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ABSTRACT

In silico prediction of the ligand binding pose to a given protein target is a crucial
but challenging task in drug discovery. This work focuses on flexible blind self-
docking, where we aim to predict the positions, orientations and conformations of
docked molecules. Traditional physics-based methods usually suffer from inac-
curate scoring functions and high inference costs. Recently, data-driven methods
based on deep learning techniques are attracting growing interest thanks to their
efficiency during inference and promising performance. These methods usually
either adopt a two-stage approach by first predicting the distances between pro-
teins and ligands and then generating the final coordinates based on the predicted
distances, or directly predicting the global roto-translation of ligands. In this pa-
per, we take a different route. Inspired by the resounding success of AlphaFold2
for protein structure prediction, we propose E3Bind, an end-to-end equivariant
network that iteratively updates the ligand pose. E3Bind models the protein-ligand
interaction through careful consideration of the geometric constraints in docking
and the local context of the binding site. Experiments on standard benchmark
datasets demonstrate the superior performance of our end-to-end trainable model
compared to traditional and recently-proposed deep learning methods.

1 INTRODUCTION

For nearly a century, small molecules, or organic compounds with small molecular weight, have
been the major weapon of the pharmaceutical industry. They take effect by ligating (binding) to their
target, usually a protein, to alter the molecular pathways of diseases. The structure of the protein-
ligand interface holds the key to understanding the potency, mechanisms and potential side effects
of small molecule drugs. Despite huge efforts made for protein-ligand complex structure determina-
tion, there are by far only some 10* protein-ligand complex structures available in the protein data
bank (PDB) (Berman et al., [2000), which dwarfs in front of the enormous combinatorial space of
possible complexes between 10°Y drug-like molecules (Hert et al., 2009; Reymond & Awale, 2012)
and at least 20,000 human proteins (Gaudet et al., 2017} |Consortium), 2019)), highlighting the urgent
need for in silico protein-ligand docking methods. Furthermore, a fast and accurate docking tool
capable of predicting binding poses for molecules yet to be synthesized would empower mass-scale
virtual screening (Lyu et al.| 2019), a vital step in modern structure-based drug discovery (Ferreira
et al.,2015)). It also provides pharmaceutical scientists with an interpretable, information-rich result.

Being a crucial task, predicting the docked pose of a ligand is also a challenging one. Traditional
docking methods (Halgren et al., 2004; Morris et al., (1996} [Trott & Olson, |2010; |[Coleman et al.,
2013)) rely on physics-inspired scoring functions and extensive conformation sampling to obtain the
predicted binding pose. Some deep learning methods focus on learning a more accurate scoring
function (McNutt et al. [2021; [Méndez-Lucio et al., [2021)), but at the cost of even lower inference
speed due to their adoption of the sampling-scoring framework. Distinct from the above methods,
TankBind (Lu et al.| [2022) drops the burden of conformation sampling by predicting the protein-
ligand distance map, then converting the distance map to a docked pose using gradient descent. The
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optimization objective is the weighted sum of the protein-ligand distance error with respect to the
predicted distance map and the intra-ligand distance error w.r.t. the reference intra-ligand distances.
This two-stage approach might run into problems during the distance-to-coordinate transformation,
as the predicted distance map is, in many cases, not a valid Euclidean distance matrix (Liberti et al.,
2014])). Recently, [Stark et al.[(2022) proposed EquiBind, an equivariant model that directly predicts
the coordinates of the docked pose. EquiBind updates the ligand conformation with a graph neural
network, then roto-translates the ligand into the pocket using a key-point alignment mechanism.
It enjoys significant speedup compared to the popular docking baselines (Hassan et al., 2017; |Koes
et al.,|2013)) and provides good pose initializations for them, but on its own the docking performance
is less satisfactory. This is probably because, after the one-shot roto-translation, the ligand might
fall into an unfavorable position but its conformation could not be further refined.

In this paper, we move one step forward in this important direction and propose E3Bind, the first
end-to-end equivariant network that iteratively docks the ligand into the binding pocket. Inspired by
AlphaFold2 (Jumper et al.| [2021]), our model comprises a feature extractor named Trioformer and
an iterative coordinate refinement module. The Trioformer encodes the protein and ligand graphs
into three information-rich embeddings: the protein residue embeddings, the ligand atom embed-
dings and the protein-ligand pair embeddings, where the pair embeddings are fused with geometry
awareness to enforce the implicit constraints in docking. Our coordinate refinement module de-
codes the rich representations into E(3)-equivariant coordinate updates. The iterative coordinate
update scheme feeds the output pose of a decoder block as the initial pose of the next one, allowing
the model to dynamically sense the local context and fix potential errors (see Figure [3). We fur-
ther propose a self-confidence predictor to select the final pose and evaluate the soundness of our
predictions. E3Bind is trained end-to-end with loss directly defined on the output ligand coordi-
nates, relieving the burden of conformation sampling or distance-to-coordinate transformation. Our
contributions can be summarized as follows:

* We formulate the docking problem as an iterative refinement process where the model
updates the ligand coordinates based on the current context at each iteration.

* We propose an end-to-end E(3) equivariant network to generate the coordinate updates.
The network comprises an expressive geometric-aware encoder and an equivariant context-
aware coordinate update module.

* Quantitative results show that E3Bind outperforms both traditional score-based methods
and recent deep learning models.

2 RELATED WORKS

Protein-ligand docking. Traditional approaches to protein-ligand docking (Morris et al., [1996;
Halgren et al.| 2004; |(Coleman et al.l 2013) mainly adopt a sampling, scoring, ranking, and fine-
tuning paradigm, with AutoDock Vina (Irott & Olson, [2010) being a popular example. Each part
of the docking pipeline has been extensively studied in literature to increase both accuracy and
speed (Durrant & McCammon, 2011} |Liu et al., 2013; Hassan et al., 2017; Zhang et al., |2020).
Multiple subsequent works use deep-learning on 3D voxels (Ragoza et al., 2017 [Francoeur et al.,
2020; McNautt et al., [2021; Bao et al.l [2021) or graphs (Méndez-Lucio et al., 2021)) to improve
the scoring functions. Nevertheless, these methods are inefficient in general, often taking minutes or
even more to predict the docking poses of a single protein-ligand pair, which hinders the accessibility
of large-scale virtual screening experiments.

Recently, methods that directly model the distance geometry between protein-ligand pairs have been
investigated (Masters et al.| 2022 [Lu et al.| [2022; [Zhou et al., 2022). They adopt a two-stage ap-
proach for docking, and generate docked poses from predicted protein-ligand distance maps using
post-optimization algorithms. Advanced techniques in geometric deep learning, e.g. triangle atten-
tion (Jumper et al.| 2021)) with geometric constraints, have been leveraged to encourage the local
geometrical consistency of the distance map (Lu et al| 2022). To bypass the error-prone two-
stage framework, EquiBind (Stérk et al., [2022) proposes a fully differentiable equivariant model,
which directly predicts coordinates of docked poses with a novel attention-based key-point align-
ment mechanism (Ganea et al.,[2021b)). Despite being more efficient, EquiBind fails to beat popular
docking baselines on its own, stressing the importance of increasing model expressiveness.
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Figure 1: E3Bind model overview. E3Bind takes in a molecular graph of the ligand and a protein
structure as input, and extracts features with the Trioformer, which include geometry-aware pair
update modules that constrain the embeddings with known intra-protein and intra-ligand distances.
E3Bind then iteratively updates the ligand pose with a decoder network to produce the final pose.
The context-aware network performs inter- and intra-message passing before generating an E(3)-
equivariant coordinate update.

Molecular conformation generation. Deep learning has made great progress in predicting low-
energy conformations given molecular graphs (Shi et al., 2021} |Ganea et al.l|2021a; Xu et al.; 2022
Jing et al., 2022). State-of-the-art models are generally SE(3)-invariant or equivariant, adopting the
score-matching (Vincent, 2011; Song & Ermon, 2019) or diffusion (Ho et al., |2020) framework.
Though protein-ligand docking also aims to generate the conformation of a molecule, the bound
ligand, applying standard molecular conformation generation approaches is not viable because (1)
there are much more atoms in the system and (2) the protein context must be carefully considered
when generating the docked pose. Here we model the protein at the residue level and design our
model to carefully capture the protein-ligand interactions.

Protein structure prediction. Predicting protein folds from sequences has long been a challenging
task. [Wang et al|(2017); [Senior et al.| (2020aib) use deep learning to predict the contact map, the
distance map and/or the torsion angles between protein residues, and then convert them to coordi-
nates using optimization-based methods. Recently, AlphaFold2 (Jumper et al., 2021) takes a leap
forward by adopting an end-to-end approach with iterative coordinate refinement. It consists of an
Evoformer to extract information from Multiple Sequence Alignments (MSAs) and structural tem-
plates, and a structure module to iteratively update the coordinates. Though this problem is very
different from docking which models heterogeneous entities — a fixed protein structure and a ligand
molecular graph, in this paper we show that some ideas can be extended.

3 THE E3BIND MODEL

E3Bind tackles the protein-ligand docking task with an encoder for feature extraction and a decoder
for coordinate update generation. Specifically, the protein and ligand graphs are first encoded by
standard graph encoders. Pair embeddings are constructed between every protein residue - ligand
atom pair. A geometry-aware Trioformer is proposed to fully mix the protein, ligand and pair em-
beddings (Section [3.2). With the rich representations at hand, the iterative coordinate refinement
module updates the ligand pose by a series of E(3)-equivariant networks to generate the final docked
pose (Section [3.3). The model is trained end-to-end and capable of directly generating the docked
pose (Section [3.4). An overview of E3Bind is shown in Figure I]

3.1 PRELIMINARIES

Notation and Input Feature Construction. Following [Lu et al.| (2022)), the ligand is treated as an
atom-level molecular graph G' where the edges denote chemical bonds. The ligand node features
{h!}1<i<n, are calculated by a TorchDrug (Zhu et al., 2022) implementation of the graph isomor-
phism network (GIN) (Xu et al., 2018)), where n; is the number of atoms in the ligand. Ligand
coordinates are denoted as {x; }1<;<n,. We represent the protein as a residue-level K -nearest neigh-
bor graph GP. Each protein node j € {1,...,n,} has 3D coordinates @ (which corresponds to
the position of the C,, atom of the residue), where n,, is the number of residues in the protein. The
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protein node features {h?}lg j<n, are calculated with a geometric-vector-perceptron-based graph
neural network (GVP-GNN) lJing et al.| (2020). For each protein residue-ligand atom pair (i, j),
we construct a pair embedding z;; via the outer product module (OPM) which takes in protein and
ligand embeddings: z;; = Linear (vec (Linear(h;) @ Linear(hY))). For notation consistency,
throughout this paper we will use 4, k to index ligand nodes, and j, k&’ for protein nodes.

Problem Definition. Given a molecular graph of the ligand compound and a fixed protein structure,
we aim to predict the binding (docked) pose of the ligand compound {:c!i*}lgigm. We focus on
blind docking settings, where the binding pocket is not provided and has to be predicted by the
model. In the blind re-docking setting, the docked ligand conformation is given, but its position
and orientation relative to the protein are unknown. In the flexible blind self-docking setting, the
docked ligand conformation needs to be inferred besides its position and orientation. The model is
thus provided with an unbound ligand structure, which could be obtained by running the ETKDG
algorithm (Riniker & Landrum||2015) with RDKit (Landrum et al.,|2013).

Equivariance. An important inductive bias in protein ligand docking is E(3) equivariance, i.e.,
if the input protein coordinates are transformed by some E(3) transformation ¢ - {w?}lg j<n, =
{ng’- + t}lSanP,Vj = 1...n,, the predicted ligand coordinates should also be g-transformed:
F(g-{zf}1<j<n,) = 9 F({x}}1<j<n,), Where F is the coordinate prediction model. To inject
such symmetry to our model, we adopt a variant of the equivariant graph neural network (EGNN)
as the building block in our coordinate update steps (Satorras et al.| [2021]).

3.2 EXTRACTING GEOMETRY-CONSISTENT INFORMATION WITH TRIOFORMER

The E3Bind encoder extracts information-rich ligand atom embeddings

hl, protein residue embeddings h}; and ligand-protein pair representa-

tion z;; that captures the subtle protein-ligand interactions. Note that

this is a non-trivial task since implicit geometric constraints must be in- k’ \
corporated in the representations. As shown in the figure on the right, the \ i
protein-ligand distance d;; and d;/ can not be predicted independently.

They are constrained by the intra-protein distance d;i/, as the protein

structure is considered to be fixed during docking. In other words, by the o o
triangle inequality, if residues j and k' are close, then ligand atom ¢ can-
not be both close to j and far from &’. The same thing happens when we
consider the given intra-ligand distance di;ﬂ While using a simple con-
catenation of protein and ligand embeddings as the final pair embeddings
is common among previous methods (Méndez-Lucio et al., | 2021; Masters et al., [2022), it dismisses
the above geometry constraints and might result in geometrically inconsistent pose predictions.

fixed distance

o ligand
O protein

Trioformer Overview. To tackle the above challenge, we propose Trioformer, an architecture that
intensively updates and mixes the protein, ligand and pair embeddings. In each Trioformer block,
we first update the protein and ligand node embeddings with multi-head cross-attention using the
pair embeddings as attention bias. Next, we use protein and ligand embeddings to update the pair
embeddings via the outer product module: z;; = z;; + OPM (hli, h?). The pair embeddings then
go through geometry-aware pair update modules described below to produce geometry-consistent
representations. The final block outputs are the multi-layer perceptron (MLP)-transitioned protein,
ligand and pair embeddings. Details of the Trioformer are described in Section

Geometry-Aware Pair Updates. To inject geometry awareness to the pair embeddings, we con-
struct intra-ligand and intra-protein distance embeddings (d;;, and d;, respectively) and then use
them to update the pair embeddings. Following (Jumper et al.| 2021 |Lu et al., |2022)), the edge up-
dates are arranged in the form of triangles comprising two ligand-protein edges and one intra-edge
(intra-ligand or intra-protein edge) where the distance constraints apply.

'During docking, the bond lengths, bond angles and conformation of small rings are mostly unchanged,
while torsion angles of rotatable bonds might change drastically (Trott & Olson, 2010; [Méndez-Lucio et al.,
2021} |Stérk et all 2022). In the flexible docking setting, we provide distance dj;, of atoms ¢ and k in the
unbound ligand structure predicted by ETKDG (Riniker & Landrum), 2015) to constrain the model if ¢, k are
< 2-hop neighbors or members of the same ring. Distance of all other ligand atom pairs are not provided.
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For protein-constrained attentive pair updates, each pair (i,j) attends to all neighboring pairs
{(4, k") } 1< <n, with a common ligand node 7. We compute a geometry-informed attention weight

gj ,3, for each neighbor (i, k'), by adding an attention bias ty,g = Linear®™ (d;r’) computed

from the intra-protein distance embeddings per attention head h. This geometry-informed atten-
tion weight is a key ingredient of Trioformer that differentiates it from the AlphaFold2’s Evo-
former Jumper et al.| (2021). We then perform a standard multi-head attention with H heads to
aggregate information from neighboring pairs,

h h h h
’E]]Z:’ = SOftman/ (quj) kik’) + bEJ) 4 t;kg) 7 (1)
z;j = z;; + Linear <C0ncat1§h§H (911) o Z azgk’”il?)) @)
k=1

(h)

where g;;” = U(Lincar(h)(zij)) is a per-head output gate, qm) k" b( ) are linear projec-

ij ’L] ’
tions of the pair embedding z;;, and tg k2 is a distance-based bias described above.

The ligand-constrained attentive pair updates are designed similarly. Here, for pair (4, j), the neigh-
boring pairs {(k,j)}1<k<n, are those sharing the same protein node j. Multi-head attention is
performed across all such neighbors with constraints from intra-ligand distances d;.

3.3 ITERATIVE COORDINATE UPDATE WITH CONTEXT-AWARE E(3)-EQUIVARIANT LAYER

The coordinate update module iteratively adjusts the current ligand structure {z! }1 <;<,, towards the
docked pose based on the extracted representations. This module is designed to satisfy the following
desiderata: (1) protein context awareness: the model must have an in-depth understanding of the
interaction between the ligand and its protein context in order to produce a protein-ligand complex
with optimized stability (i.e. lowest energy); (2) self (ligand) context awareness: the model should
honor the basic geometric constraints of the ligand so that the predicted ligand conformation is phys-
ically valid; (3) E(3)-equivariance: if both the protein and the input ligand pose are transformed by
an E(3) transformation, the ligand should dock into the same pocket with the same pose, with its co-
ordinates transformed with the same E(3) transformation. Compared with methods that generate the
final pose in one shot, iterative refinement allows the model to dynamically sense the local context
and correct potential errors as the ligand gradually moves toward its final position.

We start from an unbound ligand structur At iteration step ¢t = 0,...,7 — 1, the module up-
dates the protein, ligand and pair representations (summarized by k(")) and the ligand coordinates

{acgt) H<i<n, With a context-aware E(3)-equivariant layer,

(h(t“)7 {Aﬂ?EM)}lggnl) = DecoderLayer" (h(t)7 {z{"}1<ins {xj}lngnp> )
o = 2® 4 Azl 0<i<T, (4)
where {x;}1<;<n, are the fixed protein coordinates. We now introduce DecoderLayer® in detail.

Context-Aware Message Passing. To ensure the coordinate update module captures both the pro-
tein and ligand context, we construct a heterogeneous context graph comprising both protein and
ligand nodes. In the graph, inter-edges connect protein and ligand nodes, while intra-edges connect
two ligand nodes (Figure [I). We perform inter- and intra-edge message passing on the graph to
explore the current context:

R{FD = p® +Zm(t) +Zm@ )

h§t+1) _ h;_t) + ng? (6)

’In the rigid docking setting, this structure has the same conformation as the docked ligand structure.



Published as a conference paper at ICLR 2023

Note that the three types of messages are generated using different sets of parameters.

Equivariant Coordinate Update. We use the equivariant graph convolution layer (EGCL) to pro-

cess current context geometry and update ligand coordinates in an E(3)-equivariant manner. Specif-

ically, we compute messages from the node (and edge) representations and distance information
using MLPs ¢™ and ¢™,

t t t t

(m( ) mgi)) — g™ (Zij7h( ),hg)

ij i

2~ 2|, ™)
m) = o (b7, 2l - 2]} ®)

We generate equivariant coordinate updates using the following equation,

(0 () ORI

(t
(t) _ Ti T® T}, z (@
Az’ = Z ® O (my;') + Z OO (M), ®)
j=1 H-’EJ —z; | =t oy — |
where ¢” and ¢” are gated MLPs that evaluate the message importance. Ligand and protein node
embeddings are updated using equations[5]and [6] respectively.

Note that our decoder is also compatible with other equivariant graph layers, such as the geometric
vector perceptron (GVP) (Jing et al.l 2020) or vector neuron (Deng et al.l 2021). We choose EGCL
as it is a powerful layer for molecular modeling and conformation generation (Satorras et al.| 2021}
Huang et al.,|2022; [Hoogeboom et al., [2022).

Self-Confidence Prediction. At the end of our decoder, an additional self-confidence module is
added to predict the model’s confidence for its predicted docked pose (Jumper et al.| [2021). The

confidence is a value from zero to one calculated by the equation ¢ = ¢ (MLP (2?1:1 hET)) )

3.4 TRAINING AND INFERENCE

End-to-End Training. E3Bind directly generates the predicted ligand coordinates along with a
confidence score. We define a simple coordinate loss and train the model end-to-end: Lcoorq =

o (@i — x?)? , where x; is the predicted coordinates and a} is the ground truth. We train
the self-confidence module with Leonfigence = MSE (¢, ¢*), where MSE is the mean squared error
loss and c* is the self-confidence prediction target, i.e. the (detached) root-mean-square deviation
(RMSD) of the predicted coordinates. Details are deferred to Section [C.1] Intuitively, we want our
model to predict a low ¢ for high-RMSD predictions. The final training loss is the combination of
the coordinate loss and the confidence loss £ = Lcoord + 5 Leconfidence, Where [ is a hyperparameter.
This loss aligns with the goal of docked pose prediction and avoids the time-consuming sampling
process and potentially error-prone distance-to-coordinate transformation.

Inference Process. In practice, the target protein may contain multiple binding sites, or be ex-
tremely large where most parts are irrelevant for ligand binding. To solve this problem, we use
P2Rank (Krivak & Hoksza, 2018) to segment protein to less than 10 functional blocks (defined as
a 20A graph around the block center), following TankBind (Lu et al., [2022). We then initialize the
unbound/bound (depending on the setting) ligand structure with random rotation and translation in
each block, dock the ligand, and select the predicted docked pose with the highest self-confidence.
Note that the initial pose might clash with the protein, but these clashes are likely to be repaired dur-
ing the iterative refinement process. Different from TankBind which selects the final pose through
binding affinity estimation for all functional block’s predictions, our pose selection is based on self-
confidence. As a result, our model only feeds on protein-ligand complex structures, leaving the
potential of including more structures without paired affinity for training.

4 EXPERIMENTS

4.1 FLEXIBLE SELF DOCKING

As E3Bind is designed to model the flexibility of ligand conformation, it is natural to evaluate it in
the flexible blind self-docking setting. We defer the blind re-docking results to Appendix Section [A]
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L1IGAND RMSD CENTROID DISTANCE

Percentiles | % Below T Percentiles | % Below T
Method 25% 50% 75% Mean 2A  SA | 25% 50% 75% Mean 2A 5A
QVina-W 2.5 77 237 136 209 402 | 0.9 37 229 119 41.0 546
GNINA 2.8 8.7 22.1 133 212 37.1 1.0 4.5 21.2 11.5 360 52.0
SMINA 3.8 81 179 121 135 339 | 1.3 37 162 9.8 38.0 55.9
GLIDE 2.6 93 281 162 218 33.6| 0.8 56 269 144 36.1 48.7
Vina 57 107 214 147 55 212 1.9 6.2 20.1 121 265 47.1

EquiBind 3.8 62 103 8.2 55 391 | 13 26 74 56 40.0 675
TankBind 26 42 76 7.8 176 578 | 0.8 1.7 43 59 550 778
E3Bind 21 38 78 72 234 600 08 1.5 4.0 51 60.0 788

EquiBind-U 3.3 57 97 7.8 72 424 | 13 26 74 56 40.0 675
TankBind-U 39 7.7 136 105 80 347 | 13 30 82 6.6 405 664
E3Bind-U 20 38 77 72 256 60.6 | 0.8 1.5 4.0 51 59.0 788

Table 1: Flexible blind self-docking performance. Models with “-U” suffix do not perform post-
optimization steps that further enforce intra-ligand geometry constraints.

Data. We use the PDBbind v2020 dataset (Liu et al., 2017) for training and evaluation. We fol-
low the time dataset split from (Stérk et al., 2022)), where 363 complex structures uploaded later
than 2019 serve as test examples. After removing structures sharing ligands with the test set, the
remaining 16739 structures are used for training and 968 structures are used for validation.

Baselines. We compare E3Bind with recent deep learning (DL) models and a set of traditional score-
based methods. For recent deep learning models, TankBind (Lu et al., 2022) and EquiBind (Stark:
et al., |2022)) are included. For score-based methods, QVina-W (Hassan et al., [2017)), GNINA (Mc-
Nutt et al., | 2021), SMINA (Koes et al.,[2013)) and GLIDE (Halgren et al., [2004) are included.

We additionally distinguish between the uncorrected and corrected versions of the recent deep learn-
ing models following EquiBind. The corrected versions adopt post optimization methods (e.g. gra-
dient descent in TankBind (Lu et al.|[2022), fast point cloud fitting in EquiBind (Stark et al.| 2022))
to further enforce the intra-ligand geometry constraints when generating the predicted structure.
The uncorrected versions (suffixed with -U), which do not perform post-optimization, reflect the
model’s own capability for pose prediction. Specifically, EquiBind-U and E3Bind-U outputs are
directly generated by the neural networks and TankBind-U outputs are optimized from the predicted
distance map without the ligand configuration loss. For a fair comparison, E3Bind results are refined
from the E3Bind-U predicted coordinates by the post-optimization method of TankBind.

Metrics. We evaluate the quality of the generated ligand pose by the following metrics: (1) Ligand
RMSD, the root-mean-square deviation of the ligand’s Cartesian coordinates, measures at the atom
level how well the model captures the protein-ligand binding mechanisms; (2) Centroid Distance,
defined as the distance between the average coordinates of predicted and ground-truth ligand struc-
tures, reflects the model’s capacity to find the binding site. All metrics are calculated with hydrogen
atoms discarded following previous work.

Performance in Flexible Self-Docking. Table [I] summarized the quantitative results in flexible
blind self-docking. Our model achieves state-of-the-art on most metrics. Specifically, E3Bind shows
exceptional power in finding ligand poses with high resolution, where the percentage of predicted
poses with RMSD < 2 A increases by 33% compared to the previous state-of-the-art DL-based
model TankBind. E3Bind achieves 2.1 A for the 25-th percentile of the ligand RMSD, ourperform-
ing all previous methods by a large margin. These results verify that our model is able to better cap-
ture the protein-ligand interactions and generate a geometrically-consistent binding pose. Notably,
among uncorrected deep learning models, E3Bind-U enjoys more significant performance improve-
ment, showcasing its low dependency on additional post-optimization. E3Bind-U also outperforms
traditional docking softwares by orders of magnitude in inference speed (Section [G)), demonstrating
its potential for high-throughput virtual screening.

Performance in Flexible Self Docking for Unseen Protein. We further evaluate our model’s ca-
pacity on a subset of the above test set containing 144 complexes with the protein unseen in training.
As shown in Table 2] E3Bind and E3Bind-U show better generalization ability than other DL-based
model. Note that in this setting traditional score-based methods performs better than DL-based
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LIGAND RMSD CENTROID DISTANCE

Percentiles | % Below T Percentiles | % Below T
Method 25% 50% 75% Mean 2A 5A | 25% 50% 75% Mean 2A SA
QVina-W 34 103 281 169 153 319 | 13 65 268 152 354 479
GNINA 45 134 278 167 139 278 | 20 101 270 151 257 395
SMINA 48 109 260 157 90 257 | 16 65 257 136 299 417
GLIDE 34 180 314 196 19.6 287 | L1 176 29.1 181 294 406
Vina 79 166 271 187 14 120| 24 157 262 161 204 373

EquiBind 59 91 143 113 07 188 | 26 63 129 89 16.7 43.8
TankBind 34 57 108 105 35 437 | 12 26 8.4 82 409 1708
E3Bind 30 61 102 101 63 389 | 12 23 170 7.6 438 66.0

EquiBind-U 5.7 88 141 110 14 215| 26 63 129 89 167 438
TankBind-U 4.0 79 149 83 35 340| 14 33 109 83 354 652
E3Bind-U 31 60 106 101 56 41.0| 12 23 78 77 424 653

Table 2: Flexible blind self-docking performance on unseen receptors. Test set contains 144 com-
plexes with the protein not seen in training.

models on finding high-quality binding poses (RMSD < 2 A), highlighting the need of increasing
the out-of-distribution generalization capability for the latter. That said, we observe that E3Bind
produces much fewer predictions that are far off-target (RMSD > 5 A).

Benefit of Iterative Refinement. Figure 2] demonstrates the benefits of iterative refinement in im-
proving ligand pose prediction. As the ligand undergoes more rounds of coordinate refinement, its
RMSD decreases and self-confidence score increases. Figure [3] visualizes how E3Bind’s iterative
refinement process successfully identified the correct binding site after 4 iterations and further re-
fined the ligand conformation for maximal interactions with the protein. The final pose is close to
the ground truth with an RMSD of 1.42 A. In contrast, Equibind, a method that does not adopt the
iterative refinement scheme, yields a pose with an RMSD of 4.18 A.
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Figure 2: Violin plots of the ligand RMSD (in A, left) and the self-confidence score (right) versus
the number of coordinate update iterations (top 50% examples shown).

4.2 ABLATION STUDY

A series of ablation studies are done to investigate different factors influencing the performance
(Section[ET). (1) Removing geometry constraints in the pair update modules degrades the fraction
of good poses (with RMSD < 2 A) from 23.4% to 20.1%. (2) Replacing the Trioformer with a sim-
ple concatenation of the protein and ligand embeddings hurts the performance even worse (11.7%),
highlighting the strength of Trioformer in extracting geometric features for docking. (3) Decreasing
the number of iterations from 32 to 4 makes the fraction of good poses drop to 14.9%, reiterating
the benefit of the iterative refinement process. (4) The performance degrades to 17.6% when we
remove intra-message passing in the coordinate update modules. (5) Removing P2Rank and instead
segmenting the protein into 30 random blocks for docking has little impact on performance, showing
that E3Bind does not rely on P2Rank as much as TankBind for binding site pre-selection.

4.3 CASE STUDY

E3Bind correctly identifies the binding site in an unseen large protein. Figure fa]shows a rep-
resentative case of a challenging example in blind docking. For an unseen protein, E3Bind (shown
in magenta) correctly identifies the native binding site with a low RMSD of 4.2 A, while QVina-W,
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Iteration 0 Iteration 4 Iteration 12 Iteration 32
‘ | S c i ‘
)P A 5 7
RMSD: 12.40 RMSD: 4.01 RMSD: 2.59 RMSD: 1.42
confidence: 0.949 confidence: 0.973 confidence: 0.974

Figure 3: E3Bind coordinate refinement trajectory for ligand in PDB 6PZ4. In each figure, the
ground-truth docked ligand pose is shown in gray and the initialized (Iteration 0) / predicted (Itera-
tions 4, 12, 32) structures in magenta. RMSD and model confidence are written below the figures.

EquiBind and TankBind dock to three distinct binding sites away from the ground truth. Further ex-
amination of the self-confidence score shows this pose is the only one with confidence above 0.91,
while poses at other binding sites all have confidence below 0.86 (Figure [S2).

E3Bind strikes a balance between modeling protein-ligand interaction and structure validity.
Figure [4b] presents the docking result of a small protein. All methods except TankBind identify
the correct binding site, with E3Bind prediction aligning better to the ground truth protein-ligand
interaction pattern. Interestingly, TankBind produces a knotted structure that is invalid in nature.
This shows that the two-stage approach might generate invalid protein-ligand distance maps that can
not be transformed into plausible structures in the distance-to-coordinate optimization stage.

RMSD from ground truth (A) RMSD from ground truth (A)
> E3Bind: 4.2 » E38ind:1.38

55. 14.01
> QVina-W: 30.9 > QVina-W: 5.01
> EquiBind: 33.3 > EquiBind: 3.50

(a) PDB 6N94 (b) PDB 6QLR

Figure 4: Case studies. Predicted pose from E3Bind (magenta), TankBind (orange), EquiBind (red)
and QVina-W (blue) are placed together with the target protein. RMSDs from ground truth ligand
pose (grey) are shown in the figure. (a) E3Bind correctly identifies the binding site from the large
protein, while the other methods are off-site. (b) E3Bind outperformed the other models in predicting
the binding pose accurately, while TankBind generated an invalid structure with knotted rings.

5 CONCLUSION

Fast and accurate docking methods are vital tools for small molecule drug research and discovery.
This work proposes E3Bind, an end-to-end equivariant network for protein-ligand docking. E3Bind
predicts the docked ligand pose through a feature extraction — coordinate refinement pipeline.
Geometry-consistent protein, ligand and pair representations are first extracted by Trioformer. Then
the ligand coordinates are iteratively updated by a context-aware E(3)-equivariant network. Empir-
ical experiments show that E3Bind is competitive against state-of-the-art blind docking methods,
especially without post-optimization of the pose. Interesting future directions include: modeling
the protein backbone/side-chain dynamics to better capture the drug-target interaction and exploring
better ways of feature extraction, geometry constraint incorporation and coordinate refinement.
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A EXPERIMENT FOR BLIND RE-DOCKING

The setting of blind re-docking allows the model to take the ground-truth conformation as prior
knowledge. Note that this is a less realistic setting, since in many real-world applications the bound
ligand conformation is not known in advance. Compared to the flexible blind self-docking, the
model is given the full ligand conformation as geometric constraints, and only needs to predict
the rigid-body motion for the molecule to dock into the binding site. Although the nature of rigid
docking is somewhat contradictory to the E3Bind model as it allows the full flexibility of the ligand
structure, we are still able to enforce a rigid structure through TankBind-style gradient descent post-
optimization (Lu et al.| [2022) using the ground truth conformation as configuration loss.

L1GAND RMSD CENTROID DISTANCE

Percentiles | % Below T Percentiles | % Below T
Method 25% 50% 75% Mean 2A  S5A | 25% 50% 75% Mean 2A 5A
QVina-W 1.6 79 241 134 277 390| 09 38 232 118 404 554
GNINA 13 61 229 122 322 468 | 07 28 221 109 438 584
SMINA 14 62 152 103 301 467 | 08 26 127 85 453 635
GLIDE 0.5 83 295 157 434 457 | 03 49 285 148 454 504
Vina 45 97 199 134 132 267 | 17 55 187 112 298 479

EquiBind-R 2.0 5.1 9.8 74 251 490 | 14 26 73 58 40.8 669
TankBind 14 34 170 70 372 639 | 08 1.7 4.1 56 551 782
E3Bind 12 33 72 6.7 383 639 | 0.6 1.3 38 51 614 79.0

TankBind-U 4.5 80 155 109 80 275 | 15 33 8.3 6.7 333 603
E3Bind-U 14 32 71 68 347 656 | 0.6 14 37 51 614 793

Table S1: Blind re-docking performance. EquiBind-R is a variant of EquiBind that does not update
the ligand conformation with IEGMN and only predicts a translation and rotation.

Results of blind rigid docking are shown in Table [ST] Although the setting of rigid docking is
not very suitable for our E3Bind model, we achieve SOTA in most metrics, especially in centroid
distance.

B DETAILS OF THE TRIOFORMER

The Trioformer comprises a stack of Trioformer blocks detailed in Algorithm [I] It is a variant of
AlphaFold2’s Evoformer with baked-in geometry awareness. In each block, the ligand embeddings
{h!} are updated with a multi-head cross attention module, with the transformed pair embeddings
as bias (MHAWithPairBias):

1 T
of) = softmasy (™ K 412 (10)
np
hlZ = hlz + Linear (concatlShSH (Z aﬁ,ﬁ‘?vk/>> (11)
k=1

The protein embeddings {hg-} are updated likewise. The node-level embeddings then go through
a two-layer MLP transition modules and reach the block output state. On another track, the pair
embeddings {z;;} are first updated with the node-level embeddings via the outer product module.
Then, geometry-aware attentive pair update modules (detailed in Section [3.2) injects implicit geo-
metric constraints into the pair embeddings. Finally, the pair embeddings go through MLP transition
modules and become the remaining part of block outputs.

C DETAILS OF SELF-CONFIDENCE PREDICTION

C.1 CONFIDENCE LOSS

We train the self-confidence module with a confidence prediction loss Lonfigence, Which is the mean
squared error (MSE) between the predicted self-confidence and its target value c*. ¢* is dependent
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Algorithm 1: Trioformer Block

Input: ligand embeddings {h!}, protein embeddings {h?}, pair embeddings {z;;},
intra-ligand distances {d;, }, intra-protein distances {d;z }
/* Cross attention updates ligand and protein with pair */
{h!} + {hl} + MHAWithPairBias({h!}, {h?l}, {h%}’ {zi;});
{h?} — {h?} + MHAVVlthPaurBlas({h?}7 {Ri}, {Ri}. {zi;});
/* Node level transitions x/
{hi} < {hi} + MLP({h;}):
p P P1y.
{R?} + {hP} + MLP({h}});
/+ OPM updates pair embeddings with ligand and protein =/
{zij} < {zi;} + OPM({hi}, {h}}):
/* Geometry-aware pair update modules =/
{z:ij} < {zi;} + LigandConstrained AttentivePairUpdate({z;; }, {dix }, {d;x'}) ;
{zij} « {zi;} + ProteinConstrained AttentivePairUpdate({zi; }, {dir }, {d;r' }) ;
/* Pair transition =/
{zij} {2} + MLP({z}) ;
return {h}, {h}}, {z;;}

on the root-mean-square deviation (RMSD) of the coordinate prediction: it linearly increases with
the RMSD of the predicted pose when the latter is small, and is set to a small value ¢y once RMSD
reaches v:

c({z}) = {1 ~ 5 RMSD ({al},{=l"}) if RMSD ({al},{2}'}) <7, "

Co otherwise.
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Figure S1: Behavior of the self-confidence model. (Left) Jointplot showing the relationship between
the predicted confidence score and ligand RMSD (in A) for test examples. (Right) E3Bind self-
confidence module can distinguish successfully-docked (RMSD < 5A) poses from failed ones.

C.2 SELF-CONFIDENCE PREDICTION RESULTS

We plot the relationship between the predicted confidence score and the ligand RMSD for test ex-
amples on the left plot of Figure [ST} Most data points have high confidence scores and low ligand
RMSDs. We further calculate the correlation metrics between the negative RMSD and the pre-
dicted confidence score. The results give a Pearson correlation coefficient of 0.641 and a Spearman
correlation coefficient of 0.783, indicating a decent pose-selection capability of our self-confidence
prediction module.

We next investigate the behavior of the self-confidence score for success and failure cases (Figure[ST}
right). The distribution plot shows that the distributions for these two cases have high divergence.
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For successful docking examples (RMSD < 5 A), the average confidence score is 0.91, while for
failure cases, the average confidence score is 0.61.

,~0.743

CRERELR.

0.916 0.798

Figure S2: Case study on E3Bind’s self-confidence module: PDB 6N94. The ligand pose (in ma-
genta) closest to the ground truth (in grey) has the highest confidence score of 0.916. The confidence
scores of the two wrongly predicted ligand poses (in magenta, half-transparent) are both below 0.8.

D IMPLEMENTATION DETAILS

The dimensions of protein, ligand and pair embeddings are set to 128. Layer normalization and
dropout are applied in each block. For the implementation of EGCL, we use the normalized co-
ordinate differences instead of the original coordinate differences. Specifically, all coordinates are
divided by 5 before fed into EGCL and the final coordinates are multiplied by 5. SiLU activation
function is used in the EGCL layers and LeakyReL.U is used in the Trioformer blocks. All models
including variants in ablation study are trained with Adam optimizer with learning rate 0.0001 for
300 epochs. The model with the best valid score (measured by the fraction of predicted pose with
RMSD < ZA) is evaluated on the test set. We use the TankBind (Lu et al., [2022) pipeline for data
preprocessing, protein segmentation and featurization. The only modification is that we remove all
complexes in the training set sharing ligands with the test set to reduce information leak at test time.

For the context-aware decoder, instead of using a set of parameters for each EGCL layer, we adopt
the recycling technique of AlphaFold2 (Jumper et al.;[2021)). Specifically, E3Bind’s decoder contains
4 EGCL layers (i.e. holds parameters for 4 coordinate update iterations). For iterations longer than
4, we recycle the decoder parameters by feeding the previously predicted pose to the decoder as the
initial pose. During training, we randomly select the number of cycles from Uniform(1, Nycie), and
only backpropagate through the last cycle (by detaching the gradient of its initial pose) to reduce the
computational cost. Neyele is set to 32 in our experiments.
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E FURTHER ABLATION STUDY RESULTS

E.1 ABLATION STUDY OF E3BIND

LIGAND RMSD CENTROID DISTANCE

Percentiles | % Below 1 Percentiles | % Below 1
Method 25% 50% 75% Mean 2A SA |25% 50% 75% Mean 2A SA
E3Bind 2.1 3.8 7.8 72 234 60.0 | 0.8 1.5 4.0 5.1 60.0 78.8
w/o Geometric Constraint Aware 2.3 4.0 7.8 7.6 20.1 576 | 09 1.7 4.0 5.3 582 764
w/o Trioformer 2.8 4.5 8.1 7.9 11.7 552 | 1.2 2.0 4.5 5.6 542 774
4 Tteration 2.6 4.0 7.8 7.5 149 589 | 1.1 1.8 4.5 5.5 52,6 779
w/o Intra 24 40 7.8 7.6 176 564 | 09 1.7 4.5 56 556 783
w/o P2Rank 20 42 7.8 76 242 564 | 0.8 1.7 4.1 56 548 79.1

Table S2: Ablation Study of E3Bind. For discussions, see Section

E.2 IMPACT OF POST OPTIMIZATION

To investigate the impact on time cost and performance of different post-optimization methods,
we plug each model into each post-optimization method and log the performance in Table In
practice, fast point cloud fitting is faster but yields worse results. This justifies the choice of gradient
descent as the post-optimization method for E3Bind. Note that for the two benchmarked post-
optimization methods, our model consistently outperforms EquiBind and TankBind.

LIGAND RMSD CENTROID DISTANCE
Percentiles | % Below 1 Percentiles | % Below 1
Post Optimization Method ~ 25% 50% 75% Mean 2A 5A |25% 50% 75% Mean 2A 5A

13 26 74 56 400 675
1.3 30 82 6.6 405 664
08 15 4.0 51 590 788

1.3 27 170 55 40.8 68.6
0.8 1.7 43 59 550 778
0.8 1.5 4.0 51 60.0 788

A  EquiBind 38 62 103 82 55 39.1
Fast Point Cloud Fitting 20 bt 37 5% 0% g4 01 a4
0.01s) E3Bind 23 41 78 74 193 578

Gradient Descent EquiBind 35 58 102 80 44 427
(0r24““j§‘ escen TankBind 2.6 42 76 78 176 57.8
i E3Bind 21 38 78 72 234 60.0

Table S3: Performance and run time on a 16-CPU machine of deep-learning models paired with
post-optimization methods on the flexible blind self-docking task. Fast point cloud fitting (Stark
et al.} 2022)) changes torsion angles of the initial pose to best match the generated pose by perform-
ing maximum likelihood estimates of von Mises distributions. Gradient descent (Lu et al.| [2022)
minimizes the weighted sum of the protein-ligand distance error w.r.t. the predicted distance map
and the intra-ligand distance error w.r.t. the reference distances.
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F SENSITIVITY TO INITIALIZATION

E3Bind model’s iterative refinement start from some initial structure at the functional block. The
initial structure is generated by RDKit and placed in the functional block with random rotation and
translation. Here we investigate the influence of initialization for the model’s final performance.
We generate 30 pose predictions for each protein-ligand complex with different translation and ro-
tation. As shown in Figure[S3] 80% of the test set examples have their standard deviation of ligand
RMSD within 0.196 A and standard deviation of centroid distance within 0.188A. The result indi-
cates E3Bind’s low sensitivity to ligand pose initialization and the strong robustness of its iterative
refinement process.
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Figure S3: Experiment result sensitivity for different initialization

G INFERENCE SPEED

The inference speed of different methods is shown in Table[S4] Here we report the average time cost
in seconds for a single prediction. As shown in Section[G] we can arbitrarily compose deep learning
methods and post-optimization methods. Therefore, here we compare the inference speed of their
uncorrected versions. For TankBind and E3Bind, P2Rank segmentation time (~ 0.15s in parallel)
is included. For TankBind, the time for distance-to-coordinate optimization (~ 0.44 s in parallel) is
also included. As shown in Table the inference speed of E3Bind exceeds traditional methods by
a large margin.

Avg. Sec. Avg. Sec.

Method 16-CPU GPU
QVINA-W 49 -
GNINA 247 146
SMINA 146 -
GLIDE 1405* -
VINA 205 -
EquiBind-U 0.14 0.03
TankBind-U 1.2 0.87
E3Bind-U 22 0.44

Table S4: Inference Speed. Numbers for score-based methods are taken from the EquiBind pa-
per (Stark et all 2022). *The GLIDE only uses a single thread since the multi-threaded version
requires a separate license.
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H ADDITIONAL TRAJECTORIES AND CASE STUDIES

Iteration 0 Iteration 4 Iteration 12 Iteration 32

RMSD: 7.31 RMSD: 3.76 RMSD: 2.26 RMSD: 1.38
confidence: 0.961 confidence: 0.980 confidence: 0.980

Figure S4: E3Bind coordinate refinement trajectory for ligand in PDB 6UWP. In each figure, The
ground-truth docked ligand pose is shown in gray and predicted structures shown in magenta. RMSD

and model confidence are written below the figures. E3Bind achieves an RMSD of 1.38 A after 32
iterations.

RMSD from ground truth
» E3Bind: 2.37
> 23

(a) PDB 6N4E (b) PDB 6HHI

Figure S5: Additional case studies. (a, b) Predicted pose from E3Bind (magenta), TankBind (or-
ange), EquiBind (red) and QVina-W (blue) are placed together with the target protein. RMSD from
ground truth ligand pose (grey) are shown on the figure. (a) E3Bind correctly identifies the bind-
ing site from the large protein, while EquiBind and QVina-W are off-site. The predicted structure
of E3Bind has a low RMSD of 2.37 A. (b) In this relatively small protein, E3Bind produces lig-
and pose with the lowest RMSD. (c) An example of a potential binding pocket predicted with high
self-confidence by E3Bind. The predicted ligand pose is shown in magenta and protein (including
backbone cartoons and sidechain sticks) are shown in green. Contact between the predicted pose
and ths protein are highlighted in yellow.
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I EXAMINING THE VALIDITY OF GENERATED STRUCTURES

I.1 BOND LENGTH DISTRIBUTION

Here we examine the validity of our generated structures by comparing the bond length distribution
plots between the predicted and ground truth structures. We can see from Figure [S6] that E3Bind
outputs have very similar bond distributions compared to the ground truth.

CSINGLE C C SINGLE O C SINGLE N C AROMATIC C C DOUBLE C
2z
210 Ground Truth
8 E3Bind Prediction
0 T T T T T T T T T T T T T T T
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Bond Length Bond Length Bond Length Bond Length Bond Length

Figure S6: Distribution of bond lengths in E3Bind-predicted (orange) and ground truth (green)
ligand structures, grouped by bond types.

1.2 STERIC CLASH PROBLEM

Steric clash is a common problem in docking, where two non-bonding atoms show an unnatural
overlap in the predicted structure. While traditional docking methods avoid generating steric clashes
by incorporating a repulsion term in the scoring function, deep learning models have yet to solve
this issue.

In our experiments, we find that E3Bind produces very few steric clashesEI(3.3% of the test set con-
tain at least one steric clash), while EquiBind are more likely to produce severe
steric clashes (21% of the test set have clashes) as shown in[S7b| This is mainly because EquiBind
docks the ligand into protein by key-point matching in one shot manner, which prohibits further
ligand conformational changes to fit in the protein pocket. On the other hand, E3Bind iteratively
refines the ligand’s position, orientation and conformation, which means it could correct its previous
errors, resulting in much fewer steric clash problems.

It is also observed that our self-confidence prediction module plays an important role in selecting
structures with fewer steric clashes. Without the confidence module, E3Bind with only 4 iterations
has a 13.8% change of generating a pose with steric clashes. When we apply the confidence mod-
ule for filtering, the fraction drops to 6.6%. Subsequent iterations of E3Bind further decrease the
fraction to 3.3%.

(a) PDB 6QLR (b) PDB 6SEN

Figure S7: Tllustration of two types of steric clashes. (a) TankBind predicted pose containing a
knotted structure, which is physically impossible. The error is due to an unrealizable distance map
predicted by TankBind. (b) EquiBind predicted pose (in magenta) with its protein context. The
protein atoms within 1.5 A of the ligand (i.e. having severe clashes with the ligand) are highlighted
with a lime sphere. Stick models of the corresponding residues are shown in gray. The protein
cartoon is shown in dark green.

3 A steric clash is defined by a pair of heavy atoms with a distance of less than 0.4 A following (Ramachan-|
dran etal | 20T1).
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