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Abstract

Humans can seamlessly reason with circum-001
stantial preconditions of commonsense knowl-002
edge. We understand that a glass is used for003
drinking water, unless the glass is broken or004
the water is toxic. Despite state-of-the-art005
(SOTA) language models’ (LMs) impressive006
performance on inferring commonsense knowl-007
edge, it is unclear whether they understand the008
circumstantial preconditions. To address this009
gap, we propose a novel challenge of reasoning010
with circumstantial preconditions. We collect011
a dataset, called PaCo, consisting of 12.4 thou-012
sand preconditions of commonsense statements013
expressed in natural language. Based on this014
dataset, we create three canonical evaluation015
tasks and use them to examine the capability016
of existing LMs to understand situational pre-017
conditions. Our results reveal a 10-30% gap be-018
tween machine and human performance on our019
tasks, which shows that reasoning with precon-020
ditions is an open challenge. Upon acceptance,021
we will release the dataset and the code used to022
test models.023

1 Introduction024

Improving a system’s ability to reason with com-025

monsense knowledge is at the frontier of natural026

language processing (NLP) research, as a critical027

component in many knowledge-driven tasks such028

as question answering (Wang et al., 2019; Talmor029

et al., 2019), machine reading comprehension (Sak-030

aguchi et al., 2020), narrative cloze (Mostafazadeh031

et al., 2016), and dialogue systems (Adiwardana032

et al., 2020; Young et al., 2018). Recently, dozens033

of systems (Raffel et al., 2019; Khashabi et al.,034

2020; Liu et al., 2019; Devlin et al., 2019) and035

learning resources (Sap et al., 2019b; Mostafazadeh036

et al., 2020; Rudinger et al., 2020; Bhagavatula037

et al., 2020) have been proposed, focusing on var-038

ious aspects of commonsense knowledge such as039

naive physics and naive psychology.040

Figure 1: Overview of the PaCo data collection and
instances of the three tasks derived from it.

In cognitive studies, the theory of affor- 041

dance (Gibson, 2000; Chemero, 2003) suggests 042

that understanding the circumstances in which an 043

action or statement is possible or impossible is a 044

key aspect of human intelligence. For example, 045

a glass may be used for drinking water, under an 046

implicit assumption that the water is at normal tem- 047

perature, but may not if the glass is shattered. Ac- 048

cordingly, we argue that for an NLP reasoner to 049

understand common sense, it should comprehend 050

the contextual preconditions associated with com- 051

monsense statements. Such contextual precondi- 052

tions can naturally be categorized into two classes: 053

the ones that enable the statements, and the ones 054

that disable them (Fikes and Nilsson, 1971; Hobbs, 055

2005). 056

Causal preconditions may be partially inferred 057

from text (Mostafazadeh et al., 2020; Kwon et al., 058

2020), however: 1) as is the case in many other 059

aspects of common sense, we rarely write them ex- 060

plicitly in our text; 2) when mentioned in the text, 061

it is difficult for models to distinguish whether they 062

represent causation or correlation. Similar to our 063

work, Rudinger et al. (2020) collect the precondi- 064

tions by crowdsourcing. Here, the preconditions 065

are seen as soft assumptions, namely: weakeners 066
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and strengtheners, which provides a model only067

with the relative correlation between statements,068

and is not explicitly testing the model on the un-069

derlying preconditions of the statement. Instead,070

we propose to define the problem based on the071

crisp conditioning of disablers and enablers, which072

forces the LM to learn the decisive preconditions of073

a statement and facilitates explainability based on074

them. In comparison to a hard logical connection075

modeled by the crisp condition, although the notion076

of weakener is also helpful to the commonsense077

reasoner, it raises additional questions like “by how078

much?”, or “is the statement still valid?”. Whereas079

in the notion of disablers, even though annotations080

are more difficult to collect, it can at least take the081

system one step forward by sorting out the clutter082

of the irrelevant statements.083

This paper presents a systematic study on the084

problem of situational preconditions expressed in085

natural language. As the first contribution, we086

define a new problem of reasoning with enabling087

and disabling preconditions associated with com-088

monsense statements (Section 2). Given a state-089

ment, the task is to infer the preconditions that090

make the statement possible (enabling) or impossi-091

ble (disabling). Understanding such preconditions092

of commonsense knowledge would enable reason-093

ing systems relying on a commonsense knowledge094

base to decide when to use a given commonsense095

statement. For example, given the statement “Glass096

is used for drinking water” in ConceptNet (Speer097

et al., 2017), a system should know that it is only098

possible if the “water is not too hot”, and it is im-099

possible when “the water is toxic”.100

To foster research on preconditions of common-101

sense knowledge, we develop PaCo, a rich crowd-102

sourced dataset with enabling and disabling pre-103

conditions of commonsense statements (Section 3),104

as the second contribution of this paper. For PaCo,105

we start by extracting available commonsense state-106

ments. We then design and execute a crowdsourc-107

ing task to gather preconditions of the statements108

by asking participants: what makes the statement109

possible/impossible? for each of the statements.110

PaCo contains 12.4K labeled preconditions (6.6K111

enabling, 5.8K disabling), corresponding to 3 ∗ 1K112

edges from three representative relations in Con-113

ceptNet (Speer et al., 2017), covering knowledge114

on utility, causality, and motivation. Example pre-115

conditions are illustrated in Fig. 1. These tasks for116

the first time allow analysis beyond what is done in117

prior work that cover enabling preconditions only. 118

Particularly, they realize a head-to-head compari- 119

son of enabling and disabling statements which was 120

not possible before. Besides, they allow analysis 121

of the impact of the knowledge types (e.g., utility) 122

on the task difficulty for both humans and neural 123

language models. 124

Our third contribution is an extensive NLP 125

benchmarking based on PaCo. To this end, we 126

transform PaCo into three tasks on Preconditions: 127

Natural Language Inference (P-NLI), Multiple- 128

Choice Question Answering (P-MCQA), and 129

Generation (P-G). The three canonical tasks seek to 130

provide a comprehensive evaluation of the ability 131

of natural language reasoners to understand cir- 132

cumstantial preconditions (Section 4). These three 133

tasks examine the understanding of preconditions 134

of a number of SOTA language models and rea- 135

soners, such as DeBERTa (He et al., 2020), and 136

UnifiedQA (Khashabi et al., 2020). Results show 137

that SOTA methods largely fall behind human per- 138

formance, therefore indicating the need for further 139

research in order to improve the comprehension of 140

contextual preconditions by commonsense reason- 141

ers (Section 5). 142

2 Preconditions in Commonsense 143

Reasoning 144

Problem Definition. Commonsense statements 145

describe well-known information about concepts, 146

and, as such, they are acceptable by people without 147

need for debate (Sap et al., 2019a; Ilievski et al., 148

2020b). A commonsense statement can be formal- 149

ized as s = (h, r, t), where h and t are head and 150

tail concepts, and r is the relation type. 151

Following the notion of “causal complex” 152

(Hobbs, 2005), we define the precondition Pf as 153

a collection of eventualities (events or states) that 154

results in s to happen. Such preconditions contain 155

eventualities that either allow (p+f ∈ Pf ) or pre- 156

vent (p−f ∈ Pf ) the statement to happen. Here, to 157

prevent means to allow the negation of the state- 158

ment (Fikes and Nilsson, 1971). While enumerat- 159

ing a priori all such causal eventualities is impossi- 160

ble, people are still able to reason about them in a 161

given situation (Hobbs, 2005). Notably, precondi- 162

tions are implicit, i.e., we usually omit them from 163

conversation as they are considered obvious (Grice, 164

1975). Shoham (1990) and Hobbs (2005) distin- 165

guish between two type of preconditions, based on 166

causal connections (hard), or material implication 167
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(tends to cause; soft). Here we focus on the more re-168

strictive, hard preconditions; for soft preconditions,169

see (Rudinger et al., 2020).170

In this work, the problem of reasoning with pre-171

conditions is attempted in two ways: discriminative172

and generative (cf. Table 1). In the discrimina-173

tive setting, given a statement f and a precondi-174

tion (p), a model is expected to infer if the fact is175

still valid (p ∈ P+
f ) or not (p ∈ P−

f ). In the genera-176

tive setting, given only the statement (f ), a model is177

requested to compose a reasonable disabling (p−f )178

or enabling (p+f ) precondition.179

Motivating Examples. In a preliminary inves-180

tigation, we assess the ability of SOTA language181

models: GPT2 (Radford et al., 2019), and Uni-182

fiedQA (Khashabi et al., 2020), to reason with183

preconditions. As shown in Table 1, both mod-184

els appear to fall short of reasoning with enabling185

and disabling factors of commonsense statements,186

regardless of whether the prompt task form is pre-187

sented as multiple-choice question answering (row188

1), or as text completion (rows 2-4). This observa-189

tion is not surprising, considering that reasoning190

with preconditions is an under-addressed research191

challenge. Yet, it motivates the urgency for this192

problem to be studied in depth, which is the goal193

of this paper.194

3 PaCo195

This section introduces the procedure of develop-196

ing the PaCo dataset. We start by selecting relevant197

commonsense facts (Section 3.1), and crowdsourc-198

ing preconditions for each statement (Section 3.2).199

Finally, we present the PaCo data statistics (Sec-200

tion 3.3).201

3.1 Edge Selection202

We extracted relevant commonsense facts from203

ConceptNet (Speer et al., 2017). We chose Con-204

ceptNet due to its breadth of knowledge and popu-205

larity in prior research (Feng et al., 2020; Lin et al.,206

2019; Ma et al., 2019). ConceptNet is a publicly207

available common sense knowledge resource. It208

contains 3.4 million English assertions between209

concepts (e.g., “Glass”, “Drinking_water”, “Per-210

son”), and covers a wide range of knowledge types,211

including spatial, physical, and temporal knowl-212

edge, as well as social and cognitive knowledge213

about everyday situations.214

We performed a pilot analysis of different knowl-215

edge types in ConceptNet to help us decide which216

of them were suitable to be annotated with precon- 217

ditions. Namely, we sampled 20 random edges 218

for each relation and checked how well one could 219

annotate them with preconditions. Our analysis 220

revealed that not all relations lent themselves natu- 221

rally for annotation with enabling or disabling pre- 222

conditions. Specifically, we observed that some re- 223

lations (e.g., Related To) are underspecified in their 224

meanings, and others, like IsA, are often truisms. 225

Our investigation has revealed that it is difficult 226

to come up with preconditions for these relations. 227

Furthermore, we observed that some relations, like 228

CreatedBy, could be easily annotated with enabling 229

conditions, but not with disabling ones. The oppo- 230

site was observed for PartOf. 231

We opted for the relations UsedFor, Causes, and 232

Desires, because of their suitability for annotation 233

of preconditions, their relatively high number of 234

statements, and their representativeness of three 235

different dimensions of knowledge: utility, tem- 236

poral, and motivational knowledge (Ilievski et al., 237

2021). Following the intuition that not all state- 238

ments can be annotated with preconditions, e.g., 239

(Looking through telescope, Usedfor, viewing heav- 240

ens), we computed the correlation between a hand- 241

annotated suitability judgment for the precondi- 242

tion statements, and the several quantitative scores: 243

DICE metrics ( Chalier et al. 2020; e.g., salience), 244

LM perplexity, and edge weights in ConceptNet. 245

However, none of these scores had a strong corre- 246

lation with the suitability for annotating precondi- 247

tions (Appendix B.1 contains the calculated corre- 248

lations for UsedFor). Therefore, we opted for the 249

relations UsedFor, Causes, and Desires, because 250

of their suitability for annotation of preconditions, 251

high number. Also they are representative of three 252

different dimensions of knowledge: utility, tem- 253

poral, and motivational knowledge (Ilievski et al., 254

2021). We sampled 1K edges from each and lexi- 255

calized them into human readable sentences using 256

relation-specific templates (see Appendix A.4). 257

3.2 Data Collection 258

Mechanical Turk We used Amazon Mechanical 259

Turk (Crowston, 2012) to collect data on precondi- 260

tions for the lexicalized statements as part of Institu- 261

tional Review Boards (IRB) approved (as exempt) 262

study. For this, we asked the participants to provide 263

short responses to the question: “What makes the 264

statement possible/impossible?” for each of the 265

lexicalized statements from ConceptNet. Due to fi- 266
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Model Input Output
UnifiedQA A net is used for catching fish. What makes this impossible? (A)

You are in water (B) You are in downtown LA
You are in water

UnifiedQA A net is used for catching fish. What makes this impossible? A net is used for catching fish.
GPT2 A glass is used for drinking water only if, the glass is covered in a protective coat or can

be removed with cold water.
GPT2 A glass is used for drinking water only if, the water is acidic, not fresh.

Table 1: Test of language model’s understanding of preconditions

nancial limitations, we restricted our annotations to267

3 enabling and 3 disabling judgments for each state-268

ment. While the goal of PaCo is not to exhaust all269

possible preconditions associated with each state-270

ment, for some statements we observed duplicate271

answers, signaling a near-saturation point.272

Further details on the data collection design, in-273

cluding annotator qualification, and survey design274

details are given in Appendix A. With this pro-275

cedure, we collected a total of 18K enabling and276

disabling preconditions.277

Quality Control We use a mixture of automated278

and expert annotations for quality control. The279

automated quality control consisted of three rules280

that we can programmatically check: 1) not us-281

ing negative words like “not”, 2) not using pro-282

nouns, and 3) proper sentence lengths. In order to283

measure the informativeness and relevance of the284

remaining annotations, we use expert annotation.285

Specifically, for a subset of the recorded responses286

we asked the annotator to classify the response287

into three categories, each representing a specific288

level of informativeness in the response: 1) Tru-289

ism: the response is correct, but it is not specific290

to the situation (e.g., being broken/functional or291

being available/unavailable); 2) Informative: the292

response is correct and is adding information that293

is not mentioned in the prompt, while not being294

a truism (i.e., is specific); 3) Irrelevant: any re-295

sponse that is not placed into the previous two cate-296

gories. For PaCo, we remove the answers from the297

Irrelevant category, while truism answers could be298

removed subsequently if so desired.299

3.3 Dataset Statistics300

This data collection procedure resulted in a total of301

9k enabling and 9k disabling preconditions for each302

of the 1k ConceptNet edges selected for UsedFor,303

Causes, and Desires relations respectively. After304

filtering out responses in low quality and those305

marked as Invalid by crowd annotators, PaCo con-306

tains 12.4K annotations (6.6K enabling, 5.8K dis-307

abling). Our expert annotation on 10% of the 6K308

annotations with UsedFor relation showed that in309

ID Instance
P-NLI Hypothesis: A net is used for catching fish

Premise: We are in a desert
Label: Contradiction

P-
MCQA

Question: A net is used for catching fish. When
is this impossible?
Choices: (A) You are in sea, (B) The boat is
moving, (C) Net has a large hole in it.

P-G Question: A net is used for catching fish. When
is this impossible?
References: (-) Net has a large hole in it, (-)
You are in downtown LA, (-) There are no fish
in the water

Table 2: Example of the three tasks in PaCo.

93% of the crowdsourced responses are informa- 310

tive, whereas only 5% of the responses are irrele- 311

vant. The quality of the responses is lower for the 312

two other relations: 70% informative responses for 313

Causes and 61% for Desires. This shows that the 314

two relations are semantically more challenging 315

to human annotators compared to a utility relation 316

like UsedFor. We also observed that on average it 317

took the annotators 3.5 times longer to submit a re- 318

sponses for these two relations, which confirms that 319

UsedFor is the most suitable of the three relations 320

for associating preconditions. 321

4 Tasks 322

Given the data collected in Section 3, we de- 323

vise three complementary tasks to showcase the 324

possible ways one could use the PaCo data to 325

evaluate the current SOTA models’ understand- 326

ing of circumstantial preconditions. We select 327

Preconditions Natural Language Inference (P- 328

NLI) and Preconditions Multiple-Choice Question 329

Answering (P-MCQA) as representative discrimi- 330

native tasks, and Preconditions Generation (P-G) 331

task as a generative task. Table 2 summarizes the 332

tasks and provides an example for each of them. 333

In the rest of this section, we describe each task 334

in detail and discuss the steps to prepare it from 335

the raw precondition data. This preparation is fully 336

automatic, and no human annotation or supervision 337

signals have been used. 338

P-NLI Task Natural Language Inference (NLI) 339

refers to tasks where given a sentence pair com- 340
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posed of a hypothesis and a premise, the system341

has to decide whether the hypothesis is true (en-342

tailment), false (contradiction), or undetermined343

(neutral) given the premise (Williams et al., 2018).344

Each of the preconditions (e.g., “water is clean” or345

“water is polluted”) of a statement can directly serve346

as a premise in the sense of NLI. Enabling precon-347

ditions correspond to entailment cases (e.g., “wa-348

ter is clean” entails “water is used for drinking”),349

whereas disabling preconditions can be annotated350

as contradictions (e.g. “water is polluted” contra-351

dicts “water is used for drinking”). The P-NLI task352

consists of 12.4K entries, with 6.6K entailment and353

5.8K contradiction cases.354

P-MCQA Task PaCo can also be directly con-355

verted to a multiple-choice question answering356

(MCQA) task in three steps. First, for each state-357

ment, each enabling (disabling) response is paired358

with three disabling (enabling) responses from the359

same statement. These three responses naturally360

act as negative samples (distractors), allowing us to361

have high-quality and fair questions. The question362

of the MCQA instance is then formed by append-363

ing “What makes this possible?” or “... impossi-364

ble?” to the lexicalized statement. Second, in order365

to have more distractors and increase the number366

of multiple-choice instances we applied the two367

negative sampling methods used by Zhang et al.368

(2020b): Cosine Similarity Filtering, and Ques-369

tion/Answer Shuffling. Finally, in order to remove370

the annotation artifacts from the data, hence trivial371

instances, and prevent the models to exploit these372

artifacts instead of answering the questions, we373

used the Lite variation of the Adversarial Filtering374

method, which has been introduced in Sakaguchi375

et al. (2020) and formalized in Bras et al. (2020).376

This resulted in a P-MCQA task with 47K multiple377

choice questions, each with 4 choices.378

P-G Task Despite our adversarial strategies, it379

remains possible that reasoning systems may iden-380

tify annotation artifacts (Gururangan et al., 2018)381

in the data and solve the discriminative tasks with-382

out correctly performing the logical inference, as a383

result of those artifacts (Bras et al., 2020). Hence,384

we provide a third formulation as a generative com-385

monsense reasoning task. In this task, we present386

the system with the exact question that has been387

presented to the human annotators, thereby mim-388

icking the human annotation task of writing down389

the precondition as a natural language sentence.390

We then evaluate the model’s response using the 391

human responses as references. After removing 392

the low-quality and Invalid responses from PaCo, 393

the P-G task consists of 5.2K instances, with an 394

average of 2.4 reference sentences per instance. 395

5 Experiments 396

This section pitches SOTA language models against 397

the three tasks derived from PaCo (Section 5.1), 398

dives deep into the tuning process to pinpoint time 399

of comprehension (Section 5.2), investigates how 400

LMs react to different relation types (Section 5.3), 401

and finally revisits the distinction between soft and 402

hard preconditions (Section 5.4). 403

5.1 Evaluating SOTA on PaCo Tasks 404

We assess our benchmark through evaluating rep- 405

resentative NLP systems on the three tasks. This 406

part starts with details about experimental setups 407

(Section 5.1.1), followed by result analysis for the 408

three tasks (Sections 5.1.3). 409

5.1.1 Experimental Setup 410

For each task, we start from available pretrained 411

models and evaluate their performance on the test 412

set in zero-shot and fine-tuned setups. To create 413

the test set, we use a uniform random split of the 414

statements that each task’s instance is stemed from. 415

For the split we use the [0.45, 0.15, 0.40] ratio of 416

the data for train/dev/test. The rationale for split- 417

ting based on the statements instead of the task 418

instances is to prevent data leakage into the test 419

sets through shared edges. The experiments are 420

conducted on a commodity workstation with an 421

Intel Xeon Gold 5217 CPU and an NVIDIA RTX 422

8000 GPU . For all the tasks, we use allennlp (Gard- 423

ner et al., 2018) library for the TE model (Parikh 424

et al., 2016) and use huggingface (Wolf et al., 2020) 425

for the rest of them. 426

For the human evaluations of P-NLI and P- 427

MCQA, we used a small (20) sample from test 428

subset of each task and asked an expert to answer 429

them. We then report the respective evaluation 430

metric based on the task, as detailed below. 431

5.1.2 Evaluation Protocols 432

For P-NLI, we use F1-Macro score on the ground- 433

truth labels and report the results on the unseen test 434

split of the data. 435

For P-MCQA, we evaluate the systems’ perfor- 436

mance based on their default evaluation protocols 437

as discussed below. For RoBERTa (Liu et al., 438
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Model 0-Shot Tuned
AllenNLP TE 0.34 0.85
RoBERTa-large-MNLI 0.47 0.90
BART-large-MNLI 0.48 0.90
DeBERTa-base-MNLI 0.37 0.91
DeBERTa-large-MNLI 0.36 0.94
DeBERTa-xl-MNLI 0.37 0.91
Expert Human 1.0 -

Table 3: F1-Macro results of SOTA systems on P-NLI
task based on PaCo

2019), we use the LM coupled with a linear regres-439

sion layer as classification head. In this method, the440

LM is tasked with embedding each question/answer441

pair, and the classification head assigns a score to442

the pair. Later for each MC instance, the ques-443

tion/answer pair with the highest score is selected444

as the output choice. We report the accuracy score445

(code from (Pedregosa et al., 2011)) based on the446

output choices from the model. For UnifiedQA, we447

follow the original setting by Khashabi et al. (2020)448

to let the model conduct sequence-to-sequence gen-449

eration based on the question. Here, the question450

and all choices are feed to the model, and it is ex-451

pected to generate the correct choice’s text. We452

then report the f1 score by selecting the one that is453

closest to the generated answer from the candidate454

choices.455

For P-G, to automatically evaluate the machine-456

generated answers of the models, we use Bleu-457

2 (Papineni et al., 2002) (code from (Bird458

et al., 2009)) and ROUGE-2 (Lin, 2004) (code459

from (Wolf et al., 2020)) metrics. We do not use460

methods with large n-gram match (e.g., Bleu-4) for461

two reasons. First, the small number of reference462

sentences (at most 3) made most of model’s output463

not matching any reference sentence. Second, rela-464

tively short reference sentences leads to no 4-gram465

match and mostly zero Bleu-4 scores.466

For the human evaluation score of the machine467

generated responses, we sample 100 responses and468

use a method similar to quality control method in469

Section 3.2 (here we consider the Truism responses470

as Informative), and report the percentage of infor-471

mative responses from tuned models.472

5.1.3 Results and Discussions473

We hereby separately discuss the performance of474

SOTA models on the three tasks in details.475

(1) P-NLI Results As shown in Table 3, all sys-476

tems tend to get near-random results in the zero-477

shot setup. In case of the BART-large-MNLI model,478

although the zero-shot F1-Macro score is higher,479

Model 0-Shot Tuned
RoBERTa-base 0.23 0.34
RoBERTa-large 0.23 0.25
UnifiedQA-small 0.32 0.46
UnifiedQA-base 0.22 0.56
UnifiedQA-large 0.23 0.63
Expert Human 0.95 -

Table 4: Accuracy results of SOTA systems on P-MCQA
task based on PaCo

it is far from human-level score (1.00). We ob- 480

serve that even models that are trained on large and 481

diverse learning resources (e.g. MNLI (Williams 482

et al., 2018)) are not able to perform well on the 483

P-NLI in a zero-shot fashion. 484

This high scores after fine-tuning can be at- 485

tributed to systems’ exploiting the annotation ar- 486

tifacts of data instead of learning to reason with 487

preconditions. This claim will be further supported 488

by the P-MCQA results. 489

(2) P-MCQA Results The P-MCQA has all the 490

intricacies of the original precondition data absent 491

from the simple annotation artifacts that make it 492

a better alternative to evaluate systems. As pre- 493

sented in Table 4, there is a significant gap be- 494

tween the ideal and machine performance in the 495

P-MCQA benchmark that further supports the nov- 496

elty of PaCo and tasks stemming from it. 497

After investigating the answers, we observe that 498

even the promising large models tend to confuse 499

the enabling v.s. disabling cases. For example the 500

UnifiedQA-Large model, mistakenly chooses a dis- 501

abling response “Your car is out of fuel” for the en- 502

abling question “Gas are typically used for provid- 503

ing energy. What makes this possible?”. This might 504

be explained by the statement that LMs tend to fo- 505

cus more on correlation of lexical occurrences and 506

statistical patterns (e.g., gas and car/fuel), rather 507

than the actual question. In addition, similar to 508

Zhou et al. (2020), we observe that LMs lack under- 509

standing of linguistic permutations like negations, 510

and lean toward positive words. 511

(3) P-G Results As summarized in Table 5, the 512

automatic evaluation results, BLEU and ROUGE, 513

are close to zero for all models. This shows that the 514

models fall short in generating similar to reference 515

precondition even after fine-tuning. On the other 516

hand, the human annotation sheds more light on 517

the results and show the relative comparison of the 518

models. 519

Here the automatic evaluation methods do not 520

sufficiently distinguish between the models as the 521

difference among them are negligible. Hence, 522
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Model BLEU ROUGE HUM
0-Shot Tuned Tuned Info.

UnifiedQA-small 0.007 0.157 0.064 0.12
UnifiedQA-base 0.006 0.303 0.115 0.28
UnifiedQA-large 0.029 0.330 0.128 0.48
BART-base 0.046 0.091 0.140 0.19
BART-large 0.041 0.058 0.117 0.11
GPT2 0.097 0.133 0.067 0.36
Expert Human - - - 1.0

Table 5: BLEU-2, ROUGE-2, and human evaluation
Information score for results of SOTA systems on the
P-G task. Zero-shot ROUGE scores are omitted due to
lack of information.

the comparison rather provides complementary523

insights to the two discriminative tasks. This is524

consistent with similar generation tasks (Rudinger525

et al., 2020), due to the small number of reference526

responses and relatively large space of correct re-527

sponses that makes automatic evaluation of such528

machine responses an unresolved problem (Chen529

et al., 2020).530

Upon analyzing the results we noticed several531

patterns in the generated responses. First, models532

tend to generate simple answers mostly discussing533

the existence or availability of the subject. For ex-534

ample, BART-base frequently generated patterns535

such as “ <head> is closed” or “You have <head>”536

some of which were informative. Second, similar537

to the P-MCQA task, the models tend to confuse538

enabling and disabling preconditions. For example,539

BART-large generated the enabling precondition540

“The clothes are dirty” instead of disabling precon-541

dition for the statement “Washing clothes are used542

for making fresh again”.543

5.2 Diving in the Tuning Process544

In the above evaluation on P-NLI, we observe that545

all models get higher scores after fine-tuning. Here,546

we investigate the fine-tuning process to find at547

what point the model understands the requirements548

of the task.549

Experimental Setup We focus on the RoBERTa-550

large-MNLI (Liu et al., 2019) model in the P-NLI551

task. The experimental setup is similar to sec-552

tion 5.1.1. We evaluate the model’s performance553

on the test split of P-NLI in checkpoints during554

the tuning process instead of just at the end of it.555

Checkpoints are based on the amount of tuning data556

the model has observed (10%, 20%, · · · , 100%).557

Results Figure 2 plots the changes of score of558

the model as it gets more tuning data. The slow559

Figure 2: F1-Score of fine-tuning RoBERTa-large-
MNLI with increasing amounts of training data from
P-NLI.

saturation of the F1 score here suggests that the 560

instances in P-NLI are not trivial for the model and 561

it actually has to see a lot of instances to be able to 562

perform the task. Considering that the RoBERTa- 563

large-MNLI has been pre-trained on a vast corpus, 564

our result shows the novelty and uniqueness of the 565

PaCo data. 566

5.3 Discussion on Different Relation Types 567

Given that PaCo consists of three relations types, 568

we next pose the question of how well the LMs can 569

handle each relation type. Here, we break down the 570

results presented in Section 5.1 per relation type 571

and discuss the model performance on each type. 572

Experimental Setup Due to simplicity of auto- 573

matic evaluation, we on focus on the two discrimi- 574

native tasks, P-NLI and P-MCQA. The experimen- 575

tal setup here is similar to section 5.1.1, except that 576

for both zero-shot and fine-tuned settings where we 577

measure the dissected results based on the relation 578

types as well as their aggregation. 579

Results On the P-NLI task, similar to the chal- 580

lenges for human annotators (Section 3.2), all NLI 581

models tend to get lower accuracy on instances 582

derived from Causes and Desires relations, com- 583

pared to Usedfor. For instance, the DeBERTa-large- 584

MNLI, has a 6% gap between the performance on 585

UsedFor and Causes instances. In the P-MCQA 586

task, we observe a similar pattern between Causes 587

and Desires relations on one hand, and Usedfor on 588

the other hand. For instance, the UnifiedQA-large 589

mode shows a 13% gap between instances with 590

Usedfor and Desires relations. The detailed P-NLI 591

and P-MCQA performance results dissected based 592

on relation types are provided in Tables 9 and 10 593

in the Appendix section. 594
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5.4 Hard and Soft Preconditions595

In this work, we argued for the use of hard pre-596

conditions as opposed to soft preconditions used in597

previous works. Although semantically different,598

one may argue that using soft preconditions may599

help the models learn the task of reasoning with600

preconditions with already existing data. In this601

section we test this hypothesis.602

Experimental Setup Using the approach pre-603

sented in Section 4, we created an NLI re-604

source from two available resources with soft605

preconditions: Rudinger et al. (2020) and606

ATOMIC2020 (Hwang et al., 2020) (Details in Ap-607

pendix B.3). We focused on the RoBERTa-large-608

MNLI (Liu et al., 2019) model, fine-tuned in on609

the two resources, and evaluate on the test set of610

P-NLI. The experimental setup here is similar to611

Section 5.1.1.612

Results Although these resources have an or-613

der of magnitude more data (88K instances in614

ATOMIC2020 (Hwang et al., 2020) and 236K in-615

stances in Rudinger et al. (2020)), there is more616

than 10% gap between the performance of the617

model tuned on them in the P-NLI task compared to618

a model exposed to PaCo data. Table 11, presents619

the detailed results of tuning RoBERTa-large-MNLI620

model on each of the NLI-style datasets, while be-621

ing evaluated on P-NLI’s test subset.622

6 Related Work623

Resources of Preconditions. A few resources624

have provided representations for preconditions625

of statements. ConceptNet (Speer et al., 2017)’s626

HasPrerequisite relation, ATOMIC (Sap et al.,627

2019a)’s xNeed relation, and CauseNet (Heindorf628

et al., 2020) data can express concept dependencies,629

such as, e.g., before one bakes bread, they need to630

buy ingredients and go to a store. Instead of adding631

new edges, our work annotates existing edges with632

contextual preconditions, which helps reasoners633

understand when to use an edge and when not to.634

ASER (Zhang et al., 2020a) and ASCENT (Nguyen635

et al., 2021) extract edges from unstructured text636

together with their associated context. As such,637

their knowledge is restricted by information avail-638

able in text, and they do not express disabling639

preconditions. It is also unclear to which extent640

their contextual edges express enabling precondi-641

tions, rather than coincidental information. GLU-642

COSE (Mostafazadeh et al., 2020) comes closer643

to our work, as they also extract enabling pre- 644

conditions (e.g., Possession state that enables X) 645

via crowdsourcing. Similarly, PeKo (Kwon et al., 646

2020) extract enabling preconditions between event 647

pairs from available text and use it to propose pre- 648

condition identification and generation tasks be- 649

tween pair of sentences. However focusing only on 650

causal relations in available text hinders the extent 651

of their tasks. Both GLUCOSE and PeKo do not 652

explore disabling preconditions. 653

Reasoning with Preconditions. Few efforts have 654

been made on evaluating commonsense reasoning 655

with preconditions. Rudinger et al. (2020) focus 656

on modeling weakeners and strengtheners of com- 657

monsense statements. Their work adds a utility sen- 658

tence to the hypothesis-premise pair in NLI-style 659

tasks and ask whether it weakens or strengthens 660

the relationship of the pair. Similarly, Hwang et al. 661

(2020)’s Hindered by and Causes also focuses on 662

similar relationship for events with focus on pre- 663

senting a knowledge resource. 664

Our work differs as we focus on a crisp condition 665

of enabling/disabling that can be particularly useful 666

in logic-like reasoning tasks (as opposed to proba- 667

bilistic inference). In addition, our task allows the 668

reasoning to be processed as canonical NLI and 669

can benefit from existing NLI architectures instead 670

of modifying them. 671

7 Conclusions and Future Work 672

We presented, PaCo, a dataset of 12.4K collected 673

enabling and disabling preconditions of everyday 674

commonsense statements from ConceptNet. We 675

utilize this resource to create three tasks for evaluat- 676

ing the ability of systems to reason over circumstan- 677

tial preconditions, namely: P-NLI, P-MCQA, and 678

P-G. Our evaluation shows that SOTA reasoners 679

largely fall behind human performance, indicat- 680

ing the need for further investigation to develop 681

precondition-aware systems. 682

Future work should cover the inclusion of 683

preconditions in logical reasoning of the neuro- 684

symbolic reasoners. It should also expand to multi- 685

modal setup or investigate using weak-supervision 686

to gather preconditions. Alternatively, we can lever- 687

age the contributed resource to develop generative 688

models for automated context-aware knowledge 689

base construction (Sorokin and Gurevych, 2017). 690
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Ethical Statement691

Though we may present this as we started from692

openly available data that is both crowdsource-693

contributed and neutralized, however it still may694

reflect human biases (Mehrabi et al., 2021).695

During our data collection we did not collect696

any sensitive information, such as demographic697

or identity characteristics. We only limited the698

annotators to English-speaking users from mainly699

English-speaking countries such as US, which may700

add cultural bias to the data. However, neither our701

crowd annotators or the expert annotators noticed702

any offensive language in the questions or the re-703

sponses.704

Given the urgency of addressing climate change705

we have reported the detailed model sizes and run-706

time associated with all the experiments in Ap-707

pendix C.708
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Figure 3: Data-collection and processing in a nutshell

Figure 4: A sample question-unit used in main survey
on the AMT

A Data Collection Details1036

We used Amazon Mechanical Turk (AMT) (Crow-1037

ston, 2012) to collect the PaCo. This enabled us1038

to coordinate the study and access a large pool of1039

English-speaking participants as our study popula-1040

tion. The AMT is especially suitable for this study1041

as it can facilitate accessing a diverse population1042

of participants which is necessary for any notion1043

of commonsense. Our study on AMT consists of1044

two parts: a tutorial that also serves as a qualifi-1045

cation test and the main survey. In addition, we1046

implemented two levels of quality control: in the1047

first one we use a response checker code and in1048

the second we use human annotators to ensure only1049

high-quality responses wind up into the final data.1050

A.1 Main AMT Survey1051

In the main survey, the participants are given a set1052

of question-units (sample in Fig. 4) each consists1053

of a factual sentence (discussed in Section A.2)1054

followed by a prompt question, then we ask par-1055

ticipants to write their responses for each prompt1056

question in the designated text box in front of the1057

unit. The prompt questions are short questions that1058

ask about the preconditions that enable or disable1059

the factual sentence (e.g. what makes this possible?,1060

when is this impossible). The goal of this phase is1061

to use the powers of crowdsourcing to capture as1062

much information as needed to create a dataset of1063

enabling and disabling conditions.1064

A.2 Gathering Factual Sentences1065

The first row in Fig. 3 summarizes the steps to cre-1066

ate the factual sentences. Each factual sentence1067

is a short sentence derived from an edge from a 1068

commonsense knowledge graph. The information 1069

on this knowledge graph is related to everyday sit- 1070

uations such as usage of objects (A net is used for 1071

catching fish.), or capabilities of objects (Humans 1072

are capable of catching a bus.), etc. (Speer et al., 1073

2017; Ilievski et al., 2020a; Sap et al., 2019a). In 1074

our case, the knowledge associated with each fac- 1075

tual sentence is extracted from ConceptNet (Speer 1076

et al., 2017), a well known commonsense resource. 1077

To limit the scope of this work we only focus on 1078

UsedFor, Causes, and Desires relations from Con- 1079

ceptNet, however, the method can be extended to 1080

any other relation from any other knowledge graph. 1081

To convert the knowledge graph edges to human- 1082

readable factual sentences, we used automatic lex- 1083

icalization methods, similar to (Ma et al., 2019; 1084

Bouraoui et al., 2020). In this method, we define 1085

a set of templates to convert the edge to a set of 1086

sentence candidates, then use the perplexity score 1087

of a language model to pick the best candidate for 1088

each edge. The lexicalization is explained in more 1089

details in Appendix A.4. 1090

Since ConceptNet’s knowledge is not perfect, 1091

some of the generated factual sentences may not 1092

fully make sense. Additionally, the automatic con- 1093

version of edges to the sentence is not perfect, 1094

hence some sentences may have odd grammar (e.g. 1095

An net is used for catch fish). Consequently, some 1096

of the question-units may be hard to understand 1097

or just be wrong. To help us find those question- 1098

units and ignore them in future iterations, each 1099

unit is presented with an adjacent checkbox labeled 1100

This does not make sense. The participant may 1101

choose to select the checkbox and skip answering 1102

that prompt. To make the payment structure fair 1103

for the participants, they will get paid regardless of 1104

their response. 1105

A.3 Qualifying Participants 1106

To ensure the participants can understand the task, 1107

we prepared detailed instructions that explain to 1108

the participants what they need to do and what 1109

are the criteria for a good vs bad response. For 1110

example, in the instructions, we ask participants 1111

to avoid using negative sentences or avoid using 1112

pronouns to refer to objects. The instruction is 366 1113

words with an expected reading time of < 5 mins. 1114

Additionally, we have prepared a set of good/bad 1115

examples associated with each rule that can also be 1116

accessed in the tutorial. Each one of the good/bad 1117

1



examples comes with a short explanation clarifying1118

the reason for its good/bad rating.1119

The participants are then asked to take the quali-1120

fication test as a check on whether they have read1121

and understood the instructions. The qualification1122

test contains 10 multi-choice questions (each with1123

two choices); each containing a question-unit (sim-1124

ilar to those that are used in the main survey) with1125

two choices of the possible responses that one may1126

give to them. We have carefully designed each1127

multiple-choice question such that it tests the par-1128

ticipants’ understanding of the rules individually1129

and give them feedback on their wrong answers.1130

For example, for the rule discouraging the use of1131

negative sentences, we have two questions where1132

the wrong answers contain a negative verb. After1133

successfully passing the test, participants with ac-1134

ceptable scores are granted a qualification badge1135

that allows them to engage in the main survey. It1136

must be noted that the detailed instructions and the1137

good/bad examples are both available in the main1138

survey as a memory refresher for the participants.1139

A.4 Edge Lexicalization1140

Each of the selected edges is lexicalized using a1141

combination of templates and masked LMs de-1142

scribed by Ma et al. (2019) and Bouraoui et al.1143

(2020). Similar to Ma et al. (2019), we use a com-1144

bination of the templates for each relation (e.g.1145

[subject] is used for [object], [subject] is used1146

by [object]) and use the perplexity score from the1147

LM to select the best lexicalization for each edge.1148

However, this method does not guarantee the se-1149

lection of the best lexicalization as the perplexity1150

score reflects the probability of the sentence to-1151

kens appearing in that specific order rather than the1152

sentence’s grammatical correctness. To mitigate1153

this issue, in addition to the above method, follow-1154

ing (Bouraoui et al., 2020), we let the LM adjust1155

the templates as well by adding one masked token1156

to some templates (e.g. [subject] is used [MASK]1157

[object]) and let the LM fill the mask before filling1158

the subject and the object slots of the template.1159

B Results in More Details1160

B.1 Edge Selection Results1161

In this section, we provide further evidence to sup-1162

port the decision to use the UsedFor edges without1163

any additional filtering. First, we showcase the1164

lack of correlation between a hand-annotated use-1165

fulness indication of the precondition statements1166

Metric [0,10](%) [50,60](%) [90,100](%)
Perp. 75 95 90
Salient 80 100 95
Weight 95 90 90

Table 6: hand-annotated usefulness indication of the
precondition statements for top/bottom/mid percentile
buckets of the quantitative methods. The [A,B] label
indicates edges with the metric score in the range of
[A,B] percentile of the metric score.

Metric Score(%)
UsedFor 95
CapableOf 90
RelatedTo 40

Table 7: hand-annotated usefulness indication of the
precondition statements three of the ConceptNet rela-
tions

and existing quantitative methods/scores. Then, in 1167

a similar setup, we show that the UsedFor edges 1168

have a higher usefulness score. 1169

For the first study, we only focus on UsedFor 1170

edges. For each metric, we randomly sample 20 1171

edges in each percentile of the metric and hand- 1172

annotate the usefulness of sampled edges in each 1173

percentile. Then, for each percentile-metric, we 1174

report the percentage of edges that were consid- 1175

ered useful for our study. The results in Table 6, 1176

summarizes the usefulness score for three of the 1177

percentile buckets for three of the metrics. For the 1178

perplexity score we used the RoBERTa (Liu et al., 1179

2019) language model on the lexicalized edges, for 1180

the Salient score we used DICE metrics (Chalier 1181

et al., 2020), and for the weight score we use the 1182

weights from the ConceptNet (Speer et al., 2017) 1183

itself. The usefulness scores suggest that a higher 1184

score may or may not result in more useful edges 1185

which makes using them for filtering edges tricky. 1186

This study is by no means conclusive due to both 1187

the small sample sizes and a small number of trials, 1188

however, it led us to choose the edges solely based 1189

on relation type and leave further filterings to future 1190

work. 1191

For the second study, Table 7, we group edges 1192

based on their relations only and compute the use- 1193

fulness score for each relation. The results showed 1194

that UsedFor edges tend to generally be more use- 1195

ful for our annotation task. This couple with the 1196

statement that UsedFor edges could be annotated 1197

with both enabling and disabling preconditions led 1198

us to focus on them for this study. 1199
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B.2 Additional Results from P-NLI1200

Table 8 presents some error cases that each model1201

predicts on the test subset of P-NLI.1202

As our version of NLI only consists of Entail-1203

ment and Contradiction labels, we discuss the re-1204

sults using binary classification terminology.1205

In addition, the detailed results of Table 3 dis-1206

sected by the relation types are provided in Table 9.1207

B.3 Details of Soft Preconditions on P-NLI1208

In order to convert the ATOMIC2020 (Hwang et al.,1209

2020) to an NLI-style task, we method similar to1210

P-NLI and focused on three relations HinderedBy,1211

Causes, and xNeed. From these relations, Hin-1212

deredBy is converted to Contradiction and the rest1213

are converted to Entailment instances.1214

For converting Rudinger et al. (2020), we fo-1215

cused on SNLI subset of their data and used1216

the concatenation of SNLI’s “Hypothesis” and1217

“Premise” as hypothesis and their “Update” sen-1218

tence as premise.1219

Table 11, presents the detailed results of tuning1220

RoBERTa-large-MNLI model on each of the NLI-1221

style datasets, while being evaluated on P-NLI’s1222

test subset.1223

C Model Sizes and Run-times1224

For table 3, Runtimes: TE=2hr,rbrta=2.5hr, dbrta-1225

base=0.5hr, dbrta-large=2hr, dbrta-xlarge=3.5hr,1226

BART-large=2hr and #params: TE=0.5M,1227

rbta=356M, dbrta-base=141M, dbrta-large=401M,1228

dbrta-xlarge=751M, BART-large=407M. For1229

table 4, Runtimes:rbta-base=1hr, rbta-large=2hr,1230

uqa-small=1hr, uqa-base=4hr, uqa-large=20hr and1231

#params: rbta-base=124M,rbta-large=355M, uqa-1232

small=60M, uqa-base=222 M,uqa-large=737M. In1233

table 1, Runtimes: uqa, gpt2=10min and #params:1234

gpt2=1.5B. Finally in table 5, Runtimes:uqa-1235

small=1hr, uqa-base=2hr, uqa-large=6hr,1236

gpt2=1.5B, bart-base=139M, bart-large= and1237

#params: uqa-small=60M,uqa-base=222 M,1238

uqa-large=737M, gpt2=1.5B, bart-base=139M,1239

bart-large=406M.1240
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Model Statement Context *
TE You can typically use self adhesive label for labelling things The self adhesive label runs out of glue. FP

Acoustic ceiling is typically used for dampening sound. in rooms with noise above a certain decibel. FP
You can typically use self adhesive label for labelling things. Labeling things that are wet. FP
Farm is typically used for raising crops. Enough rain should be available. FN

roberta You can typically use pets to provide companionship the pet is dog. FN
Acoustic ceiling is typically used for dampening sound The sound is too loud FP

Table 8: Test results of SOTA systems on NLI task based on the PaCo. FP: False Positive, FN: False Negative

Model Rel. 0-Shot Tuned
RoBERTa-large-MNLI UsedFor 0.34 0.85

Causes 0.48 0.90
Desires 0.48 0.90
All 0.47 0.90

BART-large-MNLI UsedFor 0.51 0.91
Causes 0.41 0.82
Desires 0.46 0.89
All 0.48 0.89

DeBERTa-base-MNLI UsedFor 0.37 0.91
Causes 0.32 0.84
Desires 0.38 0.88
All 0.37 0.89

DeBERTa-large-MNLI UsedFor 0.38 0.94
Causes 0.31 0.88
Desires 0.36 0.90
All 0.36 0.92

DeBERTa-xlarge-MNLI UsedFor 0.37 0.94
Causes 0.31 0.88
Desires 0.37 0.89
All 0.37 0.91

Table 9: F1-Macro results of SOTA systems on P-NLI
task based on PaCo dissected based on relation type

Model Rel. 0-Shot Tuned
RoBERTa-base UsedFor 0.24 0.39

Causes 0.25 0.43
Desires 0.22 0.27
All 0.23 0.34

RoBERTa-large UsedFor 0.25 0.23
Causes 0.20 0.29
Desires 0.22 0.25
All 0.23 0.25

UnifiedQA-small UsedFor 0.35 0.52
Causes 0.35 0.45
Desires 0.27 0.40
All 0.32 0.46

UnifiedQA-base UsedFor 0.23 0.64
Causes 0.17 0.54
Desires 0.22 0.49
All 0.22 0.56

UnifiedQA-large UsedFor 0.27 0.70
Causes 0.20 0.64
Desires 0.20 0.57
All 0.23 0.63

Table 10: Accuracy results of SOTA systems on P-
MCQA task based on PaCo

Tune Dataset Relation F1-Macro
PaCo UsedFor 0.85

Causes 0.90
Desires 0.90
All 0.90

Hwang et al. (2020) UsedFor 0.50
Causes 0.50
Desires 0.45
All 0.48

Rudinger et al. (2020) UsedFor 0.84
Causes 0.80
Desires 0.82
All 0.83

Table 11: Results of RoBERTa-large-MNLI model on
test set of P-NLI after being tuned on different datasets,
dissected based on relation type.
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