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Abstract

Vision transformers (ViTs) perform exceptionally well in various computer vision
tasks but remain vulnerable to adversarial attacks. Recent studies have shown that
the transferability of adversarial examples exists for CNNs, and the same holds
true for ViTs. However, existing ViT attacks aggressively regularize the largest
token gradients to exact zero within each layer of the surrogate model, overlooking
the interactions between layers, which limits their transferability in attacking black-
box models. Therefore, in this paper, we focus on boosting the transferability of
adversarial attacks on ViTs through adaptive token tuning (ATT). Specifically, we
propose three optimization strategies: an adaptive gradient re-scaling strategy to
reduce the overall variance of token gradients, a self-paced patch out strategy to en-
hance the diversity of input tokens, and a hybrid token gradient truncation strategy
to weaken the effectiveness of attention mechanism. We demonstrate that scaling
correction of gradient changes using gradient variance across different layers can
produce highly transferable adversarial examples. In addition, introducing atten-
tional truncation can mitigate the overfitting over complex interactions between
tokens in deep ViT layers to further improve the transferability. On the other hand,
using feature importance as a guidance to discard a subset of perturbation patches
in each iteration, along with combining self-paced learning and progressively more
sampled attacks, significantly enhances the transferability over attacks that use
all perturbation patches. Extensive experiments conducted on ViTs, undefended
CNNs, and defended CNNs validate the superiority of our proposed ATT attack
method. On average, our approach improves the attack performance by 10.1%
compared to state-of-the-art transfer-based attacks. Notably, we achieve the best
attack performance with an average of 58.3% on three defended CNNs. Code is
available at https://github.com/MisterRpeng/ATT.

1 Introduction

The Vision Transformer (ViT) [1] was the first to apply the transformer architecture to computer
vision models, demonstrating excellent performance in image classification tasks. Since then, various
ViT-based transformer structures have shown comparable success in a range of computer vision
tasks, including object detection [2, 3], semantic segmentation [4, 5], and human pose estimation
[6]. However, similar to convolutional neural networks (CNNs), ViT models are also vulnerable to
adversarial attacks [7, 8, 9, 10]. For ViT to be widely adopted in real-world applications, particularly
in secure systems, it is crucial to identify model weaknesses [11, 12, 13] and develop more robust
ViT models. Specifically, adversarial attacks generate perturbations that can cause incorrect model
classifications, which are often too subtle for humans to notice. The transferability of the adversarial
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perturbations leads to the fact that the perturbations can directly deceive the unknown target model.
Therefore, it is imperative to study transferable ViT attacks to further uncover the vulnerabilities of
ViT models, thereby providing valuable insights for adversarial defense or building robust ViTs.

Gradient regularization-based adversarial attack adjusts the gradient after back-propagation to update
the perturbation more stably and effectively. However, attack methods designed specifically for CNNs
are less effective when directly applied to ViTs. Token gradient regularization (TGR) [14] addresses
the shortcomings of existing gradient regularization methods and designs a technique that regularizes
the gradient of intermediate ViT layers, leading to a significant improvement of the transferability
of adversarial attacks on ViTs. However, we observe that TGR simply sets the largest part of token
gradients in each module to zero, thereby losing feature information to a certain extent. To solve this
problem, we propose an adaptive variance reduction method, not only correcting the gradient variance
but also preserving the feature information (see the bottom-right of Fig. 1). Thus, the perturbation
can learn more features while reducing overfitting and improving the transferability of adversarial
examples across ViT models with various network structures.

Another ViT attack approach, proposed by Wei et al. [15], inspired us to incorporate input diversity
with gradient regularization to enhance the transferability further. This transfer-based ViT method
proposes the PatchOut Attack to exploit the input diversity [16]. PatchOut is a straightforward and
effective way to address the overfitting. However, this approach does not account for update efficiency
and difficulty, leading to potential over-discarding of updates. As a result, the finite number of
iterations may end with a perturbation that has not reached its optimal state. To address this, we
propose a discard strategy that combines feature importance-based sampling and self-paced learning.
As shown on the left side of Fig. 1, this approach allows for a more rational implementation of patch
out strategy and improves the update efficiency.

Influenced by [15, 17], we found out that the attention mechanism specific to ViTs tends to cause
the perturbation overfitting in surrogate models. To resolve this, we propose an attention weakening
strategy to further adaptively tune the token gradients both within and across ViT layers. Secifically,
as indicated in the top-right of Fig. 1, we truncate the gradient back-propagation in the ttention
module of deep ViT layers while preserving the token gradients of QKV and MLP modules, to
reduce the overfitting caused by excessive global attention. In addition, for purpose of balancing the
interactions between different modules in the remaining shallow ViT layers, we also adjust the token
gradients of the attention, QKV and MLP modules accordingly.

In summary, the main contributions of our paper include:
• We propose an adaptive token gradient re-scaling method to improve the transferability of adversar-

ial attacks. This method aims to reduce the overall variance of token gradients in each ViT layer and
smooth token gradient variance changes throughout all the ViT layers. Meanwhile, we introduce a
hybrid token gradient truncation method to weaken the effectiveness of attention mechanism. In
order to achieve a balance between different modules, we further adjust the truncation factors of
each module accordingly.

• We propose a self-paced patch out strategy for learning the input diversity. During the perturbation
training, a sparse mask is constructed under the semantic guidance of patch-level feature importance.
As the iterations increase, self-paced learning strategy is employed to generate a progressively more
sampled mask. These sparse masks are then superimposed with perturbations as input samples,
and the perturbation updates are incrementally enhanced through this self-paced training process,
which not only mitigates the overfitting issue but also enhances the attack efficiency.

• Extensive experiments are conducted to verify the effectiveness of our proposed adaptive token
tuning attack method, which improves the attack success rate by an average of 10.1% over state-of-
the-art methods under black-box attack setting, including an average of 4.9% for attacking ViTs
and 12.8% for attacking CNNs. Additionally, we achieves the highest average attack rate of 58.3%
on defended CNNs, further demonstrating the superior transferability of our ATT attack approach
in both undefended and defended black-box models.

2 Related Work

Current adversarial attacks can be broadly divided into two main categories: white-box and black-
box attacks. White-box attack refers to adversarial attack under the condition that all the model
information is known. On the contrary, black-box attacks do not have unrestricted access to all
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Figure 1: The overall framework of our Adaptive Token Tuning (ATT) attack method.

model’s information. Specifically, black-box attacks consist of two types: query-based black-box
attacks, which could access the output of the target model, and transfer-based black-box attacks,
where no knowledge of the target model is available. In practice, it is often impossible to obtain any
information about the target model, making transfer-based black-box attacks a more serious security
threat. Therefore, this paper focuses on transferable black-box attacks on ViT models.

Adversarial Attacks on CNNs. Adversarial attacks on CNNs can be categorized into gradient
optimization-based and feature information-based attacks. In gradient optimization-based adversarial
attacks, [18, 19, 20] incorporated a momentum term into the existing iterative attack update process
[21] to stabilize the update direction and avoid the local optima. Towards improving the backpropaga-
tion path, Skipping Gradient Method (SGM) [22] allowed gradients to backpropagate more through
skip connections, while Backward Propagation Attack (BPA) [23] mitigated the negative impact
of gradient truncation in ReLU and max-pooling to improve the relevance between the gradient
and the input. Besides, [24, 25] introduced variance adjustment methods that modify the current
gradient based on the variance of gradients from the previous iteration and from ensemble surrogate
models respectively, resulting in more stable gradient updates. In comparison, feature information-
based adversarial attacks, such as FIA [26] and FDA [27], aim to degrade model performance by
disrupting important features that play a critical role in the model’s decisions. Since inaccurate
feature importance guidance could lead to a decrease in transferability, [28, 29] proposed the neuron
attribution-based attack methods that utilized more accurate neuron importance for feature-level
attacks. Furthermore, there were also other approaches [30, 31, 32] that utilized feature importance to
create masks that guide perturbation updates, enhancing transferability by focusing on more critical
features during attacks. In addition to that, [33, 34] specifically targeted feature information from
shallow layers to craft more transferable perturbation against the fine-tuned models.

Adversarial Attacks on ViTs. However, attack methods designed for CNNs have very low transfer-
ability to ViT models. To improve the attack performance against ViTs, Nasser et al. [35] proposed
the self-integration (SE) method and token refinement module (TR). Specifically, SE leverages the
classification header at each layer of the ViT model to produce adversarial perturbations, while TR
further refines the classification token based on SE to enhance the attack transferability. Wei et
al. [15] approached the problem from the perspective of attention, proposing a method to skip the
attention module, which significantly improves the transferability of adversarial examples. Addi-
tionally, they proposed a random extraction of perturbation patch strategy from the perspective of
image transformation to further enhance the transferability. Zhang et al. [36] introduced a virtual
dense connectivity approach, enabling the backpropagation of gradients through jump connections
in a deep network. Gao et al. [37] developed a feature diversity-based attack that uses adversarial
perturbations to accelerate feature collapse due to the ViT attention module. Zhang et al. [14] pro-
posed a token gradient regularization approach to reduce gradient variance during backpropagation
in a token-wise manner, based on the structural features of ViTs, to improve the transferability of
adversarial perturbations. By contrast, our adaptive token tuning method not only considers the token
gradient variance but also aims to reduce the destruction of feature diversity to preserve the original
feature information. Additionally, we design a self-paced patch out strategy to enhance both the
transferability and efficiency of adversarial attacks.
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3 Methodology

3.1 Preliminary

Notations and Definitions. A benign sample is defined as the original clean image x ∈ RC×H×W

along with its corresponding ground-truth label y ∈ {1, 2, · · ·,K}, where C, H , W , and K represent
the number of channels, height, width of the image, and the number of label categories, respectively.
In ViT networks, the image x is evenly partitioned into a set of patches xp = {x1

p,x
2
p, · · ·,xn

p},
where xi

p ∈ RC×P×P denotes the i-th patch and n = HW/P 2 denotes the number of patches. The
set of ViT modules is defined as M = {QKV,MLP,Attention}, and the total number of ViT layers
is L. Given a surrogate ViT model f , the predicted label for the input x is represented by ŷ = f(x),
where ŷ = y for benign sample x. Consistent with previous works, we focus on fooling ViT models
in the untargeted attack setting. To guarantee the effectiveness and imperceptibility of adversarial
example xadv = x+ δ, adversarial attack maximizes the following optimization problem:

argmax
δ

L(f(x+ δ), y), s.t. ∥δ∥∞ ≤ ϵ (1)

where L is the loss function, e.g., cross-entropy, and ϵ is a constant to constrain the adversarial
perturbation δ in the ℓ∞-norm bound, thereby resulting in a change of label that f(xadv) ̸= y.

Patch Out. Motivated by previous work [16], Wei et al. [15] proposed the PatchOut attack to alleviate
the overfitting phenomenon by creating diverse input patterns. Specifically, a portion of patches in the
adversarial perturbation are randomly discarded using a binarized attack mask w, where the values of
selected/unselected patches are set to ones/zeros respectively. During the feed-forward process, the
input to surrogate model f becomes as x+ δ ⊙w, thus enhancing the input diversity.

Token Gradient Regularization. As compared to gradient variance tuning [24] applied directly to
the input, Zhang et al. [14] regularized the gradient variance of tokens in the intermediate ViT blocks.
Through the back-propagation in ViT layers, token gradients are multiplied by a scaling factor s
and k extreme values are further reset to zeros. As a result, adversarial perturbation is updated by a
regularized input gradient, i.e., TGR(∇δL, s, k), resulting in a more stable optimization process.

3.2 Adaptive Variance Reduced Token Gradient

During the training, a large gradient variance tends to overfit the surrogate model and causes the
update of the perturbations to fall into a local optimal solution, which lowers the transferability of
adversarial attack. Wang et al. [24] propose a variance tuning method to reduce the gradient variance
in the input perturbation space, but ignoring the gradient variance in intermediate layers. Thus, we
aim to reduce the overall gradient variance across all ViT layers to improve training effectiveness.

Variance Reduction in a Single ViT Layer. Given the module m ∈ M in an intermediate l-th
ViT layer, the latent representation of i-th token is defined as z(l,m)

i and its corresponding gradient
w.r.t. the loss function L in Eq. 1 is defined as g(l,m)

i = ∂L/∂z(l,m)
i . During the back-propagation,

TGR [14] searches the largest gradient out of n token gradients via g(l,m)
j = argmaxi∈{1,···,n} g

(l,m)
i

for each module m, and simply sets g
(l,m)
j = 0 to reduce the variance of token gradients in l-th

ViT layer. However, this largest gradient could be highly correlated with important features. As
a consequence, iterative optimization updates may overlook this portion of semantic information,
undermining the quality of the perturbations.

To simultaneously reduce the token gradient variance and preserve the feature information from the
largest token gradient, we decrease the largest token gradient mildly by a gradient penalty factor
γ ∈ (0, 1). For m = QKV or m = MLP, g(l,m)

i = γ · g(l,m)
i . Following the TGR [14] method,

for m = Attention, we also search for the set S of extreme token gradients located in the same
row or column as the largest token gradient. Thus, all the token gradients in S are re-scaled by
g
(l,m)
i = γ · g(l,m)

i for i ∈ S, since they are highly correlated with the largest token gradient. As
can be seen, this mild re-scaling strategy allows some important feature information in the largest or
extreme token gradients (i.e., nonzero gradient values) to back-propagate between consecutive ViT
layers in certain degree. The detailed analysis of the change in the token gradient variance (before
and after mild re-scaling by γ) is provided in Appendix A.
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Adaptive Variance Reduction Throughout ViT Layers. If re-scaling the token gradient of each
intermediate ViT layer independently, after back-propagation, the gradient w.r.t. the input perturbation
could be deviated from the original updating direction. Inspired by [38, 39], we utilize the gradient
information across ViT layers to adaptively re-scale the token gradients in each ViT layer. To be
specific, the last ViT layer is selected as the anchor, since it is most relevant to the classification task.
Then, the largest token gradient (or the set of extreme token gradients) in each ViT layer is adaptively
re-scaled to ensure its gradient variance remains consistent with previous ViT layer. Thus, for t-th
iteration, we define the adaptive variance reduce token gradient method as follows:

g
(l,m)
i,t = g

(l,m)
i,t ·

(
γ + λ

(
1−

√
Φ

(l,m)
t /Φ

(l+1,m)
t

))
, (2)

where Φ(l,m)
t and Φ

(l+1,m)
t denote the variance of token gradients for module m in l-th and (l+1)-th

layers respectively, i.e., Φ(l,m)
t = Var(g(l,m)) and Φ

(l+1,m)
t = Var(g(l+1,m)), and λ is the adaptive

factor balancing the relative importance between the gradient penalty factor and the ratio of gradient
variances. With this adaptive updating strategy, the variances of token gradients between consecutive
ViT layers become smoother compared to using a fixed constant value for re-scaling token gradients.
Appendix B provides further details regarding the analysis of adaptive variance reduced token gradient
throughout ViT layers with different parameter settings.

3.3 Self-Paced Patch Out under Semantic Guidance

Undoubtedly, random discarding [15] is a simple and effective method to alleviate the overfitting
and improve the transferability. However, discarding patches inappropriately raised by randomness
could lead to the difficulty in updating the perturbation, especially when limiting the total number of
iterations to a small value, e.g., only 10 iterations are commonly used in the literature of ViT attack.
Thus, within a limited training budget, we propose a self-paced patch out strategy under semantic
guidance to prevent the improper discarding of important patches to a certain degree. In addition
to that, the number of discarded patches are dynamically controlled by a scheduled pace to further
stablize the perturbation training.

Generating Semantic Guided Sparse Mask. Instead of generating a completely random mask, we
leverage the rich semantic information to mitigate the optimization instability caused by discarding
perturbation patches. Based on Grad-CAM [40], we construct the feature importance matrix W ∈
RH×W by fusing gradients and features from an intermediate ViT layer, i.e., W =

∑C(l)

i=1 G
(l)
i ⊙F

(l)
i ,

where C(l) is the number of channels in l-th layer and l ∈ (0, L). According to the partition of xp,
we further define the patch version of W as Wp = {W 1

p , · · · ,W n
p }, where W i

p ∈ RP×P . Thus, the

feature importance of i-th patch x
(i)
p can be measured by the Frobenius norm ||W i

p||F .

Furthermore, patch-level feature importance can be combined with random sampling to discard a
portion of patches under semantic guidance. First, we define 1p as a C × P × P tensor with all
ones and the scaled patch-level feature importance as c ∈ [0, 1]C×H×W , where cip = (||W i

p||F −
minj(||W j

p ||F ))/(maxj(||W j
p ||F ) − minj(||W j

p ||F )) · 1p for i, j ∈ {1, · · ·, n}. To control the
number of discarded patches, we further introduce α ≥ 0 and β ≥ 0 as scaling and offset coefficients
to shift the distribution of c. Then, the semantic guided sparse mask w can be generated by:

w = (q < α · c− β), (3)

where q ∈ [0, 1]C×H×W is a random variable sampled from the patch-level uniform distribution
Up(0, 1). In detail, for i-th patch of q, we have qi

p = ϵ · 1p where ϵ ∼ U(0, 1). As can be seen,
the elements within a patch will be discarded or preserved altogether with the same probability.
Additionally, patches with lower feature importance are more likely to be discarded, while those with
higher feature importance are less likely to be discarded.

Self-Paced Patch Out via Progressive Sparse Mask. To further improve both the efficiency and the
effectiveness of training adversarial perturbations, a self-paced patch out strategy is introduced to
control the number of discarded patches for each iteration at a dynamic pace. For t-th iteration, we
define the progressive sparse mask wt based on feature importance ct as follows:

wt =
{
w|w = (qt < α · ct − β), qt ∼ Up(0, 1), ct = 1− t

T (1− c)
}
,

Np(w1) < Np(w2) < · · · < Np(wT ),
(4)
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where T is the number of iterations, qt is the random variable sampled from Up(0, 1), and Np(wt) is
the number of discarded patches in wt, approximately equal to E[1− α · ct + β)]/(C · P 2).

To be specific, as the iteration t increases, ct becomes to c gradually, and more perturbation patches
are discarded such as Np(wt) < Np(wt+1) to prevent the overfitting. In the meanwhile, training
samples with varying patterns are fed into the surrogate ViT model for purpose of enhancing the
diversity of inputs. On the other hand, the coefficients α and β can be adjusted correspondingly to
guarantee that the strength (i.e., the magnitude) of adversarial perturbations increases step by step, e.g.,
||wt ⊙ δt||1 ≤ ||wt+1 ⊙ δt+1||1. For a fair comparison, we also set appropriate values for α and β
to generate progressive sparse masks, ensuring that the total number of discarded patches throughout
the training process is greater than or at least equal to that of other methods such as PNA [15]. Thus,
we have

∑T
t=1 E[1− α · ct + β)]/(C · P 2) ≥ T ·Ndpatch, where T is the number of iterations and

Ndpatch is the fixed number of patches discarded by comparison methods per iteration. To summarize,
our proposed self-paced patch out effectively integrates self-paced learning into training process and
maximizes the adaptive loss function Lt = L(f(x+ δ ⊙wt), y) at each iteration, which can further
improve the transferability of crafted adversarial perturbations across various models.

3.4 Weakening the Effectiveness of Attention Mechanism

Feature-based adversarial attacks [26, 29, 33, 34] have shown that not all the features in DNNs
contribute positively to the generation of adversarial perturbations, despite their significances in
classification tasks. On the other hand, it is demonstrated in previous ViT studies [15, 17] that attention
modules in certain ViT layers are redundant for image classification and adversarial perturbation
generation, which could cause the overfitting phenomenon. Building upon this, we propose to reduce
the impact of some attention modules during the training of adversarial perturbations.

Truncated Attention Layers. According to [41, 35], shallow layers exploit generic properties of
attention. whereas deep layers exploit highly model-specific properties of attention. To mitigate
the overfitting caused by excessive global attention, we introduce a hard truncation strategy for
deep ViT layers. During back-propagation, we multiply the token gradient g(l,m)

i with a truncation
factor τ for module m = Attention. To be specific, we set τ (l,m) to 0 for l ∈ {l′ + 1, · · · , L},
while setting τ (l,m) to non-zero value for l ∈ {1, · · · , l′}. As a result, intermediate gradients can be
back-propagated to each token individually via skipping attention mechanism, thereby reducing the
adversarial perturbation’s dependence on complex interactions between tokens in deep ViT layers.

Hybrid Token Gradient Truncation. For purpose of effectively balancing the influence of different
modules on the perturbation training, we further introduce a hybrid token gradient truncation method
to constrain the token gradient in each module m throughout all ViT layers using the predefined
set S(m)

τ of L truncation factors. For m = Attention, we set S(m)
τ = {τ (1,m), · · ·, τ (l′,m), 0, · · ·, 0},

where deep ViT layers are processed via the hard truncation (i.e., τ (l,m) = 0, l > l′), and shallow
ViT layers are processed via the soft truncation (i.e., τ (l,m) > 0, l ≤ l′). For either m = QKV or
m = MLP, we set S(m)

τ = {τ (1,m), · · ·, τ (l′,m), τ (l
′+1,m), · · ·, τ (L,m)}, where all the intermediate

ViT layers are processed via the soft truncation (i.e., τ (l,m) > 0, l ∈ {1, · · ·, L}). In addition to
that, for any l-th ViT layer (1 ≤ l ≤ l′), by setting τ (l,Attention) < max(τ (l,QKV), τ (l,MLP)) between
different ViT modules, we can continue to weaken the effectiveness of attention mechanism during
the perturbation training process.

In sections 3.2-3.4, we introduced the details of our proposed adaptive token tuning (ATT) attack
method from three perspectives. On the one hand, both variance reduction and hybrid truncation
aim to adaptively tune the token gradient throughout the back-propagation path. On the other hand,
self-paced patch out focuses on adaptively tuning the token diversity in the input perturbation space.
The overall optimization algorithm for training adversarial example is provided in Appendix C.

4 Experiments

We utilized different surrogate models for comparison, demonstrating versatility and effectiveness of
our ATT attack. Ablation experiments were conducted to verify the effectiveness of each component
of our approach. Additionally, we analyzed experimental results by examining gradient variance and
feature information, providing a statistical explanation for the effectiveness of our method.
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4.1 Experiment Setup

Dataset. We followed the baseline approach [14] by selecting 1,000 random images from different
categories in the ILSVRC2012 [42] validation set. All surrogate models can classify the images in
our chosen dataset with near-perfect accuracy.

Models. We chose four representative ViT models as surrogate models to produce adversarial
samples: ViT-B/16 [1], PiT-B [43], CaiTS/24 [44], and Visformer-S [45]. Considering structural
differences between ViTs and CNNs, we divided attack scenarios into two categories: attacking
ViTs and attacking CNNs. For ViT attack, we used four ViT models as target models to test the
transferability of adversarial samples: DeiT-B [46], TNT-S [47], LeViT-256 [48], and ConViT-B [49].
Similarly, we selected four CNN models as target models to verify the transferability of adversarial
samples: Inception-v3 (Inc-v3) [50], Inception-v4 (Inc-v4) [51], Inception-ResNet-v2 (IncRes-v2)
[51], and ResNet-v2-152 (Res-v2) [52, 53]. To validate the effectiveness against defense models,
we further selected three adversarially trained defense models: Inception-v3-ens3 (Inc-v3ens3),
Inception-v4-ens4 (Inc-v4ens4), and Inception-ResNet-v2 (IncRes-v2adv) [54, 55].

Baseline Methods. Since our approach takes into account the optimization of the gradient, we
selected several methods closely related to ours as baselines, including MI-FGSM (MIM) [18],
VMI-FGSM (VMI) [24], and SGM [22]. To demonstrate the superiority of our approach over state-
of-the-art ViT attacks, we used PNA [15] and TGR [14] for comparison. Our approach also proposes
a superior self-paced input diversity method; therefore, we used PatchOut [15] as the baseline.

Evaluation Metrics. Consistent with the baseline methodology [14], we used the attack success
rate (ASR) as the evaluation metric in all transferability comparison experiments. Additionally, we
defined the number of iterations that led to the first-time misclassification by the model as t, which
we used as a metric for efficiency comparison within a limited training budget T . For ASR, higher
values (↑) indicate better transferability, while for t, lower values (↓) indicate better efficiency.

Parameters. We kept all known parameter settings consistent with [14]. The maximum perturbation
amplitude was set to ϵ = 16, and the number of training iterations was set to T = 10, resulting in a
step size of η = ϵ

T = 1.6 for each perturbation update. All comparison methods used momentum as
the stabilization update strategy with decay factor µ = 1.0. Hyperparameters specific to each method
were kept the same as those set by original methods. The penultimate ViT layer (i.e., l = L− 1) is
selected to generate patch-level feature importance. We set appropriate values for α and β to ensure
the expected value of the number of discards in our method was greater than or equal to the number
of PatchOut discards, where its optimal Ndpatch is 130. We adjusted the images of the whole dataset
to 224× 224 and set the patch size to 16× 16. For the adaptive gradient variance reduction strategy,
we set the gradient penalty factor to γ = 0.5 and the adaptive factor to λ = 0.01. Truncation factor τ
is finetuned with appropriate values to balance different modules for each surrogate model.

4.2 Evaluating the Transferability

In this section, we verified the transferability of adversarial perturbations on four ViTs, four unde-
fended CNNs, and three defended CNN models. Specifically, we produced adversarial samples using
the four ViT surrogate models, tested the attack success rate on all black-box models, and calculated
the average attack success rate across all black-box models (abbreviated as Avgbb).

Firstly, we focus solely on the ViT attack using “Token Gradient-Based Optimization”. Here, all
comparison methods and “Ours” indicate the pure gradient-based attack “Without Input Diversity
Enhancements”. In Table 1, we verified the transferability of our method on ViTs. The experimental
results indicated that our method achieved nearly 100% attack success rate under white-box settings.
In addition, the transferability of our method performed significantly better than all other baseline
methods, with an average increase of 6.4% in the attack success rate of black-box models. All
baseline methods optimized the gradient and achieved good attack performance, especially TGR,
improving the transferability by a large margin. However, TGR directly set the token with the
maximum gradient to zero, preventing the perturbation from learning potentially important feature
information. In contrast, our method greatly preserved the original feature information while avoiding
the overfitting phenomenon caused by excessively large gradients.

Furthermore, we validated the transferability of our method from ViT models to undefended and
defended CNN models. Experimental results on CNN models are shown in Table 2, where the
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Table 1: The attack success rate (%) of various transfer-based attacks against eight ViT models and
the average attack success rate (%) of all black-box models. The best results are highlighted in bold.

Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B Avgbb

ViT-B/16

MIM 100.0* 34.5 64.1 36.5 64.3 50.2 33.8 66.0 49.9
VMI 99.6* 48.8 74.4 49.5 73.0 64.8 50.3 75.9 62.4
SGM 100.0* 36.9 77.1 40.1 77.9 61.6 40.2 78.4 58.9
PNA 100.0* 45.2 78.6 47.7 78.6 62.8 47.1 79.5 62.8
TGR 100.0* 49.5 85.0 53.8 85.6 73.1 56.5 85.4 69.8
Ours 99.9* 57.5 90.3 63.9 90.8 82.0 66.8 90.8 77.4↑

PiT-B

MIM 24.7 100.0* 34.7 44.5 33.9 43.0 38.3 37.8 36.7
VMI 38.9 99.7* 51.0 56.6 50.1 57.0 52.6 51.7 51.1
SGM 41.8 100.0* 57.3 73.9 57.9 72.6 68.1 59.9 61.6
PNA 47.9 100.0* 62.6 74.6 62.4 70.6 67.3 61.7 63.9
TGR 60.3 100.0* 80.2 87.3 78.0 87.1 81.6 76.5 78.7
Ours 69.6 100.0* 86.1 91.9 85.5 93.5 89.0 85.5 85.9↑

CaiT-S/24

MIM 70.9 54.8 99.8* 55.1 90.2 76.4 54.8 88.5 70.1
VMI 76.3 63.6 98.8* 67.3 88.5 82.3 67.0 88.1 76.2
SGM 86.0 55.8 100.0* 68.2 97.7 91.1 74.9 96.7 81.5
PNA 82.4 60.7 99.7* 67.7 95.7 86.9 67.1 94.0 79.2
TGR 88.2 66.1 100.0* 75.4 98.8 92.8 74.7 97.9 84.8
Ours 93.6 76.4 100.0* 85.9 99.4 96.9 87.4 98.8 91.2↑

Visformer-S

MIM 28.1 50.4 41.0 99.9* 36.9 51.9 49.4 39.6 42.5
VMI 39.2 60.0 56.6 100.0* 54.1 62.8 59.1 54.4 55.2
SGM 18.8 41.8 34.9 100.0* 31.2 52.1 52.7 29.5 37.3
PNA 35.4 61.5 54.7 100.0* 51.0 66.3 64.5 50.7 54.9
TGR 41.2 70.3 62.0 100.0* 59.5 74.7 74.8 56.2 62.7
Ours 44.7 70.9 68.7 100.0* 66.4 78.8 80.9 58.4 67.0↑

Table 2: The attack success rate (%) of various transfer-based attacks against four undefended CNN
models and three defended CNN models and the average attack success rate (%) of all black-box
models. The best results are highlighted in bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv Avgbb

ViT-B/16

MIM 31.7 28.6 26.1 29.4 22.3 19.8 16.5 24.9
VMI 43.1 41.6 37.9 42.6 31.4 30.6 25.0 36.0
SGM 31.5 27.7 23.8 28.2 20.8 18.0 14.3 23.5
PNA 42.7 37.5 35.3 39.5 29.0 27.3 22.6 33.4
TGR 47.5 42.3 37.6 43.3 31.5 30.8 25.6 36.9
Ours 53.3 49.0 45.4 51.5 38.1 36.7 33.1 43.9↑

PiT-B

MIM 36.3 34.8 27.4 29.6 19.0 18.3 14.1 25.6
VMI 47.3 45.4 40.7 43.4 35.9 34.4 29.7 39.5
SGM 50.6 45.4 38.4 41.9 25.6 20.8 16.7 34.2
PNA 59.3 56.3 49.8 53.0 33.3 32.0 25.5 44.2
TGR 72.1 69.8 65.1 64.8 43.6 41.5 32.8 55.7
Ours 80.4 75.3 72.7 72.9 52.5 50.6 41.0 63.6↑

CaiT-S/24

MIM 48.4 42.9 39.5 43.8 30.8 27.6 23.3 36.6
VMI 58.5 50.9 48.2 52.0 38.1 36.1 30.1 44.8
SGM 53.5 45.9 40.2 45.9 30.8 28.5 21.0 38.0
PNA 57.2 51.8 47.7 51.6 38.4 36.2 30.1 44.7
TGR 60.3 52.9 49.3 53.4 39.6 37.0 31.8 46.3
Ours 73.9 66.0 66.3 66.4 54.6 52.1 43.9 60.5↑

Visformer-S

MIM 44.5 42.5 36.6 39.6 24.4 20.5 16.6 32.1
VMI 54.6 53.2 48.5 52.2 33.0 32.0 22.2 42.2
SGM 43.2 41.1 29.6 35.7 16.1 13.0 8.2 26.7
PNA 55.9 54.6 46.0 51.7 29.3 26.2 21.1 40.7
TGR 65.9 66.8 55.3 60.9 36.0 32.5 23.3 48.7
Ours 80.9 81.2 70.5 75.7 50.1 41.3 32.0 61.7↑

transferability of all other methods on CNNs was low, but our method significantly outperformed all
baselines. The black-box attack success rate increased by an average of 10.5%, which was higher than
the transferability improvement on the ViT model, indicating that our method is more advantageous
for cross-model attacks. We analyzed that our method, in addition to avoiding overfitting surrogate
models, allowed the perturbation to learn as many features as possible, thus enabling the perturbation
to better attack both ViTs and CNN models. Our method achieved the average attack success rate
of three surrogate models on CNNs to exceed 60%, with the highest average attack success rate on
the defended CNNs reaching 50.2%, which poses a serious security threat. Additional attack results
against robust ViTs [56, 57, 58] are provided in Appendix D.9

Lastly, we further investigated the ViT attack strategy that combined “Token Gradient-based Opti-
mization” with “Input Diversity Enhancement”, where Patch Out (PO) and the proposed Self-Paced
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Table 3: The average attack success rate (%) against ViTs, CNNs, and defended CNNs by various
transfer-based attacks with input diversity enhancement strategy. The best results are highlighted in
bold. “PO” denotes PatchOut and “SPPO” denotes self-paced patch out under semantic guidance.

Model Attack ViTs CNNs Def-CNNs

ViT-B/16

MIM+PO 61.3 31.3 21.7
VMI+PO 69.1 42.8 30.9
SGM+PO 64.8 29.2 18.9
PNA+PO 70.8 42.6 29.9
TGR+PO 76.0 46.7 33.3
Ours+PO 77.1 51.7 37.1

Ours+SPPO 80.3↑ 54.1↑ 38.7↑

Model Attack ViTs CNNs Def-CNNs

PiT-B

MIM+PO 47.3 32.5 17.5
VMI+PO 59.5 46.2 35.8
SGM+PO 70.0 45.6 21.3
PNA+PO 73.1 57.8 32.7
TGR+PO 82.3 68.9 41.3
Ours+PO 84.2 75.2 48.4

Ours+SPPO 87.7↑ 78.0↑ 52.0↑

Model Attack ViTs CNNs Def-CNNs

CaiT-S/24

MIM+PO 70.3 44.0 29.3
VMI+PO 76.8 57.8 38.4
SGM+PO 85.1 49.2 29.3
PNA+PO 81.6 56.6 39.3
TGR+PO 88.8 60.5 40.5
Ours+PO 91.1 71.9 54.3

Ours+SPPO 92.6↑ 75.4↑ 58.3↑

Model Attack ViTs CNNs Def-CNNs

Visformer-S

MIM+PO 54.9 45.7 23.4
VMI+PO 64.8 56.6 32.6
SGM+PO 51.6 44.3 15.0
PNA+PO 68.8 61.8 32.3
TGR+PO 70.4 64.3 33.5
Ours+PO 70.5 79.3 44.5

Ours+SPPO 76.4↑ 84.4↑ 50.3↑

Patch Out (SPPO) were used as the input diversity enhancement strategy. As a result, we denoted
these methods with “+PO” or “+SPPO” to indicate that gradient-based attacks were combined “With
PO-based or SPPO-based Input Diversity Enhancement”. As shown in Table 3, the experimental
results indicated that our method demonstrated an average improvement of 6.6% in the black-box
average attack success rate against ViTs, CNNs, and defended CNNs (Def-CNNs). When combined
with the proposed self-paced patch out, our method exhibited superior attack abilities. Our strategy,
which discards perturbation patches under semantic guidance in a self-paced way, proved to be more
effective than PatchOut’s random discarding. The success rate of our method’s black-box attacks was
further enhanced by 3.5% when compared to direct utilization of the PatchOut strategy.

In addition to that, we further conducted cross-task transferability experiments on object detec-
tions [59, 60, 61, 62, 63] and semantic segmentations [64, 65, 66] in black-box attack scenarios.
Adversarial samples crafted by our approach demonstrated greater aggressiveness than baselines, see
Appendix D.6 and D.7.

4.3 Ablation Study

In this section, we performed three sets of ablation studies on the proposed ATT attack. In the
subsequent experiments, all methods were compared based on their complete attack strategies.

Adaptive Factor. We explored the role of the adaptive factor λ in smoothing the gradient variance
across different layers of ViT-B. The attention’s gradient is used as a demonstration that similar
results can be obtained for other modules. We found that the larger the λ, the more effective the
gradient variance smoothing was. However, the results of the transferability experiments showed that
smoother gradient variance did not always result in higher transferability. We analyzed that this might
be due to excessive gradient variance smoothing leading to changes and loss of feature information.
Therefore, to balance performance, we chose λ = 0.01. More results are given in Appendix B.

Table 4: The average attack success rate (%)
against ViTs, CNNs, and defended CNNs by
our method with different module settings.

Attention QKV MLP ViTs CNNs Def-CNNs
- - - 49.9 29.1 19.3
✓ - - 70.4 43.3 29.7
- ✓ 68.8 40.7 27.7
- - ✓ 67.8 39.5 28.0
✓ ✓ - 72.1 45.5 31.0
✓ - ✓ 79.3 51.7 37.5
- ✓ ✓ 77.8 48.7 35.5
✓ ✓ ✓ 80.3 54.1 38.7

Attentional Truncation. Considering the differ-
ences between models, we conducted experiments
on varying the number of truncated ViT layers. In
Fig. 5 of Appendix D.2, three models required trun-
cation to achieve better transferability. Visformer-S
achieved the best result without truncation, since it
is a shallow model, where scaling alone was suffi-
cient to mitigate overfitting in attention mechanism.

Attacks with Different Module Settings. We con-
ducted ablation experiments using four surrogate
models to compute the average attack success rate
for ViTs, undefended CNNs, and defended CNNs
in black-box setting. Table 4 shows experimental results on the surrogate model ViT-B, where
attacking the attention module greatly improved the transferability, and attacking all three modules
achieves the best ASR. The rest of the experimental results are shown in the Appendices D.5 and D.8.
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4.4 The Analysis of Attack’s Effectiveness and Efficiency

We utilized ViT-B/16 to generate adversarial examples and retained intermediate results for 10
iterations. Fig. 2 shows the process of discarding perturbation patches for “Ours+SPPO” versus
“TGR+PO”, and the classification results (label and probability). For each iteration, class activation
map of adversarial example was generated by GradCAM on CaiT-S/24 with an unlabeled setup. The
results showed that our method required only 5 iterations for the model to determine the error, while
TGR required 9 iterations. Class activation maps also reflected this change. After 10 iterations,
the confidence level of wrong label due to our attack was higher, indicating that our attack was not
only more efficient but also stronger. Additionally, considering that each iteration increases a fixed
perturbation magnitude, our method required a smaller perturbation to mislead the model. More
efficiency results tested in different surrogate models are provided in Appendix D.1 and D.3.
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Figure 2: The attack efficiency of “Ours+SPPO” versus “TGR+PO”. Our ATT attack makes the
model predict wrong faster and ends up generating error labels with a higher level of confidence.

5 Conclusion

In this paper, we propose an adaptive token tuning attack method to enhance the transferability of
ViT attacks. Unlike previous gradient-based attacks, our method puts more emphasis on smoothing
the token gradient variance between different layers and preserving important features along with the
back-propagation. Guided by patch-level feature importance, we introduce a self-paced discarding
strategy from the perspective of input diversity, where the number of discarded perturbation patches
is gradually increased. To further improve transferability, we propose a hybrid truncation strategy to
reduce overfitting in the attention mechanism. Extensive experiments show that our adaptive token
tuning attack method has superior transferability and efficiency.

6 Limitations and Broader Impacts

Although our experimental results verified the effectiveness of the proposed adaptive token tuning
strategy in enhancing the transferability of ViT attacks, the relationship between gradient variance
reduction and transferability still lacked theoretical support. Existing research suggested that more
generalized feature information could improve perturbation’s transferability, and our work focused
on leveraging this by reducing token gradient variance. In future work, we will continue exploring
from a theoretical persepctive to provide valuable insights into adversarial attacks.

If the proposed ATT attack method is maliciously used in real-world applications, it could lead to
security concerns, representing one of its potential negative social impacts. Due to the superior perfor-
mance of pretrained models and the significant time cost associated with training from scratch, many
applications opt to fine-tune pretrained models. As a result, this undoubtedly exposes applications to a
risky environment vulnerable to attacks. Our research aims to encourage deep learning practitioners to
further explore security concerns related to model vulnerabilities, and in return, offering constructive
guidance for adversarial defense.
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Appendix

A The Analysis of the Variance of Token Gradients in ViT Layers

Based on the TGR [14] method’s assumption that channels in the ViT module are independent, we
can analyze the variance of token gradient in a single channel, which can then be applied repeatedly
to all remaining channels within each module. In the following derivations, we replace g(l,m)[c] in
c-th channel (c = 1, · · ·, C) with g for notational simplicity. Without loss of generality, the number
of token gradients in each module m is represented by n. Thus, g is defined in the Rn space. Since
the scales of different token gradients vary significantly, we can assume that the largest token gradient
(either before or after re-scaling) is far beyond the expectation of token gradients, i.e., max(g) > 0,
max(g) ≫ E[g], and γ ·max(g) ≫ E[g] with γ ∈ (0, 1).

Theorem 1. Given the token gradients g = [g1, · · ·, gn] and the scaling factor γ ∈ (0, 1), the variance
of token gradients Var(g) is reduced after re-scaling the largest token gradient by gj = γ · gj , where
j = argmaxi∈{1,···,n} gi.

Proof of Theorem 1. Based on the predefined re-scaling operation on the largest token gradient,
we define an auxiliary variable g̃ = [g̃1, · · ·, g̃n], where g̃i = γ · gi for i = j, and g̃i = gi for i ̸= j.
After re-scaling the largest token gradient by g̃j = γ · gj , we can rewrite the variance of the auxiliary
gradient variable g̃ equivalently as follows:

Var(g̃) = E[g̃2]− (E[g̃])2

=
1

n

( n∑
i=1
i̸=j

g2i + γ2 · g2j
)
−

[ 1
n

( n∑
i=1
i̸=j

gj + γ · gj
)]2

=
1

n

[ n∑
i=1

g2i − (1− γ2) · g2j
]
−

( 1

n

n∑
i=1

gj −
1− γ

n
· gj

)2

= E[g2]− (E[g])2 −
(1− γ

n
· gj

)[
(1 + γ) · gj +

1− γ

n
· gj − 2E[g]

]
︸ ︷︷ ︸

∆

.

(5)

On the other hand, we have the following inequalities that gj ≫ E[g] and γ · gj ≥ E[g] since gj is an
outlier (i.e., largest) value from the original distribution of token gradients. As a result, we can obtain
that g̃j ≥ E[g̃], since g̃j = γ · gj ≥ E[g] ≥ E[g̃].
Then, the third term ∆ in the last row of Eq. 5 can be rewritten equivalently as:

∆ =
(1− γ

n
· gj

)[(
gj − E[g]

)
+
(
γ · gj +

(1− γ)

n
· gj − E[g]

)]
=

(1− γ

n
· gj

)[(
gj − E[g]

)
+

(
g̃j − E[g̃]

)]
≥ 0,

(6)

where gj ≥ 0 and 1− γ ≥ 0.

Combining Eq. 5 and Eq. 6 together, we can obtain the following inequality between the original
variance and the variance after re-scaling token gradients:

Var(g̃) = Var(g)−∆ ≤ Var(g), (7)

which completes the proof. □

For QKV and MLP modules, we can re-scale the largest token gradient in each channel to reduce
the overall gradient variance according to Theorem 1. For Attention module, we found out that the
largest token gradient is highly correlated with other extreme token gradients. We define S as the set
of extreme token gradients and its size is |S| = n′ ≪ n, where S includes the largest token gradient
gj and its correlated extreme token gradients at the same row or the same column. Thus, we can also
assume that all the token gradients in S are far beyond the expectation of token gradients, i.e., gj > 0,
gj ≫ E[g], and γ · gj ≥ E[g] for j ∈ S.
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Lemma 2. Given the token gradients g = [g1, · · ·, gn] and the scaling factor γ ∈ (0, 1), the variance
of token gradients Var(g) is reduced after re-scaling all the extreme token gradients in the set S by
gj = γ · gj , where j ∈ S and |S| = n′ ≪ n.

Proof of Lemma 2. In the following, the token gradients in the set S are re-scaled one by one
w.r.t. their descending order O, i.e., gO1

≥ · · · ≥ gOn′ . For each index Oj , we define an auxiliary
gradient variable g̃(j) and its corresponding index set S(j) = {O1, · · ·,Oj}, where g̃

(j)
i = γ · gi for

i ∈ S(j) and g̃
(j)
i = gi for i /∈ S(j). For any two consecutive indices Oj and Oj+1, the relationships

between gradients and their expectations are g̃Oj
≥ E[g̃(j)] and g̃Oj+1

≥ E[g̃(j+1)].

According to Theorem 1, we have the following inequality of variances before and after re-scaling
g̃
(j+1)
Oj+1

= γ · g̃(j)Oj+1
, i.e., Var(g̃(j+1)) ≤ Var(g̃(j)). By setting g̃(0) = g and iteratively re-scaling

token gradients in the set S using the descending order O, the following inequality can be obtained:

Var(g) = Var(g̃(0)) ≥ Var(g̃(1)) ≥ · · · ≥ Var(g̃(n′−1)) ≥ Var(g̃(n′)) = Var(g̃), (8)

where g̃i = γ · gi for i ∈ S and g̃i = gi for i /∈ S. As a result, we have Var(g̃) ≤ Var(g) after
re-scaling all the n′ largest token gradients in the set S, which completes the proof. □

Based on Lemma 2, we can re-scale the set S of extreme token gradients in each channel to reduce the
overall gradient variance for Attention module. As a result, by combining Theorem 1 and Lemma 2,
we theoretically verify the effectiveness of our mild re-scaling strategy that the overall gradient
variance can be reduced for all the modules in ViT layers.

B The Analysis of Adaptive Variance Reduced Token Gradient

It is demonstrated in Fig. 3a that the variance of token gradients after re-scaling was reduced greatly
compared to the variance of original token gradients. Additionally, by adaptively re-scaling the token
gradient, the variances throughout ViT layers became more smoother with the increase of the value
of λ, as shown in Fig. 3b. Thus, the proposed adaptive variance reduced token gradient method was
more effective than the one of re-scaling the token gradient with a fixed constant value.

8.E-14

5.E-12

1.E-11

2.E-11

2.E-11

3.E-11

1 2 3 4 5 6 7 8 9 10 11 12

G
ra

di
en

t v
ar

ia
nc

e

Layer

original λ=0.0001

(a) Comparison of original and re-scaled gradients

8.E-14

2.E-13

3.E-13

4.E-13

5.E-13

6.E-13

7.E-13

2 3 4 5 6 7 8 9 10 11

G
ra

di
en

t v
ar

ia
nc

e

Layer

λ=0.5 λ=0.1 λ=0.05 λ=0.01 λ=0.001 λ=0.0001

(b) Comparison of different values of λ.

Figure 3: The analysis of adaptive variance reduced token gradient with different parameter settings.

C The Overall Framework of Optimization Algorithm

In section 3, we present the details of the proposed adaptive token tuning (ATT) method from three
perspectives, towards training transferable adversarial examples on ViT models.

At each iteration, during the feed-forward process, self-paced patch out method is applied to randomly
discard a portion of adversarial perturbations via the semantic guided sparse mask. Following this,
the adaptive loss function and its gradient are calculated based on the input pair (i.e., the crafted
adversarial example and the ground truth label). On the other hand, during the back-propagation
process, we first truncate token gradient in a hybrid mode to weaken the effectiveness of attention
mechanism, and then adaptively re-scale the set of extreme token gradients to reduce the overall
gradient variance for each module throughout ViT layers.
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The overall optimization algorithm is summarized in Algorithm 1. In line11, we adaptively re-scale
the largest token gradient (i.e., |S| = 1) for MLP or QKV module and the set S of extreme token
gradients for Attention module respectively.

Algorithm 1 Adversarial Attack on ViTs with Adaptive Token Tuning (ATT)

Input: clean image x with its ground truth label y, surrogate model f , loss function L, maximum
perturbation bound ϵ, maximum iteration number T , total number of network layers L, gradient
penalty factor γ, adaptive factor λ, scaling and offset factors α, β, truncation factor τ

Output: xadv

1: Initialize δ0 = 0
2: Set η = ϵ

T
3: Compute the patch-level feature importance c
4: for t = 1 to T do
5: Generate the progressive sparse mask wt via Eq. 4
6: Compute the loss function Lt = L(f(x+ δt−1 ⊙wt), y)
7: Back-propagate the gradient ∇Lt

8: for l = L to 1 do
9: for m ∈ {Attention,MLP,QKV} do

10: Truncate the token gradients g(l,m) by τ (l,m)

11: Adaptively re-scale the set S of extreme token gradients via Eq. 2
12: end for
13: end for
14: Update adversarial perturbation δt = δt−1 + η · sgn(∇δLt)
15: end for
16: Generate adversarial example xadv = max(min(x+ δT , 255), 0)
17: return xadv

D Additional Experiments

D.1 Comparison of Attack Efficiency between Different Methods

Tables 5-6 demonstrated the attack efficiency of different methods on ViTs, CNNs, and defended
CNNs. To effectively evaluate the attack efficiency during the perturbation training, we calculated the
average of the number of iterations that lead to the first-time misclassification by the model across
the entire dataset, defined as tavg = (1/|D|) ·

∑|D|
i=1 ti where |D| represents the total number of test

data samples in the dataset D. Compared to state-of-the-art methods, experimental results showed
that the attack efficiency of our ATT method is the highest in all black-box settings. In Fig. 4, we
showed the attack efficiency of different methods in another way, where the subtitle represented the
surrogate model and the x-axis represented the target model (total 15 models; 0 ∼ 7 are ViTs; 8 ∼ 14
are CNNs). It can be clearly seen that all methods were significantly less efficient against CNNs,
which was consistent with the above-mentioned experimental results presented by ASR (%).

D.2 The Analysis of Truncating Attention Module

Inspired by [17], we considered the possible redundancy of the attention module, which could lead
to perturbation overfitting in the surrogate ViT model. Thus, we adopted a truncation strategy to
discard part of the attention layer. The corresponding number of truncation layers is chosen based on
the best ASR, as shown in Fig. 5, where we conducted the analysis on four surrogate ViT models.
Due to differences in network structures, the shallow models (e.g., Visformer-S) obtained the best
performance without applying truncation, while the deep models (e.g., PiT-B, CaiT-S/24, Visformer-S)
required truncation at varying levels.

Without loss of generality, we set all the non-zero truncation factors of each module to the same
value. Additionally, to ensure the effectiveness of hybrid truncation, we first normalized the token
gradients of Attention, QKV, and MLP modules to approximately same order of magnitude, i.e.,
||g(l,m)||2/(CHW ). Then, according to the normalized values, we adjusted the truncation factors to
let MLP and QKV modules dominate the back-propagated token gradients and weaken the impact of
Attention module on updating the perturbation.
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Table 5: Comparison of attack efficiency of different methods on ViTs.
Model Attack ViT-B/16 PiT-B CaiT-S/24 Visformer-S DeiT-B TNT-S LeViT-256 ConViT-B

ViT-B/16
PNA+PO 2.3 7.8 5.6 7.5 5.8 6.1 7.8 5.6
TGR+PO 2.6 7.5 5.8 7.2 5.8 5.4 7.3 5.6

Ours+SPPO 1.3↓ 6.3↓ 4.1↓ 6.0↓ 4.1↓ 4.3↓ 6.1↓ 3.9↓

PiT-B
PNA+PO 7.5 1.3 6.9 5.7 7.1 5.5 6.4 6.8
TGR+PO 5.9 1.8 5.7 4.9 5.9 4.1 5.1 5.7

Ours+SPPO 5.3↓ 0.9↓ 4.5↓ 3.7↓ 4.7↓ 3.2↓ 4.0↓ 4.6↓

CaiT-S/24
PNA+PO 5.9 7.0 2.3 6.5 4.4 5.1 6.6 4.5
TGR+PO 4.7 6.3 1.9 5.7 3.8 3.9 5.5 3.8

Ours+SPPO 3.5↓ 4.9↓ 0.9↓ 4.3↓ 2.4↓ 2.7↓ 4.2↓ 2.4↓

Visformer-S
PNA+PO 8.0 6.5 7.3 0.8 7.6 5.5 6.2 7.6
TGR+PO 6.8 5.8 6.3 1.1 6.6 5.1 6.7 6.9

Ours+SPPO 6.5↓ 5.4↓ 5.8↓ 0.8↓ 6.2↓ 3.8↓ 4.6↓ 6.4↓

Table 6: Comparison of attack efficiency of different methods on CNNs and defended CNNs.
Model Attack IncV3 IncV4 IncRes-v2 ResV2 IncV3ens3 IncV3ens4 IncResV2adv

ViT-B/16
PNA+PO 8.1 8.4 8.6 8.2 8.8 9.0 9.2
TGR+PO 7.6 8.0 8.3 7.9 8.4 8.6 8.8

Ours+SPPO 6.9↓ 7.2↓ 7.5↓ 7.1↓ 7.9↓ 7.9↓ 8.3↓

PiT-B
PNA+PO 7.1 7.5 7.9 7.7 8.7 8.9 9.2
TGR+PO 5.9 6.4 6.8 6.5 7.7 7.8 8.4

Ours+SPPO 5.0↓ 5.4↓ 5.9↓ 5.6↓ 7.1↓ 7.3↓ 7.9↓

CaiT-S/24
PNA+PO 7.4 7.7 8.0 7.6 8.5 8.6 9.0
TGR+PO 6.5 7.0 7.3 6.8 7.7 7.8 8.4

Ours+SPPO 5.3↓ 5.8↓ 6.1↓ 5.7↓ 6.7↓ 6.9↓ 7.6↓

Visformer-S
PNA+PO 7.0 7.2 7.8 7.4 8.7 8.9 9.3
TGR+PO 5.3 5.4 6.4 5.7 7.4 7.9 8.5

Ours+SPPO 4.7↓ 4.8↓ 5.8↓ 5.2↓ 7.0↓ 7.5↓ 8.2↓
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Figure 4: Comparison of attack efficiency of different methods on ViTs, CNNs, and defended CNNs.
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Figure 5: Comparison of ASR (%) of our ATT method with different number of truncated layers.

D.3 Additional Analysis of Attack’s Effectiveness and Efficiency

We illustrated Fig. 2 more specifically, and in Fig. 6 we visualized class activation maps guided
by correct and incorrect labels. It could be clearly seen that, during iterative training, adversarial
perturbations gradually allowed the feature information of the correct label to be corrupted, while
generating the feature information of the incorrect label. Compared to other methods, our ATT
method successfully disrupted the model more effectively (i.e., higher confidence level) and more
efficiently (i.e., fewer iteration number). In this figure, it was observed that for the correctly labeled
class activation map, the important regions were not exactly in the classification target region, which
was obviously a distribution problem incurred by the dataset and the model. This also provoked us to
think that a good model should try to avoid classification errors due to background changes, but this
did not seem to be achievable on this type of image or model. We believed that a more comprehensive
dataset should include the case where the classification target remained the same but the background
changed, so that the model could recognize the classification target more accurately.

Figure 6: Class activation maps guided by correct label (top) and incorrect label (bottom).

D.4 Comparison of Class Activation Maps in Intermediate Attack Processes

In Figs. 7, we further showed class activation maps of adversarial examples in intermediate attack
processes, trained by different surrogate models. We used a pseudo label (i.e., the label of maxi-
mum probability) to guide the generation of class activation maps. Compared to “PNA+PO” and
“TGR+PO”, our ATT method achieves higher attack efficiency and effectiveness.
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(a) DeiT-B

(b) ConViT-B

(c) InceptionV3

(d) InceptionV3ens4

Figure 7: Comparison results of class activation maps in intermediate attack processes under different
surrogate models. For each subfigure, the top row is the attack results for “PNA+PO”, the middle row
is the attack results for “TGR+PO”, and the bottom row is the attack results for “Ours+SPPO”.
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D.5 The Analysis of Our ATT Attack with Different Module Settings

The analysis results were shown in Tables 7-9, where the ASR is calculated on average for ViTs, CNNs,
and defended-CNNs (Def-CNNs) respectively (which will also be used in subsequent experiments).
We further conducted analytical experiments on three additional surrogate ViT models to assess the
impact of different module settings on attack transferability in black-box scenarios.

In almost all ablation experiments, it was obtained that attacking the Attention module gave the
best transferability. But unexpectedly, attacking the MLP module of the CaiT-S-24 model resulted
in better transferability. We analyzed that it was due to deeper ViT models like CaiT-S-24, where
the MLP module played a greater role in correct classification. Overall, attacking all three modules
simultaneously yielded better performance than other module settings in most cases.

Table 7: The average attack success rate (%) of our ATT method with different module settings
trained by the surrogate model “PiT-B”.

Attention QKV MLP ViTs CNNs Def-CNNs
- - - 36.8 32.0 17.3
✓ - - 70.1 58.6 33.1
- ✓ 63.9 52.6 29.0
- - ✓ 60.1 47.5 26.3
✓ ✓ - 75.3 62.9 36.4
✓ - ✓ 85.0 72.2 45.1
- ✓ ✓ 79.8 68.3 43.8
✓ ✓ ✓ 87.7 78.0 52.0

Table 8: The average attack success rate (%) of our ATT method with different module settings
trained by the surrogate model“CaiT-S-24”.

Attention QKV MLP ViTs CNNs Def-CNNs
- - - 69.8 43.3 27.2
✓ - - 82.8 61.7 43.4
- ✓ - 73.2 50.0 33.9
- - ✓ 85.0 62.0 45.9
✓ ✓ - 83.0 62.3 43.6
✓ - ✓ 93.0 75.6 58.3
- ✓ ✓ 86.1 64.3 47.1
✓ ✓ ✓ 92.6 75.4 58.3

Table 9: The average attack success rate (%) by our ATT method with different module settings
trained by the surrogate model “Visformer-S”.

Attention QKV MLP ViTs CNNs Def-CNNs
- - - 42.5 40.8 20.6
✓ - - 73.5 67.7 35.1
- ✓ 66.5 62.5 31.8
- - ✓ 62.1 64.4 35.7
✓ ✓ - 73.5 69.5 36.1
✓ - ✓ 77.1 82.3 48.5
- ✓ ✓ 72.3 77.5 44.9
✓ ✓ ✓ 76.4 84.4 50.3

D.6 Evaluating the Transferability of Our ATT Attack on Object Detection Models

In the previous experiments, we evaluated the transferability of different attack methods from one
classification model to another classification model (i.e., the cross-model transferability). Thus, we
further explored the versatility of ViT attacks in cross-task scenarios, where adversarial examples
crafted by image classification models (i.e., ViT-B) on the ImageNet dataset were directly input into
object detection models. For purpose of better visualization of the cross-task attack process, we used
all the intermediate states from 10 updates during the perturbation generation. Additionally, only the
top three detection boxes with the highest confidence in the prediction results were considered. We
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compared the performance of “Ours+SPPO” with “TGR+PO” on different object detection models,
including Faster-RCNN [59], Mask-RCNN [60], SSD [61], RetinaNet [62], and FCOS [63].

As shown in Fig 8, it was clear to see that our ATT attack method allowed the object detection model
to produce higher confidence error in detection results.

D.7 Evaluating the Transferability of Our ATT Attack on Semantic Segmentation Models

To further evaluate the cross-task transferability, we directly input adversarial examples crafted by
image classification models (i.e., ViT-B) on the ImageNet dataset into semantic segmentation models.
Here, the experimental setup was identical to that used in D.6. We compared the performance
of “Ours+SPPO” with “TGR+PO” on different semantic segmentation models, including FCN-
resnet101 [64], Deeplabv3-resnet50 [65], and LRASPP [66]. It could be seen in Fig. 9 that our ATT
attack method corrupted the segmentation results more severely, which generated more incorrect
semantic labels.

(a) Faster-RCNN [59]

(b) Mask-RCNN [60]

(c) SSD [61]

(d) RetinaNet [62]

(e) FCOS [63]

Figure 8: Demonstration of results of attacking multiple object detection models using adversarial
examples trained by ViT-B. For each subfigure, the leftmost shows the detection results for clean
images, the top right shows the attack results for “TGR+PO”, and the bottom right shows the attack
results for “Ours+SPPO”.
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(a) FCN-resnet101 [64]

(b) Deeplabv3-resnet50 [65]

(c) LRASPP [66]

Figure 9: Demonstration of results of attacking multiple semantic segmentation models using
adversarial examples trained by ViT-B. For each subfigure, the leftmost is the clean image, the top
right is the attack results for “TGR+PO”, and the bottom right is the attack results for “Ours+SPPO”.

Table 10: Ablation experiments of our ATT method using different attack strategies with the SPPO
setup (“AVR": Adaptive Variance Reduced Token Gradient; “ST": Soft Truncation; “HT": Hard
Truncation).

AVR ST HT ViTs CNNs Def-CNNs
- - - 49.9 29.1 19.3
✓ - - 70.4 43.3 29.7
- ✓ - 68.8 40.7 27.7
- - ✓ 67.8 39.5 28.0
✓ ✓ - 72.1 45.5 31.0
✓ - ✓ 79.3 51.7 37.5
- ✓ ✓ 77.8 48.7 35.5
✓ ✓ ✓ 80.3 54.1 38.7

(a) ViT-B

AVR ST HT ViTs CNNs Def-CNNs
- - - 36.8 32.0 17.3
✓ - - 70.1 58.6 33.1
- ✓ - 63.9 52.6 29.0
- - ✓ 60.1 47.5 26.3
✓ ✓ - 75.3 62.9 36.4
✓ - ✓ 85.0 72.2 45.1
- ✓ ✓ 79.8 68.3 43.8
✓ ✓ ✓ 87.7 78.0 52.0

(b) PiT-B
AVR ST HT ViTs CNNs Def-CNNs

- - - 69.8 43.3 27.2
✓ - - 82.8 61.7 43.4
- ✓ - 73.2 50.0 33.9
- - ✓ 85.0 62.0 45.9
✓ ✓ - 83.0 62.3 43.6
✓ - ✓ 93.0 75.6 58.3
- ✓ ✓ 86.1 64.3 47.1
✓ ✓ ✓ 92.6 75.1 58.3

(c) CaiT-S/24

AVR ST HT ViTs CNNs Def-CNNs
- - - 42.5 40.8 20.6
✓ - - 73.5 67.7 35.1
- ✓ - 66.5 62.5 31.8
- - ✓ 62.1 64.4 35.7
✓ ✓ - 73.5 69.5 36.1
✓ - ✓ 77.1 82.3 48.5
- ✓ ✓ 72.3 77.5 44.9
✓ ✓ ✓ 76.4 84.4 50.3

(d) Visformer-S

D.8 Additional Ablation Experiments of Our ATT Method using Different Attack Strategies

In Table 10, we performed ablation experiments on three strategies (AVR/ST/HT), where “AVR”
denoted Adaptive Variance Reduced Token Gradient, “ST” denoted soft truncation that we utilized the
truncation factor to truncate Attention, QKV, and MLP modules, and “HT” denoted hard truncation
that we could truncate the gradient of selected Attention layers to zero. It could be seen in Table 10
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that “AVR” achieved better attack performances than “ST” and “HT”. The hybrid truncation strategy
that combined “ST” with “HT” resulted in a higher ASR than using “ST” or “HT” independently. On
the whole, when considering all three different attack strategies, our ATT method obtained the best
transferability in nearly all of black-box settings.

In Table 11, an additional experiment was conducted to study the variance reduction of token gradients,
where both input enhancement and other gradient strategies are not considered here. “Only VR”
denoted that only the variance reduction strategy was utilized in our ATT method, while “Only AVR”
denoted that only the adaptive variance reduction (AVR) was ultized in our ATT method. As shown
in Table 11, our proposed adaptive variance reduction strategy performs better than the fixed variance
reduction strategy, leading to better transferability of crafted adversarial examples.

Table 11: Study of the effect of gradient variance reduction on ASR. “Only VR” indicates “Variance
Reduced” and “Only AVR” indicates “Adaptive Variance Reduced”.

ViT-B/16 PiT-B CaiT-S/24 Visformer-S
ViTs CNNs Def-CNNs ViTs CNNs Def-CNNs ViTs CNNs Def-CNNs ViTs CNNs Def-CNNs

Ours(Only VR) 72.5 46.2 33.0 81.4 70.1 45.6 87.2 62.7 45.5 67.0 70.2 36.0
Ours(Only AVR) 73.5 47.5 33.6 84.4 72.5 46.3 89.6 66.5 47.2 67.7 72.6 37.2

D.9 Evaluating the Transferability of Different Attack Methods on Robust ViT Models

In Table 12, we added a validation experiment for robust ViTs, where “PNA+PO”, “TGR+PO”,
and “Ours+SPPO” use their optimal hyperparameters. “clean” denoted that the model was utilized
to classify a clean dataset and the result was the probability of the classifier classifying the data
incorrectly. The rest of the attack results were presented by all ASRs. Experimental results showed
that our ATT attack method still outperforms SOTA methods in robust ViT models (i.e., DeiT-
S [56], Swin-B [57], Xcit-S [58]). Meanwhile, we performed the same test on normal ViT models
corresponding to these robust ViT models, where the proposed “Ours+SPPO” also achieved the
highest ASR.

Table 12: Comparative experiments of different attack methods on robust ViTs. “clean” indicates that
clean images are classified and all results indicate the percentage of classification errors (i.e., ASR).

Model Attack Robust ViTs Normal ViTs
DeiT-S Swin-B Xcit-S DeiT-S Swin-B Xcit-S

clean 13.9 5.4 46.8 0.5 0.4 0.2

ViT-B/16
PNA+PO 19.5 8.8 51.7 75.2 47.5 45.5
TGR+PO 27.7 15.8 56.5 85.1 54.4 54.5

Ours+SPPO 28.8↑ 16.9↑ 56.7↑ 93.7↑ 70.4↑ 68.6↑

PiT-B
PNA+PO 18.4 9.2 51.8 59.3 67 71.2
TGR+PO 28.8 17.9 58.2 83.8 77.3 80.7

Ours+SPPO 29.1↑ 18.7↑ 58.3↑ 91.7↑ 90.4↑ 92.8↑

CaiT-S/24
PNA+PO 20.3 9.9 52.2 89.5 69.3 67.1
TGR+PO 32.9 20.3 56.9 96.9 76.7 77.2

Ours+SPPO 35.5↑ 21.9↑ 58.1↑ 99.2↑ 90.4↑ 90.6↑

Visformer-S
PNA+PO 17.9 8.1 51.3 48.5 68.8 68.5
TGR+PO 23.6 12.9 55.8 61.5 70.6 71.8

Ours+SPPO 24.1↑ 13.8↑ 56.1↑ 76.5↑ 86.5↑ 86.7↑
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: All our results are using fixed seeds since the uncertainty in the transferability
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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didn’t make it into the paper).
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
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• Examples of negative societal impacts include potential malicious or unintended uses
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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