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Abstract

We introduce Optimal Eye Surgeon (OES), a

framework for pruning and training deep image

generator networks. Typically, untrained deep

convolutional networks, which include image

sampling operations, serve as effective image pri-

ors (Ulyanov et al., 2018). However, they tend

to overfit to noise in image restoration tasks due

to being overparameterized. OES addresses this

by adaptively pruning networks at random initial-

ization to a level of underparameterization. This

process effectively captures low-frequency image

components even without training, by just mask-

ing. When trained to fit noisy image, these pruned

subnetworks, which we term Sparse-DIP, resist

overfitting to noise. This benefit arises from un-

derparameterization and the regularization effect

of masking, constraining them in the manifold of

image priors (Figure-3). We demonstrate that sub-

networks pruned through OES surpass other lead-

ing pruning methods, such as the Lottery Ticket

Hypothesis, which is known to be suboptimal

for image recovery tasks (Wu et al., 2023). Our

extensive experiments demonstrate the transfer-

ability of OES-masks and the characteristics of

sparse-subnetworks for image generation. Code

is available at https://github.com/Avra98/Optimal-

Eye-Surgeon.git.

1. Introduction

Overparameterization has been central to the success of deep

learning especially in image classification tasks. Empiri-

cally it is observed that bigger models (at scale) generalize

1Department of Computational Mathematics, Science and
Engineering (CMSE), Michigan State University, MI, USA.
2Department of Electrical Engineering and Computer Sci-
ence (EECS), University of Michigan – Ann Arbor, MI,
USA. 3Department of Biomedical Engineering, Michigan State
University, MI, USA. Correspondence to: Avrajit Ghosh
<ghoshavr@msu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. Sparse-DIP lessens overfitting

Figure 2. Sparse-DIPs are transferrable

better. Eventually, it was found that sufficiently sparse sub-

networks can be found within these deep dense networks

that can reach as high test accuracy as their dense counter-

parts. These sparse networks are called matching subnet-

works. This led researchers to further study neural network

pruning. However, the impact of overparameterization in

deep convolutional neural networks (CNNs) hasn’t been

thoroughly studied for image reconstruction and inversion

tasks although overparameterization is important in many

image recovery tasks. Jin et al. (2017) empirically showed

that trained deep CNNs are better substitutes to regularized

iterative algorithms and direct inversion (Katsaggelos, 1989).

The initial works further led to deploying deep convolutional

networks inside the typical iterative image reconstruction

framework, where it is fused with the physics or the forward

model of the image generation problem (Venkatakrishnan
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et al., 2013).

Going one step ahead, Ulyanov et al. (2018) showed that

untrained deep convolutional networks can recover images

directly from corrupted measurements. Hourglass architec-

tures like Unet/Skipnet having downsampling, upsampling

and convolutional operations are natural image priors, as

they bias the output towards the prior distribution of natural

images. These networks are known as Deep Image Prior

(DIP). When trained to reconstruct a corrupted image, DIPs

first learn the natural image component of the corrupted

image and then overfit to the noise as they are highly over-

parameterized. This phenomenon is known as spectral bias

(Chakrabarty & Maji, 2019). Hence, some early stopping

time criteria need to be adopted before these models overfit

to the noise or artifacts in the image. Finding an estimate

of early stopping time typically requires knowledge of the

clean image and noise-corruption level, which are usually

unknown, making this an active area of research (Wang

et al., 2021).

Underparameterized models1 emerged as a good substitute

to deep Unets as means to prevent overfitting. Heckel &

Hand (2018) proposed deep decoder which consists of only

upsampling layers and convolutional layers with kernel size

1 × 1. Deep decoders prevent overfitting to a large extent

but as they are sufficiently underparameterized, they are

not rich image priors. They fail to capture detailed image

information (Wu et al., 2023).

In this work, we bridge this gap between overparameterized

models like deep image prior and underparameterized mod-

els like deep decoder. We aim to find a sparse sub-network

within a dense DIP network that can act as an image prior

and doesn’t overfit to noise because of underparameteriza-

tion. Our main contributions are as follows:

1. We propose a principled approach of pruning a deep

image prior network at random initialization with only

the corrupted measurement for a single image and train

the pruned network till convergence (Figure-1).

2. We show that the masked subnetwork output gives a

low frequency approximation of the clean image by

just masking at random network initialization. Further

training these subnetworks to convergence alleviates

overfitting.

3. We show that these sparse networks are transferable,

i.e., masks learned on one image are transferable for

recovering a different image (Figure-2).

1In image restoration, underparameterized models are defined
as networks with fewer parameters than the number of image
pixels. So, the image fit loss ∥G(θ, z)− y∥22 may not be zero at
convergence.

2. Image reconstruction with DIP

The general framework for image reconstruction involves

corrupted measurements y produced from a clean image

x undergoing a corruption process y = A(x) + ϵ, where

A(.) represents the corruption operation and ϵ is a noise vec-

tor drawn from any standard normalized distribution (e.g.,

Gaussian). The objective is to determine x given y. Image

reconstruction entails finding the MAP (Maximum A Poste-

riori) solution, which maximizes the posterior distribution

p(x|y) ∝ p(y|x)p(x). Assuming Gaussian noise, the like-

lihood term p(y|x) focuses on minimizing ||y − A(x)||22
to identify the optimal fit. However, since the forward op-

erator A(.) typically has a large null space, making the

inverse problem ill-posed, additional insight into the prior

distribution p(x) is required.

Deep image prior proposed by Ulyanov et al. (2018) showed

that by reparameterizing the reconstruction variable x as the

output of an untrained deep Unet x = G(θ, z), we can reg-

ularize the solution-space of the output to look like natural

images. For example, G(.) denotes the hourglass convolu-

tional architecture, θ are the model parameters and z is a

random input to the network. Here, the image prior is im-

plicit, as the output space of G(θ, z) inherently encapsulates

the unique characteristics of a natural image. For image de-

noising, we minimize the loss ||y−G(θ, z)||22 w.r.t network

parameters θ, the target of the network being the corrupted

image y. Early in the training, the deep Unet architecture

regularizes solutions towards natural images, giving an esti-

mate of the clean image. However, as the model is highly

overparameterized, the training loss ||y−G(θ, z)||22 will be

driven to 0, essentially ensuring G(θ, z) fits the noisy image

y. Hence, some early-stopping strategy is required to obtain

the clean image, which is difficult without the knowledge of

the ground-truth clean image x.

Several works in recent years have approached the challenge

of finding the early-stopping time or preventing overfitting

to noise, which broadly falls into two classes as discussed

next.

2.1. Through regularization

Cheng et al. (2019) considers a Bayesian approach to in-

ference, by conducting posterior inference using stochastic

gradient Langevin dynamics which delays overfitting. Jo

et al. (2021); Shi et al. (2022); Metzler et al. (2018) control

the deep network capacity by regularizing the layer-weights

or the Jacobian of the network. These methods incur an ad-

ditional computational and backpropagation cost. Liu et al.

(2019); Mataev et al. (2019); Sun et al. (2020); Cascarano

et al. (2021); Bell et al. (2023) use additional regularizers

on the deep, dense models such as the total-variation norm

or trained denoiser or external guidance. These methods

require the right regularization level which depends on the
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noise-type, level, and image class to avoid overfitting. You

et al. (2020) model sparse additive noise as an explicit term

in the optimization. Ding et al. (2021) explore subgradient

methods with diminishing step size schedules for impulse

noise with ℓ1 loss. These methods are limited to the types

and the levels of noise they target. Finally, Wang et al.

(2021) develop a general-purpose early-stopping detection

criterion for all of the above methods. Their approach to

detecting the transition from clean to noisy reconstruction

is by estimating the running variance of the reconstructed

image over the iteration window. However, in certain cases,

their detection peak is sometimes off by certain iterations, as

acknowledged by the authors. All of these works attempt to

avoid overfitting while optimizing overparameterized dense

models which incurs additional cost on storage and compu-

tational time.

2.2. Through underparameterization

On the contrary, the performance of under-parameterized

networks for image recovery is significantly less approached.

Heckel & Hand (2018) first proposed Deep-decoder, an un-

derparameterized network consisting only of the decoder

part of the Unet architecture. Underparameterization pro-

vides a barrier to overfitting, allowing the deep decoder

to denoise without much overfitting. However, due to the

same reason, deep decoders slightly underperform when

the underlying ground-truth image has fine-grained texture

details. Hence, for images with rich detail information, deep

decoders underperform. However, their ability to prevent

overfitting for most denoising problems makes them attrac-

tive for image restoration problems compared to typical DIP

networks and their variants. The recent success of under-

parameterized networks like deep decoder motivates the

question:

Q1 : Can under-parameterization prevent overfitting and

at the same time recover high-quality images? If the answer

to question Q1 is yes, then the next question is how to

build these underparameterized networks. As a first step to

this question, we start with an overparameterized Unet and

attempt to study a principled pruning strategy to obtain an

underparameterized network. Thus, we study the second

and more interesting question:

Q2 : Can we design a principled pruning method with

only the corrupted measurements y to obtain an underpa-

rameterized network that satisfies Q1? Our answers to both

questions are positive and our findings reveal some interest-

ing phenomena on overparameterization, initialization and

their relation to capturing image priors.

3. Optimal Eye Surgeon: Pruning image

generators at initialization

Neural network weight pruning dates back to as early as

the early 90’s (LeCun et al., 1989; Hassibi et al., 1993).

Pruning can be broadly classified into three classes based on

when networks are pruned: 1) Pruning at Initialization (PAI)

methods prune deep networks at random initialization. The

resultant sparse sub-network at initialization is then trained

to convergence at inference time. Pruning at Initialization

(PAI) techniques, like SNIP (Lee et al., 2018), GraSP (Wang

et al., 2020), and SynFlow (Tanaka et al., 2020), focus on

effective weight pruning in neural networks at random ini-

tialization. SNIP removes weights minimally impacting

loss, GRASP preserves information flow, and SynFlow, a

data-free method, maintains total synaptic flow under spar-

sity constraints. Our proposed method falls under this cat-

egory. 2) Pruning while Training (PWT) takes a randomly

initialized dense network and jointly trains and prunes a neu-

ral network by updating weights and masking the weights

during training. Different strategies can be adopted for deter-

mining importance scores like random dropout, magnitude,

or back-and-forth pruning (Evci et al., 2020; Zhao et al.,

2019; He et al., 2018). The benefits of pruning early in

training were also shown in You et al. (2019). 3) Prun-

ing After Training (PAT) involves a Pretrain-Prune-Retrain

cycle and is essential for obtaining matching subnetworks

at non-trivial sparsity levels. The Lottery Ticket Hypothe-

sis (LTH) (Frankle & Carbin, 2018) advocates for Iterative

Magnitude Pruning (IMP), which removes a percentage of

weights based on the magnitude from a pretrained network,

then retrains the remaining weights from their original ini-

tialization. For complex networks and large datasets, weight

rewinding to an early-epoch state (Frankle et al., 2019) and

learning-rate rewinding (Renda et al., 2020) were deemed

essential to obtain matching subnetworks. The weight mag-

nitudes at the end of training are crucial, as highlighted in

ongoing research (Paul et al., 2022).

Overparameterization seems to be a crucial factor for finding

sparse matching subnetworks. Zhou et al. (2019); Ramanu-

jan et al. (2020) showed that when a network is sufficiently

large, even learning a mask at random initialization (termed

as supermasks) can show competitive performance like train-

ing a network. This phenomenon is termed as strong lottery

ticket hypothesis, and was recently proved by Malach et al.

(2020); da Cunha et al. (2021) under certain network as-

sumptions. Supermasks were also used to generate different

subnetworks for various tasks from the same dense network

(Wortsman et al., 2020; Mallya et al., 2018), with appli-

cations also in graph networks (Huang et al., 2022). Our

work is the first to show the existence and effectiveness of

supermasks for image reconstruction. We further highlight

the notable diffrences of pruning for image classification

and image reconstruction in Table-10.

3.1. Suboptimality of LTH for DIP

LTH-based methods are very reliable to obtain matching

sparse subnetworks at non-trivial sparsities for various ML
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Figure 3. Subnetworks learned by OES are image generators with

good image priors. On the contrary, the range of subnetworks

learned by LTH is close to the overfitted noisy image, which is far

from being an image prior. Image adapted from (Ulyanov et al.,

2018)

tasks, a feat unachieved by other pruning methods. Given

the success of LTH on a variety of machine learning tasks,

at first-sight, it might be tempting to apply LTH on im-

age reconstruction based tasks involving deep image prior.

However, for unsupervised learning schemes like DIP which

overfit to noise at convergence, using the magnitudes at con-

vergence, to determine which weights to prune, is in fact

detrimental (Figure-3).

For image reconstruction, network output overfits

to noise at convergence. Subnetworks obtained by

LTH at convergence (without early stopping time)

perform poorly on denoising tasks.

Figure 4. Masking network at initialization induces image prior.

Figures show the images after masking image generator parameters

at random-initialization G(θin ◦m
∗(y), z). The mask m

∗ was

learned using the OES algorithm. Images corresponding to several

sparsity levels are shown. We show that Strong Lottery Ticket

Hypothesis also holds for image reconstruction.

Two possible ways to apply LTH to DIP for image recon-

struction tasks are: a) using the clean image x to train the

DIP model which will not require any early-stopping and

b) the early stopping (ES) time can be obtained from the

knowledge of x and the weight magnitude at ES can be

used to obtain the mask. Wu et al. (2023), adopted method

a) to obtain the mask, which might not be practical for

most image reconstruction problems (see Section D.3 for

detailed comparison) as we do not have knowledge of the

clean image x nor an assumption of an early-stopping time

(Figure-21). We show the effect of using LTH-based meth-

ods (with loss involving y) as the mask in Figure-7 and in

Section E (Appendix). Further, we study in detail, the ar-

chitecture of the pruned network derived from LTH pruning

in Figure-10a which sheds light on why IMP-masks may

underperform in image reconstruction tasks. In our work,

we propose Optimal Eye Surgeon (OES), a framework to

prune image generators at random initialization which is

optimal for pruning image generator networks.

3.2. Masking at initialization

Let G(θ, z) be a dense and deep image generator network

with random input z. Let the random input z ∈ R
q, and

let θ be vectorized parameters of a dense Unet, θ ∈ R
d.

Let x, y be the clean and noisy/corrupted RGB image such

that x,y ∈ R
3×H×W , where H and W are respectively

the height and width of the image. As DIPs are sufficiently

overparameterized, i.e., the number of parameters is much

more than the number of image pixels, it is usually the case

that d k 3HW . Let θin be the random initialized neural

network, where the uniform Kaiming initialization is used.

Let m ∈ {0, 1}d be the binary mask that we aim to learn

at initialization. To learn an s-sparse mask, i.e., with only

s non-zero parameters out of d, we would have to solve an

integer problem:

m∗(y) = arg min
m∈{0,1}d

||G(θin ◦m, z)− y||22

such that ||m||0 f s. (1)

Equation (1) involves discrete optimization for deep net-

works, where d is very large (in millions). To get around

this difficulty, we propose a Bayesian relaxation of (1) that

is differentiable and unconstrained and can be solved by a lo-

cal iterative algorithm such as gradient descent. We attempt

this by reformulating (1) as learning Bernoulli dropout prob-

ability parameters p with the mask m being sampled from

the Bernoulli distribution with mean p ∈ R
d.

m∗(y) = C(p∗) such that

p∗ = argmin
p

Em∼Ber(p)

[
||G(θin ◦m, z)− y||22

]

︸ ︷︷ ︸

R(p)

+ ¼KL(Ber(p)||Ber(p0)).
(2)

The deterministic inequality constraint ||m||0 f s is

changed into an unconstrained penalty which ensures that

the learned Bernoulli distribution Ber(p) is close to a prior

Bernoulli distribution Ber(p0), the known prior distribu-

tion depends on the desired sparsity level s. We fix p0 = s
d

.
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For Bernoulli distributions, the distance measure between

two distributions as given by Kulbick-Luiber divergence has

a closed form and is given by KL(Ber(p)||Ber(p0(s))) =
∑

i

(

pi log
pi

p0i

+ (1− pi) log
1−pi

1−p0i

)

, where pi and p0i de-

notes the Bernoulli mean probability corresponding to the

ith weight parameter of p and p0. We solve this optimiza-

tion problem by learning p via the Gumbel-softmax trick.

We delay the details of the algorithm to the Appendix section

C. After obtaining the converged p, we prune the weights

based on the ranking/ordering of p to obtain the desired

sparsity level, which is denoted by the C(.) function. We

discuss the importance of KL regularization compared to L1

regularization (Sreenivasan et al., 2022) or no regularization

(Zhou et al., 2019) in Section I of Appendix. Previous work

on Bernoulli mask learning and pruning on network initial-

ization only focused on image-classification tasks, whereas

our work applies it to image-reconstruction tasks and devel-

ops many new findings that might provide important insight

into new structure design for DIP.

Figure 5. Comparative Analysis of Denoising Performance on ’Ba-

boon’ and ’Pepper’ Images at σ = 25 dB.

Our proposed OES (Optimal Eye Surgeon) algorithm con-

sists of two steps:

• Solve the optimization problem in (4) to learn the mask

m∗(y) using OES.

• Train the sparse subnetwork G(θ ◦m∗(y), z) to conver-

gence to fit the corrupted image y.

We summarize the important observations from applying our

algorithm to DIP for image reconstruction. These findings

will be supported by extensive numerical experiments in the

next section and appendix.

• Finding-1: Masks learned by Step 1 of OES when

applied at initialization induce a relatively good im-

age prior (Figure-16). We term the sparse subnetwork

G(θin◦m
∗(y), z) at initialization as Sparse-DIP. It gives

a good low-frequency approximation of the clean image

by just the masking network.

• Finding-2: OES effectively recovers the clean image and

exhibits minimal or no overfitting for denoising problems

(Figure-6).

• Finding-3: On image recovery tasks, the training of sub-

networks identified by OES is much more effective than

those discovered by the current best Pruning At Initial-

ization (PAI) methods. Furthermore, masks created by

methods based on the Lottery Ticket Hypothesis (LTH)

are not ideal for reconstructing images, a point we explore

in detail in Section 4.3.

• Finding-4: Sparse-DIPs are transferable across images,

datasets and corruption processes. More specifically, a

mask learned by OES from one image can be used to

successfully reconstruct other images, from completely

different datasets.

• Finding-5: The encoder part of DIP is more compressible

(prunable) than the decoder part. (Section 6)

• Finding-6 (Appendix): The irregularly pruned sparse-

DIP is better than the regular deep decoder of a similar

size. (Figure-11).

• Finding-7 (Appendix): Mask trained based on the initial

weights is more transferrable than that based on the mag-

nitude of the final trained weights like LTH. (Section-E in

Appendix).

4. Experimental support of the findings

Through extensive experiments, we confirm our findings.

We use images from three popular datasets: the Set-14

dataset (Zeyde et al., 2012), the standard image dataset

(Ulyanov et al., 2018) and the Face dataset (Bevilacqua

et al., 2012). In Finding-1 (4.1), and Figure-16, we study

the quality of images that are produced by just masking. In

Finding-2 (4.2), we compare the denoising performance of

OES with overparameterized DIP, Gaussian process DIP

(Cheng et al., 2019) and underparameterized deep decoder

(Heckel & Hand, 2018). In Finding-3 (4.3), we show results

of OES against state-of-the-art pruning methods. Finally, we

compare the transferability of OES and IMP across various

combinations of images and datasets in Finding-4 (Section

4.4).

4.1. Finding-1: Masking at initialization induces image

prior

Masking at initialization with masks learned by OES in-

herently captures low frequency components of the image.

In Figure-16, we display the results of G(θin ◦m∗(y), z)
alongside the original corrupted image y for images in the

Set-14 dataset. Images across three different levels of spar-

sities 3%, 50%, and 80% are shown. OES-masked images

for other datasets are shown in Figure-17 in the appendix.

We observe that OES can effectively reconstruct the simpler,
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low-frequency parts of an image from the corrupted version

y, but it struggles with the more intricate details. This means

that while OES can denoise an image, some information is

lost in the process. Masking has its limitations compared to

regular training. It can only represent a limited number of

functions, up to 2d, where d is the number of parameters in

the network. Consequently, due to this limitation in function

representation, the training loss with masking cannot reach

zero. In our study, we found that OES primarily reconstructs

the simpler, low-frequency parts of images. Since natural

images usually contain more low-frequency elements, focus-

ing on these parts allows for the greatest reduction in loss.

Additionally, because the model described in (1) lacks suffi-

cient function representation capability, it never achieves a

training loss of zero. However, even in this limited setting,

OES is effective in finding a mask that represents the image

y as closely as possible. For experiments in the manuscript,

y is the Gaussian noise corrupted image.

4.2. Finding-2: Sparse DIPs prevent overfitting

In OES, we further train the remaining subnetwork within

the obtained mask (G(θin ◦m∗(y), z)) till convergence to

perform the image reconstruction task, image denoising.

We conduct experiments on the denoising capabilities of

these subnetworks over several noise levels and various

images across 3 popularly used datasets, which we report

in Figure-6. We perform a comparison with the following

enumerated network based denoising methods. 1) Dense

DIP which is the overparameterized network originally pro-

posed by Ulyanov et al. (2018). The encoder part has 6

layers (Conv → ReLU → Batchnorm → Downsample) fol-

lowed by 6 layers of decoder (Upsample → ReLU → Batch-

norm). The convolution patch size in both the encoder and

decoder parts is 3× 3. The input z is fixed to be a random

tensor drawn from the Gaussian distribution of dimension

H ×W × 32× 3. The total number of parameters in Dense-

DIP is 3008867 (3 million) and the image dimension (y)

is 3 ∗ 512 ∗ 512 = 786432 (0.7 million). The network is

overparameterized. 2) Gaussian Process-DIP (GP-DIP) is

the network trained by SGLD and proposed by Cheng et al.

(2019) to alleviate overfitting to an extent, and 3) Deep

Decoder, proposed by Heckel & Hand (2018) is an underpa-

rameterized network that prevents overfitting. Deep decoder

contains only the decoder part of Unet. It has 1× 1 convolu-

tion layer and upsampling layers ( 1×1 Conv → Up sample

→ ReLU → channelnorm). Standard decoder architecture

proposed by Heckel & Hand (2018) uses channel dimension

of 128 with 6 layers as optimal denoising architecture. For

this architecture, deep decoder has 100224 (0.1 million) pa-

rameters 2. Sparse-DIP is the pruned architecture obtained

2Further reduction of number of layers to 5 makes the de-
noising performance poor as mentioned by the authors and also
confirmed by our experiments. We use the 6-layer deep decoder

at initialization by our OES method. We perform denoising

with a 3% sparse subnetwork found by OES which has ap-

proximately 90217 parameters (0.09 million), slightly less

than the number of parameters in deep decoder. We use the

ADAM optimizer with learning rate 10−2 (as reported in

Ulyanov et al. (2018)) in all our experiments for training

both the dense and sparse networks. In Figure-6 and Table-

2, we report the results without applying early stopping and

running the optimization procedure for a large number of

iterations (40k). Sparse-DIP outperforms deep decoders

and the overparameterized models (with regularization) for

majority of the images. In Figure-5, we plot the denois-

ing results on Baboon and Pepper images. When closely

zoomed in the area of focus, we observe that the deep de-

coder suffers from oversmoothing the edges, while GP-DIP

overfits to noise due to overparameterization. We study this

phenomenon in detail in Section 5. The OES framework can

also be extended to general noisy inverse problem settings

involving a forward operator (with a non-trivial nullspace).

We extend our framework to MRI reconstruction from un-

dersampled k-space measurements in Appendix H.

(a) Pepper (Set-14 dataset)

(b) Door (Standard Dataset)

Figure 6. Denoising results of various methods on noisy images

(σ = 25 dB) across 3 popularly used datasets.

as the standard for our experiments in the paper, unless specified
otherwise
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(a) Dataset-3 (Standard dataset) (b) Face-1 (Face dataset) (c) Pepper (Set-14 dataset) (d) Lena (Set-14 dataset)

Figure 7. Comparison of denoising performances for subnetworks found by various pruning methods (GRASP, Synflow, IMP, and OES).

IMP utilizes 14 pruning iterations with 20% weight reduction at iterations. All the masks are 5% sparse. IMP undergoes an additional 14

steps of training and pruning before obtaining the final mask. The gray curves indicate the progression of IMP iterations, with darker

shades representing higher iteration counts. Each IMP iteration is shown. The detailed result for all images in 3 datasets can be found in

Table-4 in the Appendix.

4.3. Finding-3: OES is superior to other pruning

methods

We compare OES with the state-of-the-art pruning methods.

For pruning at initialization, we compare with GraSP, Syn-

Flow3, magnitude and random scores in Table-4. For LTH

based pruning, we report for two pruning schedules and ob-

serve that gradual pruning for larger pruning iterations yields

better performance. We evaluate the denoising performance

of these subnetworks at 5% sparsity level. In Figure-7, we

observe that at 5% sparsity level, OES masks shows minimal

to no overfitting. LTH masks are obtained based on ranking

the magnitude of the weights at convergence (at 40k epochs)

and subnetworks obtained by LTH show overfitting, when

masks are at the same level of sparsity. We demonstrate

the adverse effect of LTH on DIP in Figure-7, which we

orignally motivated in Section 3.1. However, when PSNR

curves with LTH masks are plotted at every pruning itera-

tion in Figure-7, we observe that the effect of overfitting

becomes less severe when networks become more sparse.

Both Synflow and Grasp show signs of overfitting for image

denoising. In magnitude and random pruning methods ap-

plied at initialization, it is often observed that layers with

a large number of parameters (large width) and those with

fewer parameters (small width) are respectively at a higher

risk of being entirely pruned. We consistently observe that

with magnitude and random pruning at initialization, at 5%
sparsity level, there is layer-collapse. This phenomenon

occurs when an entire layer gets pruned and the output is a

constant image.

4.4. Finding-4: OES masks are transferable

We perform experiments on transferring the masks obtained

by Step 1 of OES on one image and show the masked sub-

network can be used for denoising a different image. We

compare the transferability of the OES masks with IMP

masks at the same level of sparsity (5%). We also show that

OES masks can be transferred not only to images within the

3Performance of SNIP is not upto par with GraSP and SynFlow
and hence we don’t report it.

same dataset, but also to those from a different dataset. In

Figure-8, we compare the denoising performance for dif-

ferent sets of learned masks for both IMP and OES. Say

there are two image datasets: Dataset-A (face) and Dataset-

B (standard dataset), each of which contains noisy images.

Also, let us term the image that is used to learn the mask

as ysource and the image on which denoising is performed

as ytarget. Then we explore three possibilities: 1) self-

masking: ysource = ytarget, the same corrupted image

is used to learn the mask, and the mask is used for de-

noising; 2) inter-dataset masking: ysource ̸= ytarget, but

both ysource and ytarget belong to the same dataset; and

3) cross-dataset masking: ysource ̸= ytarget and both of

them belong to different datasets (say ysource ∈ Dataset-A

and ytarget ∈ Dataset-B or vice-versa). In the experiments,

we use images from a standard image dataset (Ulyanov et al.,

2018) and the face-dataset (Bevilacqua et al., 2012) to show

the extent of transferability between inter and cross datasets.

We note that the images in this dataset are visually diverse

as face images have different characteristics than those in

the standard image dataset. We observe in most cases, self-

masking by OES provides the best performance. IMP masks

provide the worst performance irrespective of the source

and target image. Inter-dataset masking and cross-dataset

masking by OES also gives good PSNR at convergence but

the performance slightly degrades when compared to self-

masking. More experiments comparing IMP based masking

with OES are provided in Section-13 in the Appendix.

5. Noise impedance of sparse-DIP

Sparse-DIPs often outperform deep decoder even with lower

levels of parameter count. Based on our experiments, we

observe that with images having edges, this difference be-

comes prominent. To further investigate, we study the

noise impedance of the network (denoted as f(y)) when

trained to fit random Gaussian noise by minimizing the

loss ∥G(θ, z) − y∥2
2

w.r.t. the parameters of the network

(dense or sparse), where y ∼ N (0, σ2I). This is to see

how each network has the capacity to fit white Gaussian

noise. Dense DIP fits the noise in the image perfectly with

7
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(a) Building. (ytarget)

(b) Face-3. (ytarget)

Figure 8. Performance of masks trained from several images for

denoising with noise level (σ = 25 dB). Self denotes a mask

learned from the same image. Inter-dataset denotes mask learned

from images from the same dataset. Cross-dataset denotes mask

learned from images of different dataset. The standard dataset and

the face dataset were used in this experiment. For Figure-a) Inter-

datset mask (ysource) is House, Cross-dataset mask (ysource) is

Face-0. For Figure-b) Inter-datset mask (ysource) is Face-0, Cross-

dataset mask (ysource) is House. All the masks used in this figure

are 5% sparse.

zero training loss and in Fourier domain F [f(y)] shows

a constant wide-band spectrum which is quite typical for

Gaussian white noise. Deep Decoder is underparameterized

and the training loss does not go to 0 indicating that noise y

lies outside of the output range space of the network. Deep

decoder smoothens out the noise to a large extent. The

magnitude of the Fourier Transform of the output shows

that the cut-off frequency is small essentially making it act

like a low-pass filter with small bandwidth. Sparse-DIP

is also underparameterized and obtained by masking 97%
weights of a dense DIP. The magnitude spectrum of F [f(y)]
shows that x-axis and y-axis of the spectra have much higher

magnitude than that of deep decoder, hence it can recon-

struct directional edges better than deep decoder. To further

explore the image representation and noise impedance ca-

pacity, we fit these three networks to a noisy chessboard

image, where the strip frequency is very high. We observe

from Figure-9b that Dense DIPs recover the high-frequency

edges but overfit to noise. Deep decoder has very low cut-

off frequency (Figure-9a). It fails to recover the vertical

(a) Noise impedance (b) Recovery of edges

Figure 9. Figure-a) shows the ability of networks to fit noise. f(y)
is the network output and |F(y)| is the magnitude of Fourier

coefficients. Figure-b) shows quality of recovering edges.

and horizontal edges of the chessboard, although it does

smoothen out the noise. Sparse-DIP recovers the edges and

does not overfit to noise. The ability of Sparse-DIP to re-

construct high-frequency edges better than deep decoder

(with similar number of parameters) explains why it showed

superior denoising performance in Figure-6 and Table-2.

6. Pruned architecture study - Finding 5

Throughout all the experiments, we used Unet without skip

connection as the Dense-DIP architecture. In Figure-10a,

we show how the different layers of Unet are pruned with

OES and IMP. These may shed light on the superior per-

formance of OES when compared to IMP. In Figure-10b,

we show the pruning pattern for OES masking for various

levels of sparsity. We make the following observations: 1)

Importance of first and last layer: The first layer of the en-

coder (convolution+dowsampling) layer and the last layer of

decoder (convolution layer) have large number of remaining

weights. The final reconstructed image is formed after con-

volution in the last layer, so it justifies the observation that

the final convolution layer has the least amount of pruned

weights. 2) Towards the emergence of deep-decoder: In

Figure-10b, we observe that for various levels of sparsity,

the decoder part of the architecture is pruned the least. This

leads to the observation that for image generation, the up-

sampling layers play a crucial role, also observed in Liu

et al. (2023). This further justifies the use of Deep decoder

proposed by Heckel & Hand (2018), where the authors

only use the decoder part of the Unet. 3) Encoder layers

play a role in overfitting: When comparing the architecture

of IMP-pruned vs OES-pruned networks, we observe that

IMP prefers the layers in the encoder much more than OES.

4) Importance of encoder-decoder junction: The junction

between the encoder-decoder is important as it has lot of

non-zero parameters after pruning. This part is responsible

for the generation of the low-frequency information of the

image, which composes the majority of the information for

natural images. This is because the spatial feature in this

layer (because of simultaneous downsampling) is compara-

ble to convolutional patch filter size, making its receptive

8
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(a) OES vs IMP pruned network (b) Layer-wise sparsity for pruned Unet for various sparsity levels
using OES.

Figure 10. a) Layerwise sparsity in Unet architecture for pruning methods IMP and OES. b) Distribution of layerwise parameters for

various sparsity levels using OES. The corrupted image y used was Lena. The overall sparsity in the architecture is 5%.

field larger. 5) Pruning pattern for various sparsities: We

observe a similarity in the sparsity pattern across different

layers in the shape of ’W’. For various pruning percentages

85%, 90% and 96%, we observe a similarity in the sparsity

pattern across different layers. The three most important

layers for the Unet seem to be the first layer (also the first

layer of the encoder), the encoder-decoder junction and the

last layer (final convolution).

7. Limitations

While our work presents a novel method to prevent overfit-

ting, it is essential to acknowledge few limitations:

• Sparse networks tend to overfit slightly for transferring

across different domains (Figure-8).

• Finding the mask adds computational overhead due to the

Gumbel Softmax reparameterization. Since the masks are

transferable, this overhead is not significant.

• Specialized tasks, such as MRI image processing, require

unique architectures (e.g., two-channel Unet), limiting the

transferability of OES subnetworks across different tasks

with different architectures.

8. Conclusion

In this work, we demonstrate for the first time that in a dense

deep image generator network, there exists a hidden sub-

network (sparse DIP) at initialization that shows potential

of reconstructing low-frequency information of an image

from only its noisy measurements. Sparse DIPs show signif-

icant potential for image reconstruction and transferability,

surpassing traditional pruning methods. We believe that

the connection between sparsity in the generator network

and the low-dimensionality of the image output (situated

in the manifold of images) prompts further theoretical in-

vestigation. We aim to further explore the role of these

sparse networks within diffusion model-based generative

frameworks, aiming to expedite the process and enhance the

quality of generated images.
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Appendix

In the appendix section, we provide further extensive results to support our findings presented in the manuscript. We present

the following sections sequentially:

1. Section-A presents denoising results which were reported in Finding-2 of the manuscript (4.2). Here, we present

denoising performance for several noise levels.

2. Section-B contains the performance of OES method with standard pruning methods in literature over images in three

different datasets.

3. Section-C summarizes the details of the Gumbel softmax reparameterization trick that was utitlized in learning the

mask by OES.

4. Sectioin-D summarizes related works and confirms similar findings with related works. Here, we also highlight

the difference of our work and show how OES is a more generalizable approach compared to the related works.

We highlight that no clean image is needed or no prior assumption on architecuture is required for finding a good

subnetwork.

5. Section-E highlights the difficulty in using IMP for pruning networks for image reconstruction tasks. We also consider

the oracle case, where clean image is used for IMP and we show that it has poor transferrability compared to OES.

6. Section-F shows transfer to a different task (here inpainting). We test OES masks learned on inpainting and denoising

tasks and compare them on the respective tasks.

7. Section-G shows the robustness of hyperparameter ¼ when KL regularization is used.

8. Section-H extends the OES framework for MRI reconstruction from undersampled k-space measurements.

9. Section-I shows the comparison and disadvantages of finding mask through L1 regularization as done in Sreenivasan

et al. (2022).

10. Section-J studies the sensitivity of masks obtained at different initialization distribution/initialization scale and when

IMP masks are learned at early stop time.

11. Section-K shows the adverse effects of pruning an already underparameterized deep decoder.

12. Section-L highlights the difference in neural network pruning for image classification and image reconstruction. To the

best of our knowledge, our work shows the phenomenon of Stong Lottery Ticket Hypothesis in image reconstruction

for the first time.

A. Denoising Results

In this section, we report the denoising performance for all the images in the 3 datasets. In Table-1, we report the number of

parameters used in each network. In Table-2, we report the PSNR at convergence for images across 3 datasets. We further

plot the PSNR convergence curves of a subset of these images in Figure-11. In these figures, we want to emphasize that

dense DIPs overfit to noise at convergence. With Sparse-DIP’s obtained at OES, the overfitting is reduced by a large extent.

We also observe that 80%-sparse DIP is more prune to overfitting than 3%-sparse DIP.

Table 1. Number of parameters count of sparse and dense networks. Number of pixels in image is 512× 512× 3 = 786432 (0.7M)

Model Dense DIP Dense Decoder Sparse-decoder (50%) Sparse-DIP(3%) Sparse-DIP(4%)

Number of parameters 3008867(3M) 100224(0.10M) 50112 (0.05M) 90217 (0.09M) 120354 (0.12M)
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Table 2. Denoising capabilities comparison without early stopping on Set-14 dataset. The decoder has 100,224 parameters. Dense DIP has

3,008,867 parameters. Sparse networks are 3% sparse and have 90217 parameters. The PSNR values are noted at the end of convergence

of training after 40000 epochs. The average of three runs using different random seeds are noted. For each implementation, a random z

and network initialization is used for evaluation. For Xy , X denotes the average of three runs and y denotes the standard deviation.

σ = 25dB σ = 12dB σ = 17dB
Image Dense GP Deep Sparse- Dense GP Deep Sparse- Dense GP Deep Sparse-

DIP DIP Decoder DIP DIP DIP Decoder DIP DIP DIP Decoder DIP

Pepper 21.210.22 25.140.29 27.010.25 27.450.22 27.340.18 29.170.26 28.810.18 30.410.36 24.390.39 26.020.16 27.520.32 28.920.22

Foreman 20.690.17 21.840.29 24.200.24 25.150.13 26.590.07 28.330.05 29.810.08 30.550.14 23.710.22 25.140.17 27.140.28 27.700.16

Flowers 22.270.18 23.760.35 27.090.22 27.100.18 28.550.17 30.780.14 30.330.09 31.070.25 25.510.13 27.480.11 29.210.25 29.390.22

Comic 20.630.22 21.560.29 23.220.12 24.030.21 26.450.36 28.270.36 28.010.06 28.570.09 23.680.03 24.900.18 25.820.02 26.530.19

Lena 21.280.39 22.760.22 26.800.35 26.400.29 27.500.28 29.480.19 30.960.24 30.890.43 24.520.11 26.300.18 29.3331 29.0313

Barbara 23.900.10 23.490.35 25.300.09 26.500.37 28.270.20 30.810.25 27.500.31 27.810.21 25.150.13 27.550.08 26.650.04 27.630.30

Monarch 23.620.36 23.350.14 27.870.33 27.620.03 28.250.05 31.170.24 32.000.22 32.120.17 25.140.14 27.200.25 30.290.18 30.420.30

Baboon 21.680.14 23.040.31 22.930.18 24.000.29 27.270.39 27.030.22 24.120.21 25.910.04 24.800.11 25.570.20 23.780.27 25.040.32

Ppt3 24.070.35 24.570.39 26.810.35 26.900.22 28.880.10 31.940.13 31.730.18 32.410.17 25.850.21 28.780.20 29.490.23 29.960.22

Coastguard 20.530.01 21.230.21 23.710.20 24.190.06 26.500.07 28.130.10 29.430.17 30.600.11 23.540.04 24.530.14 26.360.08 27.090.35

Bridge 21.770.31 25.070.02 25.550.26 26.120.30 28.580.20 30.470.10 28.100.09 29.230.31 25.310.08 28.170.42 27.040.28 28.080.38

Zebra 21.940.08 23.460.02 27.370.19 27.400.29 28.450.17 30.930.20 30.810.12 31.540.20 25.250.38 27.390.34 29.210.29 29.420.05

Face 21.030.07 21.760.30 24.320.11 24.530.22 26.900.02 27.810.37 29.930.36 29.930.02 24.100.06 24.960.12 27.010.25 27.230.38

Man 21.980.31 24.180.10 26.270.33 26.590.39 28.450.39 31.220.19 29.840.25 30.940.31 25.120.26 28.630.29 28.770.20 29.110.13

Table 3. Denoising capabilities comparison without early stopping for σ = 25dB on Face Dataset and Standard dataset.
(a) Standard Dataset

σ = 25dB
Image Dense GP Deep Sparse

DIP DIP Decoder DIP

Flight 20.49 22.02 23.99 24.02

House 21.88 23.30 28.35 29.27

Building 21.93 23.55 27.23 27.23

Door 21.85 23.31 27.02 28.18

Hats 21.76 24.12 24.86 26.07

(b) Face Dataset

σ = 25dB
Image Dense GP Deep Sparse

DIP DIP Decoder DIP

Face-1 22.40 26.72 28.90 29.07

Face-2 22.02 26.02 29.50 29.58

Face-3 21.96 25.88 28.27 27.91

Face-4 21.83 26.37 28.31 27.89

B. Comparison with Standard Pruning Methods

In section-4.2, we briefly showed some results on comparison of OES with standard pruning methods that comprised of

pruning at Initialization methods like Synflow, Grasp and magnitude/random based pruning and pruning after training

methods like Iterative magnitude pruning. In Table-4, we show all the results for images in three different datasets: Set-14,

Face, and Standard image. All the PSNR values were noted at convergence. Our observation suggests that OES outperforms

the traditional pruning methods at initialization. We did not report the performance of SNIP as it resulted in layer collapse

for Unet. We see that magnitude and random choice of parameters serve as a bad indication of importance score and

most often than not leads to layer-collapse. We explored this part in the manuscript in Section 4.2. Synflow, Grasp

pruning at initialization leads to overfitting when run for longer iterations. Lastly, our comparison with IMP (Iterative

magnitude pruning), shows that using the mask obtained from converged DIP training easily leads to overfitting of the

masked subnetwork. We implement IMP with two schedules: IMP-(0.8)14 denotes pruning and training was run for 14

iterations and at each iteration 20% of the remaining weights were pruned, IMP-(0.2)3 denotes pruning and training was

run for 3 iterations and at each iteration 80% of the remaining weights were pruned. Having gradual pruning performed

better when compared to aggressive pruning. This further shows that runnign IMP to get good masks can be costly since we

need to run more iterations of pruning to reach a desired sparsity level.

C. Details of the Gumbel Softmax Reparameterization Trick

Let s be the final number of non-zero elements we want to have in the subnetwork and d is the total number of parameter.

Then we fix the prior to be p0 = s
d
× 1, which means each parameter will have a prior probability p0 for selecting the

weight. We solve the following optimization problem using the Gumbel softmax reparameterization trick, but first we
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Table 4. Denoising capabilities (σ = 25dB) comparison without early stopping for standard pruning methods for images from 3 different

datasets. PAI refers to Pruning At Initialization. PAT refers to Pruning After Training. All networks have sparsity level of 5%. IMP refers

to Iterative Magnitude Pruning (IMP) with weight rewinding. IMP-(1− p)n denotes at each pruning iteration p% of weights have been

deleted and has been run for n number of pruning iterations. None of the methods use clean image for training.

Set-14

Image PAI PAT Ours (PAI)

GraSP SynFlow Magnitude Random IMP-(0.8)14 IMP-(0.2)3 OES

Pepper 22.22 22.07 12.42 10.80 25.52 25.66 27.45

Foreman 21.67 20.93 12.13 10.75 21.66 23.78 25.15

Flowers 23.02 23.07 12.22 10.61 26.11 26.43 27.10

Comic 21.07 21.50 12.13 11.75 22.13 22.42 24.03

Lena 13.39 22.19 14.37 13.33 25.73 25.75 26.40

Barbara 23.45 23.51 13.56 13.03 26.20 26.05 26.50

Monarch 22.67 22.93 14.52 12.73 26.27 26.52 27.62

Baboon 22.42 22.56 12.50 11.61 23.75 23.49 24.00

Ppt3 23.42 24.23 9.54 8.51 26.34 26.22 26.90

Coastguard 20.78 20.73 13.31 13.16 21.38 21.90 24.19

Bridge 24.25 23.29 13.36 13.10 26.27 26.20 26.12

Zebra 22.92 23.22 13.29 12.34 26.56 26.54 27.40

Face 21.38 21.14 10.74 9.50 21.80 22.50 24.53

Man 23.62 23.71 12.89 11.30 26.82 26.72 26.59

Face

Image PAI PAT Ours (PAI)

GraSP SynFlow Magnitude Random IMP-(0.8)14 IMP-(0.2)3 OES

Face-1 22.88 22.97 12.64 8.41 26.89 26.62 29.07

Face-2 22.64 22.90 12.35 10.40 26.74 26.19 29.58

Face-3 22.74 22.80 13.46 11.86 26.94 26.50 27.91

Face-4 22.71 22.57 12.16 11.61 26.33 26.46 27.89

Standard

Image PAI PAT Ours (PAI)

GraSP SynFlow Magnitude Random IMP-(0.8)14 IMP-(0.2)3 OES

House 20.46 20.24 13.51 13.20 26.61 26.88 29.27

Building 22.72 22.52 15.32 13.23 26.30 26.02 27.23

Door 21.87 21.80 12.32 10.49 26.80 26.46 28.18

Hats 22.43 21.60 11.20 12.45 25.97 25.92 26.07

explain the challenges of solving this optimization problem:

m∗(y) = C(p∗) such that

p∗ = argmin
p

Em∼Ber(p)

[
||G(θin ◦m, z)− y||22

]

︸ ︷︷ ︸

R(p)

+ ¼KL(Ber(p)||Ber(p0))

(3)

The standard way to minimize R(p) is to obtain a direct Monte Carlo estimate of ∂pi
R(p) for every i = 1, 2, .., d by several

random realizations of the network. Let Q := Ber(p) denote the posterior distribution. Then for every i, let ei(m
′

i) =
EQ

[
||G(θin ◦m, z)− y||22|mi = m′

i

]
, we have R(p) = piei(1) + (1− pi)ei(0), which yields ∂pi

R(p) = ei(1)− ei(0).
Finding the Monte Carlo estimate of ∂pi

R(p) is computationally infeasible because of computing the conditional expectation

for every i. The loss R(p) depends on p in an implicit way and calculating the gradient ∂pR(p) using Monte Carlo samples

is not straightforward.

To make the relation of the loss R(p) and variable p explicit for gradient based methods, a classical approach called

the reparameterization trick is used to find the mapping that makes it explicit. For discrete Bernoulli distribution, the

reparamterization trick is called the Gumbel-Max (GM) trick which is a method of sampling from discrete random variables

using explicit dependence on the probabilities of each state. The GM trick allows straightforward simulation of discrete

variables, but it is not practical for gradient computing because it involves differentiation through a max function. To
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overcome this disadvantage of GM trick, Maddison et al. (2016) introduced the Gumbel-Softmax trick which relaxes the

discrete distribution to CONCRETE distribution: CONtinuous relaxations of disCRETE random variables. Let T ∈ R
+

denote the temperature which controls the degree of relaxation from the discrete distribution to the continuous distribution.

The sampling from the Concrete distribution Concrete(pi, 1− pi) is as follows:

1. fix T and sample Gk, Gl ∼ Gumbel i.i.d (− log(− log(U [0, 1]))).

2. set m̂i(pi) =
exp (

(log(pi)+Gl)

T
)

exp (
(log(pi)+Gl)

T
)+exp (

(log(1−pi)+Gk)

T
)
∼ Concrete(pi, 1− pi) for i = 1, 2, .., d.

Here, m̂ obeys a continuous Concrete distribution denoted as Concrete(p,1− p) instead of discrete Bernoulli distribution

Ber(p). This continuous approximation of discrete distribution is controlled by the temparature variable T . As T tends to

0, Concrete(p,1−p) distribution converges to the Ber(p) distribution, however, for small T , there are numerical instability

issues in estimating m̂i. In our experiments, T is fixed to 0.2 for all the experiments, as it gives a good approximation to

the discrete distribution without suffering from the numerical instability issue. Note that unlike in Bernoulli distribution

m ∼ Ber(p), where the dependence of R(p) on p was implicit, making (4) challenging to optimize, for Concrete

distribution the dependence on p is explicit, making it amenable to solve by gradient based optimizers. So, given random

network initialization, θin, and the noisy corrupted image y, the steps to learn mask m to the model parameters are as

follows.

Algorithm 1 Optimal Eye Surgeon (Learning Mask at initialization)

1: Input: θin, p0, y, G(., z), C(.), number of samples K

2: Output: Final mask m∗(y)
3: Initialize p = 0.5× 1, set T = 0.2, ¼ = 1e− 9
4: for each iteration do

5: for k = 1 to K do

6: m̂k(p)← Concrete(p, 1− p)
7: Lk(p)← ∥G(θin ◦ m̂

k(p), z)− y∥22
8: end for

9: LC(p)←
1
K

∑K

k=1 L
k(p) + ¼KL (Ber(p)||Ber(p0))

10: Compute ∇pLC(p), do GD : p← p− ¸∇pLC(p)
11: end for

12: m∗(y)← C(p∗), where p∗ is the converged probability mean.

While optimizing (4) by Algorithm-1, we reparameterize the optimization variable p through a sigmoid function p =
sigmoid(v), which maps the domain of the variable p from [0, 1] to the optimization variable v :[−∞,∞]. So our

initialization, which ensures unbiased selection of weights is at v = sigmoid−1(p) = sigmoid−1(0.5) = 0. The prior

probability which controls sparsity, is also related as v0 = sigmoid−1(p0) where p0 is the prior probability vector. This

reparameterization of the optimization variable ensures that the variable domain is not restrictive.

Once p∗ is obtained by gradient descent, mask m∗(y)← C(p∗) is obtained by ranking the elements of p∗ and setting the

indices of m∗(y) corresponding to the top s% values of p∗ to be 1, and 0 otherwise. This way the sparsity of the mask

is set to be the desired sparsity s and is accomplished by the C(.) function. C(.) is a ranking function, which ranks the

values of p and then thresholds the weight indices corresponding to s% highest values of p to achieve the desired sparsity.

We chose the initialization p = 0.5× 1, so that there is no bias towards any weight selection and all weights have equal

probability of selection/pruning at initialization. Although with prior knowledge, for certain layers p can be initialized to

higher probability values, but in our preliminary experiments, we do not introduce bias towards any weights in any layers.

D. Differences with Related Work

While we provide an interesting insight on the image generation capability of hour-glass Unet architecture, we acknowledge

the existence of previous works which further substantiate our current findings. In the following points, we highlight the

difference of our work with the following and also mention the similarity of the findings:
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D.1. Comparison to NAS-DIP (Chen et al., 2020) and ISNAS-DIP (Arican et al., 2022)

NAS-dip proposes to apply the NAS (Neural architecture search) algorithm on DIP framework. They build a searching

space for upsampling cells in the decoder and the skip connections between encoder and decoder. Then they leverage

reinforcement learning (RL) with RNN controller and use PSNR wrt clean image as reward to guide the architecture. After

the network search, they transfer the best-performing architecture and optimize the model the same way as DIP. We highlight

the points of difference:

• Architecture search vs. pruning: Chen et al. (2020) and Arican et al. (2022) search for the best architecture. The final

architecture found by NAS-DIP is a dense architecture. Instead, we start with a dense deep Unet architecture and then

make it sparse. Instead of searching for the best architecture combination, we focus on each weight parameter and

evaluate it’s importance in the context of image generation. Infact, a NAS-DIP model found by Chen et al. (2020) can

be further pruned by OES.

• Limited search space: NAS-DIP searches over only the upsampling and residual connections. For OES, a 6 layer

encoder-decoder network is the base architecture and each parameter gets it’s individual importance metric through

learning p. We believe that although upsampling layers play a crucial role, the encoder layers can’t be entirely

discarded.

• Using clean image to find architecture: We want to emphasize this is the main point of difference between the previous

works like Chen et al. (2020); Arican et al. (2022); Wu et al. (2023) and ours. We do not need to use the clean image

for pruning the network. Masking at initialization induces image prior even when trained against a corrupted image.

We discuss this phenomenon in detail in Finding-1.

D.2. Comparison to The Devil is in the Upsampling (Liu et al., 2023)

Liu et al. (2023) proposed a heursitic strategy for designing appropriate architecture by analyzing the frequency response of

architecture parts of DIP. Their observation was that the bilinear upsampling layers are the most important parts for image

generation. Followed by the convolutional layers as they observed that only when the decoder part is used, convolutional

decoders performed better than non-convolutional or MLP decoders. Furthermore, they suggest whether to increase/decrease

depth or width or whether to keep skip connections (or not) based on signal processing intuition and sanity check based

experiments. Our Alorithm OES relies on the mask learning algorithm to convey the similar information obtained in Liu

et al. (2023) and both these works agree on three findings.

1. Importance of decoder: In Figure-10b, we also find that given a hour-glass Unet architecture, the decoder part seems to

be more important while the encoder part is more compressible. This is the main finding in Liu et al. (2023) based

on the frequency response of the upsampling layer. However, in OES, the final converged value of p conveys this

information.

2. Reduced depth in Unet: For hour-glass architecture, the authors observe that increased depth can lead to oversmoothing

of final image. Hence, for decoder architectures, the authors advocate reduced upsampling operations and for Unet

architecture, they advocate decreasing the depth of the network. In Figure-10b, we see that the converged and

thresholded value of p conveys the same finding. For 6 layer Unet architecture, the middle layer of the encoder-decoder

architecture seems to get pruned the most showing a ’W’ shape in encoder-decoder hour glass architecture. This

denotes that we can do with reduced depth.

3. Not using skip connections: The authors notice that the skip connections ameliorate the oversmoothing issue when

the network has large depth. Hence, they may lower the effective upsampling rate, making deep networks perform

similarly to shallower ones. Thus in our base architecture, we use the simple hour-glass Unet architecture. Trying to

understand and analyze OES with skip architecture can be more complicated and we leave it as future work.

We also want to highlight one point of difference in the findings between these two works. We observe that using an irregular

pruned Hour-glass architecture outperforms deep decoder based architecture. Hence, although devil is in the upsampling

layers, we observe that the encoder-decoder junction also plays a crucial role.
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D.3. Comparison to Lottery Image Prior (Wu et al., 2023)

The main message of our paper was to advocate learning the mask at initialization instead of learning the mask based on

magnitude obtained post-training. However, we acknowledge that Wu et al. (2023) is the first work to apply unstructured

pruning for image reconstruction based problems. However, they use the early stopping time to obtain the mask through

Lottery Ticket Hypothesis. Generally speaking, identifying the early stopping time in image reconstruction tasks is itself a

challenging task. It is hard to come up with an estimate of an early-stopping time based on observations from different

images and corruption levels. For example in Figure-21, we see that for two different images with two different corruption

levels, the early stopping time can vastly vary. We also observe that in their python script in their github repo they use the

clean image to train the mask for a single image. In our experiments, we show the adverse effects of LTH based masks

obtained at convergence. But further we also compare our method when LTH masks are obtained at early-stopping time

or using clean images. We observe that LTH based masks obtained at early stop time perform well when the image used

for training the mask is also used for denoising in Figure-14-a. But when a different image is used for denoising, the

transferability of OES masks seems to be better (Figure-14-b). In Table-5, we compare the transferability of OES masks

and IMP based masks. Here, OES masks are obtained at initialization and LTH based masks are obtained by training the

network to convergence but with a clean image. We study the pruning pattern of Unet architecture in details and compare

OES and IMP methods, something that was not studied comprehensively (Wu et al., 2023).

E. Comparing IMP-based Denoising

In Finding-4, in the manuscript, we discussed the transferability of OES masks and compared how these masks transferred

with the same image, within images of the same dataset and within images of varying datasets. Here, in this section, we

report additional performance where we use the mask learned on Lena image (clean and noisy) at 5% sparsity. In Table-5,

we compare the performance of OES masks with IMP masks at convergence for several noise levels. Here in Table-5, the

IMP masks were learned on the noisy Lena images. We demonstrate the corresponding figures in Figure-13. We run the

denoising algorithm till 40k iterations. We see that in Figure-13, the IMP based masks overfit to noise, whereas OES-masks

learned at initialization do not overfit. For this particular experiment, we do not use any knowledge of early-stopping time,

so at convergence the parameters overfit to noisy Lena image. The IMP mask in Table-5 is obtained based on the magnitude

of these parameters.

Table 5. Comparison of denoising capabilities (for various noise levels) of transferred masks for OES vs IMP based pruning. ysource

used is the noisy Lena image. All masks are 5% sparse.

Image (ytarget) σ = 25dB σ = 12dB σ = 17dB
m(IMP ) m(OES) m(IMP ) m(OES) m(IMP ) m(OES)

Pepper 26.57 27.05 29.66 30.37 27.92 28.55

Flowers 26.17 27.10 30.03 31.02 28.54 29.31

Lena (self) 25.85 26.35 29.36 30.95 28.45 28.89

Barbara 25.31 26.34 28.60 30.36 27.30 28.43

Monarch 26.45 27.38 31.01 32.84 29.14 30.23

Baboon 23.26 23.91 24.87 25.25 24.24 24.89

Ppt3 26.11 26.96 30.92 32.32 29.05 29.57

Bridge 25.09 26.17 28.06 28.74 26.93 27.54

Zebra 26.34 27.20 30.54 31.45 28.80 29.87

Man 25.83 26.92 29.67 30.22 27.99 29.13

To further make an apple-to-apple comparison with Wu et al. (2023), we compare our method when the clean Lena and

Pepper images were used to learn the mask. We observe that when IMP uses clean Lena and Pepper image for learning the

mask, the denoising performance is improved as compared to when IMP only used the corrupted image. Like in Table-5, the

final PSNR achieved when IMP used the noisy image was 25.85dB (Lena-self in Table-5) whereas when IMP used the clean

image to learn the mask, the denoising performance improved to 26.65 dB (Lena-self in Table-6b). But the improvement,

for denoising other images does not increase when compared to OES. For example, the PSNR of IMP masks using the clean

image (26.65 dB (Lena-self in Table-6b) is still less than when OES used the corrupted image (27.05 dB in Table-5). When

the target image was different, say for Barbara image, the mask learned on clean Lena image using IMP gives a PSNR of

25.66 dB (Table-6b) but using OES mask with a corrupted image gives PSNR of 26.34 dB (Table-5, Barbara). We further

explore this phenomenon of transferability in Figure-14 where IMP masks learned on clean image performed well, when it

was used for denoising on the same image but performed worse than OES when it was used for a different image.
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Table 6. Comparison of Denoising Capabilities of Transferred Masks Obtained from Sparse-DIP Pruning at Initialization vs IMP/OES

Based Pruning. Here, both the OES and IMP masks were learned on clean Lena image.
(a) Masks learned on clean Pepper image.

Image σ = 25dB
m(IMP ) m(OES)

Pepper (self) 26.89 27.68

Flowers 26.48 26.80

Lena 25.96 26.38

Barbara 25.42 26.32

Monarch 26.73 27.40

Baboon 23.49 23.89

Ppt3 26.36 26.84

Bridge 25.75 26.03

Zebra 26.58 27.20

Man 26.19 26.94

(b) Masks learned on clean Lena image.

Image σ = 25dB
m(IMP ) m(OES)

Foreman 26.39 26.67

Lena(self) 26.65 26.83

Barbara 25.66 26.46

Monarch 26.61 27.35

Baboon 23.65 24.02

Ppt3 23.19 26.85

Bridge 25.81 26.21

Man 26.31 26.88

We observe a similar phenomenon in transferability in Figure-14 when IMP masks were obtained at an early stopping time.

F. Transfer to Different Task: Inpainting

In the manuscript, we performed on learning mask m(y) from noisy images y, where y is corrupted by additive Gaussian

noise with standard deviation Ã. In this section, we show the efficiency of OES masks, when y is a masked image with

probability of masking p = 0.5, i.e, on average 50% of the image pixels are missing. We compare the masks learned

when y had missing pixels (referred to as Sparse-DIP-in) and when y was corrupted with Gaussian noise (referred to

as Sparse-DIP-den). We evaluate the relative comparison of both these masks against deep decoder and dense DIP at

convergence. We report the results of these masks in the inpainting task in Table-7. Furthermore, we use this set of masks for

denoising in two different noise levels Ã = 25dB and Ã = 12dB and report in Table-8. Based on this observation in Table-7,

we see that sparse-DIPs (mask learned from missing pixel y or noisy y) seems to perform comparably with Deep-decoder

and Vanilla DIPs. This is because for inpainting tasks, the effect of overfitting is not as pronounced as compared to denoising

tasks. Both the masks learned from denoising task and the inpainting task seem to perform comparably in Table-8.

Table 7. Comparison of inpainting capabilities of transferred masks (denoising training) obtained from Sparse-DIP pruning at initialization

vs IMP based pruning. p = 0.5
Dense DIP Deep Decoder Sparse-DIP (den) Sparse-DIP (in)

Ppt3 28.62 28.40 28.43 28.33

Baboon 21.36 22.13 22.60 22.38

Coastguard 27.80 27.27 27.45 27.45

Man 25.47 26.63 26.13 26.16

Zebra 31.20 29.52 31.62 31.27

Pepper 28.40 28.45 30.76 30.81

Face 28.64 31.27 31.12 29.10

Comic 22.36 24.53 22.55 22.54

Flowers 30.73 29.61 31.10 30.85

Bridge 24.85 25.16 25.01 24.78

Foreman 31.57 33.60 30.75 31.53

Monarch 30.54 31.08 31.44 31.70

Barbara 27.62 25.71 27.23 27.28

Lena 28.85 31.23 31.17 31.17

However, for denoising task in Table-8, we see that Sparse-DIP (learned through denoising and inpainting loss) outperforms

both Deep decoder and Dense-DIP due to severe overfitting. This is something we already explored in Table-2.

18



Optimal Eye Surgeon

Table 8. Denoising capabilities comparison without early stopping on Set-14 dataset. The Sparse-DIP masks have been generated with

two procedures. ”denoise” denotes the masks generated from the denoising operation. ”inpaint” denotes the masks generated from the

inpainting operation.

σ = 25dB σ = 12dB
Image Dense Deep Sparse-DIP Dense Deep Sparse-DIP

DIP Decoder denoise inpaint DIP Decoder denoise inpaint

Pepper 21.21 27.08 27.45 27.46 27.34 28.81 29.89 30.40

Foreman 20.69 24.20 25.15 24.36 26.59 29.81 30.12 30.37

Flowers 22.27 27.03 27.10 27.10 28.55 30.33 31.07 31.07

Comic 20.63 23.35 24.03 23.96 26.45 28.01 28.57 28.81

Lena 21.28 26.85 26.40 26.23 27.50 30.96 30.89 30.85

Barbara 23.90 25.30 26.50 26.25 28.27 27.50 29.85 30.09

Monarch 23.62 27.87 27.87 27.82 28.25 32.00 32.12 32.67

Baboon 21.68 22.93 24.00 24.10 27.27 24.12 25.91 25.90

Ppt3 24.07 26.81 27.20 26.64 28.88 31.73 32.41 32.50

Coastguard 20.53 23.71 24.19 24.16 26.50 29.43 30.60 29.80

Bridge 21.77 25.19 26.12 26.10 28.58 28.10 29.23 28.98

Zebra 21.94 27.40 27.32 27.29 28.45 30.81 31.54 31.62

Face 21.03 24.14 24.18 24.05 26.90 29.93 29.93 29.86

Man 21.98 26.32 26.59 26.55 28.45 29.84 30.94 30.56

G. Sensitivity of λ in OES Mask Learning and Selectivity of p0

G.1. Sensitivity of ¼

We found empirically that OES algorithm is robust to the choice of ¼, given a network architecture with fixed number

of parameters (Unet in this case). We fix ¼ = 1e − 9 for all our experiments. For this particular experiment, we take

p0 = 0.05 × 1 and threshold 95% of the weights by ranking p. The initialization value was taken to be at p = 0.5 × 1,

where all the weights have equal chance of selection or deletion. ¼ controls the regularization balance on fitting the image

(first part of the loss) or by making the distribution Ber(p) close to Ber(p0) (second part of the loss). Note that p0 is the

pre-specified prior probability that is same for all the parameters of the network. As ¼ → ∞, then p → p0, at this limit

a) there is no image generation at initialization, as the first part of the loss is not minimized and b) there is no separation

among the converged values p and the probabilities for all the elements will collapse to p0. So the mask can’t be formed by

ranking and thresholding at the desired sparsity level.

m∗ = C(p∗) such that

p∗ = argmin
p

Em∼Ber(p)

[
||G(θin ◦m, z)− y||22

]

︸ ︷︷ ︸

R(Q)

+¼KL(Ber(p)||Ber(p0(s)))

¼ = 1e − 3 correspond to this observation in Figure-18. Increasing it to ¼ = 1e − 6, we observe that p’s for different

weights start to vary and are not entirely localized at p0. However, even in this case, ranking the values of p, leads to layer

collapse. Layer collapse happens in this phenomenon because important weights are thresholded. For smaller ¼ = 1e− 13,

we observe that the distribution p, is uniform around the initialization p = 0.5 × 1. Although the image is formed by

masking in this case, the distribution remains uniform. We see that at ¼ = 1e− 9, the distribution of p seems to have two

modes. We see a clear distinction where some of the p’s are localized at 1 and other is centered around p0. This leads to

better separation while thresholding and pruning the weights based on p. However, we note that the value of the KL would

depend on the size of the network, for the current Unet architecture we are using, which has 3 million parameters, we found

that 1e− 9 works the best among all the other values in logarithmic scale.

H. OES pruning for MRI reconstruction

We extend the OES pruning and sub-network training framework to the setting of multi-coil magnetic resonance image

(MRI) reconstruction from undersampled k-space measurements. In previous literature [4], dense networks based DIP was

used for MRI reconstruction as folows:
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θ̂ = argmin
θ

Nc∑

c=1

∥A(c)G(θ, z)− y(c)∥22 (P1:Vanilla DIP)

For multi-coil MRI, let there be Nc number of coil sensitivity maps denoted as Sc ∈ C
q×q , c = 1, 2.., Nc. The corresponding

Ac denotes the undersampled forward linear operator Ac(M) = MFSc. {M ∈ {0, 1}q×q} is the sampling mask in k-space,

F ∈ C
q×q denotes the Fourier Transform operator and y(c) ∈ C

q denotes the undersampled k-space measurements. G(θ, z)
is an overparameterized Unet with two channels that processes the real and complex channel separately and with trainable

parameters θ and fixed input z. For our experiments, we use multi-coil fastMRI knee and brain datasets [1,2] which are

available publicly. The coil sensitivity maps were obtained using the BART toolbox [3]. When the dense network [4]

is trained with generic optimizer like ADAM, the above suffers from overfitting (Figure-24a). In the OES framework,

we first learn the mask for the subnetwork, denoted as m∗(A,y) (not to be confused with the k-space mask M), where

A(M) = [Ac(M)]Nc
c=1 and y = [yc]Nc

c=1. For the sake of notation, we will omit the coil dependency c as the loss can be

combined across coils and written in terms of one forward operator A and measurements y.

m∗(y,A) = C(p∗) such that

p∗ = argmin
p

Em∼Ber(p)

[
∥AG(θin ◦m, z)− y∥22

]

+ ¼KL(Ber(p)||Ber(p0)).

(4)

In Figure-23, we show the 4 MRI scans that are used in the following experiment. x denotes the ground truth MRI image

(obtained from a full set of k-space measurements), M4× and M8× denote the 4× and 8× undersampling masks for k-space

or Fourier space (white lines are sampled), respectively. AH(M4×)y and AH(M8×)y denote the conventional zero-filling

MRI reconstructions that produce aliasing artifacts. We will denote the set of the forward operator and measurement pair

as (Ai(M4×),yi) for data index i = 1, 2, 3, 4 for 4× undersampling rate. For 8× undersampling rate, we denote the pair

as (Ai(M8×),yi). In our experiments, we train the OES mask using the pair (A1(M4×),y1), and then use the mask

subnetwork to reconstruct MRI in four different scenarios across various network sparsity levels:

1. Self + same undersampling: The target reconstruction pair is (A1(M4×),y1). We denote this experiment as

P (A1(M4×),y1).

2. Self+higher undersampling: The target reconstruction pair is (A1(M8×),y1). We denote this experiment as

P (A1(M8×),y1)

3. Cross + same undersampling: The target reconstruction pair is (Ai(M4×),yi) for i = 2, 3 and 4. We denote this

experiment as P (Ai(M4×),yi)

4. Cross + higher undersampling: The target reconstruction pair is (Ai(M8×),yi) for i = 2, 3 and 4. We denote this

experiment as P (Ai(M8×),yi).

Note that transfer to a higher undersampling rate demonstrates the capability of transferring to a different level of degradation.

Once the mask m∗(A1,y1) is obtained, the subnetwork at initialization is further trained to convergence with the following

optimization. Similar notations extend to 8× undersampling rate.

min
θ

∥Ai(M4×)G(θ ◦m∗(y1,A1), z)− yi∥
2
2 (P(Ai(M4×),yi): Sparse-DIP)

We make the following observations from the PSNR curves in Figure-24.

• Sparse-DIP reduces overfitting: Vanilla Dense DIP produces artifact-affected images in all the cases. This is due to the

nullspace of the forward operator that does not offer any control over nonsampled frequencies. Sparse DIP has very

less overfitting.

• Sparse-DIP is robust to higher undersampling rate: For higher undersampling factor, i.e, 8× undersampling, vanilla

dense DIP overfits much more. Sparse DIP at higher sparsities (above 90%) seems to be robust to overfitting even at

8× undersampling.
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• Moderate overfitting at moderate sparsity: With moderate sparsity level (50%, 80%), subnetwork overfits artifacts

when cross transfer tasks take place (different image’s measurements) or when the undersampling rate is 8×. However,

overfitting (at moderate sparsity levels) takes place to much less extent when self transfer takes place with the same

undersampling rate 4×.

• Limited representation capability at very high sparsity: For higher sparsity levels (90% or higher), overfitting rarely

happens in any of the scenarios (cross-transfer or higher undersampling rate). For very high sparsity level 97%, the

PSNR curve fails to rise very high, denoting that the network has already reached its representation capability.

H.1. Selectivity of Prior p0 and Thresholding

In our experiments, after the final convergence of our algorithm, we rank and threshold the value of p to reach the desired

sparsity level. An avid reader may ask the question that since the sparsity level is achieved through ranking and thresholding

of the p values, so is the selection of the prior p0 important in getting a good ranking? Ideally speaking, the ranking should

be based on the importance of the parameter in contributing to the loss. That means, a parameter w1 is considered more

important than parameter w2 in the following case: if the objective when we fix w1 = 0 (say T (w1)) would be more than

the objective when we fix w2 = 0 (say T (w2)). So in this case, if T (w1) g T (w2) then a proper ranking would imply

p(w1) g p(w2). We observe that for ¼ = 1e− 9 choosing the prior p0 to be the same as the desired sparsity level provides

a good ranking that separates the important parameters from the non-important ones. Like in Figure-18 with ¼ = 1e− 9,

when the prior p0 is chosen to be the same as the desired sparsity level (5%), we observe that most of the distribution is

centered around p0 with some values p at 1. In the previous subsection, we discussed how the choice of ¼ affects this

distribution. In this section, we empirically show that the choice of p0 is crucial in getting OES masks that are suitable for

denoising. Fixing ¼ = 1e− 9, we perform a denoising experiment with different ranges of values where p0 is as high as

0.5, 0.8 or as low as 0.05, 0.03. After the convergence of the loss we rank and threshold 95% of the weights based on the

value of p. We see that choosing a high value of p0 outputs a mask that suffers from layer collapse and hence when further

trained to denoise, completely breaks down. This is because, when p0 is set to be high as 0.5 or 0.8, the distribution of p

across the network is centered at 0.5 or 0.8 respectively. Now when 95% of the weights are thresholded after ranking, w.h.p

all the weights in one layer are getting pruned because of improper ranking of p. This phenomenon of layer collapse seems

to be avoided when the value of p0 is chosen to be close to the pruning level. p0 = 0.03 or p0 = 0.05 seem to give the

same denoising performance when 95% of the weights are pruned.

I. Comparison with L1 Regularization

In the image classification literature, supermasks have been used for obtaining a subnetwork by Bernoulli masking for

example in Zhou et al. (2019) without sparsity control. Sreenivasan et al. (2022) used the ℓ1 regularization to control the

sparsity of the mask and used iterative freezing at every epoch to reach the desired sparsity level. However, we observed

that using ℓ1 regularization can’t give a good ranking of p based on the importance score. The optimal ℓ1 regularization

coefficient can vary for different images but with KL regularization it is the same for all the images.

Through extensive study, we find that in our experiments:

1. That masking based on the ranking of the p is sensitive to the choice of ¼ when used in L1 regularization like in

Sreenivasan et al. (2022), i.e, the optimal ¼L1
is not the same for two different images (Figure-29). The best ¼L1 for

the Pepper image can lead to a layer-collapse when used for the Flowers image for a desired sparsity level.

2. Controlling the sparsity level through KL regularization leads to a better ranking in p that can clearly separate out the

important weights (Figure-18). Using no (or extremely small) KL regularization, does not lead to a proper ranking of p

based on importance. The best ranking is obtained when the desired sparsity level is the same as the prior probability

used in the KL. This alleviates the need to tune the prior p0 and can be fixed to the target sparsity we want to achieve.

We also demonstrate that using a severely different p0 than the target sparsity can lead to improper ranking which leads

to layer-collapse (Figure-15).

3. The regularization strength ¼KL is robust when KL regularization is used. We find ¼KL = 1e− 9 works for all the

images unlike for L1 regularization. We show this in Figure-18.
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Lastly, we want to emphasize that although learning masks by optimizing the Bernoulli probability p has already been

used in several works before, we show that using KL-based regularization gives us robust control over the sparsity we

want to achieve. We compare our mask learning method with that of L1 regularization on p, which is known to promote

sparsity in p. Sparsity in p would ensure that the corresponding mask will be 0 with a very high probability. Although

unlike in our formulation where we controlled the distribution Ber(p) to be close to some prior distribution Ber(p0), in L1

regularization, we can only make p sparse.

m∗ = C(p∗) such that

p∗ = argmin
p

Em∼Ber(p)

[
||G(θin ◦m, z)− y||22

]
+ ¼∥p∥1

We solve the above optimization using the same algorithm as in Algorithm-1, but change the regularization term to ∥p∥1
(scaled by ¼) instead of the KL term. Here ¼ would control the sparsity level of p, a higher ¼ would ensure more p is towards

zero. Just like in OES, we also rank the p values and threshold them at the desired level of sparsity. We observe through

experiments that obtaining a reasonable network mask at initialization is sensitive for L1 regularization. In Figure-29, we

see that the optimum ¼ for the Pepper image and the Flowers image are different. For ¼ = 1e− 9, the mask produced by the

Pepper image gives the best image representation, while for Flowers image, the best ¼ = 1e− 8. In fact for ¼ = 1e− 9,

the Flower image seems to suffer from layer-collapse resulting in a constant image. This is unlike in the loss used for KL

regularization, where ¼ = 1e− 9 performed consistently for all images.

I.1. Comparing KL, ℓ1 and Centered Mean Regularizaion

We further investigate the use of ℓ1 regularization (given as ∥p∥1) and the centered mean regularizer (given as |mean(p)− s
d
|),

where we take s
d
= 0.05.

When we minimize the objective with the centered mean regularizer and monitor the value of mean(p), we see that starting

from p = 0.5 the loss can decrease to p = 0.05 but not more, where it becomes stationary and does not change over

10 thousands of iterations (Figure-25). During this phase, this penalty has the same gradient as the ℓ1 norm regularizer.

However, after mean(p) reaches 0.05, the mean p becomes stationary and the loss seems to get stuck, although the penalty

might behave differently than ℓ1. So, the overall effect of ℓ1 and the centered mean regularizer are similar.

Now, comparing ℓ1 regularizer to the KL regularizer, we notice across various experiments that ℓ1 regularization is less

stable to the choice of the regularization strength. This is because ℓ1 regularizer encourages sparser solutions (for centered

mean, (p-0.05) is sparse) than KL regularizer. This enforces a bulk of p values to collapse on the same point. Hence the

relative ranking gets lost due to this effect.

For example, when the logits corresponding to the three regularizers are plotted in Figure-28, the logits in KL regularization

seems to be more well spread than the ℓ1 and centered mean regularizer. When we look at the corresponding layerwise

architecture in Figure-27, we see that the middle layers are severely pruned by ℓ1 and centered mean regularization which

may lead to layer collapse. We intentionally plot the sparsity percentage on the log scale to show the severity of this effect.

So, based on this empirical observation, we think that sparser solutions may not be ideal for bringing the data misfit loss

down (since loss of rank importance may lead to layer collapse). Furthermore, enforcing sparsity shrinks the search space of

gradient descent, so it may be more likely to get stuck in local minima.

I.2. On using Pointwise Regularization

From our experiments, we observed that using a pointwise regularizartion chosen with a proper regularization strength

preserves the ranking. For KL regularization penalty, the ranking would remain preserved for very large range of moderate

values of regularization coefficient ¼, especially when compared to other pointwise regularization choices like mean|p−p0|.
This is because for KL regularization, the regularizer takes very low values around a large window [p0−ϵ, p0+ϵ] (Figure-26).

This is not true for linear pointwise regularizers such as ℓ1.

We want to emphasize that pointwise regularization may allow the implementation of non-uniform prior p0 across various

weights in Unet. That’s why we presented a more generic implementation, so if the user has some prior knowledge on what

parameters are more important, they have the flexibility to modify the corresponding prior value.
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J. Sensitivity of Masks to Weight Initialization

J.1. Change in weight distribution (Uniform/ Normal initialization)

Unlike other methods, OES learns the mask at initialization where the parameters are drawn from random Uniform

distribution (He/Kaiming initializaiton) by Pytorch’s default implementation. We check that the denoising performance of

the mask is not affected by the distribution of the initialization. Changing the distribution to Normal Xavier distribution does

not significantly affect the denoising performance of the OES masks. In Figure-31, we show that across 4 various images,

the performance of masks learned either at uniform initialization or Normal Gaussian initialization remains the same.

J.2. Scale of Initiailization

We observe that the scale of the initialization seems to affect the learned mask. So, in the experiment in Figure-30, we scale

the original He initialization by 0.1 and 5 times respectively and then learn the mask by OES on the Pepper image. We

observe that with a smaller scale of initialization, the learned OES mask seems to perform better in terms of denoising. On

the contrary, masks learned at 5× initialization, seem to overfit slightly.

J.3. Initial Weights are at Early-Stopping Point

Finding an early stopping point is a challenging task without the knowledge of the ground truth image. So performing

IMP based pruning at the early-stopping point is too ambitious. In the following experiment, we show that even if we

had an estimate of the early-stopping point, IMP based pruning may not be the best option. In Figure-14, we compare the

denoising performance of three different masks: 1) IMP masks obtained at convergence on training with Pepper, 2) OES at

initialization when Pepper is used in the loss function and 3) IMP masks obtained at the early stopping point also trained on

Pepper (with the assumption that early stopping point is known). In this particular setting, when the target y is the corrupted

Pepper image, we observe that IMP obtained at early-stopping point performs as well as OES. However, when the same 3

masks are used for denoising the Flower-image in Figure-14, we observe that the performance of IMP (at early stopping)

degrades with respect to the OES mask.

K. Pruning Deep Decoders by OES

In the manuscript, we showed that pruning a random-initialized Unet with 6 layers can give good starting point for further

doing image reconstruction using just the masked subnetwork. Here we apply the OES methodology on the deep decoder

architecture (Heckel & Hand, 2018). Deep decoders only consist of upsampling operations as the source of getting low-

frequency components in an image. In Figure-32, we compare the images produced by the masked decoder at 55% sparsity

and compare it with images with masked Unet at 3% sparsity, along with the corrupted versions. Since, the decoder is

already underparameterized and acting as a natural image prior, masking at initialization seems to oversmoothen the image.

There seems to be patches of bright and dark areas in the sparse decoder output when the parameters are just masked. On the

contrary, for sparse Unets, the information lost due to oversmoothing is not that drastic. This is because decoders are already

underparameterized, constraining the output space of decoder to have low frequency componenets. Further pruning by OES

at masking leads to oversmoothing and loss of information. We observe that these sparse decoders are compressible by OES

upto 74% after which the output image is failed to produce due to layer collapse. In Table-9, we perform denoising using

the masked decoder subnetworks for three different images. We observe that at 27% sparsity level deep decoder performs

comparably with it’s original dense counterpart. However, for higher sparsity levels like 55% and 74%, the performance

starts to detoriate. When we observe the layer-wise sparsity pattern produced in deep decoder at 3 different sparsity levels in

Figure-33, we observe that the first and last layer seems to the most important. The importance of parameter layers seems to

be gradually diminishing towards the middle. This is similar to the finding in Figure-10b where the middle of the encoder

and the decoder architecture was pruned the most. With the study of masking deep decoder, we motivate one fundamental

question :

Q3 : Should we start with a highly overparameterized model (dense Unet) to find a subnetwork or should we start with a

smaller model (dense deep decoder) to find a subnetwork?

Our experiments suggest that we should start with a highly overparameterized model. Starting with a smaller model, imposes

the prior assumption that some architecture parts are not useful. However, this might not be always the case as we see that
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Sparse-DIP often outperforms deep decoders at the same level of sparsity. In all our experiments, we fix ¼ = 1e− 9 and

fix prior p0 = 0.5 for all the weights in all layers. A realization of the decoder can be obtained by fixing p0 = 1 for the

decoder part and p0 = 0 for the encoder part.

Table 9. Comparison of deep decoder performance across various pruning levels.

Deep Decoder Sparse Decoder (27%) Sparse Decoder (55%) Sparse Decoder (74%)

Pepper 27.01 27.06 26.17 26.35

Lena 26.80 26.94 25.35 25.15

Barbara 25.30 25.14 24.58 24.42

L. Comparison of Pruning in Image Classification and Image Reconstruction

In Table-10, we discuss the many differences in pruning networks for image classification and image reconstruction. Pruning

for image classification tasks, dates back to the early 90’s with a recent surge of works being done after the popularity of

Lottery Ticket Hypothesis (Frankle & Carbin, 2018). To the best of our knowledge, Wu et al. (2023), is the first work to

propose pruning network for image reconstruction tasks. In our work, we show the drawbacks of just applying LTH on

image reconstruction tasks and propose OES that mitigates the problem. Our work also shows the Strong Lottery Ticket

Hypothesis in image reconstruction networks for the first time. In Figure-19, we highlight the representation capability of

OES. With no mask and or all masked, we get two extremes. In the middle ground, we can approximate any image by just

masking. In Figure-20, we show the progression of transferred subnetwork through intermediate epochs, showing that the

subnetwork output image is always constrained in the manifold of image priors. The images we used in this paper are shown

in Figure-34 and Figure-35.

Table 10. Pruning for Image Classification vs Image Reconstruction

Criterion Image Classification Image Reconstruction (DIP)

Task

The pruned network is learned based on

ERM loss over a set of given image/label

pairs. Usually, 0-1 loss is used.

Pruned network is learned over a single im-

age instance (extreme data-diet) and regres-

sion loss (MSE) loss is used.

Validity of

LTH

LTH is essential to obtain matching subnet-

works at non-trivial sparsities.

LTH is suboptimal as network overfits to

image noise at convergence (post-training).

Transferability
Transferability is difficult to attain. (Mehta,

2019)

Reasonable transferability can be attained.

Better transferability can be achieved

through OES when compared to LTH.

Performance

of matching

subnetworks

Matching subnetworks can attain almost

the same level of test accuracy (or slightly

higher in intermediate sparsity levels (Jin

et al., 2022). Sparsity may not be necessary

to get good generalization.

Sparse subnetworks alleviate the problem

of overfitting. Sparsity is necessary to alle-

viate overfitting.

Strong Lot-

tery Ticket

Hypothesis

Ramanujan et al. (2020) showed that mask-

ing a wide Resnet50 can give similar test ac-

curacy as training a Resnet-34 on Imagenet

classification. Malach et al. (2020) proved

that if a ReLU fully-connected neural net-

work with depth d and width n can fit a tar-

get by normal training, then masking a Relu

network at depth 2d and polynomial width

can approximate the same performance. For

CNN’s (da Cunha et al., 2021), the width

required was logarithmic in depth and num-

ber of parameters.

Our work is the first to show that Strong

Lottery Ticket Hypothesis can also be ob-

served for image reconstruction tasks. We

see that the network output can give low

frequency representation of the clean image

by just masking the network parameters by

OES. Proving it for image reconstruction

problems will be future work.
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(a) Pepper (b) Foreman

(c) Comic (d) Lena

(e) Barbara (f) Baboon

(g) Ppt3 (h) Coastguard

(i) Bridge (j) Face

Figure 11. Denoising performances (σ = 25dB) of OES at 3 sparsity levels (3%,50%,80%) and comparison to underparamterized deep

decoder and overparameterized dense DIP. We observe that the peak performance of vanilla DIP is comparable with the final convegence

of sparse-DIP.
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(a) Pepper (Set-14 dataset) (b) Baboon (Set-14 dataset)

(c) Face-2 (Face dataset) (d) Door (Standard Dataset)

Figure 12. Denoising results of various methods on noisy images (Ã = 25 dB) across 3 popularly used datasets.

(a) Denoising Zebra (ytarget ) (b) Denoising Bridge (ytarget )

(c) Denoising Monarch (ytarget ) (d) Denoising Barbara (ytarget )

Figure 13. Comparing the denoising performance of transferred subnetworks found by OES vs subnetworks found by IMP in Set-14

dataset. Here ysource is the Lena image. Both masks are at sparsity level of 5%. IMP based subnetworks overfit to noise as shown in the

zoomed version. All noisy images are corrupted with Ã = 25dB. The PSNR values are found in Table-5.
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(a) Comparison of IMP masks at early-stop time with IMP mask at
convergence and OES at initialization on the same image (Pepper).

(b) Comparison of IMP masks at early-stop time with IMP mask at
convergence and OES at initialization on different images. Mask
learned with Lena, used to denoise Flowers.

Figure 14. IMP masks learned at early-stopping time performs comparatively well. But when used on transfer tasks performs worse than

OES masks at initialization. All the masks are 5% sparse.

Figure 15. Performance of subnetworks trained with different prior p0’s in equation and then pruned 95% by ranking. This shows that the

importance ranking of p’s after training is dependent on prior p0. Good results are expected when prior p0 used in optimization, matches

the pruning percentage.
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Figure 16. G(θin ◦m∗(y), z) for Set-14 dataset. Images generated by the randomly initialized network found after applying OES mask.

(a) G(θin ◦m∗(y), z) for Face dataset. (b) G(θin ◦m∗(y), z) for standard dataset.

Figure 17. Masking at initialization can induce image prior. Figures shows the images after masking image generator at initialization

G(θin ◦m∗(y), z). The mask m∗ was learned using OES algorithm. Images corresponding to several sparsity levels are shown.
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Figure 18. Distribution of logits (p) for various ¼ in front of KL term and its effect of the output image (G(θin ◦ m∗(y), z)) after

thresholding the logits p to reach the desired sparsity level. Here the prior p0 = 0.05 × 1 and the desired threshold level is also 5%
sparsity. Different strength of KL term ¼ leads to the distribution of logits p centered around the desired prior p0. From eq-, we observe

that higher ¼ = 1e− 3 or ¼ = 1e− 6 gives more importance to the KL term and less importance to the image data-fidelity term (no image

formation). ¼ = 1e− 9 gives the best balance of regularization and data-fidelity. For ¼ = 1e− 9, although the centre of distribution is at

p0, there is some concentration near p = 1, ensuring that there is a clear distinction between the important and non-important parameters.

OES subnetwork is 5%.

Figure 19. G(θin ◦m∗(y), z): capability of image representation by just masking network parameters. When m = 1, images correspond

to stochastic processes producing spatial structures with self-similarity as noticed in Ulyanov et al. (2018). For m = 0, it produces

a constant image (assuming no bias terms). However, in the middle ground, different images (even at a fixed sparsity level) can be

represented by the combination of chosing to select a weight parameter or delete it.
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Figure 20. Transferability of OES subnetworks. OES masks trained on y1, denoted as G(θin ◦m∗(y1), z) can be used for denoising

image y2. Here interchanging y1 and y2 in the opposite way also ensures the operation of OES. At epoch T = 0, just the application of

mask on random network initialization (on which mask was learned), produces an image. Epoch T = 40000 denotes the final recovered

image that does not suffer from overfitting. Underparameterization by OES subnetwork ensures that the output lies in the manifold of

natural image prior.

Figure 21. Early stopping time window can vary for different images and also various noise levels. Estimating this early-stopping time

from an image distribution or a particular noise level can be difficult. Here we see that there can be a window as large as 2500 iterations

between early stopping times of two images with different corruption levels.

Figure 22. MRI reconstruction comparison with Sparse-DIP and Vanilla Dense DIP without early stopping. Sparse-DIP removes aliasing

artifacts and preserves the important details of the images when compared to the ground-truth x. Vanilla dense DIP overfits to artifacts

(due to nullspace) and requires careful early stopping (See Figure-24a). Supermasked output at network initialization still manages to

capture some important image details.
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Figure 23. The 4 MRI ground-truth and measurements used in this experiment. x denotes the ground-truth image or full-kspace

reconstruction. M4× and M8× denote the k-space undersampling masks. AH(M4×)y and AH(M8×)y denote the zero-filling

reconstructions that produce aliasing artifacts.
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(a) Self + same undersampling: P (A1(M4×),y1) (b) Self + higher undersampling: P (A1(M8×),y1)

(c) Cross + same undersampling: P (A2(M4×),y2) (d) Cross + higher undersampling: P (A2(M8×),y2)

(e) Cross + same undersampling: P (A3(M4×),y3) (f) Cross + higher undersampling: P (A3(M8×),y3)

(g) Cross + same undersampling: P (A4(M4×),y4) (h) Cross + higher undersampling: P (A4(M8×),y4)

Figure 24. Performance of OES subnetworks for MRI reconstruction from 4× (left column) and 8× (right column) undersampled k-space

measurements. In all the experiments, the OES network mask m∗ was learned from pair (A1(M4×),y1). In Figure-a (self+ same

undersampling), the subnetwork mask was used to reconstruct image from (A1(M4×),y1). In Figure-b (self+ higher undersampling),

mask was used to reconstruct from (A1(M8×),y1) which has a higher undersampling. For Figures (c-h) (cross), the operator-measurement

pair for image reconstruction were different from which the mask was learned (A1(M4×),y1).
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Figure 25. Mean of p across various epochs when the regular-

ization used is |mean(p)− s

d
|. In this particular experiment,

s

d
= 0.05.

Figure 26. Comparison of KL regularization and pointwise

centered ℓ1 regularization for a scalar value. Around the

prior value p0, the KL is much smoother than ℓ1 regularizer.

f ′(p) = log

(

p

1−p

p0

1−p0

)

for KL, which is very close to 0 when

p ∈ [p0−ϵ, p0+ϵ]. However, for ℓ1 regularization, f ′(p) = 1
or −1 for all points except p = p0.

(a) Flowers (b) Baboon

Figure 27. Layerwise architecure pruning (sparsity percentage in log-scale) by OES at initialziaiton using three different choices of

regularization, KL, ℓ1 and centered ℓ1 for Baboon image and Flowers image in Set-14 dataset. Centered ℓ1 means the centered mean

regularizer.

Figure 28. Histogram of logits of p when OES is ran across images with KL, ℓ1 and centered mean regularizer. In our implementation we

minimize |
∑

i
pi − ( s

d
∗ numel(p))|, to both ℓ1 regularization and centered mean regularizer on the same scale.
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Figure 29. Sensitivity of hyperparameter ¼ when mask is optimized by L1 regularization. Here, the best mask is obtained for different ¼

for different images. For example, for the flower image, ¼ = 1e− 8, is the best hyperparameter, but for the Pepper image ¼ = 1e− 9.

The masks here are 5%-sparse.

Figure 30. Comparison of denoising performance of OES masks at different initialization scales.

(a) Flowers (b) Comic

(c) Lena (d) Barbara

Figure 31. Denoising performance of OES masks learned at He (uniform) initialization vs at Xavier initialization (Gaussian initialization).

The initialization distriubtion does not seem to play a big role in learning the mask.
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Figure 32. Comparison of OES masking in deep Unet vs in deep decoder.

Figure 33. Layerwise pruning percentage for a deep decoder at various level sparsity levels.
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Figure 34. Set-14 dataset images used in this paper.

Figure 35. Images in face and standard dataset used in this paper.
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