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UNIART: GENERATING 3D ARTICULATED OBJECTS
WITH OPEN-SET ARTICULATION BEYOND RETRIEVAL
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Figure 1: We propose UniArt, the first non-retrieval, diffusion-based framework that generates robot-ready
articulated 3D objects from a single image, enabling open-set generalization for scalable simulation and
manipulation.

ABSTRACT

Articulated objects are central in the field of realistic simulation and robot learning,
enabling dynamic interactions and task-oriented manipulation. However, manually
annotating these objects is labor-intensive, motivating the need for automated
generation solutions. Previous methods usually rely on retrieving part structures
from existing datasets, which inherently restricts diversity and causes geometric
misalignment. To tackle these challenges, we present UniArt, an end-to-end
framework that directly synthesizes 3D meshes and articulation parameters in a
unified manner. We decompose the problem into three correlated tasks: geometry
generation, part segmentation, and articulation prediction, and then integrate them
into a single diffusion-based architecture. By formulating both part segmentation
and joint parameter inference as open-set problems, our approach incorporates open-
world knowledge to generalize beyond training categories. We further enhance
training with a large-scale, enriched dataset built from PartNet-Mobility, featuring
expanded part and material diversity. Extensive evaluations show that UniArt
substantially outperforms existing retrieval-based methods in mesh quality and
articulation accuracy, especially under open-set conditions. Code will be publicly
available to foster future research in the 3D generation and robotics societies.

1 INTRODUCTION

3D articulated objects Quigley et al. (2015) are core components of mechanical systems, ranging
from common doors in daily life to complex joint mechanisms in robotic grippers. Unlike static rigid
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bodies, articulated objects exhibit inherent part-level structures and motion patterns, enabling dynamic
interactions such as opening a drawer, swiveling a chair, or operating scissors. Precise modeling of
these structures (Tseng et al., 2022; Liu et al., 2023a; Weng et al., 2024; Iliash et al., 2024; Mandi
et al., 2024; Liu et al., 2024a;b; Wu et al., 2025a) not only supports the development of high-fidelity
simulation environments (Chen et al., 2024a; Li, 2023; Li et al., 2024b; Luo et al., 2023) but also
paves the way for accurate dynamic analysis in embodied robotics (Yang et al., 2024a;b; Geng et al.,
2025). However, acquiring detailed annotations for such objects remains highly labor-intensive and
struggles to keep pace with growing object diversity, thus driving the need for automated generation
solutions.

Existing methods for articulated object generation, such as those described in (Liu et al., 2024a;b;
Wu et al., 2025a; Deng et al., 2024), generally follow a three-stage pipeline. First, articulation
parameters, including part bounding boxes and semantic labels, are predicted from input images.
Next, a corresponding part geometry is retrieved from a pre-existing asset library. Finally, the
retrieved parts are assembled into a complete object. While retrieval-based methods Jiang et al.
(2022); Gao et al. (2025); Su et al. (2025); Qiu et al. (2025); Liu et al. (2025b); Shen et al. (2025)
provide a shortcut for generating new articulated models, they introduce several critical limitations:
geometric misalignment due to imperfect part matching, limited diversity bounded by the pre-defined
asset collection, and poor generalization to objects outside the training distributions. These issues
hinder the deployment of such methods in open-world scenarios, where objects exhibit vast variations
in form, function, and material.

To address these crucial issues, we propose UniArt, an end-to-end framework that synthesizes
articulated objects directly without relying on part retrieval. Our paradigm shift centers on rethinking
two core concepts. First, we reformulate the task as a conditional generation of 3D assets with multi-
faceted features encompassing geometry, appearance, part segmentation, and articulation structure.
Specifically, UniArt encodes these attributes into a unified latent representation, named UniArt
latents, and jointly generates both shape and motion parameters within a unified diffusion-based
architecture. Second, we treat articulation type prediction as an open-set problem, eliminating the
need for predefined joint semantic labels during training. This approach significantly enhances
generalization beyond the training categories.

To support effective learning, we also compile a large-scale dataset based on PartNet-Mobility,
augmented with diverse part geometries and material properties. Comprehensive evaluations on the
PartNet-Mobility benchmark demonstrate that UniArt outperforms existing baselines significantly in
terms of mesh quality and articulation accuracy, particularly under challenging open-set conditions.

Our contributions can be summarized as follows:

• We reformulate the articulated object creation task as a conditional generation task, where
the input is a single image and the output is an articulated object with high-fidelity geometry,
well shape-image consistency, and precise articulation.

• We introduce UniArt latent representations that jointly encode object geometry, appearance,
part segmentation, and articulation parameters within a diffusion-based architecture..

• We formulate articulation prediction as an open-set problem, removing dependency on fixed
joint semantics and significantly improving generalization to unseen object categories.

• We show through comprehensive experiments that our method substantially advances the
state of the art in articulated object generation.

2 RELATD WORKS

2.1 RECONSTRUCTION-BASED ARTICULATED OBJECT CREATION.

The reconstruction methods (Tseng et al., 2022; Liu et al., 2023a; Weng et al., 2024; Iliash et al.,
2024; Mandi et al., 2024; Kim et al., 2025) typically rely on multi-view or multi-state inputs to
recover part-level geometry and articulation parameters. On the basis of NeRF, CLA-NeRF (Tseng
et al., 2022) utilizes a component segmentation field to predict the categories of each component
of the articulated object, in order to perform view synthesis, component segmentation, and joint
pose estimation of unknown articulated poses. PARIS (Liu et al., 2023a) presents a self-supervised
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Figure 2: Overview of UniArt. Unified latent representation learning combines geometry, parts, and articulation
features. A diffusion-based generator then decodes them into robot-ready articulated 3D meshes and URDFs
from a single image.

architecture for part-level reconstruction and motion analysis of articulated objects, achieving signifi-
cant improvements in shape reconstruction and motion estimation without requiring 3D supervision.
Real2Code (Mandi et al., 2024) utilizes the knowledge of LLM to get the articulation parameters, also
requiring multi-view images as input. ArtGS (Liu et al., 2025b) employs a strategy from coarse to fine,
using the Hungarian algorithm to match Gaussian spheres in different states and cleverly establish
corresponding relationships between different states of objects. GaussianArt (Shen et al., 2025)
instead introduces a unified representation based on articulated 3D Gaussian primitives, generating
good reconstruction results with correct articulation parameters. While reconstruction-based methods
provide good results for generating new articulated objects, they rely on multi-view or multi-state
inputs, which are not easily accessible for scalable data construction. In contrast, our method requires
only a single image as input. This substantially reduces input complexity, enabling scalable data
collection and facilitating large-scale robot training.

2.2 GENERATIVE 3D ARTICULATED OBJECT CREATION.

Recent progress in 3D generation (Li et al., 2025; Chen et al., 2025; Li et al., 2024a; Ren et al.,
2024; Tochilkin et al., 2024; Wang et al., 2023; Zhao et al., 2025; Wu et al., 2024; 2025b) has
enabled applications in 3D Articulated Object Creation. The generative 3D articulated object creation
aims to generate part-level geometry and articulation parameters through a single image. Previous
generative articulated object creation methods typically rely on retrieval, where a corresponding
part geometry is retrieved from a pre-existing asset library. Articulate-Anything (Le et al., 2024)
first converts static 3D assets into articulation-ready models and has sparked growing interest in
generating objects equipped with URDF-style hinge joints. It retrieves the most similar asset from the
library through CLIP similarity and generates articulation parameters through reinforcement learning.
URDFormer Chen et al. (2024b) attempts to directly infer an interactive URDF from the images.
Likewise, OPDMulti (Sun et al., 2024) localizes movable parts and estimates motion parameters
from a single image. Le et al. (2024); Liu et al. (2024a;b); Wu et al. (2025a) generate articulated
object structures from inputs such as images and graphs. However, these methods often depend on
mesh retrieval from a fixed database, which restricts both the variety of generated objects and the
adaptability to subjective user specifications. Compared with these, our generative approach aims to
synthesize new objects directly rather than recover articulation from existing geometry.

3 PROBLEM FORMULATION

Existing retrieval-based pipelines approach articulated object generation by first predicting part
proposals, then searching a finite repository of pre-rigged assets for the closest matches, and finally
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stitching the retrieved parts together. Due to the fact that each component is copied verbatim from the
database, these methods cannot guarantee geometric continuity at part boundaries, inherit whatever
material and joint types the database happens to offer, and fail gracefully when the target object falls
outside the pre-defined taxonomy. In contrast, we reformulate the task as a fully generative problem,
synthesizing geometry, part structure, and articulation parameters in a continuous latent space so that
every piece is produced with mutual consistency and the design space is no longer bounded by the
content of a repository.

Formally, we denote the target articulated asset as:

A = (M,S,U) (1)

where M is a watertight triangle mesh, S is a part segment mask, and U is a URDF specifica-
tion (Quigley et al., 2015) containing joint type T , connection topology J , axis direction A, joint
limits L and body assignments B of each part:

U = (T, J,A, L,B) (2)

The input is a single RGB image I .

Retrieval-based methods first infer an articulation tree from the given image I , where each part
contains the bounding boxes B = {b, c} that list each part’s 3D bounding box b ∈ R6 and semantic
label c. They then select parts from a part repository P = {(Mi, ℓi)}Ni=1 that provides mesh geometry
Mi, and the corresponding label ℓi, the method filters the database by label, Dc = {i | ℓi = c}, and
retrieves the closest candidate by box similarity,

M̂ = arg min
i∈Dc

dsize
(
box(Mi), b

)
. (3)

The selected parts are rigidly aligned to the predicted boxes and concatenated to yield

Aretr = A
(
{M̂k}Kk=1, B

)
= (M retr, Sretr, U retr). (4)

where K is the number of parts in the articulation tree. It is observed that every component of Aretr is
copied from D, the output can never exceed the geometric fidelity, material diversity, or articulation
vocabulary encoded in the repository, and inevitable misalignments across part boundaries produce
visual and kinematic inconsistencies.

Instead, in the generative method, we learn a conditional diffusion model over a single latent vector
z ∈ Rd, dubbed UniLatent, that jointly encodes geometry, appearance, part structure, and the
articulation tree. The forward process corrupts z with Gaussian noise, while the reverse process
produces z0 ∼ pθ(z | I). A shared decoder then deterministically maps z0 into an articulated asset
A = (M,S,U) through three parallel headsGgeo, Gseg, Gart, formulated as:

(M,S,U) =
(
Ggeo(z0), Gseg(z0), Gart(z0)

)
, (5)

yielding the overall distribution

pθ(A | I) =
∫

δ
(
A−G(z)

)
pθ(z | I) dz, (6)

where G = (Ggeo, Gseg, Gart) and δ(·) is the Dirac delta. In this setting, pθ is learned in a continuous
latent space where UniArt can produce infinitely many geometries and articulation patterns that are
not restricted to the discrete set D, while its open-set formulation removes the need for fixed semantic
labels during training and enables robust performance on previously unseen categories.

4 METHODS

As illustrated in Fig. 2, our goal is to generate articulated objects in a unified framework that
simultaneously produces geometry meshes, part-level segmentation, and articulation parameters. To
support this generation process, we should parameterize the geometry, part segment and articulated
structure into vectors that can be the target of the diffusion. We introduce how we parameterize the
articulated objects into a latent space in Sec . 4.1. Then we introduce our variational autoencoder
that compresses the parameterized articulated object into the latent space in Sec . 4.2. Finally, we
illustrate the generation process in Sec . 4.3.

4
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4.1 ARTICULATED OBJECT PARAMETERIZATION

As mentioned before, we adopt the URDF representation for parameterization of articulated objects,
which represents each object as a connected graph in which nodes denote links (parts) and edges
denote joints. We follow the common practice of NAP (Lei et al., 2023) and assume the kinematic
graph is connected with no cycles and each edge is a screw joint with at most one prismatic translation
and one revolute rotation, covering most real-world articulated objects (Xiang et al., 2020; Wang
et al., 2019).

A central challenge in parameterizing articulated objects is how to encode the joint-level kinematics
in a representation that is spatially compatible with voxelized geometry. While URDF specifies
each part node and its connecting joints in symbolic form, the geometry mesh is voxelized into a
dense feature grid. These attributes must be grounded into a continuous volumetric tensor for unified
encoding. We address this via a joint-to-voxel embedding scheme.

We describe the URDF parameters U = {u0, u1, ..., uK−1} as a graph with K nodes and each ui

attributes encoding joint type ti, axis ai ∈ R6 and motion limits li = (lmin, lmax), denoted as:
ui = (ti, ai, li). Unlike traditional retrieval-based approaches that often rely on predefined semantic
labels of links (like base, door, drawer, handle, knob, tray in SINGAPO (Liu et al., 2024a)), we
intentionally exclude such categorical annotations in our formulation. This design choice avoids
introducing bias toward a fixed set of link categories and instead encourages the model to generate
links and kinematic structures that are not limited to predetermined templates, thereby improving
generalization to novel articulation morphologies. We serialize U into a sparse adjacency tensor
c ∈ R9, which serves as the articulation representation of a joint. For the connection graph J , we
form the adjacency tensor J ∈ {0, 1}K×K , which serves as an attention mask to guide the articulation
generation.

Then we conduct joint-to-voxel projection, which aligns the joint parameters with the corresponding
mesh and part structure. For each node i ∈ {0, . . . ,K − 1}, we associate its attributes to the edge
that connects this node to its parent in the kinematic tree. This design ensures that the parameters are
naturally interpreted as governing the motion of the child link with respect to its parent link.

The attributes carried by the edge are then projected onto the 3D voxel space that represents the
geometric occupancy of the child part. In this process, all active voxels belonging to the mesh region
of the child part inherit the same parameter assignment, thereby embedding the kinematic constraints
directly into the spatial representation of the part. This provides a unified voxel-level representation
where both geometric and kinematic information co-exist, enabling subsequent models to jointly
reason about structure and motion. Since each node in the articulation tree has exactly one parent,
this assignment is reversible during decoding. Given voxel-level encodings, we can uniquely recover
the corresponding node attributes and rebuild the parent-child relationships. This property is essential
to guarantee consistency between the learned voxelized representation and the original kinematic
graph structure.

4.2 UNIART VAE WITH GEOMETRY-ARTICULATION INTERACTION

After obtaining the voxelized representation of both geometry and articulation, our next step is to
learn a compact latent space that jointly captures structural and kinematic information. We construct
a unified structured latent representation, named UniArt Latent, and utilize a variational autoencoder
(VAE) tailored for this unified representation.

For each 3D asset, we first convert the mesh into a binary occupancy grid, resulting in a voxelized
geometric feature Vgeo enriched with visual features by multiview average, following Xiang et al.
(2025). In parallel, the articulation representation introduced in the previous subsection is also
voxelized, producing per-voxel articulation attributes. For the part representation, we utilize a
pretrained model partfield Liu et al. (2025a) to generate part-aware representations. The part
representations and articulation attributes are added and voxelized, resulting in final articulation
features Vart. All features are defined on the same voxel space with size N , where N represents the
total number of active voxels.

Instead of relying on naive concatenation, we introduce an attention block to dynamically align Vgeo

and Vart. Specifically, we treat the articulation feature as the query and the geometric feature as

5
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key–value pairs:

Fart = Attention(Q = Vart,K = Vgeo, V = Vgeo) + Vart, (7)

where the cross-attention modules aggregate motion-aware features that are consistent with the
underlying geometric structure. The fused representation is enhanced with a residual connection to
preserve original geometric detail. These two feature types are channel-wise concatenated into a
unified voxel feature map:

V = Concat(Vgeo, Fart) (8)
where each voxel is enriched with both spatial occupancy and articulation-aware information. This
design ensures that articulation information is selectively integrated depending on local geometry,
encouraging the model to learn physically plausible correlations between part shape and its kinematic
behavior.

The unified feature V ∈ RN×C , with N active voxels and C channels, is then passed through the
VAE encoder Evae. The encoder employs attention layers to learn hierarchical spatial features while
preserving the alignment between geometry and motion constraints. The sampled latent embedding z
is passed into the VAE decoder Dvae, which reconstructs both geometry and articulation features
simultaneously:

V̂geo, V̂art = Dvae(z). (9)
Unlike conventional VAE frameworks (Cao et al., 2025) that separately encode physical or appearance
properties, our decoder is optimized to jointly restore the voxelized structure and articulation. This
design ensures that the model learns a latent space where geometry and motion are inherently
entangled, facilitating more faithful morphology reconstruction.

The VAE is optimized with a compound loss function:

Lvae = Lgeo + Lart + Lkl. (10)

where Lgeo measures the reconstruction fidelity of voxel occupancy, Lart supervises the recovery of
articulation attributes, and Lkl is the Kullback–Leibler regularization term. Together, these terms
encourage the VAE to disentangle structural and kinematic variations while maintaining a compact
latent space suitable for downstream generation and inference tasks.

4.3 ARTICULATED LATENT GENERATION

After obtaining the fused latent representation from the VAE encoder, we aim to generate novel
articulated objects with consistent geometry and articulation. We design a latent diffusion model that
simultaneously models structural layout and articulation parameters. The generator is implemented
as a rectified flow mod- el, similar to Xiang et al. (2025), and the training objective is the conditional
flow matching objective: L = Et,x0,ϵ||f(x, t) − (ϵ − x0)||22 where f(x, t) is the conditional flow
field that transports noisy samples to the clean latent distribution, x0 is a latent from the VAE encoder,
ϵ is Gaussian noise, and t is the timestep.

5 EXPERIMENTS

We evaluate UniArt on the PartNet-Mobility benchmark, which provides a diverse set of articulated
objects with ground-truth meshes, part annotations, and URDF parameters. Besides the common
evaluation practice, we also conduct open-set evaluation. We split the dataset into seen categories
(Storage, Table, Refrigerator, Dishwasher, Oven, Washer, and Microwave) and unseen categories
(Bottles, Toilet, Chair, etc.) to test open-set generalization.

5.1 EXPERIMICAL SETUP

We follow the dataset split utilized in common evaluation practice (Wu et al., 2025a; Liu et al.,
2024a). During training, we augment datasets with random perturbations in part geometry, synthetic
articulation parameter sampling within physically valid ranges. The total training samples are 45k.
We utilize the AdamW optimizer with a learning rate of 1e− 4. Models are trained on 8 NVIDIA
A100 GPUs with a batch size of 64. To ensure easier convergence, we initialize our model with the
3D geometric and visual prior from Trellis (Xiang et al., 2025).

6
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Singapo OursInput Image

Figure 3: Qualitative results of UniArt. Since retrieval-based methods lack appearance information,
we randomly applied different colors to distinguish each link. Our method exhibits better consistency
in both appearance and geometry, while the results of Singapo (Liu et al., 2024a) suffer from
articulation error (Red Box), geometry inconsistency, and appearance inconsistency.
Table 1: Comparison of generation quality and graph prediction accuracy on PartNet-Mobility test set. “-”
represents that the code is not available at present.

Method Appearance Gemoetry Shape-image Alignment

RS-dPSNR ↑ AS-dPSNR ↑ RS-dCD ↓ AS-dCD ↓ RS-dOpenShape ↑ AS-dOpenShape ↑
URDFormer Chen et al. (2024b) 12.31 10.45 0.4417 0.6910 0.0431 0.0374
NAP-ICA Lei et al. (2023) 14.27 12.74 0.0209 0.3473 0.0932 0.0872
SINGAPO Liu et al. (2024a) 17.16 13.90 0.0191 0.1270 0.1073 0.0915
DIPO Shen et al. (2025) - - 0.0132 0.0423 - -

UniArt (Ours) 28.52 23.77 0.0095 0.0376 0.1457 0.1176

5.2 EVALUATION METRICS

Previous works on articulated object generation primarily evaluate articulation accuracy. Most
benchmarks assume that the geometry of retrieved parts is correct, and therefore ignore two essential
aspects: visual fidelity and shape-image consistency, which affect perceptual quality in graphics and
simulation.

As a result, existing evaluation protocols underestimate the challenges faced by generative models that
must directly synthesize geometry, appearance, and kinematics. To provide a fair and comprehensive
benchmark for generation-based methods, we introduce novel evaluation metrics based on the
3D generation task. We follow the common practice of 3D generative models and utilize PSNR,

7
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Table 2: Ablative results of generation quality and articulation prediction on Partnet-Mobility dataset.

Settings Appearance Gemoetry Shape-image Alignment

Uni-encoding 3D Prior RS-dPSNR ↑ AS-dPSNR ↑ RS-dCD ↓ AS-dCD ↓ RS-dOpenShape ↑ AS-dOpenShape ↑
✓ 13.24 11.76 0.0572 0.0763 0.0504 0.0427

✓ 23.75 21.37 0.0149 0.0162 0.1175 0.1043

✓ ✓ 28.52 23.77 0.0095 0.0376 0.1457 0.1176

Chamfer Distance, and OpenShape (Liu et al., 2023b) metrics to respectively measure the appearance,
geometry, and shape-image alignment between generated meshes and conditional input images. All
metrics are computed over both resting states and articulated states, denoted as (RS-) and (AS-). For
articulated states, we uniformly sample from the resting to the end state and compute the average
metrics, following Liu et al. (2024a).

5.3 MAIN RESULTS

We report quantitative comparisons on the PartNet-Mobility test set in Table 1. The results demon-
strate that our model, UniArt, consistently outperforms prior methods across all metrics, validating
the effectiveness of our unified voxel–articulation representation and diffusion-based generation.
It is important to note that retrieval-based methods produce uncolored meshes. Thus, we assign
ground-truth materials to the uncolored meshes, ensuring a consistent comparison across all models.

In the resting state (RS-), UniArt achieves a PSNR of 28.52, improving over the SINGAPO (Liu
et al., 2024a) by 11.36, reflecting highly faithful texture reconstruction. With a Chamfer Distance of
0.0095, our method surpasses DIPO (Shen et al., 2025), highlighting superior fidelity in static shape
generation. UniArt also obtains the highest OpenShape score, showing better alignment between
generated shapes and conditional input images.

Across articulated states (AS-), performance gains remain substantial, where UniArt reaches 23.77,
9.87 higher than SINGAPO. This demonstrates robustness in preserving appearance even under large
part motions. The Chamfer Distance and OpenShape similarity also outperform previous works,
setting new state-of-the-art on articulated object generation.

UniArt consistently achieves the best results in terms of appearance fidelity, geometric accuracy, and
perceptual alignment. The gains in articulated states are particularly notable, showing that our unified
voxel–articulation latent representation ensures stable geometry and motion consistency throughout
the articulation process. The qualitative results are shown in Fig. 3.

5.4 OPEN-SET EVALUATION

To further verify the generalization capability of UniArt, we evaluate our model on unseen object
categories from the PartNet-Mobility benchmark. Specifically, we exclude categories such as Toilet,
Laptop or TrashCan during training and only use them for testing. This setting poses a more
challenging scenario since the model must synthesize both appearance and kinematics for categories
not observed in the training set.

We show the results in Fig. 3. We can see that despite some minor errors, UniArt successfully
generates realistic and coherent articulations for the unseen categories, maintaining plausible motion
patterns and detailed appearances. Despite never encountering the articulation pattern of these
objects during training, the model demonstrates strong generalization by accurately synthesizing their
structural parts and corresponding kinematics. This confirms UniArt’s capability to handle diverse
object categories in an open-set scenario, highlighting its robustness and flexibility for practical
applications.

5.5 ABLATION STUDY

We conduct ablation studies to analyze the contribution of different components in UniArt. We only
report the joint evaluation metrics for the page limit.

Effectiveness of Uni-encoding of Geometry and Articulation. UniArt aggregates information from
geometry and articulation branches through a sparse structure attention to enforce joint geometry-

8
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Singapo OursInput Image

Figure 4: Qualitative results on unseen categories. It can be observed that the articulated objects
generated by our method exhibit good consistency with the input images in both appearance and
geometry, while previous retrieval-based methods fail to generate sound results.

articulation consistency. In this section, we explore an alternative aggregation strategy, vallina
aggregation, where we concatenate the features and then utilize convolution layers to ensure dimension
consistency.

As shown in Tab. 2, the vanilla concatenation approach yields a drop in generation quality (RS-dPSNR
decreases from 28.52 to 23.75 and AS-dPSNR decreases from 23.77 to 21.37), indicating that simple
channel stacking fails to align part-specific geometry and articulation information. By contrast, our
sparse structure attention design makes a good consistency between articulation and geometry.

Effectiveness of 3D Shape Prior. In our implementation, we utilize a shape prior trained from
large-scale 3D generative models to make easier modeling of 3D shapes and help prevent unrealistic
geometries. In this section, we remove the pretrained 3D shape prior and train UniArt purely from
scratch on PartNet-Mobility. We can see from Tab. 2 that all of the metrics degrade significantly. This
demonstrates that leveraging a large-scale 3D prior is crucial for stabilizing geometry–articulation
interactions.

6 CONCLUSION

In this paper, we addressed the challenge of generating articulated objects with coherent geometry, part
decomposition, and functional articulation. Existing methods often rely on retrieval-based pipelines,
which lead to geometry mismatches and limited category coverage. To overcome these limitations,
we proposed UniArt, an end-to-end diffusion-based framework that unifies geometry generation, part
segmentation, and URDF prediction into a single model. By formulating segmentation and articulation
inference as open-set tasks, UniArt is capable of generalizing to unseen categories and capturing
diverse part structures. Extensive experiments on PartNet-Mobility benchmarks demonstrated that our
approach significantly outperforms existing baselines, both in mesh fidelity and articulation accuracy,
particularly under open-set evaluation.
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7 APPENDIX

7.1 APPLICATION

To validate the practical value of UniArt beyond offline metrics, we deploy the generated articulated
assets in both a physics simulator and a real-world robotic manipulation setup. Specifically, in
the simulator, we export each mesh together with its predicted URDF directly into MuJoCo and
PyBullet, where they are instantiated without any manual post-processing; a scripted impedance
controller then executes three canonical primitives, hinge opening, slider pulling, and compound
flip-and-rotate motions,while success is recorded when the commanded joint approaches at least 70%
of its predicted range without self-collision. In the real-robot experiments, we use a 3D Printer to
print the generated part and assemble them according to the URDF file. Then, we use an open-source
articulation manipulation policy to open the generated objects. The results shown in the Fig. 5 proves
the effectiveness of our method.

Robot Manipulation of Generated Articulated ObjectsGenerated Articulated Objects

Figure 5: Application in the robotic manipulation.

8 LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.
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