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Abstract

We study the problem of approximating compactly-supported integrable functions while imple-
menting their support set using feedforward neural networks. Our first main result transcribes this
“structured” approximation problem into a universality problem. We do this by constructing a re-
finement of the usual topology on the space L1

loc(Rd ,RD) of locally-integrable functions in which
compactly-supported functions can only be approximated in L1-norm by functions with matching
discretized support. We establish the universality of ReLU feedforward networks with bilinear
pooling layers in this refined topology. Consequentially, we find that ReLU feedforward networks
with bilinear pooling can approximate compactly supported functions while implementing their
discretized support. We derive a quantitative uniform version of our universal approximation
theorem on the dense subclass of compactly-supported Lipschitz functions. This quantitative
result expresses the depth, width, and the number of bilinear pooling layers required to construct
this ReLU network via the target function’s regularity, the metric capacity and diameter of its
essential support, and the dimensions of the inputs and output spaces. Conversely, we show that
polynomial regressors and analytic feedforward networks are not universal in this space.

1 Introduction

The variety of available deep learning architectures used in practice and studied in the literature can make it difficult
to identify which model is best for a given learning task. In this paper, we consider the problem of approximating an
essentially compactly-supported (Lebesgue) integrable function f : Rd ! RD using a the rudimentary feedforward
architecture. The typical example of such a map is the distance function to the complement of compact subset of
K ✓ Rd , defined by

x 7! dRd\K(x) := inf
z2Rd\K

kz� xk;

where K is non-empty. These maps are common in computer vision Di Gesu & Starovoitov (1999), in computational
physics Tsai (2002), and they are used for partitioning latent metric subspaces of Rd (see Cobzaş et al. (2019)).

Since an essentially compactly-supported integrable function contains more structure than an arbitrary locally-
integrable function; namely, its essential support set, it is natural to ask if we can approximate such a function to
arbitrary precision while simultaneously exactly implementing its support up to a discretization of the input space
Rd . Even if we only focus on the class of feedforward networks from Rd to RD it can be unclear which activation
function produces feedforward networks which are compatible with this objective.
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We can immediately rule-out networks built using any combined number of analytic activation functions, by virtue of
their analyticity. Examples include the sigmoid activation function, the Swish activation function of Ramachandran
et al. (2018), the GeLU activation of Hendrycks & Gimpel (2016), the Softplus non-linearity Glorot et al. (2011),
the sin function used in SIREN networks Sitzmann et al. (2020), tanh, Hermite polynomial activation functions
used in Ma & Khorasani (2005), and several others examples. Since, the composition of analytic functions is again
an analytic function then every such neural network must be analytic. The trouble is that no analytic function can
simultaneously be compactly-supported and non-zero. Therefore, no feedforward architecture using only analytic
activation functions can approximate a compactly-supported function in while exactly implementing its support (up
to a discretization of the input space Rd).

We therefore turn our attention to other most common class of activation functions; namely, (non-affine) piecewise
linear activation functions such as the ReLU nonlinearity of Fukushima (1969), the PReLU activation function of
He et al. (2015), or the leaky ReLU function of Maas et al. (2013). Since this class of activation functions is not
analytic, it is at-least possible for neural networks with piecewise linear class to approximate essentially-compactly
supported integrable functions in the aforementioned sense. Since every neural network with a piecewise linear
activation function can be implemented by a deep ReLU network (see (Yarotsky, 2017b, Proposition 1)) and since
the ReLU activation function, defined by ReLU(x) def.

= max{0,x}, vanishes on a large part of its input space then, it
is plausible that such neural networks can approximate a function while themselves having compact support. Thus,
feedforward neural neural networks with (non-affine) piecewise linear activation functions seem to be a viable
candidate for solving this approximation-theoretic problem.

In this paper, we demonstrate that deep feedforward networks with (non-affine) piecewise linear activation functions
can approximate any essentially compactly-supported (Lebesgue) integrable function f : Rd ! RD while simultane-
ously exactly implementing its support up to a discretization of Rd , provided that the feedforward model can also
leverage bilinear pooling layers. We denote this set of functions by NNReLU+Pool.

To answer this question we construct a topology t on the set of locally-integrable functions L1
loc(Rd ,RD) from Rd

to RD formalizing the mode of approximation for essentially compactly-supported integrable functions outlined
thus far. Furthermore, we wish that our universal approximation theorem implies the classical notion of L1-universal
approximation derived in (Hornik et al., 1989; Yarotsky, 2018; Gühring et al., 2020; Lu et al., 2021; Shen et al.,
2022; Opschoor et al., 2022); therefore, our topology is constructed as a refinement of the usual metric topology
on L1

loc(Rd ,RD) as well as the familiar norm topology on the subset L1(Rd ,RD) of (globally) Lebesgue-integrable
functions. Our first main result confirms that t is well-defined and that it encodes the aforementioned behaviour of
models approximating compactly supported functions.
Theorem 1 (Approximation of Essentially Compactly-Supported Lebesgue-Integrable Functions in t).
There is a strict refinement t of the topology on L1

loc(Rd ,RD) which refines the metric topology on L1
loc(Rd ,RD),

whose restriction to L1(Rd ,RD) is also a strict refinement of the L1-norm topology, and satisfies:

(i) Approximation of Compactly Supported Functions is Only Possible with Compactly Supported Models:

For every n 2 N+ and every f 2 L1(Rd ,RD) which is essentially supported on [�n,n]d, a sequence
{ fk}k2N+ in L1

loc(Rd ,RD) converges to f with respect to t only if there is an N 2 N+ with N � n such that
all but a finite number of fk are in [�N,N]d and lim

k"•
k fk � fk= 0.

(ii) Simultaneous Discretized Support Implementation and L1
-Approximation Imply t-universality: A subset

F of L1
loc(Rd ,RD) is dense for t if, for every f 2 Liploc(Rd ,RD) which is essentially compactly supported,

there is a sequence { fn}•
n=1 in F satisfying

lim
n"•

k fn � fkL1(Rd ,RD) = 0 and ess-supp( f )[
•[

n=1
ess-supp( fn)✓ [�n f �1,n f +1]d ;

where n f
def.
= min{n 2 N+ : ess-supp( f )✓ [�n,n]d}.

(iii) Non Implementability Restrictions: For every f 2 NNsPW-Lin+Pool the set { f} it not open in t .

We call the topology t constructed in the proof of Theorem 1 the compactly-supported L1-topology (csL1-topology).
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The Qualitative Effect Encoded by the CSL
1
-Topology t

Convergence to a compactly supported Lipschitz function (such as f ) in the csL1-topology t requires simultaneous
approximation of f ’s value and correct implementation of its support, instead of only requiring that f ’s values are
approximated as in the topologies on L1(Rd ,RD) and on L1

loc(Rd ,RD).

K3

K1

K2

Figure 1: Approximation of a compactly supported Lipschitz function by a ReLU network with bilinear pooling

The two-dimensional example is illustrated by Figure 1, which shows the target function f :Rd def.
=R2 !R (illustrated

in red), an approximation of it by a ReLU network f̂ with bilinear pooling (illustrated in blue), and a discretization
given by a suitable of compact subsets {Kn}•

n=1 of Rd covering Rd up to a set of Lebesgue measure 0. The target
function’s value and the network’s output are represented by the vividness (alpha) of the each respective color. We
see that ReLU network f̂ with bilinear pooling is simultaneously close to the target function f ’s value and that f̂
identifies the correct number of compacts subsets {K1,K2,K3} containing target function f is supported (possibly
with one extra set; in this case K3). Moreover, somewhat surprisingly, we will see that this approximation guarantee
is independently of our discretization of Rd (i.e. our choice of suitable compact subsets {Kn}•

n=1 of Rd).

This illustration is formalized by the following strengthened universal approximation theorem which shows that
NNReLU+Pool is universal in the topology t on L1

loc(Rd ,RD). Rigorously, we call a function s 2C(R) is said to be
non-affine and piecewise linear if R can be covered by a sequence of intervals on which s is affine and there is
at-least one point at which s is not differentiable. Let sPW-Lin be a non-affine piecewise linear activation function
and let NNReLU+Pool denote the set of deep feedforward networks mapping Rd to RD with bilinear pooling layer,
defined by Pool(x1, . . . ,x2n)

def.
= (x1x2, . . . ,x2n�1x2n), at their output.

Theorem 2 (Universal Approximation Theorem + Support Implementation for Compactly Supported Functions).
Let log2(d) 2 N+ and let t be the topology on L1

loc(Rd ,RD) from Theorem 1. If sPW-Lin 2C(R) is piecewise linear
with at-least 2 pieces then NNsPW-Lin+Pool is dense in L1

loc(Rd ,RD) with respect to t .

This qualitative universal approximation theorem confirms that (non-affine) piecewise linear neural networks
can approximate essentially-compactly supported Lebesgue integrable functions between Euclidean spaces while
exactly implementing their discretized support. However, the result does not describe the complexity of the neural
networks model. Therefore, we also derive a quantitative version of Theorem 2 specialized for the dense class of
compactly-supported Lipschitz functions mapping Rd to RD; where density is meant with respect to the topology t .

Quantitative Approximation in the CSL
1
-Topology t

Once t is constructed, the crux of our analysis when proving Theorem 2 reduces to obtaining a quantitative
“structured” universal approximation result shows that given any compactly supported Lipschitz function f : Rd !
RD we identify a neural network f̂ 2 NNReLU+Pool which can approximate f ’s value while also implementing its
discretized support.

A rigorous statement of our result requires some terminology. Denote the d-dimensional Lebesgue
measure by µ . The essential support of a f 2 L1

loc(Rd ,RD) is defined by ess-supp( f ) def.
= Rd �S�

U ✓ Rd : U open and k fk(x) = 0 µ-a.e. x 2U
 

. We say that an f 2 L1
loc(Rd ,RD) is essentially compactly

supported if ess-supp( f ) is contained in a closed and bounded subset of Rd . The regularity of a Lipschitz
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function f : Rd ! RD (i.e. a function with at-most linear growth) is quantified by its Lipschitz constant
Lip( f ) def.

= supx1,x22Rd ,x1 6=x2
k f (x1)� f (x2)k

kx1�x2k . The “complexity” of a subset X ✓ Rd is quantified both in terms of

its size diam(X)
def.
= supx1,x22X kx1 � x2k and its “fractal dimension” as quantified by its metric capacity defined by

cap(X)
def.
= sup

�
n 2 N+ : (9x1, . . . ,xn 2 X),(9r > 0) tN

i=1 B2(xi,r/5)⇢ B2(x0,r)
 
,

where t denotes the union of disjoint subsets of Rd and where B2(x,r)
def.
= {u 2 Rd : ku� xk< r}. We mention that,

for a compact Riemannian manifold, the log2-metric capacity is always a multiple of the manifold’s topological
dimension and the log2-metric capacity of a d-dimensional cube in Rd is proportional to d; (see (Acciaio et al.,
2022, 2.1.3) for further details). We denote the set of polynomial functions from Rd to RD by R[x1, . . . ,xd : D].

K1

K2

K3

Figure 2: The Cubic-Annuli Discretization of Rd (Definition 1)

Unlike classical quantitative universal approximation theorems, this next result describes the width, depth, and
number of bi-linear pooling layers required for a neural network in NNReLU+Pool to approximate a compactly sup-
ported Lipschitz functions while simultaneously exactly implementing its support; up to the following standardized
discretization of the input space

�
Kn

def.
= {x 2 Rd : n < kxk•  n+1}

 •
n=1, illustrated in Figure 2.

Let us mention that, using a using category-theoretic argument, we show that the csL1-topology t is independent of
any discretization of Rd used to construct it. Consequentially, all our universality arguments and statements, such as
Theorem 2, can without loss of generality be formulated using the standardized discretization illustrated in Figure 2.

Theorem 3 (Support Implementation and Uniform + t Approximation of ReLU Networks with Pooling).
Let f : Rd ! RD be Lipschitz and compactly-supported and log2(d) 2 N+. For every “width parameter” N 2 N+

and every sequence {en}•
n=1 in (0,•) converging to 0, there is a sequence { f̂ (n)}•

n=1 in NNReLU+Pool satisfying:

(i) Quantitative Worst-Case Approximation: for each n 2 N+ maxx2[n f ,n f ]d

��� f (x)� f̂ (n)(x)
��� en,

(ii) Convergence in CSL
1
-Topology t: {Pool� f̂ (n)}•

n=1 converges to f in the csL1-topology t ,

(iii) Support Implementation: ess-supp( f̂ (n))✓
h
� d
q

2�den +nd
f ,

d
q

2�den +nd
f

id
, where n f is defined by

n f
def.
= min{n 2 N+ : ess-supp( f )✓ [�n,n]d}.

Moreover, each f̂ (n) is specified by:

(iv) Width: f̂ (n) has Width C3 +C4 max{dbN1/dc,N +1},

(v) Depth: f̂ (n) has Depth e�d/2
n

N log3(N+2)1/2

⇣
log2(cap(ess-supp( f )))diam(ess-supp( f ))Lip( f )

⌘d
C1 +C2

(vi) Number of Bilinear Pooling Layers: f̂ (n) uses log2(d)+1 bilinear pooling layers.
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where the dimensional constants are C1
def.
= c2dD3/ddd + 3d, C2

def.
= +2d + 2, C3

def.
= max{d(d � 1) + 2,D},

C4
def.
= d(D+1)+3d+3, and where c > 0 is an absolute constant independent of X ,d, D, and f .

In addition to the main contribution of Theorem 3, there are several additional points of technical novelty in
Theorem 3. The first such point is that the network complexity depends on the metric capacity of the target
function’s essential support. Omitting constants, the depth of the ReLU networks f̂ (n) with pooling in Theorem 3
encodes three of the target function f ’s structural attributes. The first is the desired approximation quality, with
more depth translating to better approximation capacity, and the second is the target function’s regularity; both these
factors are present in most available quantitative approximation theorems (Yarotsky, 2017b; Gühring et al., 2020;
Jiao et al., 2021; Lu et al., 2021; Shen et al., 2022; Opschoor et al., 2022).

Depth( f (n))⇡ e�d/2
n

N log3(N +2)1/2
| {z }

Approximation Quality

Lip( f )d
| {z }

Target’s Regularity

⇣
log2(cap(ess-supp( f )))diam(ess-supp( f ))

⌘d

| {z }
Complexity: Target’s Essential Support

Part of the novelty of Theorem 3 is that it identifies a third quantity impacting the approximation quality of a ReLU
network with pooling; namely, the complexity of the target function’s support. This third factor can be decomposed
into two parts, the diameter of the target function’s essential support, which other approximation theorems have also
considered Siegel & Xu (2020); Kratsios & Papon (2022), but what is most interesting here is the effect of the fractal
dimension (via the metric capacity; see Bruè et al. (2021) for details) of the target function’s essential support. In
particular, the result shows that functions essentially supported on low-dimensional sets (e.g. low-dimensional latent
manifolds) must be simpler to approximate than those with unbounded support (e.g. locally Lebesgue-integrable
functions supported on Rd . Theorem 2 and variant of (Shen et al., 2022, Theorem 1.1) and of the main result of
Yarotsky (2017b) where the approximation has controlled support made to match that of the target function. To the
best of the authors’ knowledge, the result is also the only quantitative universal approximation which encodes the
target function f ’s complexity in terms of its Lipschitz regularity, as well as, the size and dimension of its essential
support. We note that, since one can show that t is not a metric topology, therefore, a quantitative counterpart of
Theorem 2 does not exist for arbitrary f 2 L1

loc(Rd ,RD) for the csL1-topology t .

An additional point of technical novelty in Theorem 3 appears through new tools to the deep learning literature used
in the result’s derivation. Namely, we introduce the non-affine random projections of Ohta (2009); Bruè et al. (2021)
to encode this dependence into the approximation using contemporary Lipschitz-extension arguments when deriving
the universal approximation theorem. We note that, these random projections are distinct mathematical objects from
the linear random projections of Johnson & Lindenstrauss (1984) and, as shown in Ambrosio & Puglisi (2020),
these random projections are closely related to the random partitions of unity introduced by Lee & Naor (2005).

A Sanity Check: Comparison Between Networks in NNReLU+Pool
and Analytic Models

We round off our discussion by verifying our intuition about analytic model classes is indeed reflected by the
topology csL1-topology t . For illustrative purposes, we first consider the classical polynomial regressors, whose
universal approximation capabilities in more classical topologies are guaranteed by the classical Stone-Weierstrass
theorem and its numerous contemporary variants Prolla (1994), Timofte et al. (2018), or of Galindo & Sanchis
(2004)).
Proposition 1 (Polynomial-Regressors Are Not Universal L1

loc(Rd ,RD) for t).
The set R[x1, . . . ,xd : D] is not dense in L1

loc(Rd ,RD) for the CSL1-topology t .

We return to our motivational example, by confirming that the class of deep feedforward networks which can leverage
any number of analytic functions and which also have access to bilinear pooling are not dense in L1

loc(Rd ,RD) for
t . Denote this class of neural networks by NNw+Pool; which reflects the notation for the set Cw(R) of real-valued
analytic functions on R.
Proposition 2 (Analytic Feedforward Networks Are Not Universal L1

loc(Rd ,RD) for t).
The set NNw+Pool is not dense in L1

loc(Rd ,RD) with respect to the CSL1-topology t t .
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1.1 Connection to Other Deep Learning Literature

Our results are perhaps most closely related to Park et al. (2021) which demonstrates, to the best of our knowledge,
the only other qualitative gap in the deep learning theory. Namely, therein, the authors identify a minimum width
under which all networks become too narrow to approximate any integrable function; equivalently, the set of “very
narrow” deep feedforward networks is qualitatively less expressive than the set of “arbitrary deep feedforward
networks”. Just as our main results are qualitative, the results of Park et al. (2021) can be contrasted against the
main result of Shen et al. (2022) which quantifies the exact impacts of depth and width on approximation error of
deep feedforward networks.

Our results also add to the recent scrutiny given to deep feedforward networks deploying several activation functions
(Jiao et al., 2021; Yarotsky & Zhevnerchuk, 2020; Beknazaryan, 2021; Yarotsky, 2021; Acciaio et al., 2022). The
connection to this branch of deep learning theory happens on two distinct fronts. First NNw+Pool is clearly a family
of deep feedforward networks simultaneously utilizing several activation functions. However, more interesting,
is the second connection between networks in NNReLU+Pool and the approximation theory of deep feedforward
networks with generalized ReLU activation function ReLUr(x)

def.
= max{x,0}r, where r 2R is a trainable parameter.

This is because, Pool can be implemented by a feedforward network with ReLU2 activation function, since
x2 = ReLU2(x)+ReLU2(�x) (where x 2R) and (Kidger & Lyons, 2020, Lemma 4.3) shows that the multiplication
map R2 3 (x1,x2) 7! x1x2 can be exactly implemented by a neural network with one hidden layer and with activation
function x 7! x2. Therefore, any f 2 NNReLU+Pool there are f1, . . . , fI 2 NNReLU2 [NNReLU representing f via

f = fI � · · ·� f1.

We note that networks with activation function in {ReLUr}r2R have recently rigorous study in Gribonval Rémi et al.
(2021) and are related to the the constructive approximation theory of splines where ReLUr are known as truncated
powers (see (DeVore & Lorentz, 1993, Chapter 5, Equation (1.1))). We also mention that Theorem 3 is related to
recent deep learning research considering the approximation of a function or probability measure’s support. The
former case is considered by Kratsios & Zamanlooy (2022), where the authors consider an exotic neural network
architecture specialized in the approximation of piecewise continuous functions in a certain sense. In the latter
case, Puthawala et al. (2022) use a GAN-like architecture to approximate probability distributions supported on a
low-dimensional manifold by approximating their manifold and the density thereon using a specific neural network
architecture. In contrast, our results compare the approximation capabilities of feedforward networks built using
different activation functions.

Organization of Paper

This paper is organized as follows. Section 2 reviews the necessary deep learning terminology, measure theoretic,
and topological background needed in the formulation of our main result. Section 4 derives the main results, with
the understanding that all technical lemmata and their proofs are relegated to the paper’s appendix. Section 5 then
discusses some of the implications our results and possible future directions of this type of analysis.

2 Preliminaries

We use N+ to denote the set of positive integers, fix d,D 2 N+, and let k ·k denote Euclidean distance on RD.

To simplify the analysis, we emphasize that d will always be assumed to be a power of 2; i.e. d = 2d0 where d0 2N+.

2.1 Deep Feedforward Networks

Originally introduced by McCulloch & Pitts (1943) as a prototypical model for artificial neural computation, deep
feedforward networks have since lead to computational breakthroughs across various areas from biomedical imaging
Ronneberger et al. (2015) to quantitative finance Buehler et al. (2019); Jaimungal (2022). Though deep learning
tools has become pedestrian in most contemporary scientific computational endeavors, the mathematical foundations
of deep learning are still in their early stages.
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Therefore, in this paper, we study the approximation-theoretic properties of what is arguably the most basic deep
learning model; namely, the feedforward (neural) network. These are models which iteratively process inputs in Rd

by repeatedly applying affine transformations (as in linear regression) and simple component-wise non-linearity
called activation functions, until an output in RD is eventually produced.

Our discussion naturally begins with the formal definition of the class of deep feedforward neural networks defined
by a (non-empty) family of (continuous) activation functions S ✓C(R). In the case where S = {s} is a singleton,
one recovers the classical definition of a feedforward network studied in Cybenko (1989); Hornik et al. (1989);
Leshno et al. (1993); Yarotsky (2017b); Kidger & Lyons (2020) and when S = {sr}r2R and the map (r,x) 7! sr(x)
is Lebesgue a.e. differentiable then one obtains so-called trainable activation functions as considered in Cheridito
et al. (2021a); Kratsios et al. (2022); Acciaio et al. (2022) of which the PReLUr(x)

def.
= max{x,rx} activation function

of He et al. (2015) is prototypical. More broadly, neural networks build using families of activation functions S
exhibiting sub-exponential approximation rates have also recently become increasingly well-studied; e.g. Yarotsky
& Zhevnerchuk (2020); Jiao et al. (2021); Yarotsky (2021); Beknazaryan (2021).

Consider the bilinear pooling layer, from computer vision (Lin et al., 2015; Kim et al., 2016; Fang et al., 2019),
given for any even n 2 N+ and x 2 Rn as

Pool(x) def.
=
�
xixn/2+i

�n/2
i=1 .

Alternatively, Pool can be thought of as a masking layer with non-binary values, similar to the bilinear masking
layers or bilinear attention layers used in the computer-vision literature Fang et al. (2019); Lin et al. (2015) or in the
low-rank learning literature Kim et al. (2016), or as the Hadamard product of the first n/2 components of a vector
in Rn with the last n components.

Fix a depth J,d,D 2N+. A function f̂ : Rd !RD is said to be a deep feedforward network with (bilinear) pooling if
for every j = 0, . . . ,J�1 there are Boolean pooling parameters a( j) 2 {0,1}, d j,2 ⇥d j,1-dimensional matrices A( j)

with d j+1,1/2 = d j,2 if d j,2 is even and if a = 1 and d j+1,1 = d j,2 otherwise which are called weights, b( j) 2 Rd j

and a c 2 RdJ called biases, and activation functions s ( j,i) 2 S such that f̂ admits the iterative representation

f̂ (x) def.
= x(J) + c

x( j+1) def.
=

(
Pool(x̃( j+1)) : a( j) = 1 and d j+1 is even
x̃( j+1) : else

for j = 0, . . . ,J�1

x̃( j+1)
i

def.
= s ( j,i)((A( j)x( j) +b( j))i) for j = 0, . . . ,J�1; i = 1, . . . ,d j+1

x(0) def.
= x.

(1)

We denote by NNS+Pool the set of all deep feedforward networks with pooling and activation functions belonging to
S. If, in the above notation, f̂ is such that x( j+1) = x̃( j+1) then, we say that f̂ is a deep feedforward network (without
pooling). The collection of all deep feedforward networks (without pooling) is denoted by NNS and activation
functions belonging to S.

In either case, if S consists only of a single activation function s then, we use NNS+Pool to denote NNs+Pool.
Similarly, if S = {s} then we set NNs def.

= NNS. Let us consider some examples of activation functions.
Example 1 (Non-Affine and Piecewise Linear Networks). An activation function s 2C(R) is called non-affine and
piecewise linear if: there exist �• = t0 < t1 < · · ·< tp < tp+1 = • and some m1, . . . ,mp,b1, . . . ,bp 2 R for which

(i) s(x) = mix+bi for every t 2 (ti, ti+1) for each i = 0, . . . , p,

(ii) There exist some i 2 {1, . . . , p} for which s 0(ti) is undefined.

The prototypical example of such an activation function is ReLU(x) def.
= max{0,x}.

Example 2 (Deep Feedforward Networks with “Adaptive” Analytic Activation Functions (NNw )). Let Cw(R)
denote the set of a analytic maps from R to itself. We set NNw def.

= NNCw (R) and we use NNw+Pool def.
= NNCw (R)+Pool
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2.2 Measure Theory

Following (Schwartz, 1966, Chapter 1), we call Borel measurable function f : Rd ! RD is called locally integrable
if, on each compact subset K ⇢ Rd the Lebesgue integral

´
x2K k f (x)kdx is finite. Let L1

loc(Rd ,RD) denote the set
of locally integrable functions from Rd to RD; with equivalence relation f ⇠ g if and only if f and g differ only on
a set of Lebesgue measure 0. The set L1

loc(Rd ,RD) is made into a complete metric space by equipping it with the
distance function dL1

loc
defined on any two f ,g 2 L1

loc(Rd ,RD) by

dL1
loc
( f ,g) def.

=
•

Â
n=1

1
2n

´
kxkn k( f (x)�g(x))k dx

1+
´
kxkn k( f (x)�g(x))k dx

.

The subset of L1
loc(Rd ,RD) consisting of all integrable “functions”, i.e. all f 2 L1

loc(Rd ,RD) for which the integral´
x2Rd k f (x)kdx is finite, is denoted by L1(Rd ,RD). The set L1(Rd ,RD) is made into a Banach space, called the

Bochner-Lebesgue space, by equipping it with the norm k fkL1
def.
=
´

x2Rd k f (x)kdx.

2.3 Point-Set Topology

In most of analysis one uses the language of metric spaces, i.e.: an (abstract) set of points X together with a distance
function d : X2 ! [0,•) satisfying certain axioms (see (Heinonen, 2001)), to the similarity of dissimilarity between
different mathematical objects. However, not all notions of similarity can be described by a metric structure and
this is in particular true for several very finer notions of similarity playing central roles in functional analysis (see
Narayanaswami & Saxon (1986)).

In such situations, one instead turns to the notion of a topology to qualify closeness of two objects without relying
on the quantitative notion of distance defined though by a metric. Briefly, a topology tX on a set X is a collection of
subsets of X declared as being “open”; we require only that tX satisfy certain axioms reminiscent of the familiar
open neighborhoods build using balls in metric space theory. Namely, tX contains the empty set and the “total” set
X , the union of elements in tX are again a member of tX , and the countable intersection of sets in tX are again a set
in t . A topological space is a pair (X ,tX ) of a set X and a topology tX on X . If clear from the context, we denote
(X ,tX ) by X .
Example 3 (Metric Topology on L1

loc(Rd ,RD)). The metric topology on L1
loc(Rd ,RD), which exists, is the smallest

topology on L1
loc(Rd ,RD) containing all the open balls

BL1
loc(Rd ,RD)( f ,e) def.

=
n

g 2 L1
loc(Rd ,RD) : dL1

loc
( f ,g)< e

o
,

where f 2 L1
loc(Rd ,RD) and e > 0. We denote this topology by tloc.

A topology on the subset L1(Rd ,RD) of L1
loc(Rd ,RD) can always be defined by restricting tloc as follows.

Example 4 (Subspace Topology on L1(Rd ,RD)). The subspace topology on L1(Rd ,RD), relative to the metric
topology on L1

loc(Rd ,RD), is the collection {U \L1(Rd ,RD) : U 2 tloc}.

A topology t 0X on X is said to be strictly stronger than another topology tX on X if tX ⇢ t 0X . The key relation
between L1

loc(Rd ,RD) and L1(Rd ,RD) is that even if former is strictly larger as a set, the topology on the latter
induced by the norm k ·kL1 is strictly stronger than tloc.

The norm topology on L1(Rd ,RD) is defined as follows.
Example 5 (Norm Topology on L1(Rd ,RD)). The norm topology on L1(Rd ,RD), which exists, is the smallest
topology on L1(Rd ,RD) which contains all the open balls

BL1(Rd ,RD)( f ,e) def.
=
n

g 2 L1(Rd ,RD) : k f �gkL1 < e
o
,

where f 2 L1(Rd ,RD) and e > 0. We denote this topology by tnorm.
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The qualitative statement being put forth by a universal approximation theorem (e.g. Leshno et al. (1993); Petrushev
(1999); Yarotsky (2017a); Suzuki (2019); Grigoryeva & Ortega (2019); Heinecke et al. (2020); Kidger & Lyons
(2020); Zhou (2020); Kratsios & Bilokopytov (2020); Siegel & Xu (2020); Kratsios & Hyndman (2021); Kratsios
et al. (2022); Yarotsky (2022)) is a statement about the topological genericness of a machine learning model, such as
a neural network model, in specific sets topological “function” spaces. Topological genericness is called denseness,
and we say that a subset F ✓ X is dense with respect to a topology tX on X if: for every non-empty open subset
U 2 tX there exists an element f 2 F which also belongs to U .

Related is the notion of convergence of a sequence in a general topological space X . Let I be a set with a preorder 4
(i.e. for every i, j,k 2 I i 4 i and if i 4 j and j 4 k then i 4 k), such that every finite subset of I has an upper-bound
with respect to 4. A typical example of a directed set is N equipped with the preorder given by . A net in a
topological space X is a map from a directed set I to X ; we denote nets by (xi)I2I . A typical example of a net is
a sequence; in which case the directed set I is the natural numbers with pre-order . The next (xi)I2I is said to
converge to an element x of X with respect to the topology tX if: for every U 2 tX containing x, there exists some
iU 2 I such that for every i 2 I if iU 4 I then xi 2U .

2.4 Limit-Banach Spaces (LB-Spaces)

Our construction will exploit a special class of topological vector spaces, i.e. vector spaces wherein addition
and scalar multiplication are continuous operators, formed by inductively gluing together ascending sequences of
Banach spaces. Specifically, a topological vector space X is a limit-Banach space, nearly always referred to as an
LB-space in the literature, if first, one can exhibit sequence of strictly nested Banach spaces {Xn}•

n=1 (i.e. each Xn is
a proper subspace of Xn+1) such that

X = [•
n=1 Xn.

Then, the topology on X must be smallest topology containing every convex subset B ✓ X for which kb 2 B
whenever k 2 [�1,1] and b 2 B, and for every positive integer n, 0 2 B\Xn and B\Xn is an open subset of Xn.

Conversely, given a sequence of strictly nested Banach spaces {Xn}•
n=1 one can always form an “optimal” LB-space

as follows. Define X def.
= [•

n=1 Xn and equip X with the finest topology making X into an LB-space and such that, for
every n 2 N+, the inclusion Xn ✓ X is continuous. Indeed, as discussed in (Osborne, 2014, Section 3.8), such a
topology always exists1. We will henceforth refer to X as the LB-space glued together from {Xn}•

n=1.

A classical example of an LB-space arises when one wants to analyse polynomial functions but does not want to
take their closure in some larger space (e.g. a larger space containing power series). We now present this example.

Example 6 (Polynomial Functions). For every n 2 N+, the set of degree at-most n polynomial functions mapping R
to R is Rn[X ]

def.
= {p(x) = Ân

i=0 bi xi b 2 Rn+1}. We make Rn[X ] into a Banach space through its identification the
coefficients of polynomials in Rn[X ] with Rn+1; i.e. for any polynomial p(x) = Ân

i=0 bixi 2 Rn[X ] we define kpkn by

kpkn
def.
=
�
b 2

0 + · · ·+b 2
n
�1/2

. (2)

Thus, we may consider the R[X ]
def.
=[•

n=1Rn[X ] to be the LB-space glued together from {Rn[X ]}•
n=1 and R[X ] consists

precisely of all polynomial functions from R to R of any degree.

To illustrate the “optimality” of our LB-space, let us compare R[X ] with the smallest Banach space containing every
{Rn[X ]}•

n=1 as a subspace. Notice that for every positive integer n, Rn[X ] is a subspace of the following Hilbert
space of (formal) power-series R[[X ]]

def.
= { f (x) = Â•

i=0 bixi : Â•
i=0 b 2

i < •} mapping R to [�•,•] and normed by

k fk•
def.
=
⇣ •

Â
i=0

b 2
i

⌘1/2
.

1In the language of category theory, X is the colimit of the inductive system ({Xn}•
n=1,✓) in the category of locally-convex topological

vector spaces with bounded linear maps as morphisms.
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By construction R[X ] does not contain any function of the form f (x) = Â•
i=1 bixi where an infinite number of bi are

equal to zero while R[[X ]] does contain such functions; e.g. f (x) def.
= Â•

i=0
xi

2i belongs to R[[X ]] but not to R[X ]. In
this way, the topological vector space R[X ] is smaller than R[[X ]] precisely because its topology is stronger.

Let us illustrate the topology on the LB-space R[X ]. By (Osborne, 2014, Proposition 3.40) we know that a convex
subset U ✓R[X ] is open if and only if U \Rn[X ] is open for the topology on Rn[X ] defined by the norm in equation 2.

Example 6 illustrates the intuition behind LB-spaces glued together from {Xn}•
n=1; namely, these spaces are

“minimal limits” of sequences Banach spaces which contain no new element not already present in the Banach
spaces {Xn}•

n=1.

3 The CSL1-Topology t

We now construct the csL1-topology t of Theorem 2 on the set L1
µ,loc(Rd ,RD), in three steps. However, before

beginning our construction, we fix an arbitrary “good a.e. partition” of Rd . As we will see shortly, the construction
of the csL1-topology t is independent of the choice of “good a.e. partition” of Rd ; and thus, the construction is
natural (in the precise algebraic sense describe in Proposition 3, below). However, to establish this surprising
algebraic property of the csL1-topology t , it is more convenient to describe the construction (for any arbitrary
choice of {Kn}•

n=1) once and for all.
Definition 1 (Good a.e. partition of Rd). A collection {Kn}•

n=1 of compact subsets of Rd is called a good a.e.
partition if it satisfies the following conditions:

(i) The set Rd �[•
n=1 Kn has Lebesgue measure 0,

(ii) For every n 2 N+, Kn has positive Lebesgue measure,

(iii) For each n,m 2 N+, if n 6= m then Kn \Km has Lebesgue measure 0.

For instance, since our construction will be shown to be independent of our choice of a good a.e. partition of Rd

made when constructing t . Once we show this, we may, without loss of generality, henceforth only consider the
following partition of Rd ; illustrate in Figure 2.

Example 7 (Good a.e. partition into Cubic Annuli). For each n 2N+ set Kn
def.
= {x 2Rd : n < kxk•  n+1}, where

kxk•
def.
= maxi=1,...,n |xi|. Then {Kn}•

n=1 is a good a.e. partition of Rd.

Let us construct the csL1-topology t , using a fixed good a.e. partition of Rd in three steps.
Step 1: Given {Kn}•

n=1 a good a.e. partition of Rd define the strictly nested sequence of Banach subspaces of
L1(Rd ,RD) as follows. For every n 2N+ let L1

n(Rd ,RD) consist of all f 2 L1(Rd ,RD) with ess-supp( f )✓[n
i=1Ki.

Step 2: The spaces {L1
n(Rd ,RD)}•

n=1 are aggregated into one LB-space, denoted by L1
c(Rd ,RD), whose underlying

set is
S

n2N+ L1
n(Rd ,RD) and equipped with the finest topology ensuring that the inclusions L1

n(Rd ,RD)✓ L1
c(Rd ,RD)

remain continuous.
Remark 1 (Notation and Independence of Choice of Good a.e. Partition of Rd). The notation L1

c(Rd ,RD) does
not make any reference to our choice of a good a.e. partition of Rd used to define the space L1

c(Rd ,RD). This is
because, as we will shortly see in Proposition 3 below, the topology on L1

c(Rd ,RD) is independent of our choice of
a good a.e. partition of Rd used to define it. However, to formally state that result; we will make use of the notation
L1

c({Kn}•
n=1,RD) emphasizing our choice of {Kn}•

n=1 which is a good a.e. partition of Rd used in Steps 1 and 2.

Step 3: Since L1
c(Rd ,RD) does not contain every function in L1

loc(Rd ,RD) then, intuitively speaking, we
“glue” remaining locally-integrable functions to L1

c(Rd ,RD) by aggregating the topologies on L1(Rd ,RD) and
on L1

loc(Rd ,RD) to L1
c(Rd ,RD). Rigorously, we define this gluing as follows.

Definition 2 (CSL1-Topology t). The csL1-topology t on L1
µ,loc(Rd ,RD) is smallest2 topology on L1

loc(Rd ,RD)
containing tc [ tnorm [ tloc.

2I.e. tc [ tnorm [ tloc is a subbase for the topology t .
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Since tnorm, tloc, and tc all exist and since the smallest topology containing a collection of sets3must exist (see
(Munkres, 2000, page 82)); thus, t exists. Next, we examine the key properties of t for our problem. Namely, how
it compares to the usual topologies on L1

loc(Rd ,RD) and on L1(Rd ,RD), as well as its independence of the choice of
good a.e. partition of Rd used to construct it.

3.1 Properties of the CSL1-Topology t

It is straightforward to see that any f 2 L1
loc(Rd ,RD) which is essential supported on some [n

i=1 Ki for some n 2 N+

belongs to L1
c(Rd ,RD). However, Proposition 3 below implies that every essentially compactly supported Lebesgue-

integrable functions must belong to L1
c(Rd ,RD) since the set L1

c(Rd ,RD) and its topology are both independent of
the choice of good a.e. partition {Kn}•

n=1 of Rd used to construct L1
c(Rd ,RD).

The result also points to the naturality of the csL1-topology t’s construction. By which we mean that t has the
surprising and convenient algebraic property it is independent of the good a.e. partition used to build it.
Proposition 3 (The csL1-topology t is independent of the choice of good a.e. partition). Let {Kn}•

n=1 and {K0
n}•

n=1
be good a.e. partitions of Rd. Then L1

c({Kn}•
n=1,RD) = L1

c({K0
n}•

n=1,RD). Consequentially, t is independent of the
good a.e. partition of Rd used to construct it.

The significance of Proposition 3 is that it allows us to reduce our entire understanding of the problem, and many of
our proofs, to simply considering a single “canonical” good a.e. partition of Rd which is easy to work with; namely,
the Cubic Annuli of Example 7. Briefly, the reason for this is that, given a good a.e. partition of Rd {Kn}•

n=1, the
approximation of a compactly supported Lipschitz function f : Rd ! RD in t requires us to identify the smallest
n 2 N+ for which we can identify its support with respect to {Kn}•

n=1 which we use to discretize Rd ; i.e.

ess-supp( f̂ )✓ [n
i=1 Ki. (3)

Then, we must approximate f̂ in the L1-norm on [n+1
i=1 Ki using our model. The intuitive message of Proposition 3 is

that, given any other good a.e. partition of Rd {K0
n}•

n=1, the compactness of [n+1
i=1 Ki implies that there is a smallest

n1 2N+ such that [n
i=1 Ki ✓[n1

j=1 K0
j thus, there must be a smallest integer for which equation 3 holds with {K0

n}•
n=1

holds in place of {Kn}•
n=1. To see the equivalence, arguing similarly, there must exist an (other) n2 2 N+ such

that [n1
j=1 K0

j ✓ [n2
i=1 Ki. Therefore, we may interchangeable identify where the support of a compactly supported

Lipschitz function lies using any discretization of Rd by any choice of good a.e. partition of Rd .

The next result shows that the csL1-topology t on Lloc(Rd ,RD) is strictly finer than the norm metric topology
thereon, and its restriction to L1(Rd ,RD) is strictly stronger than the norm topology thereon ((Nagata, 1974, Chapter
2.4)). The approximation-theoretic implication is that fewer members of Lloc(Rd ,RD) can be approximated by deep
learning models in t than in the other two topologies.
Proposition 4. The csL1-topology t is strictly stronger than tloc.

The phenomenon of Proposition 4 persists when restricting the csL1-topology t to the subset L1(Rd ,RD) of
L1

loc(Rd ,RD) and comparing it with the norm topology (which is stronger than tloc restricted to L1(Rd ,RD)).
Proposition 5. The restriction of the csL1-topology t to L1(Rd ,RD) is strictly stronger than the norm topology
tnorm on L1(Rd ,Rd).

We are now in a position to prove Theorem 2. The next section outlines the main steps in the theorem’s derivation,
with the details being relegated to our paper’s appendix.

4 Outline of the Proof of The Main Results

To better understand our main results we overview the principal steps undertaken in their derivation. We begin by
establishing the universality of NNReLU+Pool for the csL1-topology, as guaranteed by Theorem 2. We build up the
properties of the csL1-topology t along the way and we use them to derive the aforementioned results; whereby
deriving Theorem 1 and Theorem 3 along the way. Propositions 1 and 2 are derived at the end.

3Given a set X and a collection of subsets A of X , the smallest topology tA on X containing a A is called the topology generated by A and A is
called a subbase of tA.
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4.1 Establishing Theorems 2 and 3: The universality of NNReLU+Pool in the topology t

In order to establish Theorem 2, we must first understand how density in L1
loc(Rd ,RD), for the metric topology

interacts with density in L1
loc(Rd ,RD) for the csL1-topology. The next lemma accomplishes precisely this, by

showing how dense subsets of L1
loc(Rd ,RD) for the metric topology can be used to construct dense subsets of

L1
loc(Rd ,RD) for the csL1-topology. This construction happens in two phases. First, each “function” in the original

dense subset is localized so that it is essentially supported on a part Kn in (any) good a.e. partition {Kn}•
n=1 of

Rd . Then, each of these localized “functions” are then pieced back together to form a new “function” which is
essentially supported on the compact subset [n

i=1 Kn.

Let Lipc(Rd ,RD) denote the set of “compact support” Lipschitz functions f : Rd ! RD; i.e. f is Lipschitz and
ess-supp( f ) is a compact subset of Rd . The first key observation in the proof of Theorem 2 is that, Lipc(Rd ,RD) is
dense in L1

loc(Rd ,RD) for the csL1-topology t .
Lemma 1 (Density of compactly-supported Lipschitz functions in the csL1-topology t). The set Lipc(Rd ,RD) is
dense in L1

loc(Rd ,RD) for the csL1-topology t .

The second key observation, also contained in the next lemma, is a sufficient condition for approximating a “compact
support” Lipschitz function with respect to the csL1-topology t . Briefly, the approximation of such a function in t
involves the simultaneous approximation of its outputs as well as its essential support.
Lemma 2 (Approximation of compactly-supported Lipschitz functions in the csL1-topology t). Let f 2 L1(Rd ,RD)
be Lipschitz and ess-supp( f ) be compact, {Kn}•

n=1 be the cubic-annuli of Example 7. If { fn}•
n=1 is a sequence in

L1
loc(Rd ,RD) for which there is an n f 2 N+ with

lim
n"•

k fn � fkL1(Rd ,RD) = 0 and ess-supp( f )[
•[

n=1
ess-supp( fn)✓ [�n f �1,n f +1]d , (4)

then { fn}•
n=1 converges to f in the csL1-topology t .

Together, Lemmata 2 and 1 provide a sufficient condition for universality with respect to the csL1-topology.
Furthermore the condition is in a sense quantitative. We say in a sense, since the topology tc is non-metrizable (see
(Narayanaswami & Saxon, 1986, Corollary 3) and consequentially t is non-metrizable); thus there is no metric
describing the approximation of a function in t . I.e. no genuine quantitative statement is possible4. The next lemma,
Proposition 3, and Example 7 form the content of Theorem 1 (ii).
Lemma 3 (Approximation of a compactly essentially-supported functions in the csL1-topology t). Let F ✓
L1

loc(Rd ,RD). If for every f 2 Lipc(Rd ,RD) there exists a sequence { fn}•
n=1 in F satisfying the condition equation 4

then, F is dense in L1
loc(Rd ,RD) for the csL1-topology t .

By Lemma 3, it therefore remains to construct a subset of networks in NNReLU+Pool which can approximate any
compactly supported Lipschitz function in the L1-norm and simultaneously correctly identify its essential support via
the cubic annuli partition of Rd . Figure 1 illustrates the main points of the next lemma; namely, if the target function
is compactly supported then its output can be closely approximated by a ReLU network which also simultaneously
correctly identifiesthe integer n such that the target function is supported in the d-dimensional cube [�n�1,n+1]d .

Accordingly, our next lemma is an extension of the main theorem of Shen et al. (2022), which gives an estimate on
the width and depth of the smallest deep ReLU network approximating a Lipschitz map from a compact subset X of
Rd to RD (instead of the case where D = 1 and X = [0,1]d).
Lemma 4 (Uniform approximation of Lipschitz maps on low-dimensional compact subsets of Rd). Let X ✓ Rd

be non-empty and compact and let f : X ! RD be Lipschitz. For every “depth parameter” L 2 N+ and “width
parameter” N 2 N+ there exists a f̂ 2 NNReLU satisfying the uniform estimate

max
x2X

�� f (x)� f̂ (x)
��. log2(cap(X))diam(X) Lip( f )

D3/2d1/2

N2/dL2/d log3(N +2)1/d ,

4Another example of a non-metric universal approximation theorem in the deep learning literature is the universal classification result of
(Kratsios & Bilokopytov, 2020, Corollary 3.12)).
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where . hides an absolute positive constant independent of X ,d, D, and f . Furthermore, f̂ satisfies

1. Width: f̂ ’s width is at-most d(D+1)+3d+3 max{dbN1/dc,N +2}

2. Depth: f̂ ’s depth is at-most D(11L+2d +19) .

In order to apply Lemma 4, we need our approximating model to have support which “matches” the support of the
target function f 2 L1

c(Rd ,RD)
def.
=
S

n2N+ L1
n(Rd ,RD) being approximated. The next lemma describes how, given a

ReLU network how one can build a new ReLU network with one pooling layer at its output, which coincides with
the original network on an arbitrarily cubic-annuli (as in Example 7) and vanishes straightaway outsides the correct
number of cubic-annuli (with possibly one extra part of the good a.e. partition of Rd).
Lemma 5 (Adjusting a ReLU network to have support on the union of the first n+1 cubic annuli).
Let log2(d) 2N+ and f̂ 2 NNReLU have depth d f̂ and width w f̂ . For every n 2N+ and each 0 < d < 1, there exists
a f̂ pool 2 NNReLU+Pool with width max{d(d �1)+2,D}+w f̂ and depth 2+3d +d f̂ satisfying:

(i) Implementation on the Cube: For each x 2 [�n,n]d it holds that f̂ (x) = f̂ pool(x),

(ii) Controlled Support: ess-supp( f̂ )✓
h
� dp2�de +nd , dp2�de +nd

id
,

(i) Control of Error Near the Boundary:
�� f̂ � f̂ pool

��
L1(Rd ,RD) < e .

Lemmata 1, 2, and 3 imply that NNReLU+Pool is dense in L1
loc(Rd ,RD) for the csL1-topology t only if NNReLU+Pool

has a subset which can approximate any essentially compactly-supported Lipschitz function while having almost
correct support (as detected by the cubic-annuli partition) as formalized by condition 4. Since Lemma 5 implies that
such a subset of networks in NNReLU+Pool exists then, Theorem 2 follows.

Proof of Theorem 2. The result for PW-Lin = ReLU is a direct consequence of Lemmata 4 and 5 applied to
Lemma 3. The result for general non-affine piecewise linear activation functions from the ReLU case by (Yarotsky,
2017b, Proposition 1). This is because (Yarotsky, 2017b, Proposition 1) states that any network in NNsPW-Lin can be
implemented by a network in NNReLU.

We are now equally in a position to prove the first claim in theorem Theorem 3.

Proof of Theorem 3. Since f is compactly essentially-supported, by Lemma 4 there is an f̂ en/2 2 NNReLU satisfying

max
x2ess-sup( f )

�� f (x)� f̂ en/2(x)
��<

en

2
, (5)

with width w f̂ en/2 at-most d(D+1)+3d+3 max{dbN1/dc,N +1} and depth d f̂ en/2 equal to

d f̂ en/2
def.
=

e�d/2
n

N log3(N +2)1/2

⇣
2log2(cap(ess-supp( f )))diam(ess-supp( f ))Lip( f )

⌘d
(cD3/ddd), (6)

where c > 0 is an absolute constant independent of X ,d, D, and f . Set n f
def.
= min{n 2 N+ : ess-supp( f )✓ [�n,n]d}

and apply Lemma 5 to f̂ en/2 there exists an f̂ (n) 2 NNReLU+Pool with

ess-supp( f̂ (n))✓
h
� d
q

2�d�1en +nd
f ,

d
q

2�d�1en +nd
f

id
, equal to f̂ en/2 on [�n f ,n f ]d and such that

��� f̂ (n)� f̂ pool
���

L1(Rd ,RD)
< en

2 . Therefore, the estimate in equation 5 and implies that

max
x2ess-sup( f )

�� f (x)� f̂ (n)(x)
�� max

x2ess-sup( f )

�� f (x)� f̂ (n)(x)
��+ max

x2ess-sup( f )

�� f̂ (n)(x)� f̂ en/2(x)
�� 2�1en +2�1en = en.
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Similarly, equation 5 implies that

k f � f̂ (n)kL1  k f � f̂ en/2kL1 +k f̂ (n)� f̂ en/2kL1

and that both f̂ (n) and f are essentially-supported in [�n f �1,n f +1]d ; whence, for each n 2N+ the condition equa-
tion 4 is met. Therefore, Lemma 2 implies that the sequence { f̂ (n)}•

n=1 in NNReLU+Pool converges to f in the
csL1-topology t .

It remains to count each of f̂ (n)’s parameters. By construction, Lemma 5 and the estimate on w f̂ e/2 (below equa-
tion 5) imply that f̂ (n) has width at-most max{d(d�1)+2,D}+d(D+1)+3d+3 max{dbN1/dc,N +1}. Similarly,
Lemma 5 and equation 6 imply that each f̂ (n) has depth equal to

e�d/2
n

N log3(N +2)1/2

⇣
log2(cap(ess-supp( f )))diam(ess-supp( f ))Lip( f )

⌘d
(c2dD3/ddd +3d)+2d +2.

Relabeling C1
def.
= c2dD3/ddd + 3d, C2

def.
= +2d + 2, C3

def.
= max{d(d � 1)+ 2,D}, C4

def.
= d(D+ 1)+ 3d+3, yields the

first conclusion.

4.2 Establishing Propositions 1 and 2: The Non-University of Analytic Models in the Topology t

The main step in showing that NNs fails to be dense in L1
loc(Rd ,RD) for the csL1-topology is the following

necessary condition for a sequence { fn}•
n=1 in L1

loc(Rd ,RD) to convergence to some essentially compactly supported
f 2 L1

loc(Rd ,RD) therein with respect to t . Moreover, Proposition 3, and Example 7 Theorem 1 (i).

Proposition 6 (Necessary condition for convergence in the csL1-topology t). Let n 2 N+ and f 2 L1
n(Rd ,RD). A

sequence { fk}k2N+ in L1
loc(Rd ,RD) converges to f with respect to the csL1-topology t , only if there is some N 2N+

with N � n such that all but a finite number of fk are in L1
N(Rd ,RD) and lim

k"•
k fk � fk= 0.

Together, Proposition 6 and the fact that if any analytic function is 0 on a non-empty open subset of Rd then it
must be identically 0 everywhere on Rd (see (Griffiths & Harris, 1994, page 1)) imply that no analytic function can
converge to an essentially compactly supported “function” in L1

loc(Rd ,RD) with respect to the csL1-topology.

Lemma 6 (Families of analytic functions cannot be dense with respect to the csL1-topology t). If F is a set of
analytic functions from Rd to RD then

1. F is not dense in L1
loc(Rd ,RD) for the csL1-topology t .

2. If f : Rd ! RD is Lipschitz, is compact essential-supported, and not identically 0 then, is a sequence
{en}•

n=1 in (0,•) converging to 0 such that no f̂ 2 F satisfies both Theorem 3 (i) and (iii).

The proof of Theorem 2 (ii) is a consequence of Lemma 6 and the observation that any network in NNw+Pool is an
analytic function.

Proof of Theorem 2 (ii). By Lemma 6, the class of analytic functions from Rd to RD, denoted by Cw(Rd ,RD), is
not dense in L1

loc(Rd ,RD) for the csL1-topology. Now, the composition and the addition of analytic functions is
again analytic. Since every affine function is analytic and since every activation function s 2Cw(R) is by definition
analytic then, every f 2 NNw must be analytic. I.e, NNw ✓Cw(Rd ,RD). Therefore, NNw cannot be in L1

loc(Rd ,RD)
for the csL1-topology.

The proof of Proposition 1 now also follows from Lemma 6.

Proof of Proposition 1. Since every polynomial function is analytic then, the result follows from Lemma 6.
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Proof of Theorem 3 (Continued). If f : Rd ! RD is Lipschitz, compactly-supported, and not identically 0 then
Lemma 6 and the fact that every f̂ 2 NNw+Pool[R[x1, . . . ,xd ] is an analytic function implies that Theorem 3 (i)-(iii)
cannot all hold simultaneously. This completes the proof of Theorem 3.

We now discuss some technical points surrounding our results, a few of the implications of our findings, and how
our analysis could be used to obtain similar constructions for networks designed to approximate solutions to PDEs.

5 Discussion

There are a few question which arise during our analysis which we now take the time to discuss. These are: “Is
Theorem 2 about a refinement of the topology on L1

loc(Rd ,RD) in which NNReLU+Pool is universal while NNw+Pool

is not?”, “Are ReLU networks better than networks with analytic activation functions?” and “What is the significance
of the bilinear pooling later pool?”

5.1 Are ReLU Networks Better Than Networks With Analytic Activation Functions?

There are several explanations for a learning model’s success over its alternatives for a given learning task. Some of
the principle reasons for a model’s successful inductive bias are its expressiveness, its ability to generalize well on a
given type of problem, and how training dynamics interact with these two properties for a given problem (e.g. the
impage of using different initialization schemes as studied by (Martens et al., 2021)).

A key point which we emphasize is that, the type of problem which we have implicitly considered in this paper
concerns the approximation of a compactly supported function’s output and its support simultaneously. Therefore,
we ask the following question from the approximation-theoretic vantage point:

“Are ReLU networks better than networks with analytic activation functions?”

As one may expect, the answer is a mixed “yes and no”. Let us begin with “no” part of our answer to this question.
If that is the task is to learn a solution to a PDE (e.g. Han et al. (2018); Beck et al. (2021a;b) physics-informed
neural networks Raissi et al. (2019); Shin et al. (2020); Mishra & Molinaro (2021)). Then, the networks should
exhibit non-trivial (higher-order) partial derivatives, and the approximation should be in the Ck-norm (for some
k > 0). In such cases, it is known that ReLU networks are less effective than sigmoid, tanh, or SIREN networks;
see Markidis (2021) or Hornik et al. (1990); Siegel & Xu (2020); De Ryck et al. (2021). A fortiori, it is rather
straightforward to see this when k � 2 and d = D = 1, since any weak derivative of a ReLU neural network must
vanish outside of a set of Lebesgue measure 0. This is the “no” part of the answer to the above question.

For the “yes” part of the answer, Theorem 2 implies that deep ReLU networks with bilinear pooling layer can
approximate locally-integrable functions while exactly implementing their support (up to a good a.e. partition of
Rd). In contrast, as shown in Proposition 2, neural networks with analytic activation function cannot do this by
virtue of their analyticity. Therefore, ReLU neural networks can be more suitable for learning tasks where the target
function is known to be compactly supported.

5.2 What Is The Significance Of The Bilinear Pooling Layer Pool?

We conclude our discussion by considering one last question:

“What is the significance of the bilinear pooling layer?”

Our construction of a network f̂ 2 NNReLU+Pool realizing the conclusion of Theorem 3 for a given approximation
error e > 0 relies two distinct ReLU networks which are multiplied together using bilinear pooling layers. Suppose
that f : Rd !RD is a compactly supported Lipschitz function and let n be the smallest integer for which ess-supp( f )
is contained in the union of the first n Cubic Annuli of Example 7. The role first ReLU network f̂mask : Rd !R is to
implements a piece-wise affine “mask” which takes values 0 outside of [n+1

i=1 Ki, value 1 in [n
i=1 Ki, and intermediate
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value in Kn+1 �Kn just as in the construction of Yarotsky (2017b). The second ReLU network f̂ e is constructed
which approximates the target function f : Rd ! RD uniformly on the compact set ess-supp( f ) to e-precision, and
we construct the ReLU network f̂ e in such a way that its depth and width depend on the dimension and metric
capacity of ess-supp( f ) as well as on the regularity of the function f .

Lastly, using several bilinear pooling layers we construct the approximating network f̂ in Theorem 3 which
implements f̂ = f̂mask · f̂ e . Consequentially, f̂ ⇡ f for every x 2 ess-supp( f ) and it is supported exactly on [n+1

i=1 Ki
(i.e.: its support coincides with that of the target function up to our discretization of Rd as implemented by {Kn}•

n=1).
The subtle difference in our approach and in the constructions of Yarotsky (2017b); Kidger & Lyons (2020) is that
those authors use small ReLU networks to approximately implement the multiplication operation (x1,x2) 7! x1x2
instead of the bilinear pooling layers which we use. The issue here is that, their construction does not guarantee that
an “approximate product” of f̂mask and f̂ e is supported in [n+1

i=1 Ki nor that is has compact support; whence, there is
no guarantee with that method that one can construct a deep ReLU network satisfying the conditions of Lemma 2.
NB, this is not to say that a construction is impossible; but simply that it remains an open question.

Conclusion

In this paper, we showed that deep feedforward networks with non-affine piecewise linear activation functions
and bilinear pooling layers are approximation-theoretically well suited to tasks where the objective is to learn a
compactly supported function; e.g. the distance map to a non-empty compact subset of Euclidean space. Theorem 1
translated this learning problem into a universal approximation problem by constructing a topology on the set
L1

loc(Rd ,RD) of locally Lebesgue-integrable functions in which members of the subspace L1
c(Rd ,RD) of essentially

compactly-supported integrable function could only be approximated by models which match their discretized
support (as formalized by a good a.e. partition of Rd).

Theorem 2 demonstrated that any feedforward neural network architecture with bilinear pooling and piecewise-linear
(but non-affine) activation function is universal in this topological space. Consequentially showing that, ReLU
networks with bilinear pooling layers are capable of approximating functions in L1

c(Rd ,RD) in L1-norm while
simultaneously implementing their support; up to a good a.e. partition of Rd . Theorem 3 provided a quantitative
and uniform refinement of this result for any compactly-supported Lipschitz function. The result also provided
quantitative estimates on the width, depth, and the number of bilinear pooling layers required for a ReLU network to
implement the said approximation. Moreover, our new proof techniques allowed us to explicitly encode the metric
capacity and dimension of the target function’s essential support into the models’ complexity estimates.
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