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ABSTRACT

Generating realistic human motions with high framerate is an underexplored task,
due to the varied framerates of training data, huge memory burden brought by
high framerates and slow sampling speed of generative models. Recent advances
make a compromise for training by downsampling high-framerate details away
and discarding low-framerate samples, which suffer from severe information loss
and restricted-framerate generation. In this paper, we found that the recent emerg-
ing paradigm of Implicit Neural Representations (INRs) that encode a signal into
a continuous function can effectively tackle this challenging problem. To this end,
we introduce NeRM, a generative model capable of taking advantage of varied-
size data and capturing variational distribution of motions for high-framerate mo-
tion synthesis. By optimizing latent representation and an auto-decoder condi-
tioned on temporal coordinates, NeRM learns neural representations for sampled
motion clips that ingeniously avoid explicit modeling of raw varied-size motions.
This expressive latent representation is then used to learn a diffusion model that
enables both unconditional and conditional generation of human motions. We
show that NeRM not only achieves competitive results with state-of-the-art meth-
ods, but also be capable of generating arbitrary-framerate motions. Moreover,
it can remain memory-friendly yet highly efficient even when generating high-
framerate motions.

1 INTRODUCTION

The technology of human motion synthesis has been widely applied in various scenarios (Koppula
& Saxena, 2013; Van Welbergen et al., 2010; Sun et al., 2023) of filming, robotics and gaming ani-
mation. In this task, generating high-quality motions with high framerate holds promising value for
practical use (Feng et al., 2023; Wang et al., 2019). For example, the gaming system can showcase
high-framerate animation on high-performance devices to enable a smooth and visually immersive
gaming experience for players, while adaptively reducing the framerate on low-performance devices.

Existing methods (Petrovich et al., 2021; Zhang et al., 2022; Tevet et al., 2023; Cai et al., 2021; Wang
et al., 2022) have neither considered, nor been able to handle such demands, which is primarily due
to the following reasons: (1) High-framerate motion generation would impose substantial memory
overloads that is unacceptable for current generative models, whose slow sampling speed further
complicates this issue. (2) The raw motion data usually exhibits variability in framerates, such as
text-to-motion dataset HumanML3D (Guo et al., 2022), wherein the framerate of each subset varies
from 20 fps to 250 fps, making it challenging for direct use during training. As a result, all these
methods employ a typical pre-processing step to construct a dataset with a fixed and target framerate.
Motions exceeding the target framerate are downsampled, removing high-frequency details; and
motions with inadequate framerate are excluded, discarding low-frequency structural information.
However, such naı̈ve process is inherently suboptimal, as it restricts the capabilities of data-driven
models and can only generate motions with a fixed yet relatively low framerate. In practice, as
human eyes are very sensitive to high-frequency details, it is desired to embrace the natural diversity
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Figure 1: Motions are captured under different sampling rates. To realize uniform training on them
as well as ensuring acceptable memory burden, existing models have to downsample sequences to a
fixed, target framerate (such as 20 fps), and remove samples with that even lower. Our design can
handle sequences at their native framerates, making full use of available annotated motion resources.

of motion framerates and process them at their native framerates, so that we can preserve and utilize
the subtle nuances in original motions, thereby improving visual sensation for viewers.

Meanwhile, Implicit Neural Representations (INRs) (Mildenhall et al., 2021; Watson et al., 2023)
have emerged as a new paradigm for representing continuous signals without explicit modeling,
and gained popularity in various domains. For instance, Park et al. (2019) encodes geometry into
a neural network that maps input 3D coordinates to corresponding SDF values. Accordingly, as
opposed to discrete grid-wise signal values, INRs amortize the signal values of arbitrary coordinates
into a compact neural representation, which eliminates the need for a large memory allocation that
would be proportional to the coordinate dimension and resolution. In this respect, INRs have shown
to be highly effective at modeling complex and dense signals, such as images (Skorokhodov et al.,
2021), videos (Yu et al., 2022) and 3D scenes (Mildenhall et al., 2021).

Inspired by this, we propose NeRM, a variational implicit neural representation-based generative
model for high-framerate human motion synthesis. NeRM represents a motion sequence as a con-
tinuous function f : t 7→ f(t) that is parametrized by a Multi-Layer Perceptron (MLP) conditioned
on temporal coordinates. To mitigate excessive overfitting of motions, we introduce a latent code
z, which can be thought of encoding of a sampled motion clip (a short segment of motion), as
conditional variable to the function f(t, z). When keeping the latent code z constant and varying
the coordinate t, NeRM allows us to efficiently generate motions at arbitrary framerates and time
steps; and decouple high-framerate synthesis from prohibitive memory requirements. We find these
latent codes by interpreting them as a variational distribution with optimized parameters (i.e., mean
and covariance) in the representation space. This simple process naturally supports any-framerate
training and showcases a significant departure from previous works (He et al., 2022; Mao et al.,
2021; Wei et al., 2024) that require an explicit and sophisticated encoder to infer distributions of
fixed-framerate motions. After optimizing the representative motion latent codes, motivated by the
success of stable diffusion (Rombach et al., 2022), we learn to model the distribution of varied-
framerate motions in latent space. Various conditions available to the model at training (e.g. action
labels, text prompts) can be used to generate the realistic motions conforming to those conditions.

Additionally, acquiring high-quality human motion sequences with well annotations is expensive
and limited (Chen et al., 2023). In this case, only temporal coordinate information is insufficient for
the network to characterize continuous motion fields. We draw inspiration from Vector Quantized
(VQ) codebook in 3D scenes (Yin et al., 2022), and inject such prior descriptors into the coordinated-
based network. With the help of the codebook, our approach has the potential to enrich the feature
representation of each temporal coordinate and then enhance the quality of generated motions.

We conduct comprehensive experiments on various datasets, including HumanML3D (Guo et al.,
2022), KIT (Plappert et al., 2016), HumanAct12 (Guo et al., 2020) and UESTC (Ji et al., 2018).
Numerical results demonstrate NeRM to be extremely competitive with state-of-the-art baselines.
Furthermore, NeRM appreciates the following intriguing properties:
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• Arbitrary framerate training: is capable of training on mixed-framerate datasets without pre-
processing, like downsampling and discarding (Figure 1)

• High-framerate motion generation: can synthesize high-framerate motions (Figure 4b) of ∼ 120
fps without suffering from increasing architecture size and massive memory resources (Appendix)

• High inference speed: achieve 120× speed up in compared to Tevet et al. (2023) (Appendix)

• Temporal sub-sampling: enable the generation of poses at specific time steps directly without first
generating frames before, while preserving the smoothnesss of the entire sequence (Figure 4c)

• Flexible conditional generation: allow for unconditional generation (Figure 5) as well as condi-
tional on action labels (Table 3) or text descriptions (Table 1)

2 RELATED WORK

Denoising Diffusion Probabilistic Models (DDPMs). DDPMs (Sohl-Dickstein et al., 2015; Ho
et al., 2020) have witnessed significant progress in the image synthesis domains, such as Imagen
(Saharia et al., 2022) and DALL·E (Ramesh et al., 2022). Inspired by their works, most recent
methods have adapted this advanced generative model to motion generation tasks. MotionDiffuse
(Zhang et al., 2022) designs an effective DDPM-based architecture for controllable text-driven mo-
tion synthesis, allowing for motion manipulation in body parts. MDM (Tevet et al., 2023) makes
predictions of the sample rather than the noise, facilitating the use of established geometric losses.
As sampling of these approaches in raw motion space are computationally expensive, MLD (Chen
et al., 2023) employs VAE with transformer backbone to map motions into latent space, where the
diffusion model is trained. However, current motion diffusion models interpret the human motion
as a sequence of poses, overlooking the inherent continuous temporal dynamics. They are also con-
strained to train exclusively on motions with a fixed yet relatively low framerate, which hinders their
ability to generate motions at higher framerates. In this paper, we combines the merits of diffusion
model and implicit neural representation to produce high-quality motions free from size limitations.

Implicit Neural Representations (INRs). INRs have shown extraordinary capability in modeling
3D shape neural representations (Park et al., 2019; Mescheder et al., 2019). In particular, NeRF
(Mildenhall et al., 2021) uses multi-layer perceptron network to render 3D-consistent images with
texture details. Following the success of NeRF, INRs have proven to be a powerful tool in many tasks
such as view synthesis (Bautista et al., 2022; Watson et al., 2023), image generation (Dupont et al.,
2023; Chai et al., 2022) and video encoding (Chen et al., 2021). Most recently, concurrent works
(He et al., 2022; Cervantes et al., 2022; Wang et al., 2023) have been proposed to learn implicit neu-
ral fields to represent human motions. NeMF (He et al., 2022) adopts a VAE framework to make it
a generative model controlled by latent code. However, this approach requires re-training the neural
network to overfit a new signal, which is computationally costly. Moreover, NeMF can only find
one possible latent code to satisfy conditional constraints, leading to deterministic motion genera-
tion like NeMo (Wang et al., 2023). Such problems have been addressed by (Cervantes et al., 2022),
which generates novel motion sequences for a target action class by fitting conditional Gaussian
Mixture Model (GMM). Unfortunately, this specific design can be only used for action-conditional
motion generation, and is not versatile enough for other conditions (e.g. texts). In addition, these
methods still do not support arbitrary-framerate training. In our approach, we draw upon the inno-
vations in coordinate-based functions to sample motion clips at different framerates, and introduce
the diffusion model to capture variational distribution of latents, thereby enhancing the capability of
diverse motion sampling with flexible framerates and multimodal conditions.

3 METHOD

An overview of our NeRM is described in Figure 2. Our goal is to learn a generative model to
synthesize a human motion given an arbitrary condition. Let X = {xi}ni=1 denote a collection of
training samples, where each sample xi = {xit}Tt=1 is a motion sequence of T human poses.

We decompose the task of learning a generative model in two stages. The first stage is responsible
for capturing the motion of different framerates and durations, thereby learning a latent code zi for
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Figure 2: Two-stage pipeline of NeRM. In the first stage (left), we sample clips at random framerates
from full-size motion sequences for training. A latent code z is introduced as the encoding of these
motion clips, which is directly optimized by the parameters of a posterior normal distribution instead
of from a motion encoder. The latent, together with the codebook-enhanced normalized coordinates
tv,s and the framerate s, are then fed into the decoder fθ to produce motion clips. The second stage
(right) uses the latent codes as input to our diffusion model and can be guided by various conditions.

each xi ∈ X , while the second stage learns the distribution of the latent variables obtained from the
first stage. This decouples the modeling of the complex distribution from varied-size motions.

3.1 MULTI-FRAMERATE VARIATIONAL IMPLICIT NEURAL REPRESENTATION

In standard motion synthesis, all training samples are typically required to have a consistent fixed
framerate (see Figure 1). Our key idea is to naturally exploit the variety of motion framerates
available in the dataset, learning from poses that are discarded, to enable high-framerate generation.

Variational INRs. Unlike most works that represent motion as a discrete sequential process (Wei
et al., 2023), we represent motion as a continuous field of human poses in the temporal domain so
that the inherent continuous temporal dynamics can be preserved. Formally, we denote a human
pose of sequence i at timestep t as xit ∈ RJ×D that represented by either joint rotations or positions,
where J is the number of joints and D is the dimension of the joint representation.

For each sequence i, we define the continuous motion field as a function fi(t) = x̂it that maps a
temporal coordinate to a pose. By minimizing the reconstruction loss between ground truth {xit}Tt=1
and the generated motion {x̂it}Tt=1, we can obtain an overfitting neural field fi(·) for sequence i,
thereby generating poses at arbitrary time steps by sampling the field. However, such modeling
requires to be re-trained from scratch for a new motion sequence. Therefore, we introduce a latent
code zi as an encoding of sequence i, thus parameterizing the whole training set X as a function
fθ : (t, zi) 7→ x̂it, where fθ is a decoder shared among all sequences (i ∈ {1, 2, · · · , n}), and zi is
shared among all time steps (t ∈ {1, 2, · · · , T}). This formulation allows us to swap out different
latents z for producing different motion sequences.

Nevertheless, the latent space distribution p(Z) is not continuous since each zi is optimized inde-
pendently to reconstruct a single sample via an over-parameterized decoder fθ. This renders the
interpolation between different points in the latent space meaningless. Inspired by VAE (Kingma &
Welling, 2013), we propose a variational INR to leverage the continuous nature of the latent space
distribution. Specifically, we treat each latent code zi as a normal distribution, where the mean µi
and covariance matrix Σi are optimized. During training, we use the re-parameterization trick to
sample an instance from this distribution. As such, the generated outputs exhibit smooth transitions
between the corresponding zi and zj . The motion field can thus be formulated as

fθ : (t, zi) 7→ x̂it, s.t. zi ∼ N (µi,Σi). (1)

We represent human motions at arbitrary framerates s, with different durations l, as continuous
functions over normalized temporal coordinates, and sample a random motion clip according to the
center v and the number of poses m in clip. This enables any-framerate training of NeRM.

Continuous-framerate training. To learn from multi-framerate motions in training sets, we design
our approach by exploiting the temporal consistency in motions to generate motion clips, which
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is similar to patches in image. Images are continuous in 2D space, and motion sequences are
continuous only in temporal dimension, but we can not simply handle this difference by ignor-
ing one dimension. The essential difference between image and motion lies in that, image size is
determined only by resolution, while motion size is determined by both framerate and duration.
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Figure 3: Illustrative description of the random clip
sampling from the entire motion at framerate s accord-
ing to the center v and the clip size m.

For convenience, we assume a maximum
duration of lmax seconds for the motion
and treat each motion as a continuous
function defined on a bounded, normalized
coordinate domain ranging from −1 to 1.
This implies that each second corresponds
to an interval of 2/lmax. The decoder fθ
always generates motion clips of a fixed
number of poses m, but each clip implic-
itly corresponds to a short segment, cen-
tered at v ∈ [−1, 1], of the longer (entire)
motion. Denoting the framerate of the i-th
entire motion as si fps, we have that the
clip size is 2

lmax
· msi in normalized coordi-

nates (see Figure 3). During training, we
first sample clips from motions, and then pass them to the fixed-framerate decoder fθ. Therefore,
Eqn.(1) can be reformulated as:

fθ : (tiv,s, zi, s
i) 7→ x̂iclip, s.t. zi ∼ N (µi,Σi) (2)

where tiv,s ∈ Rm denotes normalized temporal coordinates of motion clip with m poses, which

is extracted from all coordinates tis = [−1, −s
i·lmax+2
si·lmax

, −s
i·lmax+4
si·lmax

, · · · , s
i·lmax−2
si·lmax

, 1] ∈ Rlmax·si

according to the clip center v, and x̂iclip denotes the corresponding human poses. Compared to
current motion generative models (Tevet et al., 2023; Chen et al., 2023), our approach replaces the
explicit input sequences with clip-dependent coordinates to allow for variable-framerate training.

Codebook-enhanced representation. As observed in Tancik et al. (2020), the Fourier em-
bedding of coordinates endows INRs with the capability to learn high-frequency variations, ad-
dressing the problem know as “spectral bias” (Rahaman et al., 2019). Specifically, we employ
γ(t) = [cos(2πb1t), sin(2πb1t), · · · , cos(2πbRt), sin(2πbRt)]

T as our embedding function, where
br is sampled from an isotropic distribution. However, we empirically find that such embedding is
insufficient for the decoder fθ to characterize human motion fields effectively.

To overcome this limitation, inspired by CoCo-NeRF (Yin et al., 2022) that utilizes codebook in-
formation for 3D geometry neural representations, we propose to deploy Codebook-Coordinate At-
tention (CCA) modulation to enrich the Fourier features of each coordinate. The detailed design of
CCA can be found in Appendix. Given a pre-trained codebook containing N codes E = {ei}Ni=1

with ei ∈ Rd where d is the dimension of codes, we defineQ = {qi}Mi=1 as the learnable query vec-
tors, which are used to query the motion-relevant prototypes from the codebook via a cross-attention
mechanism. The feature representations of these prototypes are then iteratively boosted by passing
several self-attention layers. Subsequently, the prototype information is gradually incorporated into
each γ(t) through cross-attention modules. This workflow establishes a connection between the
codebook prior and coordinate embedding, thereby improving its feature representation.

Loss objective. For the motion sequence i, NeRM calculates the reconstruction loss over all time
steps of the generated motion clip and the ground truth, and uses the Kullback-Leibler (KL) diver-
gence to encourage the generated latent space to approach a target distribution:

Li = Lirec + λKLLiKL = ‖x̂iclip − xiclip‖2 + λKLDKL(N (µi,Σi)||p(z)), (3)

where we regularize the posterior to match a prior p(z) that is set as N (0, I). Diffusion processes
(which we show later) converge towards Gaussian distributions so modeling data to approximate this
distribution results in faster and more stable training. We also add λKL to control the strength of
regularization. The optimization problem for the model parameters can then be defined as following:

{(µ∗i ,Σ∗i )}i=1,2,··· ,n = arg min
µi,Σi

Li, θ∗ = arg min
θ

n∑
i=1

min
µi,Σi

Li, (4)
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where the first term represents the clip-wise parameters for each sequence, while the second term
represents the decoder parameters that are shared across the entire dataset, with multiple framerates.

Progressive training. At the beginning of multi-framerate training, we first train at a fixed framerate
to learn globally coherent motions, like conventional motion synthesis methods. The clip temporal
coordinate tv,s and the framerate s are unchanged. Due to the lower computational cost at this time,
we are able to train the model for an extended number of iterations associated with this setup. Sub-
sequently, we involves multiple framerates. As the model has already learned crucial representations
from fixed-framerate training, fewer iterations are required to achieve convergence.

3.2 CONDITIONAL MOTION LATENT DIFFUSION MODEL

Given a set of latent codes Z = {zi ∼ N (µ∗i ,Σ
∗
i )}ni=1 optimized in (4), we aim at learning De-

noising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) to capture the distribution p(Z)
in their latent space. In general, DDPMs with discrete timesteps have a fixed Markovian forward
process q(zk|zk−1) where q(z0) denotes the data distribution and q(zK) is defined to approximate
the standard normal distribution, where the subscript represents the time step. DDPMs then learn to
reverse the forward process pφ(zk−1|zk) with learnable parameters φ. We train our latents pφ(Z)
by learning to denoise zk to z0 for all timesteps k (Ho et al., 2020), which can be formulated as:

min
φ

Ek,z∼Z,ε∼N (0,I)
[
‖ε− εφ(

√
ᾱkz +

√
1− ᾱkε, k)‖2

]
, (5)

where k denotes the timestep sampled from a uniform distribution, ᾱk denotes a noise magnitude
parameter with a fixed scheduling, ε ∈ N (0, I) is the noise, and εφ denotes the learned denoising
model. We build a transformer-based denoising model with long skip connections for εφ, whose
superiority has already been proved by time series data (Bao et al., 2023).

Flexible conditions. Our diffusion model in latent space also supports conditional motion genera-
tion by capturing distribution of p(Z|C), such as text and action. Given paired data {z ∈ Z, c ∈ C},
only the denoising model εφ need to be augmented with a conditioning variable c to form εφ(z, k, c),
sharing a common motion variational INRs. To address various c, the domain encoder is employed
for condition embedding, e.g., we employ the frozen text encoder of CLIP (Radford et al., 2021) to
map text prompt, and build the learnable embedding (Petrovich et al., 2021) for each action category.
We incorporate these embedded conditions into a transformer-based εφ by concatenation.

Sampling. At the inference time, we start by sampling zK ∼ N (0, I) and iteratively apply εφ
to denoise zK . We also perform classifier-free guidance (Ho & Salimans, 2022) with conditional
variable c to increase diversity and prevent overfitting. In practice, we use a zero-mask instead of
the condition with a certain probability at each training iteration. When sampling, we have:

εφ(zk, k, c) = rεφ(zk, k, c) + (1− r)εθ(zk, k, ∅), (6)

where r is the guidance scale. After reversing the diffusion Markov Chain to obtain z0, we feed it
as input to the variational INR decoder fθ and reconstructs plausible human motions.

4 EXPERIMENTS

We evaluate NeRM on tasks of: (1) text-to-motion, (2) action-to-motion and (3) unconditional mo-
tion generation. We provide dataset introduction, evaluation metrics, results and visualizations. We
present a new motion quality metric clip-FID that measures FID over varied-framerate motions,
and quantifies the performance of our distinctive high-framerate property. More qualitative results,
ablation studies and implementation details are in Appendix.

4.1 TEXT-TO-MOTION

Datasets. Given free-form texts, we conduct text-to-motion experiments on KIT Motion-Language
dataset (Plappert et al., 2016) and HumanML3D (Guo et al., 2022). (1) The former one is composed
of 3,911 human motion sequences with 6,353 free-form texts as descriptions. Usually, prior works
(Tevet et al., 2023) downsample the 100 fps motion data into 12.5 fps for training and testing; we,
however, maintain its original framerate. (2) The latter one is a recently proposed dataset that inte-
grates AMASS (Mahmood et al., 2019) and HumanAct12 (Guo et al., 2020) to form 14,616 motion
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Table 1: Results of conventional text-to-motion synthesis on HumanML3D and KIT dataset. All
methods use the real motion length from the ground truth for guidance. The right arrow→ means
results are better when closer to that of real motion. - means unavailable results. Bold indicates best
results; underline indicates second best; ± indicates 95% confidence interval.

Method
HumanML3D (Guo et al., 2022) KIT (Plappert et al., 2016)

FID ↓ R-Precision
(Top-3) ↑

Multimodal
Dist ↓

Diversity→ MM ↑ FID ↓ R-Precision
(Top-3) ↑

Multimodal
Dist ↓

Diversity→ MM ↑

Real 0.002±.000 0.797±.002 2.974±.008 9.503±.065 - 0.031±.004 0.779±.006 2.788±.012 11.08±.097 -

JL2P (Ahuja & Morency, 2019) 11.02±.046 0.486±.002 5.296±.008 7.676±.058 - 6.545±.072 0.483±.005 5.147±.030 9.073±.100 -
Hier (Ghosh et al., 2021) 6.532±.024 0.552±.004 5.012±.018 8.332±.042 - 5.203±.107 0.531±.007 4.986±.027 9.563±.072 -
T2M (Guo et al., 2022) 1.067±.002 0.740±.003 3.340±.008 9.188±.002 2.090±.083 2.770±.109 0.693±.007 3.401±.008 10.91±.119 1.482±.065

MoFusion (Dabral et al., 2023) - 0.492 - 8.82 2.521 - - - - -
MDM (Tevet et al., 2023) 0.544±.044 0.611±.007 5.566±.027 9.559±.086 2.799±.072 0.497±.021 0.396±.004 9.191±.022 10.85±.109 1.907±.214

PhysDiff (Yuan et al., 2023) 0.433 0.631 - - - - - - - -
MLD (Chen et al., 2023) 0.473±.013 0.772±.002 3.196±.010 9.724±.082 2.413±.079 0.404±.027 0.734±.007 3.204±.027 10.80±.117 2.192±.071

NeRM (fixed-framerate train) 0.489±.013 0.774±.003 3.186±.015 9.692±.082 2.330±.075 0.522±.029 0.727±.005 3.843±.027 10.90±.094 1.931±.133

NeRM (native-framerate train) 0.389±.011 0.779±.003 3.178±.016 9.547±.073 2.193±.081 0.472±.019 0.736±.007 3.189±.031 10.94±.114 1.785±.082

sequences with 44,970 textual annotations. It totally involves 19 sub-datasets, whose framerates
vary from 20 fps to 250 fps. Existing motion generative models downsample them into 20 fps, and
represent each frame by concatenating root velocities, joint positions, joint velocities, joint rotations
and foot contact binary labels. We keep this representation, but on their original framerates.

Evaluation metrics. Following Guo et al. (2022), we evaluate our model by calculating: (1) Frechet
Inception Distance (FID), the similarity between the distribution of generations and real motions;
(2) R-Precision and Multimodal-Dist, the degree to which the generated motions adhere to the given
texts; (3) Diversity, the variance within the generated distribution; (4) Multimodality (MM), the gen-
eration diversity within a single text prompt. In addition, the aforementioned metrics are designed
for evaluating global structure, but ignore the realism of details. We thus propose a new metric
dubbed (5) clip-FID to evaluate the quality of high-framerate generative details. It randomly ex-
tracts small clips from high-framerate real/generated motions, and calculates FID over ground truth
and generated motion clips, sampled at random center v and clip size m. As clip-FID preserves the
target framerates without downsampling, we find it more sensitive to local details, enabling a more
accurate assessment of artifacts such as foot sliding. Detailed introductions are in Appendix.

Conventional motion generation. We compare our NeRM to text-to-motion baselines JL2P (Ahuja
& Morency, 2019), Hier (Ghosh et al., 2021), T2M (Guo et al., 2022), and more recent motion
diffusion models MDM (Tevet et al., 2023), MoFusion (Dabral et al., 2023), PhysDiff (Yuan et al.,
2023), and MLD (Chen et al., 2023). In Table 1, we show our performance of 20 fps generation on
HumanML3D and 12.5 fps on KIT, which are aligned with the generations of existing baselines. Our
method outperforms these baselines in terms of FID, R-Precision, Multimodal Dist and Diversity on
both datasets, which proves that utilizing the native framerates of raw data is much beneficial for
generation. This advantage exactly stems from our capability of handling varied-framerate data that
other models are unable to process. It is worth mentioning that our method achieves better results on
HumanML3D dataset than on KIT dataset because the former one has more abundant motion data.

Notably, since NeRM is constructed with two stages (INR + diffusion), we draw our attention to
the comparison with MLD (Chen et al., 2023) that also generates motions with a two-stage (VAE +
diffusion) design. Our model outperforms MLD on both datasets. This is owing to the advantage of
continuous motion fields in INR-based framework, rather than explicitly modeling motion inputs.
Additionally, compared to transformer backbone in VAE decoder of MLD, NeRM achieves fast
inference speed due to its simple MLP decoder of INR, which can be found in Appendix.

Fairness discussion. To remove our superiority brought by raw training data, we also train NeRM
on pre-processed fixed-framerate datasets for fair comparison with baselines. From Table 1, NeRM
(fixed-framerate train) obtains comparable results to others, which can be attributed to our powerful
latent diffusion framework and codebook-enhanced representation. Also, it is significantly surpassed
by our native-framerate training, which further confirms the effectiveness of using raw data.

High-framerate motion generation. Results in Table 2 show our unique property of generating
high-quality motions at different high framerates. However, for baselines, they can neither undertake
the memory burden and sampling time brought by high-framerate motions, nor effectively train on
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Text: Person walks up then takes a large step to their left 
and then goes back onto the same path they were on.

The right foot should 
be on the ground to let 
the left foot move, not 

slide forwards.

The two feet slide to 
his/her right together, 
which is a typical kind 

of artifact.
The right foot correctly 

keep fixed on the ground 
when the left foot move.

The correct slow-motion is: first, 
his/her left foot stands still when the 
right foot is stretching to right; then, 

when the right foot nearly touches 
the ground, the left starts to lift.

Text: This person shuffles right then walks forward and circles back.

MLD Ours

0 50 100 150 ms 32 67 72 131

Any-time 
generation

Fixed-interval
generation

MLD Ours

Fail to take a big step.
Fail to back onto the 

original path. All correct.

(a) Conventional generation

(b) High-framerate details

(c) Generation at any time steps

Ours

MLD

Figure 4: (a) Generating 20 fps motion. The failure in MLD is removed by NeRM. (b) Generating
100 fps motion, where high-framerate details are highlighted with purple, pink, yellow and green
sequentially. NeRM directly generates them, showing delicate, realistic and reasonable movement
details; while MLD can only realize low-framerate generation, so we attach it with interpolation to
force it into high-framerate, which appears foot sliding artifacts. (c) Temporal sub-sampling: NeRM
can realize any-time generation, while current models (e.g. MLD) cannot.

varied-framerate raw data. Therefore, for fair comparison under high-framerate setting, we conduct
upsampling by spherical linear interpolation (Shoemake, 1985) on their low-framerate generations
towards the target framerate, and calculate the corresponding clip-FID values. NeRM yields much
better performance on all the target framerates, indicated by our clip-FID metric that can provide
special evaluation on generated high-framerate details.

Table 2: Evaluation of generated motions at different
framerate (fps) on HumanML3D dataset using clip-FID.

Method 20 40 60 100 120

T2M 1.067 2.831 6.442 9.182 11.264
MDM 0.544 1.882 4.605 5.966 8.401
MLD 0.473 1.465 3.816 5.138 7.878

NeRM 0.389 0.493 0.680 0.903 1.315

Visualizations. We further investigate
the ability of NeRM by the qualitative
analysis. Figure 4a illustrates the visu-
alizations of conventional 20 fps gener-
ation on a sample from HumanML3D
between MLD and ours. The failure
of MLD does not happen to our model,
which proves that our full usage of
raw data and continuous human motion
fields are effective for high-quality motion generation. To demonstrate the high-framerate genera-
tion ability of NeRM, we also exhibit their visualized comparison over high-framerate performances
in Figure 4b. We set the target framerate to 100 fps and amplify the details on human feet. We ob-
serve that our model yields smooth and natural generations, while the baseline can only generate
the fixed 20 fps and then conduct motion interpolation towards 100 fps. This operation will lead
to a typical kind of low-quality phenomenon, i.e., foot sliding, which results in incoherent and less
life-like human behaviors in high-performance devices. Remarkably, another unique property of
our NeRM is to enable the generation of a pose at specific time step directly without first generating
frames before, while maintaining the smoothness of the entire sequence. Existing state-of-the-art
text-to-motion methods have to sequentially generate the motion at fixed time intervals, which lim-
its their application to temporal sub-sampling. As shown in Figure 4c, NeRM is able to infer any
frame by sampling the temporal field t.

4.2 ACTION-TO-MOTION

Datasets & Metrics. Action-to-motion aims at generating relevant motion sequences given an input
action label. We experiment on UESTC (Ji et al., 2018) and HumanAct12 (Guo et al., 2020). The
former one is composed of 40 action classes with 25K samples, while the latter contains 12 classes
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Table 3: Quantitative results of action-to-motion synthesis on UESTC and HumanAct12 dataset.

Method
UESTC (Ji et al., 2018) HumanAct12 (Guo et al., 2020)

FIDtrain ↓ FIDtest ↓ Accuracy ↑ Diversity→ MM→ FIDtrain ↓ Accuracy ↑ Diversity→ MM→

Real 2.92±.26 2.79±.29 0.988±.001 33.34±.320 14.16±.06 0.020±.010 0.997±.001 6.850±.050 2.450±.040

ACTOR (Petrovich et al., 2021) 20.5±2.3 23.43±2.20 0.911±.003 31.96±.33 14.52±.09 0.120±.000 0.955±.008 6.840±.030 2.530±.020

MDM (Tevet et al., 2023) 9.98±1.33 12.81±1.46 0.950±.000 33.02±.28 14.26±.12 0.100±.000 0.990±.000 6.680±.050 2.520±.010

MLD (Chen et al., 2023) 12.89±.109 15.79±.079 0.954±.001 33.52±.14 13.57±.06 0.077±.004 0.964±.002 6.831±.050 2.824±.038

INR-MLP (Cervantes et al., 2022) 9.55±.06 15.00±.09 0.941±.001 31.59±.19 14.68±.07 0.114±.001 0.970±.001 6.786±.057 2.507±.034

NeRM (Ours) 11.75±.31 14.23±.174 0.956±.001 33.20±.21 14.41±.06 0.106±.000 0.977±.001 6.866±.032 2.492±.048

with 1,191 samples. As these two datasets do not provide high-framerate data, we remain their
original framerates during training, and evaluate NeRM using the set of metrics in (Guo et al.,
2020), including FID, Accuracy, Diversity and Multimodality. This task indicates that our NeRM
can accept other multi-modal signals as conditions.

Results. We compare our NeRM to baseline ACTOR (Petrovich et al., 2021), INR-MLP (Cervantes
et al., 2022), MDM (Tevet et al., 2023) and MLD (Chen et al., 2023), where ACTOR and MLD
are under transformer-based VAE setting; MDM and MLD under diffusion setting. As provided
by Tevet et al. (2023), we perform 20 evaluations, each consisting of 1000 samples, and present
the average along with a 95% confident interval. Quantitative comparison is reported in Table 3,
where NeRM achieves competitive results on both datasets. It is worth mentioning that INR-MLP
(Cervantes et al., 2022) is also built upon implicit neural representation and consist of MLP layers,
similar to ours. However, INR-MLP can only accomplish the action-conditioned generation task and
cannot apply to other tasks due to its specific design. Moreover, it focuses on variable-length motion
generation and does not consider arbitrary-framerate training sets and high-framerate generation.
NeRM outperforms INR-MLP in terms of Accuracy and Diversity, demonstrating the high capability
of latent diffusion model and the enhanced representation of codebook-coordinate attention.

4.3 UNCONDITIONAL GENERATION

Datasets & Metrics. Finally, we use part of AMASS (Mahmood et al., 2019) dataset to evaluate the
generations of NeRM. This dataset can be also regarded as the motion part of HumanML3D (Guo
et al., 2022), discarding its text part. We train on its native varied framerates, with FID, clip-FID
and Diversity for motion quality and diversity.

19.255

7.131 6.648

1.712

5.123
6.429

8.577
6.914

14.14

8.84

1.4 1.070

ACTOR MDM MLD NeRM

FID Diversity clip-FID

NeMF

2.07 2.77

Figure 5: Comparison of unconditional
motion generation on part of AMASS
dataset with state-of-the-art methods.

Results. We compare NeRM with baseline ACTOR
(Petrovich et al., 2021), MDM (Tevet et al., 2023), NeMF
He et al. (2022) and MLD (Chen et al., 2023). For AC-
TOR, we use the 6-layers transformer VAE from it, and
then follow TEMOS (Petrovich et al., 2022) to make it
class-agnostic, as suggested by MLD. The other three
methods naturally support this task. In Figure 5, we
show that NeRM achieves the best performance against
baselines over conventional generation in terms of mo-
tion quality, and competitive results in terms of diversity.
NeRM also outperforms INR-based method NeMF due to
flexible multi-framerate training and powerful generative ability of the diffusion model.

5 CONCLUSION

In this work, we present NeRM, a novel neural representation for human motions, which involves
learning a latent representation and then capturing its distribution with diffusion models. Our key
insight is that by directly learning a continuous motion field over temporal coordinates without
explicit modeling, we can train a neural network jointly on processed low-framerate motions to learn
global structure and on clips from the raw varied-framerate motions to learn details. This lifts the
fixed-framerate requirement of previous motion generative models that treat motions as consecutive
frame sequence and discard higher-frequency details. With such representation, we show that NeRM
can efficiently generate high-quality motions at high framerates with flexible conditions controlled.
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A OTHER RELATED WORK

Human Motion Synthesis. Human motion synthesis aims at generating natural motions consistent
with any signal that describes the motion, such as action category (Guo et al., 2020; Petrovich et al.,
2021), text (Guo et al., 2022; Tevet et al., 2023), music (Tseng et al., 2023; Alexanderson et al., 2023)
and historical pose sequences (Mao et al., 2019; Li et al., 2020). With these guidance, earlier works
(Ahuja & Morency, 2019; Ghosh et al., 2021) focus on learning a shared latent space for motion and
conditions deterministically, limiting one-to-one mapping from condition to motion. Some recent
works have put more emphasis on the promotion of diversity, and learned to model the distribution of
motions based on the development of deep generative models, like Variational AutoEncoders (VAEs)
(Kingma & Welling, 2013) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014).
BiHMP-GAN (Kundu et al., 2019), conditioned on a given starting sequence, uses the discriminator
of GANs to regress the random vector for multiple probable predictions. (Cai et al., 2021) presents
a VAE-based unified framework for generalized motion synthesis that covers motion prediction,
completion, interpolation and recovery. Wang et al. (2022) involves the modeling of human-scene
interaction, path planning and body movement, to implement motion generation in the given scene
environment with target action sequence. ACTOR (Petrovich et al., 2021) and TEMOS (Petrovich
et al., 2022) suggest employing a VAE to map action labels and texts into a variational distribution
with transformer structure (Vaswani et al., 2017), respectively.

However, all the aforementioned methods primarily focus on fixed-size motion modeling, and do
not take into consideration the aspect of motion framerate. As a result, higher-framerate details and
lower-framerate global structures in datasets are disregarded. Moreover, these methods are con-
strained to generating motions of fixed sizes. In contrast, our proposed method addresses these
limitations by incorporating available varied framerates into considerations and enabling the gener-
ation of motions at arbitrary framerates.

Motion Representation. Motion representation is very crucial for the subsequent synthesis task.
There existing several motion representation on different datasets, such as (1) the classical SMPL-
based motion parameters (Petrovich et al., 2021), (2) the redundant hand-crafted motion features
(Guo et al., 2022), and (3) straight-forward joint positions (Mao et al., 2019). We opt for the first
two representations in this paper. Particularly, The first one is widely used in motion capture, and the
second one is mainly used in character animation. Following (Tevet et al., 2023; Chen et al., 2023),
we employ the SPML parameters in action-to-motion task for a fair comparison, and redundant
hand-crafted features in text-to-motion and unconditional tasks.

B MORE DETAILS

B.1 IMPLEMENTATION

Our NeRM are decomposed into two stages, including INR and latent diffusion. For INR, the
hidden layer size is fixed to 1,024. We use the pre-trained codebook of (Zhang et al., 2023a), which
is trained by VQ-VAE (Van Den Oord et al., 2017) on the HumanML3D dataset. The codebook size
is set to 512 × 512. The number of learnable query embeddings of codebook-coordinate attention
is 256, and the dimension of each embedding is 128. We employ a frozen CLIP-ViT-L-14 model as
our text encoder for text descriptions, and a learnable embedding for action categories. The shape
of latent codes z is set to 256, which is then injected into condition by concatenation for diffusion
training and inference. Our models are trained with the AdamW optimizer using a fixed learning
rate of 10−4. Our batch size is set to 4,096 during the INR training stage and 64 during the diffusion
training stage separately. Since INR requires learning a latent code for each training sample, we
set its batch size large for efficient training. Besides, INR model was trained for 20,000 epochs
and diffusion model was trained for 3,000 epochs. The number of diffusion steps is 1,000 during
training while 50 during inference. The corresponding variances βk in diffusion are scaled linearly
from 8.5× 10−4 to 0.012. We train our models under Pytorch on NVIDIA GeForce RTX 3090.

B.2 AUTO-DECODING OF LATENT CODE

Unlike traditional auto-encoder whose latent code is produced by the encoder, we draw inspiration
from DeepSDF Park et al. (2019) in 3D shapes and use an auto-decoder to learn the latent code
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Figure 6: Detailed network architecture of Codebook-Coordinate Attention (CCA).

without an encoder. This encoder-less design avoids explicit modeling of raw motions, making
arbitrary-framerate training feasible. To construct distributions where one can sample a representa-
tion to generate a new high-quality motion, we gain insight from Variational Auto-Encoder (VAE)
that utilizes an encoder to infer a distribution from which representations of motions can be sam-
pled, and employs a decoder to reconstruct the data from the representation. As our design does
not contain an encoder, we model each motion by sampling from a learnable distribution with op-
timized parameters, i.e., mean µ and covariance Σ, leading to learnable parameters {µi,Σi}ni=1
for all training dataset. When training, we sample a latent representation zi from a distribution
N (µi,Σi). We then combine zi with temporal coordinate encodings γ(t), and input them into a
shared MLP decoder fθ. The parameters µi, Σi and θ are optimized simultaneously by minimizing
the reconstruction loss between the generated and ground truth.

B.3 SYNTHESIZING LONG SEQUENCES

Ideally, NeRM is possible to generate motions with arbitrary framerates s and durations l by setting
appropriate temporal coordinates. However, either significant increase of s or l requires significant
memory resources. Thus, we employ an iterative-synthesis approach to generate non-overlapping
motion clips and assemble them into longer motions. By leveraging clip-based multi-framerate
training conditioned on temporal coordinates, we learn continuous motion fields and ensure smooth
transitions between motion segments. Notably, the framerate range we support is still limited by
the original training data. The model is unlikely to learn motion patterns that exceed the highest
framerate present in the training data.

C DETAILS OF EVALUATION METRICS

C.1 EVALUATION METRICS

Frechet Inception Distance (FID). FID is widely used for overall generative quality evaluation.
FID is calculated by extracting features from 1,000 generated motions and real motions in test set.
Instead of the inception neural network in image domain, we extract a deep representation of the
motion with the evaluator network Guo et al. (2022), as suggested by Tevet et al. (2023).

R-Precision (Top-3). This metric is used for text-motion matching measurement. For each gen-
eration, its corresponding GT description and randomly selected 31 mismatched descriptions are
gathered in a pool. Then the Euclidean distance between the motion feature and each text feature in
the pool is calculated, where accuracy of Top 3 are picked. The GT description falling into the Top
3 candidates represents a successful retrieval.

MultiModality Dist. Like R-Precision, this metric also measures text-motion similarity. We calcu-
late the average Euclidean distance between the motion feature of each generation and text feature
of the corresponding description.

Diversity. Diversity measures generative variance across all motions. We randomly select mo-
tions from all generations, and put each of them in either of the two subsets {q1, . . . , qDa

} and
{q′1, . . . , q′Da

}, with the same size as Da = 300, where qi indicates a motion feature vector. Diver-
sity can be expressed as:

Diversity =
1

Da

Da∑
i=1

‖qi − q′i‖2. (7)
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Figure 7: Comparisons of conventional FID and our clip-FID. FID evaluates global structure, but
downsamples all human motions to a common 20fps which ignores high-framerate details. In con-
trast, clip-FID takes motion clips instead, thereby keeping the original framerates. We employ both
metrics to validate the effectiveness of our method.

Table 4: Mean reconstruction errors of MLD and NeRM for motion of different framerates.

Framerates (fps)
Method / Metric 20 40 60 100 120

MLD / MPJPE 0.027 0.062 0.113 0.184 0.228
NeRM / MPJPE 0.016 0.019 0.013 0.019 0.011

MLD / MRE 0.074 0.105 0.194 0.254 0.387
NeRM / MRE 0.041 0.036 0.034 0.035 0.038

MultiModality (MM). MM measures the generated motions diversify within each condition (text
or action). We randomly pick S text descriptions from all descriptions. Then the motions generated
by the s-th description are randomly picked and put into one of the two subsets: {qs,1, . . . , qs,De

}
or {q′s,1, . . . , q′s,De

}, with subset size De = 10. MultiModality can be expressed as:

MM =
1

S ×De

S∑
s=1

De∑
i=1

‖qs,i − q′s,i‖2. (8)

Accuracy. We employ the pre-trained action recognition model to classify 1,000 generate motions.
The obtained overall recognition accuracy demonstrates the correlation of the motion and its action
label.

C.2 MOTION CLIP-BASED FID (CLIP-FID).

All the metrics above are designed for low-framerate data, and unable to be trained on original
high-framerate data due to prohibitive memory requirements. Thus, we here present a new met-
ric clip-FID that is aimed at better capturing the realism of details at high framerate by avoiding
downsampling. As depicted in Figure 7, we show the comparison of standard FID and clip-FID,
where FID evaluates global structure (the coarse information of the entire motion is preserved),
but downsamples all human motions to a common 20fps, ignoring high-framerate details; clip-FID
takes motion clips extracted/cropped from motions (the detailed information of the motion clip is
preserved), keeping the original framerates. Note that we randomly sample clips (a short segment
of motion) of size m from real motions at framerate s and center v to generate the corresponding
clip. A lower value implies better high-framerate details.
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Table 5: Ablation study on effectiveness of time encoding.

Simple Codebook
Motion Reconstruction (MRE) Motion Synthesis (clip-FID)

20 40 60 100 120 20 40 60 100 120

7 7 0.134 0.141 0.164 0.094 0.091 0.471 0.803 1.070 1.769 2.944

3 7 0.053 0.049 0.039 0.057 0.043 0.397 0.519 0.701 0.142 1.717

7 3 0.041 0.036 0.034 0.035 0.038 0.389 0.493 0.680 0.903 1.315

Table 6: Ablation study on effectiveness of Variational INRs.

Variational INRs
Motion Reconstruction (MRE) Motion Synthesis (clip-FID)

20 40 60 100 120 20 40 60 100 120

7 0.032 0.030 0.031 0.036 0.027 1.280 2.924 7.012 10.482 14.654

3 0.041 0.036 0.034 0.035 0.038 0.389 0.493 0.680 0.903 1.315

D NETWORK ARCHITECTURE

Codebook-Coordinate Attention (CCA). Inspired by CoCo-NeRF (Yin et al., 2022), we apply
CCA modulation to enrich the Fourier features of each coordinate. The detailed architecture is illus-
trated in Figure 6. Specifically, we employ one cross-attention block to learn dependency between
learnable query embeddings Q = {qi}Mi=1 and codebook prototypes E = {ei}Ni=1. Then, the em-
beddings are fed into self-attention blocks with three layers to improve their feature representations
further and obtain the final motion-relevant prototypes Q̂. Finally, we conduct once cross-attention
operation between Q̂ and Fourier embeddings of each coordinate γ(t). All attention modules are
based on transformer (Vaswani et al., 2017) with 4 head Attention mechanism, Layer Normalization,
Feed-Forward Network and GELU activation.

MLP Decoder. Similar to other neural representations (Ashkenazi et al., 2023), the NeRM decoder
fθ is constructed using a simple neural network architecture. It consists of a 9-layer MLP with ReLU
activations and layer normalization. The hidden layer size remains constant across the network. We
also incorporate residual connections within each layer to improve gradient flow. In contrast to
previous approaches (Chen et al., 2023; Tevet et al., 2023) that rely on a transformer backbone, our
choice of a simple decoder offers benefits in terms of inference speed for generating new motions.

Latent Denoiser. Different from the UNet-based architecture (Ronneberger et al., 2015) in latent
diffusion model that designed for image synthesis, our latent denoiser εφ is built ViT backbone with
long skip connections (Bao et al., 2023), which is more appropriate for time series data.

E ADDITIONAL EXPERIMENTS

Our NeRM consists of an INR model fθ and a latent diffusion model εφ. We conduct additional
experiments to evaluate the effectiveness of each component, as well as reconstruction capability.
We also report time costs on inference and GPU memory on multi-framerate training dataset.

E.1 RECONSTRUCTION CAPABILITY

We first compare the reconstruction capability of MLD (Chen et al., 2023) and our NeRM with dif-
ferent framerates. Note that MLD learns latent representation via Variational AutoEncoder (VAE)
based on transformer encoder. We randomly select 100 different motion sequences with their orig-
inal framerate on HumanML3D dataset, and report the average reconstruction errors in Table 4.
Since MLD cannot process multi-framerate dataset, we use spherical linear interpolation to generate
higher-framerate motions for MLD. For evaluation metrics, we make use of the Mean Per Joint Posi-
tion Error (MPJPE) (Mao et al., 2019), commonly used for image-based 3D human pose estimation.
We also employ Mean Redundant Error (MRE) that measures the Euclidean distance between two
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Table 7: Ablation study on decoder architecture.

MLP Transformer
Motion Reconstruction (MRE) Motion Synthesis (clip-FID)

20 40 60 100 120 20 40 60 100 120

7 3 0.037 0.032 0.037 0.035 0.037 0.381 0.487 0.607 0.782 1.199

3 7 0.041 0.036 0.034 0.035 0.038 0.389 0.493 0.680 0.903 1.315

Table 8: Ablation study on the dimension d and weight parameter λKL of latent representation.

d 128 256 512
MRE@20fps 0.0459 0.0412 0.0407

λKL 1e-5 1e-4 1e-3
MRE@20fps 0.0410 0.0412 0.0459

poses represented by redundant hand-crafted features. From the results in Table 4, we find that our
NeRM with a simple MLP can achieve lower reconstruction error with 20 fps than MLD with com-
plicated transformer backbone. When the framerate increases, the performance of MLD deteriorates
significantly while NeRM still maintains very low reconstruction error.

E.2 ABLATION STUDY

In this section, we provide ablation studies on the HumanML3D dataset to evaluate the effectiveness
of network design.

Effectiveness of Time Encoding. Time encoding plays a critical role in the generalization. In
Table 5, we evaluate the influence of different encoding manners, including No Time Encoding,
Simple Time Encoding, and Codebook-Coordinate Encoding. Here, “Simple” means that we only
use Fourier features to encode t like traditional NeRF (Mildenhall et al., 2021); and “Codebook” is
our design of NeRM. From the table, we find that the model without time encoding achieves poor
performance in both terms of motion reconstruction and motion synthesis. This can be attributed to
“spectral bias” (Rahaman et al., 2019). In other words, INRs with simple MLP layers cannot learn
high-frequency variations from motion data. Our codebook-based representation reaches the best
performance, which confirms that the codebook is beneficial for feature representation of temporal
coordinates.

Effectiveness of Variational INRs. We investigate the influence of variational INR by comparing
a variational INR with a non-variational version. In this case, the latent code z of non-variational
INR is obtained by optimizing the following:

z∗i = arg min
zi

‖x̂iclip − xiclip‖2, for i = 1, 2, · · · , n (9)

where x̂iclip = fθ(tv,s, s). Comparison results are shown in Table 6. We observe that the reconstruc-
tion errors of non-variational INRs is smaller than variational ones, as non-variational INRs may
overfit the motion sequence by powerful neural network. However, the realism of non-variational
INRs is significantly improved by the variational ones. This suggests that the variational approach
strongly regularizes the latent space and enhances the capability of sampling new motions.

Decoder Architecture. Furthermore, we compare the performance of MLP-based and transformer-
based models. Table 7 shows that the self-attention mechanism can slightly improve the ability
of motion synthesis. However, the latent representation learned by diffusion model is fed to the
decoder of our variational INR, which implies that the complexity of the network greatly impacts
the generation speed of new motions. Therefore, we pick MLP layers as our decoder architecture.

Effectiveness of latent representation. The latent representation z is a crucial variable in our
NeRM. It acts as a bridge between the variational INR model fθ and the diffusion model εφ. In our
context, the quality of latent representation can be influenced by the dimension and the variational
distribution N (µ,Σ) of z. Therefore, we investigate the impact of different dimensions d of z and
weight λKL on the KL loss for motion reconstruction in Table 8. When the dimension d is set to
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Table 9: Ablation study on effectiveness of time normalization.

Time Normalization MRE@20fps FID Diversity
7 0.118 0.958 9.892

3 0.041 0.389 9.547
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Methods    Time        FID       clip-FID
T2M          0.052s     1.067      6.442
MDM        32.17s     0.544      4.605
MLD          0.366s     0.473      3.816
NeRM       0.295s     0.389      0.680

Figure 8: Average inference time (seconds) for generating one motion sequence. The circle size is
proportional to the value of clip-FID. Bigger circle indicates worse performance of high-framerate
details.

256, the motion reconstruction loss becomes significantly small, and higher dimension can slightly
improve the reconstruction ability. For λKL, a higher weight results in a smoother latent space but
increases the reconstruction error. We set λKL to a small value (i.e., 0.0001) like Chen et al. (2023).

Effectiveness of time normalization. In this section, we explore the effect of time normaliza-
tion. Table 9 shows the results on HumanML3D dataset with 20 fps. Notably, ‘7’ indicates that
we directly use the true temporal coordinates, i.e., {1, 2, · · · , T}, instead of normalized temporal
coordinates tv,s. From the table, we find that time normalization plays a vital role in time encoding
of implicit neural representation.

E.3 INFERENCE TIME

In Figure 8, we report average inference time on per sequence. As T2M (Guo et al., 2022) is built
under VAEs, it uses the least time for generation; but under diffusion setting, we are the most time-
saving. To be specific, due to the latent diffusion design, MLD (Chen et al., 2023) and our NeRM
are much faster than MDM (Tevet et al., 2023). We are even faster than MLD in that we use simple
MLP decoder of INR, rather than the transformer-based decoder in MLD. We yield the best FID
for best global motion quality, and significant superiority in clip-FID (the target framerate is set to
60 fps), indicated by the smallest circle size. All of these experiments are conducted on NVIDIA
GerForce RTX 3090.

E.4 MEMORY BURDEN

By padding zeros, current text-to-motion generative models are able to train motions with the same
framerate s (20 fps) and different duration 2 ≤ l ≤ 9.8 (seconds). When exploiting native framerates
of motions, one possible solution is to padding zeros according to the maximum framerates (250 fps).
However, this operation cannot capture accurate temporal dependency as fixed-framerate training.
Another problem is that the dimensionality of padded motions needs to be much larger than what
state-of-the-art diffusion models can be trained on. For example, MDM (Tevet et al., 2023) trains
the diffusion model on motions where the maximum number of poses is 196 (9.8s× 20fps), while
we use motions of maximum size 2450 (9.8s × 250fps). This imposes a substantial burden on
GPU memory. Alternatively, we approach it from the perspective of implicit neural representation,
which enables us to process clips (a short segment of motion) with size m (m � 2450), therein
significantly reducing the memory burden. In addition, we find a representative latent code for each
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A short fragment from the sequence generated by
Text: A man is walking forward slowly, and then stops.During walking, when the right foot is stepping, 

the left foot should fix on the ground, but here 
it appears to slide backwards.

MLD Ours

Correctly keep fixed.

Figure 9: High-framerate generation (120 fps). We visualize a short fragment from the whole gen-
eration, with purple, pink, yellow, green, and grey sequentially indicating high-framerate motion
changing. The entire generation can be found in our video.
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Figure 10: User study on HumanML3D dataset.

motion and learn the distribution in this low-dimensional latent space efficiently, which decouples
the modeling of the distribution from varied-size human motions.

E.5 VISUALIZATION

A video is contained in our supplement. We provide 120 fps generation on two more examples,
where our NeRM constantly outperforms MLD (Chen et al., 2023) in both terms of basic motion
quality and high-framerate quality. Note that, as MLD cannot directly generate high-framerate mo-
tions, we use SLERP to interpolate them towards the target framerate (120 fps). We also select
a short fragment from our video with full discussion shown in Figure 9. Additionally, for clearer
observation on artifacts of baseline, we slow down the video by 6 times, so the motions may appear
to be slower.

E.6 USER STUDY

Human eyes are the ultimate evaluation for human motion performance. We asked 17 people over
question (a) “Which of the two motions is more realistic” and (b) “Which of the two motions is
more consistent with the given texts”. In each two-motion pair, we provide one motion generated
by NeRM and the other by baselines MDM (Tevet et al., 2023), MLD (Chen et al., 2023) and GT
from HumanML3D. We randomly pick 8 cases for each question. We evaluate on conventional 20
fps generation and high-framerate generation (each of 120, 100, 60 and 40 fps has 2 cases). Shown
in Figure 10, our NeRM gains more preference than baselines, and even comparable to GT motions.
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F LIMITATIONS AND FUTURE WORK

Although our method has achieved promising performance for high-framerate motion synthesis, it
still has the following challenges. (1) While our method currently supports generation with external
conditions such as action labels or text prompts, it has limitations in incorporating fine-grained
internal conditions such as keyframes or trajectory. A promising direction for future research is
to design a more comprehensive framework (as exemplified by Karunratanakul et al. (2023); Zhang
et al. (2023b)) that can simultaneously consider both external and internal conditions. By integrating
these factors, we can achieve more precise and nuanced motion generation. (2) The quality of motion
generated using INRs is highly dependent on the dataset. If the dataset lacks high-framerate data,
the performance of generating high-framerate motions may not be optimal. Additionally, the model
is unlikely to learn motion patterns that exceed the highest framerate present in the training data.
(3) While our method demonstrates fast inference time, the training process can be relatively slow,
particularly when dealing with the dataset containing numerous samples. This is because our method
learns a latent code for each training sample. (4) Our method is designed for motion modeling and
can not adapt to outputs with varying body shapes. Some recent works Mihajlovic et al. (2022) have
employed INRs to model skinned articulated objects with specific poses. It would be interesting to
explore the integration of our method with them.
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