illustrated in Figure 1 (right).37

To solve this, we introduce Contrastive Representations for Combinatorial Reasoning (CR2), a simple,38

theoretically grounded CL method that uses in-trajectory negatives. By design, CR2 forces the model39

to distinguish between temporally distant states within the same episode. This mechanism prevents it40

from exploiting irrelevant context—such as visual or layout cues—and instead focuses on learning41

temporally meaningful embeddings that reflect the problem’s relevant dynamics. This inductive42

bias echoes recent findings in neuroscience, where overlapping event trajectories are represented43

increasingly distinctly in the hippocampus to reduce interference. [7]44

We evaluate CR2 across challenging combinatorial domains: Sokoban, Rubik’s Cube, N-Puzzle,45

Lights Out, and Digit Jumper. Due to their large, discrete state spaces, sparse rewards, and high46

instance variability, they serve as rigorous testbeds for evaluating whether learned representations47

can support efficient, long-horizon reasoning. In each case, CR2 significantly improves planning48

efficiency over standard contrastive learning, and approaches or surpasses the performance of strong49

supervised baselines. We also validate our approach on a robotic control task.50

Our main contributions are the following:51

• We identify and analyze a critical failure mode in standard contrastive learning (CL), showing52

its inability to capture relevant temporal or causal structure in combinatorial problems.53

• We propose Contrastive Representations for Combinatorial Reasoning (CR2), a novel and54

theoretically grounded CL algorithm that utilizes in-trajectory negative sampling to learn55

high-quality representations for combinatorial reasoning.56

• Through extensive empirical evaluation, we show that CR2 improves search efficiency57

compared to other approaches.58

2 Related Work59

We build upon recent advances in self-supervised RL and contrastive representation learning, showing60

that they can be applied successfully to complex combinatorial problems.61

Contrastive Learning Contrastive learning has emerged as a widely adopted approach for model62

pretraining [27, 42]. It facilitates the discovery of rich representations [9, 8] from unlabeled data63

that improve learning downstream tasks [53], thereby reducing dependence on human annotations.64

Importantly, contrastive learning enabled effective learning of large-scale models in fields such as65

computer vision [57, 6], VLMs [40, 30], NLP [48] and real-world applications including RAG [21].66

The foundational idea of contrastive learning is to learn representations by pulling similar data points,67

i.e. ones that belong to the same underlying concept, closer together and pushing dissimilar ones68

further apart in the representation space [52]. It has been shown that representations learned in69

this way demonstrate discriminative power for downstream tasks and exhibit properties such as70

generalization, robustness [49], and transferability [26].71

Contrastive Representations for Sequential Problems Recently, self-supervised contrastive72

learning has been also applied to sequential (or temporal) problems, including goal-conditioned73

RL [18, 51, 34], skill-learning algorithms [37, 60, 14], or exploration methods [22]. Most temporal-74

based contrastive algorithms are based on optimizing InfoNCE objective [47] to distinguish real75

future states in the trajectory from random states. Interestingly, Eysenbach et al. [15] demonstrate76

that inferring intermediate state representations can be performed by linear interpolation between the77

initial and final representations. Based on these findings, we hypothesize that such representations78

might facilitate planning in complex combinatorial problems.79

Combinatorial Problems Combinatorial environments are characterized by discrete, compact80

observations that represent exponentially large configuration spaces, often associated with NP-81

complete problems [28]. Recent RL advancements address these challenges using neural networks82

to learn efficient strategies, including policy-based heuristics [33, 2], graph neural networks for83

structural exploitation [5, 29], and imitation learning with expert demonstrations [46].84
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Planning in latent space. Planning in complex environments can be made more efficient by85

leveraging learned state representations. Techniques such as autoencoders have been employed to86

reduce the dimensionality of the state space and learn world models [23, 24]. Some approaches focus87

on learning representations that preserve only the features relevant for planning [44, 19]. For robotic88

applications, latent representations are trained to guide movement and decision-making [25, 19].89

Furthermore, [17] frames goal-conditioned planning as a representation learning problem.90

3 Preliminaries91

Combinatorial problems and dataset properties We focus on combinatorial problems, which92

can be formulated as deterministic goal-conditioned controlled Markov processes (S,A, p, p0, rg, γ).93

At each timestep t, the agent observes both state st ∈ S and goal g ∈ S, and performs action94

at ∈ A. We assume that the transition function p : A× S → S is known and deterministic, while95

the initial states might differ as they are sampled from the distribution p0(s0). We define reward96

function rg = 1 for st = g and rg = 0 otherwise. The objective is to learn goal-conditioned97

policy π(a | s, g) that maximizes the expected reward: maxπ Ep0(s0),pg(g) [
∑∞
t=0 γ

trg (st, at)] .98

We study an offline learning setup with a dataset of successful yet suboptimal trajectories τi =99

((s1, a1), (s2, a2), . . . (g,−)). We define the distance function d : S2 → R as follows: for s1, s2 ∈ S100

d(s1, s2) = n if sn is reachable from s1 in n actions, and there does not exist shorter path between101

s1 and sn. Formally, sn is reachable from s1 if there exist a path a1, a2, . . . , an, such that sn =102

p(an, p(an−1, p(. . . , p(a1, s1)))).103

Contrastive Reinforcement Learning We employ a contrastive reinforcement learning (CRL)104

method [18] to train a critic, f(s, a, g), which estimates the correlation between the current state-105

action pair and future states. The critic consists of two embedding networks: one for state-action pairs,106

ϕ, and another for goals, ψ. These networks generate representations ϕ(s, a) and ψ(g), respectively.107

The energy function, fϕ,ψ(s, a, g), then measures a form of similarity between these representations108

that reflects the structure of the task. To train the critic, we use the InfoNCE objective [47] as in109

previous CRL works [18, 16, 59, 58, 34, 3]. Specifically, we construct every batch B, by sampling110

n random trajectories from the dataset. For each trajectory, we select a state-action pair (si, ai)111

uniformly and draw goal gi, using a Geom(1 − γ) distribution over future states. Negative pairs112

consist of state-action pairs (si, ai) and goals gj from different trajectories. The critic’s objective is:113

min
ϕ,ψ

EB

[
−
∑|B|

i=1
log

(
efϕ,ψ(si,ai,gi)∑K
j=1 e

fϕ,ψ(si,ai,gj)

)]
. (1)

Mutual-Information For two random variables X and Y with joint density p(x, y) and marginals114

p(x), p(y), the mutual information (MI) can be understood as the KL-divergence between the joint115

distribution and the product of its marginals:116

I(X;Y ) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
= H(X)−H(X |Y ), (2)

Intuitively, MI quantifies the reduction in the uncertainty of one random variable from observing the117

value of the other. In Conditional Mutual-Information, I(X;Y | C) measures the extra information118

Y provides about X once the context C is known; it captures the dependence that remains after119

“factoring out” C. It is zero precisely when X and Y are conditionally independent given C.120

I(X;Y | C) = Ep(x,y,c)
[
log

p(x, y | c)
p(x | c) p(y | c)

]
= H(X | C)−H(X | Y,C). (3)

Search-based planning is a widely used approach for solving complex environments [46, 4, 55, 36].121

In our study, we focus on the Best-First Search (BestFS) [38] planner. BestFS builds the search tree122

by greedily expanding nodes with the highest heuristic estimates, hence targeting paths that are most123

likely to lead to the goal. While not ensuring optimality, BestFS provides a simple yet effective124

strategy for navigating complex search spaces. The pseudocode for BestFS is outlined in Appendix125

B. In our work, we use distances in the latent space as the heuristic, as detailed in Section 3.126
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4 Method: Temporal Representations that Ignore Context127

The main contribution of this paper is a method for learning representations that facilitate search.128

We use an off-the-shelf search algorithm (BestFS) and focus on how distance defined on learned129

representations can serve as an effective value function for guiding the search. We start by describing130

how naive temporal contrastive representations, obtained with CRL, fail in combinatorial problems.131

Using Sokoban as an example, we will highlight why this approach fails (Sec. 4.1), and use it to132

motivate (Sec. 4.2) a different contrastive objective that better facilitates search on many problems of133

interest. Section 4.3 summarizes our full method, CR2, which integrates improved representation134

learning with BestFS search.135

4.1 Failure of Naive CRL in Combinatorial Domains136

Start
End

CR2 CRL

Figure 2: Applying temporal contrastive
learning to the Sokoban environment (Top)
results in representations (Bottom) that pri-
marily indicate the layout of walls.

In this work, we develop a representation learning method137

that enables the use of distances in representation space as138

a heuristic for search. We use a neural network ϕ : S 7→ Rk139

to embed observations into k-dimensional representations.140

The critic output is defined as the norm between these em-141

beddings: f = ||ϕ(s)− ϕ(g)|| (see details in Appendix C).142

We assume access to a dataset of trajectories (st)t=1..N ,143

which could be collected from expert or random policies.144

Baseline algorithm, CRL (outlined in Sec. 3), fits the repre-145

sentations ϕ(s) using temporal contrastive learning and use146

representation distances as a heuristic function for BestFS.147

When we applied this approach to the game of Sokoban, we148

found that it struggled to find effective strategies. Sokoban149

is a puzzle game where an agent must push boxes to target150

locations in a maze. Each level (or problem instance) is151

generated with a random wall pattern, meaning that mazes152

vary significantly between episodes. Figure 2 shows two153

Sokoban boards from our dataset. Although they require154

similar high-level strategies (e.g., box-pushing, avoiding dead ends), their layouts are very different.155

We attempted to apply the standard CRL method to this domain. In CRL, positive pairs are sampled156

from nearby states within the same trajectory, while negatives come from different trajectories. Due157

to the large variety of wall layouts, each batch element will usually correspond to a different maze.158

Therefore, looking only at the wall pattern to decide whether two states form a positive pair, results159

in a perfect accuracy. We demonstrate that using CRL results in a network that does exactly that.160

Figure 2 shows a 2D t-SNE projection of the learned representations. Embeddings from different161

mazes form tight, isolated clusters. This confirms that the model is primarily encoding the sokoban162

board layout, not the temporal structure of the task.163

4.2 Learning Representations that Ignore Context164

To mathematically understand the failure mode in the example from Sec. 4.1, we start by introducing165

a context random variable that is held constant across time. In Sokoban, we can decompose the state166

observation into two parts: the static part (positions of walls and box goals) and the dynamic part167

(positions of player and boxes). The context is this static part. In a general setting, assume that we168

have a state S, S = (C, T ), where C is constant through the trajectory and T varies with time.169

Definition 4.1. Context C is a latent variable that parametrizes the distribution over trajectories.170

Specifically, we assume each trajectory (X1, . . . , XT ) ∼ P(X1:T |C), where Xt denotes the state171

at time t. The context C captures all static properties and initial conditions influencing trajectory172

evolution and remains constant throughout the trajectory.173

For the sake of our analysis, we make the following assumption on the relationship between contexts174

and trajectories:175

Assumption 4.2. For a context C and a trajectory (X1, . . . , XT ) ∼ P(X1:T |C), for i > j, Xi and176

C are conditionally independent given Xj . We write Xi ⊥ C | Xj .177
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Note that this holds in Sokoban if we take the context to be the static elements of the states, fixed178

throughout a trajectory.179

Based on this mathematical understanding of the context, we now introduce an alternative method180

for learning the representations. Our method differs from CRL in a crucial way - it conditions181

the sampling of positives and negatives on the context. Specifically it works by first sampling the182

context c ∼ P(C), then positive pairs (x, x+) from the conditional joint distribution P(X,X+|c)183

and negatives from the marginal conditional distribution x(i)− ∼ P(X|c) for i ∈ {1, . . . , N − 1}.184

The resulting contrastive learning objective is:

L = max
s

Ec∼P(C)E(xj ,xj+)∼P(X,X+|C),

xij−∼P(X|c)
i,j∈{1,...,N}

 1

N

N∑
j=1

exp(f(xj , xj+))

exp(f(xj , xj+)) +
∑N−1
k=1 exp(f(xj , xkj−))

 ,
where f(·, ·) is the similarity score between state pairs. Our objective serves as a lower bound on the185

conditional mutual information I(X;X+|C), see Ma et al. [32].186

We analyze the I(X;X+|C), showing that optimizing it results in learning representations that ignore187

the context variable, avoiding the failure mode from Sec. 4.1. First, applying the chain rule and188

symmetry of mutual information gives:189

I(X;X+|C) = I(X+;X|C) = I(X+;X,C)− I(X+;C)

= I(X+;X)− (I(X+;C)− I(X+;C|X))

= I(X;X+)− (I(X+;C)− I(X+;C|X)) (4)

Using X+ ⊥ C | X , we get I(X+;C|X) = 0, yielding:

L ≤ I(X+;X|C) = I(X;X+)− I(X+;C)

Our formulation reveals a core trade-off: optimal representations not only maximize I(X;X+) (as190

in CRL) but also minimize I(X+;C), encouraging representations that are as context-invariant as191

possible. Consequently, among all representations that are optimal under the standard objective192

(CRL), our method preferentially selects those that contain minimal information about the context.193

Therefore, the theoretical guarantees established for CRL are expected to remain valid.194

This minimization of I(X+;C) closely parallels the goal of adversarial feature learning, where a195

discriminator is trained to predict the context from the representation and an encoder is trained to fool196

it, leading to context-invariant features. In contrast, our method achieves a similar effect through the197

objective itself, without the need for adversarial optimization. This connection underscores that our198

approach promotes invariance in a more stable and principled way, avoiding the challenges typically199

associated with adversarial training.200

4.3 Method Used in Practice201

Intuitively, incorporating in-trajectory negatives alongside standard in-batch negatives enables a202

trade-off between optimizing the conventional contrastive learning objective, which maximizes203

mutual information between inputs and their positives (I(X;X+)), and our proposed objective,204

which additionally penalizes shared information between positives and their context (I(X+;C)), i.e.,205

optimizing I(X;X+)− I(X+;C). Empirically, we find that a mixture of both negative types yields206

superior performance (see Section 5.6).207

To implement this, we introduce a lightweight modification to the data loading procedure (detailed208

in Algorithm 4.3) that facilitates the sampling of in-trajectory negatives. Under this setup, standard209

in-batch contrastive learning naturally includes a subset of in-trajectory negatives. The repetition210

factor governs the proportion of such negatives, thereby providing a controllable mechanism to211

interpolate between the standard and proposed objectives. We provide further support for this design212

choice in Section 5.6.213

4.4 What if the context is not constant?214

The Sokoban example illustrates a common challenge in reasoning tasks: when the context remains215

constant throughout a trajectory, learned representations often fail to capture the underlying temporal216
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1 # dataset.shape == [num_traj , traj , obs_dim]
2 # CRL (prior work):
3 trajectories = np.random.choice(dataset.shape [0], batch_size)
4 batch = dataset[trajectories]
5

6 # CR^2 (our approach):
7 trajectories = np.random.choice(dataset.shape [0],
8 batch_size // repetition_factor)
9 trajectories = np.repeat(trajectories , repetition_factor , axis =0)

10 batch = dataset[trajectories]
11 # further batch processing , the same for CRL and CR^2

Figure 3: We propose a simple modification (CR2) to how data is typically sampled for temporal
contrastive learning (CRL) that results in representations discarding task-irrelevant context, boosting
performance (See Fig. 4).

structure. This issue also manifests in domains like Sudoku, Minesweeper, and graph-based problems217

such as the Traveling Salesman, where the context provides limited or no temporal signal.218

A related challenge arises when there is no fixed context. In the Rubik’s Cube, for instance, all states219

are mutually reachable, making it difficult to define a stable reference context. Nevertheless, if we220

focus on the more shuffled portion of the trajectory, simple heuristics like Hamming distance can221

classify state pairs with 90% accuracy. This suggests that while each move introduces temporal222

change in some parts of the cube, others remain unchanged, implicitly forming a type of context. As223

a result, networks may latch onto features that correlate with this pseudo-context rather than true224

temporal proximity. In Section 5.2 we empirically demonstrate that our method can also improve225

performance in the case of such a context.226

5 Experiments227

Our experiments aim to answer the following research questions:228

1. Does learning representations that ignore context improve performance on combinatorial229

reasoning problems? (Sec. 5.2)230

2. Are representation learning methods competitive with successful deep learning methods for231

combinatorial reasoning once context is removed? (Sec. 5.3)232

3. Does removing context also provide representations that enable stronger temporal reasoning233

and stitching in domains outside combinatorial reasoning? (Sec. 5.4)234

4. Do learned representations alone suffice for reasoning or is search essential? (Sec. 5.5)235

5. What is the relative importance of design decisions, such as how the negatives are sampled236

and the number of in-trajectory negatives? (Sec. 5.6)237

5.1 Experimental Setup238

Environments We evaluate all methods on five challenging combinatorial reasoning tasks: Sokoban,239

Rubik’s Cube, N-Puzzle, Lights Out, and Digit Jumper. Most of these are NP-hard [12, 10, 41]240

and serve as standard RL benchmarks [1, 39, 56]. Sokoban is a grid-based puzzle where an agent241

pushes boxes to targets while avoiding irreversible states. Rubik’s Cube requires aligning each face242

of a 3D cube to a single color. N-Puzzle involves sliding tiles within a 4 × 4 grid to reach a goal243

configuration. Lights Out is a toggle-based puzzle aiming to switch all cells to an off state. Digit244

Jumper is a grid game where each cell indicates the jump length from that position. See Appendix A245

for full environment details.246

Baselines We compare against three baselines. The contrastive baseline follows standard contrastive247

RL [18], training representations without in-trajectory negatives. The supervised baseline predicts248

state distances using a value network trained via imitation on demonstrations. DeepCubeA [1], a249

strong combinatorial reasoning method, learns a value function via iterative one-step lookahead on in-250
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Figure 4: CR2 performs well in all the evaluated domains. Performance of CR2 compared to baselines.

creasingly challenging states. We also consider the performance resulting from taking representations251

from a randomly initialized network as a lower bound.252

For fairness, the CRL and supervised baselines use the same architecture as CR2. All methods,253

including DeepCubeA, use BestFS for planning. During tree search, all actions are considered for254

Rubik’s Cube, N-Puzzle, Digit Jumper, and Sokoban; for Lights Out, expansion is limited to the top255

eight actions ranked by the value function. Further evaluation details are provided in Appendix D.256

Metrics There are two metrics of main interest to us: correlation and solved rate. Correlation is257

Spearman’s Rank correlation between the distance in the representation space and the actual distance258

in time. The solved rate at a given computational budget is the fraction of initial states from which a259

solution has been found to all states considered.260

Our code is available online https://github.com/combinatorialreasoning/crcr. The train-261

ing details are specified in Appendix C.262

0k 10k 20k 30k 40k 50k 60k 70k
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy

CR2 (ours)
CRL

Figure 5: Accuracy of training
objectives. CRL quickly acquires
near-perfect accuracy, however
this is due to relying only on su-
perficial features, like walls.
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5.2 Impact of Context-Free Representations on Combinatorial Reasoning263

Figure 4 compares CR2 to standard Contrastive Reinforcement Learning (CRL) without in-trajectory264

negatives and random baseline. Across all domains, CR2 consistently improves search efficiency, with265

the largest gains in Sokoban and Digit Jumper. We therefore conclude, that using CR2 is correlated266

with improved performance on combinatorial reasoning problems.267

Moreover, the improvement is caused by removing the context information: We consider the example268

of Sokoban. CRL immediately achieves 100% training accuracy (Figure 5) despite poor correlation269

(Figure 6), suggesting that it is, in fact, ignoring the temporal aspect and looking solely at the context.270

In contrast, CR2 is unable to pick up on the context, avoiding trivial solutions (Figure 5) and learning271

geometry aligned with state-space distances (Figure 6). A corresponding analysis for Digit Jumper is272

included in Appendix F.273

5.3 Competitiveness of Context-Free Representations with Supervised Baselines274

We test whether CR2 is competitive with supervised approaches for solving combinatorial problems.275

We display the result in Figure 4. In all the environments considered, CR2 demonstrates consistently276

strong performance. It ranks among the top-performing methods in each environment and is strictly277

the best one in two cases. In contrast, the supervised baselines are performing much worse in Rubik’s278

Cube and Lights Out.279

In our evaluations, each method uses the same planning algorithm – BestFS. This suggests that the280

advantage of CR2 stems from the structure of its learned representations, which provide more effective281

guidance for planning compared to the direct value estimation approach used by the baselines. While282

in Sokoban, they achieve higher scores, the difference is small.283

5.4 Generalization to Temporal Reasoning in Non-Combinatorial Domains284

0 10 20 30 40
Evaluation Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

la
tio

n

Temporal Structure in D4RL Environments
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Figure 8: CR2 improves temporal struc-
ture in robotics environments. Compari-
son of correlation metric for CRL (solid) and
CR2 (dotted) for D4RL offline datasets.

To investigate whether CR2 also improves the tempo-285

ral structure in non-combinatorial domains, we consider286

Adroit simulations from D4RL [20]. Those tasks require287

using a high-dimensional robotic hand, to perform various288

tasks. They are specifically designed to test fine motor289

control and long-horizon planning in challenging settings.290

We look at the correlation through training for CR2 and291

CRL (Fig. 8). CR2 results in a higher correlation (more292

than 0.9 in comparison to 0.5-0.8 depending on the envi-293

ronment), as well as visibly better training stability – for294

standard CRL, the correlation is visibly unstable through295

training and in some cases even becomes smaller as the296

training progresses. We conclude that using CR2 results297

in a better temporal structure in the representation space298

for non-combinatorial problems.299

5.5 Is search still necessary?300

One of our main questions was whether having good representations allows to use no search, or at301

least, decrease the amount of search needed. We test the approach, where we always only consider302

one action, predicted to be the best by our heuristic. We do this until we arrive at the same state for303

the second time, or exceed the budget of 6000 nodes. Table 1 demonstrates the results of not using304

search in CR2, our contrastive baseline, and the supervised baseline. While our approach improves305

the performance without search, for Rubik’s Cube and 15-puzzle, the solved rate is very close to 0. In306

Figure 7 we demonstrate the performance for the no-search approach, for the increasingly shuffled307

Rubik’s cube. All the methods’ performance decreases exponentially as the number of shuffles is308

increased. This is expected, as the number of states reachable within n shuffles follows an exponential309

trend, for n ≤ 18. [43] We therefore conclude that while our method does perform better than the310

baselines, search is still necessary for achieving the optimal performance. For additional no-search311

results, see Appendix E.312
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Figure 9: Influence of the repetition factor depends on the environment type. Increasing the repetition
factor for Sokoban, N-Puzzle, and Rubik’s Cube, respectively. Factor 2.0 corresponds to our CR2, while factor
1.0 corresponds to the CRL baseline.

5.6 In-trajectory Negatives Design Choices313

Table 1: Performance of the baselines and CR2 on Rubik’s
Cube, Lights Out, 15-puzzle and Sokoban without using
search.

Problem CR2 Contrastive
Baseline

Supervised
Baseline

Rubik’s Cube 0.03 0.02 0.0
Lights Out 0.98 0.47 0.91
15-puzzle 0.0 0.0 0.0
Sokoban 0.30 0.0 0.23

Limitations of the Standard Approach314

The standard way to introduce in-trajectory315

negatives is to follow conventional tech-316

niques for incorporating hard negatives.317

However, we found that such straight-318

forward approaches consistently underper-319

formed compared to CRL, resulting in320

lower solve rates and weaker correlations.321

Although we were able to achieve some322

improvement on the Rubik’s Cube by ap-323

plying an unconventional normalization324

scheme, this strategy did not yield similar325

gains on Sokoban. For full loss formula-326

tions and detailed results, see Appendix G.327

Balancing In-Trajectory and In-Batch Negatives Our method introduces a single additional328

hyperparameter: the repetition factor R. This parameter controls the proportion of in-trajectory329

negatives and is critical for achieving strong performance. As shown in Figure 9, the impact of330

increasing R varies by environment. For Sokoban, higher values of R lead to only a slight decline331

in performance. In contrast, in many other environments, excessive repetition can significantly332

degrade results. While R = 2 is not always optimal, it consistently improves performance across all333

environments we evaluated and serves as a strong default choice.334

6 Conclusion335

In our work, we introduced CR2, an algorithm for learning high-quality representations in combinato-336

rial reasoning tasks. Our analysis revealed a critical limitation of prior approaches: when training337

demonstrations are separable, their learned representations become trivial and ineffective for planning.338

CR2 addresses this by balancing global negatives, which capture overall task structure, with local339

negatives, which enforce temporal consistency. Experimental results across four domains highlight340

its effectiveness.341

Limitations This work focuses on understanding the role of representations in combinatorial342

reasoning. We are interested mostly (though, see Sec. 5.4) in domains with discrete states and actions343

and known dynamics. Moving forward, we are interested in applying these methods to domains of344

real-world interest, such as chemical retrosynthesis and robotic assembly. These domains also have345

rich combinatorial structure, but introduce additional complexity because the dynamics are unknown346

and observations can be noisy.347

Impact Statement348

This paper presents work whose goal is to advance the field of Machine Learning. There are many349

potential societal consequences of our work, none of which we feel must be highlighted here.350
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A Environments531

Sokoban. Sokoban is a well-known puzzle where the player must push boxes onto target locations532

within a confined grid. Its high combinatorial complexity and PSPACE-hard nature [13] make it a533

benchmark for both classical planning and deep learning methods. Sokoban challenges algorithms to534

balance search efficiency and long-term planning. In our experiments, we use 12×12 Sokoban boards535

with four boxes.536

Figure 10: An example instance of Sokoban. Figure 11: An example instance of Rubik’s Cube.

Rubik’s Cube. The Rubik’s Cube is a 3D combinatorial puzzle with over 4.3 × 1019 possible537

configurations, making it an iconic testbed for algorithms tackling massive search spaces. Solving538

the Rubik’s Cube requires sophisticated reasoning and planning, as well as the ability to navigate539

high-dimensional state spaces efficiently. Recent advances in using neural networks for solving540

this puzzle, such as [1], highlight the potential of deep learning in handling such computationally541

challenging tasks.542

N-Puzzle. The N-Puzzle is a sliding-tile puzzle with variants like the 8-puzzle (3×3 grid), 15-puzzle543

(4×4 grid), and 24-puzzle (5×5 grid). The objective is to rearrange tiles into a predefined order by544

sliding them into an empty space. It serves as a classic benchmark for testing algorithms’ planning545

and search efficiency. The problem’s difficulty scales with puzzle size, requiring effective heuristics546

for solving larger instances.547

Figure 12: An example instance
of N-Puzzle.

Figure 13: An example instance
of Lights Out.

Figure 14: An example instance
of Digit Jumper.

Lights Out The Lights Out is a single-player game invented in 1995. It is a grid-based game where548

each cell (or light) can either be on or off. Pressing a cell flips its state and those of its immediate549

neighbors (above, below, left, and right). Corner and edge lights have fewer neighbors and therefore550

affect fewer lights. The goal is to press the lights in a strategic order to turn off all the lights on the551

grid.552

Digit Jumper Digit Jumper is a grid-based game, where the goal is to get from the top-left corner of553

the board to the bottom-right one. At each point, the player can move n steps to the left, right, up or554

down, where n is determined by the number written on the board. Digit Jumper is an example of an555

environment with a constant context as is Sokoban.556
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B Best-First Search557

Best-First Search greedily prioritizes node expansions with the highest heuristic estimates, aiming558

for paths that likely lead to the goal. While not ensuring optimality, BestFS provides a simple yet559

efficient strategy for navigating complex search spaces. The high-level pseudocode for BestFS is560

outlined in Algorithm 1.561

Algorithm 1 Pseudocode for Best-First Search
while has nodes to expand do

Take node N with the highest value
Select children ni of N
Compute values vi for the children
Add (ni, vi) to the search tree

end while

562
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Figure 15: Grid of network’s depth, representation dimension and hidden dimension.
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Figure 16: Learning rate and batch size grid for the
Rubik’s Cube. Solved rate is investigated on a cube
that has been shuffled only 10 times.
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Figure 17: Use of normalization in contrastive learn-
ing and whether the distance from positives is divided
by sum of all batch elements or only the in-batch nega-
tives.

Code to reproduce all results is available in the anonymous repository referenced in the main text.564

Below, we document the training procedures for the supervised baseline, contrastive baseline, and565

CR2.566

Training Data For Sokoban, we use trajectories provided by Czechowski et al. [11], and train on567

a dataset of 105 trajectories. For 15-Puzzle, Rubik’s Cube, and Lights Out, we generate training568

trajectories by applying a policy that performs n random actions, where n is set to 150, 21, and 49,569

respectively. In the case of 15-Puzzle, we additionally remove single-step cycles from the dataset570

to improve data efficiency. For Digit Jumper, we generate training data by sampling a random path571
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Figure 18: Trainings with different metrics for the
Rubik’s Cube. The solved rate is for a cube shuffled 10
times.
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Figure 19: Symmetric contrastive loss vs. backward
contrastive loss.

from the upper-left corner to the bottom-right corner on a standard 20× 20 grid. All grid cells not572

required for this path are filled by sampling uniformly from the set 1, . . . , 6. The network for Digit573

Jumper typically saturates in performance after a few hours of training, so we train until convergence574

is observed. For Sokoban, Rubik’s Cube, Lights Out, and 15-Puzzle, we adopt an unlimited data575

setup and train all models for two days. This results in the models seeing approximately 8 × 106576

trajectories for Rubik’s Cube, 7× 106 for 15-Puzzle, and 9× 106 for Lights Out.577

Training Hyperparameters We use the Adam optimizer with a constant learning rate throughout578

training. A learning rate of 0.0003 was found to perform well across all environments, with the579

exception of Lights Out, where this setting led to unstable training. For this environment, we instead580

use a reduced learning rate of 0.0001. In all environments, we use a batch size of 512. The choice of581

learning rate and batch size was guided by the performance of the contrastive baseline on Rubik’s582

Cube. Specifically, we evaluated solve rates on cubes shuffled 10 times, as shown in Figure 16.583

Network Architecture We adopt the network architecture proposed by Nauman et al. [35], using584

8 layers with a hidden size of 512 and a representation dimension of 64. This configuration was585

found to yield optimal performance for the contrastive baseline on Rubik’s Cube, as illustrated in586

Figure 15. We observed that this architecture also performs well across all other environments, with587

two exceptions:588

• In Sokoban, a convolutional architecture was required to achieve strong performance.589

• In Lights Out, the convolutional network was necessary to ensure training stability.590

Test Set For Sokoban, we construct a separate test set comprising 100 trajectories, which is used591

to compute evaluation metrics such as accuracy, correlation, and t-SNE visualizations. For all other592

environments, a separate test set is not required, as we operate in an infinite data regime and train for593

only a single epoch. In this setting, evaluation is performed directly on unseen data sampled during594

training.595

Contrastive Loss We use the backward version of the contrastive loss, which we found to consis-596

tently outperform the symmetrized variant on Rubik’s Cube, as shown in Figure 19.597

For Rubik’s Cube, we use the dot product as the similarity metric. Performance across different598

metrics is presented in Figure 18. While the contrastive baseline performs comparably under the ℓ2599

metric, CR2 achieves significantly better results with the dot product. Based on similar empirical600

evaluations, we use the following metrics in other environments:601

• Lights Out: ℓ2 distance,602

• Digit Jumper and 15-Puzzle: dot product,603
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Table 2: Average solution length of the baselines and CR2 on Rubik’s Cube and 15-puzzle without using search.
Supervised baseline in the Rubik’s Cube solved no of the boards.

Problem CR2 Contrastive
Baseline

Supervised
Baseline

Rubik’s Cube 448.7 1830.3 NaN
15-puzzle 82.4 119.5 1054.3

• Sokoban: squared ℓ2 distance.604

We set the temperature parameter in the contrastive loss to the square root of the representation605

dimension.606

Supervised Baseline The supervised baseline takes as input a pair of states and predicts the distance607

between them by performing classification into discrete bins, where the number of bins corresponds608

to the maximum trajectory length observed in the dataset.609

In all environments—except Lights Out—the supervised baseline uses the same architecture as the610

contrastive baseline. For Lights Out, however, we employ a different architecture: a dense network,611

which achieves a performance of 0.7 solved rate, compared to a maximum of approximately 0.2 with612

a convolutional network. This significant difference in performance motivates our use of a dense613

architecture for the supervised baseline in this environment.614

D Evaluation Details615

We evaluate all networks on 1000 problem instances per environment. For Rubik’s Cube, each616

instance is a cube shuffled 20 times. For 15-Puzzle, Lights Out, and Digit Jumper, evaluation boards617

are sampled randomly. For Sokoban, we follow the same instance generation procedure as described618

by Czechowski et al. [11].619

E Additional Experiments620

No-search results In the main part of the paper, we limit the maximum solution depth for the621

no-search results. In this section, however, we remove these constraints and allow arbitrarily long622

solutions. In such a setup, for both the Rubik’s Cube and 15-puzzle, the contrastive methods achieve623

a solved rate of over 90%.624

The no-search approach operates by selecting, at each step, the next state that appears most likely625

to move toward the solved state—based on the learned representations. If the representation were626

perfect, this would yield optimal solutions. In practice, however, suboptimal representations cause627

the agent to spiral quite randomly through the representations far away from the goal state before628

converging. Thus, the quality of the representation is reflected in the length of these trajectories: the629

better the representation captures directionality in latent space, the shorter the resulting solutions.630

Table 2 reports the average solution length for the no-search approach on Rubik’s Cube and 15-Puzzle.631

These results suggest that the representations learned by CR2 are better suited for this approach632

than those learned by the contrastive baseline, and significantly outperform those derived from the633

supervised method. This supports the conclusion that CR2 provides a more reliable notion of direction634

in latent space. Remarkably, both the average for CR2 and CRL are smaller than the solutions lengths635

from the training data, indicating that we observe trajectory stitching.636

F Digit-Jumper Analysis637

In Digit Jumper, we observe a similar effect to that seen in Sokoban when comparing CR2 to standard638

CRL. As shown in Figure 20, CRL rapidly achieves 100% training accuracy. However, despite639

this perfect accuracy, the resulting representations exhibit poor correlation with actual temporal640

structure (Figure 21). This is consistent with the t-SNE representations: the same as for Sokoban,641
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Figure 20: Accuracy of training objectives.
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Figure 21: Correlation (Spearman’s ρ) between the
distance induced by learned embeddings and actual
distance.

Figure 22: CR2 makes representations reflect the structure of the combinatorial task. t-SNE visualization
of representations learned by CR2 (left) and CRL (right) for Digit Jumper. Colors correspond to trajectories.
CRL representations (right) cluster within trajectories, making them useless for planning.

CRL collapses each trajectory into a single point in the representation space, discarding temporal642

information. In contrast, CR2 preserves a clear temporal structure within the latent space (see643

Figure 22).644

G Negatives645

We explored alternative methods for incorporating in-trajectory negatives into the contrastive loss. The646

first approach mimics the standard addition of hard negatives: given a batch B = (xi, xi+)i∈{1..B},647

we sample additional negatives, (xi−)i∈{1..B}, and compute the loss as648

L =
1

B

∑
i

log

(
exp (f(xi, xi+))∑

j ̸=i exp(f(xi, xj+)) + exp(f(xi, xi−))

)
,

.649

We considered three strategies for selecting in-trajectory negatives: sampling uniformly at random,650

selecting the first state, or selecting the last state of the trajectory. For Rubik’s Cube, instead of651

choosing the last state—which is identical for all trajectories—we sample a random state further652

away from the solution to serve as a negative.653

As shown in Figures 23 and 24, training with this approach failed to achieve strong performance. We
hypothesized that the large error introduced by the in-trajectory negatives (xi−) caused excessively
large gradients, destabilizing training. To mitigate this, we applied a normalization scheme: so that
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Figure 23: Comparison of different methods of introducing in-trajectory negatives in the Rubik’s Cube
environment, with increasing number of shuffles of the cube. While normalized negatives perform similarily to
CR2 for a small number of shuffles, their performance fails to be as good for more shuffles.
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Figure 24: Comparison of different methods of introducing in-trajectory negatives in the Sokoban environment.
The only negative sampling strategy that works is CR2.
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the vector  f(x1, x1−)...
f(xB , xB−)


has the same norm as the norm (when viewing the matrix as a vector of size B2) of the matrixf(x1, x1+) f(x1, x2+) . . . f(x1, xB+)

...
...

. . .
...

f(xB , x1+) f(xB , x2+) . . . f(xB , xB+)


. This normalization enabled achieving comparable performance to CR2 on Rubik’s Cube shuffled 10654

times (Figure 23). However, CR2 still outperforms all negative sampling strategies on cubes shuffled655

15 and 20 times.656

For Sokoban, the only approach that consistently improved performance is CR2, as demonstrated in657

Figure 24. We hypothesize that this is because removing contextual information is more challenging658

in Sokoban than in Rubik’s Cube. In the latter, the context is more local and changes gradually over659

time, making it softer, while the context in Sokoban is constant through a trajectory. This is discussed660

in detail in Section 4.2.661

H Computational Resources662

All training experiments were conducted using NVIDIA A100 GPUs and took between 5 and 48663

hours each. The solving runs ranged from 10 minutes to 10 hours. In total, the project required664

approximately 30,000 GPU hours to complete.665
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