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ABSTRACT

Over the past years, deep generative models have achieved a new level of perfor-
mance. Generated data has become difficult, if not impossible, to be distinguished
from real data. While there are plenty of use cases that benefit from this technology,
there are also strong concerns on how this new technology can be misused to
generate deep fakes and enable misinformation at scale. Unfortunately, current
deep fake detection methods are not sustainable, as the gap between real and fake
continues to close. In contrast, our work enables a responsible disclosure of such
state-of-the-art generative models, that allows model inventors to fingerprint their
models, so that the generated samples containing a fingerprint can be accurately
detected and attributed to a source. Our technique achieves this by an efficient and
scalable ad-hoc generation of a large population of models with distinct fingerprints.
Our recommended operation point uses a 128-bit fingerprint which in principle
results in more than 1038 identifiable models. Experiments show that our method
fulfills key properties of a fingerprinting mechanism and achieves effectiveness in
deep fake detection and attribution. Code and models are available at GitHub.

1 INTRODUCTION

Over the recent seven years, deep generative models have demonstrated stunning performance in
generating photorealistic images, considerably boosted by the revolutionary technique of generative
adversarial networks (GANs) (Goodfellow et al., 2014; Radford et al., 2016; Gulrajani et al., 2017;
Miyato et al., 2018; Brock et al., 2018; Karras et al., 2018; 2019; 2020).

However, with the closing margins between real and fake, a flood of strong concerns arise (Harris,
2018; Chesney & Citron, 2019; Brundage et al., 2018): how if these models are misused to spoof
sensors, generate deep fakes, and enable misinformation at scale? Not only human beings have
difficulties in distinguishing deep fakes, but dedicated research efforts on deep fake detection (Durall
et al., 2019; Zhang et al., 2019; Frank et al., 2020; Zhang et al., 2020) and attribution (Marra et al.,
2019; Yu et al., 2019; Wang et al., 2020) are also unable to sustain longer against the evolution of
generative models. For example, researchers delve into details on how deep fake detection works,
and learn to improve generation that better fits the detection criteria (Zhang et al., 2020; Durall et al.,
2020). In principle, any successful detector can play an auxiliary role in augmenting the discriminator
in the next iteration of GAN techniques, and consequently results in an even stronger generator.

The dark side of deep generative models delays its industrialization process. For example, when
commercializing the GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020) models, OpenAI
leans conservative to open-source their models but rather only release the black-box APIs1. They
involve expensive human labor in the loop to review user downloads and monitor the usage of their
APIs. Yet still, it is a challenging and industry-wide task on how to trace the responsibility of the
downstream use cases in an open end.

To pioneer in this task, we propose a model fingerprinting mechanism that enables responsible
release and regulation of generative models. In particular, we allow responsible model inventors to
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fingerprint their generators and disclose their responsibilities. As a result, the generated samples
contain fingerprints that can be accurately detected and attributed to their sources. This is achieved by
an efficient and scalable ad-hoc generation of a large population of generator instances with distinct
fingerprints. See Figure 1 Middle.
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Figure 1: The diagram of our fingerprinting mechanism for
generators. See main text for descriptions.

Similar in the spirit of the dynamic
filter networks (Jia et al., 2016)
and style-based generator architec-
tures (Karras et al., 2019; 2020) where
their network filters are not freely
learned but conditioned on an input,
we learn to parameterize a unique fin-
gerprint into the filters of each genera-
tor instance. The core gist is to incor-
porate a fingerprint auto-encoder into
a GAN framework while preserving
the original generation performance.
See Figure 1 Left. In particular, given
a GAN backbone, we use the fingerprint embedding from the encoder to modulate each convolutional
filter of the generator (Figure 2(b)), and try to decode this fingerprint from the generated images. We
jointly train the fingerprint auto-encoder and GAN with our fingerprint related losses and the original
adversarial loss. See Figure 2(a) for the diagram, and 3 for details.

After training, the responsible model inventor is capable of efficiently fingerprinting and releasing
different generator instances to different user downloads, which are equipped with the same generation
performance but with different fingerprints. Each user download corresponds to a unique fingerprint,
which is maintained by the inventor’s database. As a result, when misuse of a model happens, the
model inventor can use the decoder to detect the fingerprint from the generated images, match it in
the database, and then trace the responsibility of the user. See Figure 1 Right. Based on this form of
responsible disclosure, responsible model inventors, like OpenAI, have a way to mitigate adverse
side effects on society when releasing their powerful models, while at the same time should have an
automatic way to attribute misuses.

There are several key properties of our mechanism. The efficiency to instantiate a generator is
inherently satisfied because, after training, the fingerprint encoding and filter modulation run with little
overhead. We evaluate the effectiveness of our fingerprinting and obtain almost perfect fingerprint
detection accuracy. We also justify the fidelity with a negligible side effect on the original generation
quality. See Section 4.1. Our recommended operation point uses a 128-bit fingerprint (Section 4.2)
which in principle results in a capacity of more than 1038 identifiable generator instances. The
scalability benefits from the fact that fingerprints are randomly sampled on the fly during training
so that fingerprint detection generalizes well for the entire fingerprint space. See Section 4.3 for
validation. In addition, we validate in Section 4.4 the secrecy of presence and value of our fingerprints
against shadow model attacks. We validate in Section 4.5 the robustness and immunizability against
perturbation on generated images.

To target the initial motivation, we move the deep fake detection and attribution solutions from passive
detectors to proactive fingerprinting. We show in Section 4.6 saturated performance and advantages
over two state-of-the-art discriminative methods (Yu et al., 2019; Wang et al., 2020) especially in the
open world. This is because, conditioned on user-specific fingerprint inputs, the presence of such
fingerprints in generated images guarantees the margin between real and fake, and facilitates the
attribution and responsibility tracing of deep fakes to their sources.

Our contributions are in four thrusts: (1) We enhance the concept of fingerprinting for generative
models that enables a responsible disclosure of state-of-the-art GAN models. (2) We pioneer in
the novel direction for efficient and scalable GAN fingerprinting mechanism, i.e., only one generic
GAN model is trained while more than 1038 fingerprinted generator instances can be obtained with
little overhead during deployment. (3) We also justify several key properties of our fingerprinting,
including effectiveness, fidelity, large capacity, scalability, secrecy, robustness, and immunizability.
(4) Finally, for the deep fake detection and attribution tasks, we move the solution from passive
classifiers to proactive fingerprinting, and validate its saturated performance and advantages. It makes
our responsible disclosure independent of the evolution of GAN techniques.
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2 RELATED WORK

Deep fake detection and attribution. These tasks come along with the increasing concerns on deep
fake misuse (Harris, 2018; Chesney & Citron, 2019; Brundage et al., 2018). Deep fake detection is a
binary classification problem to distinguish fake samples from real ones, while attribution further
traces their sources. The findings of visually imperceptible but machine-distinguishable patterns
in GAN-generated images make these tasks viable by noise pattern matching (Marra et al., 2019),
deep classifiers (Afchar et al., 2018; Hsu et al., 2018; Yu et al., 2019), or deep Recurrent Neural
Networks (Güera & Delp, 2018). (Zhang et al., 2019; Durall et al., 2019; 2020; Liu et al., 2020)
observe that mismatches between real and fake in frequency domain or in texture representation can
facilitate deep fake detection. (Wang et al., 2020; Girish et al., 2021) follow up with generalization
across different GAN techniques towards open world. Beyond attribution, (Albright & McCloskey,
2019; Asnani et al., 2021) even reverse the engineering to predict in the hyper-parameter space of
potential generator sources.

However, these passive detection methods heavily rely on the inherent clues in deep fakes. Therefore,
they can barely sustain a long time against the adversarial iterations of GAN techniques. For example,
(Durall et al., 2020) improves generation realism by closing the gap in generated high-frequency
components. To handle this situation, artificial fingerprinting is proposed in (Yu et al., 2021) to
proactively embed clues into generative models by rooting fingerprints into training data. This
makes deep fake detection independent of GAN evolution. Yet, as indirect fingerprinting, (Yu et al.,
2021) cannot scale up to a large number of fingerprints because they have to pre-process training
data for each individual fingerprint and re-train a generator with each fingerprint. Our method is
similar in spirit to (Yu et al., 2021), but possesses fundamental advantages by directly and efficiently
fingerprinting generative models: after training one generic fingerprinting model, we can instantiate a
large number of generators ad-hoc with different fingerprints.

Image steganography and watermarking. Steganography targets to manipulate carrier images in a
hidden manner such that the communication through the images can only be understood by the sender
and the intended recipient (Fridrich, 2009). Traditional methods rely on Fourier transform (Cox
et al., 2002; Cayre et al., 2005), JPEG compression23, or least significant bits modification (Pevnỳ
et al., 2010; Holub et al., 2014). Recent works utilize deep neural encoder and decoder to hide
information (Baluja, 2017; Tancik et al., 2020; Luo et al., 2020). Watermarking targets to embed
ownership information into carrier images such that the owner’s identity and authenticity can be
verified. It belongs to a form of steganography that sometimes interacts with physical images (Tancik
et al., 2020). Existing methods rely on log-polar frequency domain (Pereira & Pun, 2000; Kang
et al., 2010), printer-camera transform (Solanki et al., 2006; Pramila et al., 2018), or display-camera
transform (Yuan et al., 2013; Fang et al., 2018). Recent works also use deep neural networks to detect
when an image has been re-imaged (Fan et al., 2018; Tancik et al., 2020). The concept and function of
our fingerprinting solution is similar in spirit of watermarking, but differs fundamentally. In particular,
we did not retouch individual images. Rather, our solution is the first to retouch generator parameters
so as to encode information into the model.

Network watermarking. Network watermarking techniques (Uchida et al., 2017; Adi et al., 2018;
Zhang et al., 2018; Chen et al., 2019; Rouhani et al., 2019; Ong et al., 2021; Yu et al., 2021) embed
watermarks into network parameters rather than pixels while not deteriorating the original utility. Our
solution shares motivations with them but substantially differs in terms of concepts, motivations, and
techniques. For concepts, most existing works are applicable to only image classification models,
only (Ong et al., 2021; Yu et al., 2021) work for generative models but suffer from poor efficiency
and scalability. For motivations, the existing works target to fingerprint a single model, while we are
motivated by the limitation of (Ong et al., 2021; Yu et al., 2021) to scale up the fingerprinting to as
many as 1038 various generator instances within one-time training. For techniques, most existing
works embed fingerprints in the input-output behaviors (Adi et al., 2018; Zhang et al., 2018; Ong
et al., 2021), while our solution gets rid of such trigger input for improved scalability.

2http://www.outguess.org/
3http://steghide.sourceforge.net
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c ⇠ Ber(0.5)dc

<latexit sha1_base64="e0OJ500JVg2rfi4kXlnhs+vVzEE="></latexit>

W 2 R3⇥3⇥dl
<latexit sha1_base64="VwssCfVDuLC5HB6W5OeMgWaDwCA="></latexit>fW 2 R3⇥3⇥dl

(b) Modulated convolutional layer.

Figure 2: The diagrams of our fingerprinting pipeline and the modulated convolutional layer.

3 GAN FINGERPRINTING NETWORKS

Throughout the paper, we stand for the responsible model inventor’s perspective, which is regarded
as the regulation hub of our experiments. None of the encoder, decoder, and training data should be
accessible to the public. Only fingerprinted generator instances are released to the open end.

We list symbol notations at the beginning. We use latent code z ∼ N (0, Idz ) to control generated
contents. We set dz = 512. We represent fingerprint c ∼ Ber(0.5)dc as a sequence of bits. It
follows Bernoulli distribution with probability 0.5. We non-trivially choose the fingerprint length dc
in Section 4.2. We denote encoder E mapping c to its embedding, generator G mapping (z, E(c))
to the image domain, discriminator D mapping an image x ∼ pdata to the real/fake classification
probability, and decoder F mapping an image to the decoded latent code and fingerprint (ẑ, ĉ). In
the following formulations, we denote G(z, E(c)) as G(z, c) for brevity.

3.1 PIPELINE

We consider three goals in our training. First, we preserve the original functionality of GANs to
generate realistic images, as close to real distribution as possible. We use the unsaturated logistic loss
as in (Goodfellow et al., 2014; Karras et al., 2019; 2020) for real/fake binary classification:

Ladv = E
x∼pdata

logD(x) + E
z∼N (0,Idz )

c∼Ber(0.5)dc

log
(
1−D

(
G(z, c)

))
(1)

In addition, similar to (Srivastava et al., 2017), we reconstruct the latent code through the decoder
F to augment generation diversity and mitigate the mode collapse issue of GANs (Srivastava et al.,
2017; Li & Malik, 2018; Yu et al., 2020).

Lz = E
z∼N (0,Idz )

c∼Ber(0.5)dc

dz∑

k=1

(
zk − F

(
G(z, c)

)
k

)2

(2)

where we use the first dz output elements of F that correspond to the decoded latent code.

The second goal is to reconstruct the fingerprint so as to allow fingerprint detection.

Lc = E
z∼N (0,Idz )

c∼Ber(0.5)dc

dc∑

k=1

[
ck log σ

(
F
(
G(z, c)

)
dz+k

)
+(1−ck) log

(
1−σ

(
F
(
G(z, c)

)
dz+k

))]
(3)

where we use the last dc output elements of F as the decoded fingerprint. σ(·) denotes the sigmoid
function that differentiably clips the output to the range of [0, 1]. The reconstruction is therefore a
combination of cross-entropy binary classification for each bit.

It is worth noting that we use one decoder to decode both the latent code and fingerprint, which
benefits explicit disentanglement between their representations as discussed below.

The third goal is to disentangle the representation between latent code and fingerprint. Desirably,
latent code should have exclusive control over the generated content. This sticks to the original
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generation functionality. Therefore, two images with different fingerprints but with identical latent
code should have a consistent appearance. We formulate the consistency loss as:

Lconst = E
z∼N (0,Idz )

c1,c2∼Ber(0.5)dc

∥G(z, c1)−G(z, c2)∥22 (4)

The disentangled effect is demonstrated in Figure 3 and Appendix Figure 6.

Our final training objective is as follows. We optimize it under the adversarial training framework
w.r.t. E, G, F , and D.

min
E,F,G

max
D

λ1Ladv + λ2Lz + λ3Lc + λ4Lconst (5)

where λ1 = 1.0, λ2 = 1.0, λ3 = 2.0, and λ4 = 2.0 are hyper-parameters to balance the magnitude of
each loss term, Each loss contributes to a property of our solution. The weight settings are empirically
not sensitive within its magnitude level. See Figure 2(a) for the diagram.

3.2 FINGERPRINT MODULATION

At the architectural level, it is non-trivial how to embed E(c) into G. The gist is to embed fingerprints
into the generator parameters rather than generator input, so that after training a generic model we
can instantiate a large population of generators with different fingerprints. This is critical to make our
fingerprinting efficient and scalable, as validated in Section 4.3. We then deploy only the fingerprinted
generator instances to user downloads, not including the encoder.

We achieve this by modulating convolutional filters in the generator backbone with our fingerprint
embedding, similar in spirit of (Karras et al., 2020). Given a convolutional kernel W ∈ R3×3×dl at
layer l, we first project the fingerprint embedding E(c) through an affine transformation ϕl such that
ϕl(E(c)) ∈ Rdl . The transformation is implemented as a fully-connect neural layer with learnable
parameters. We then scale each channel of W with the corresponding value in ϕl. In specific,

W̃i,j,k = ϕl

(
E(c)

)
k
·Wi,j,k, ∀i, j, k (6)

See Figure 2(b) for a diagram illustration. We compare to the other fingerprint embedding archi-
tectures in Section 4.1 and validate the advantages of this one. We conduct modulation for all the
convolutional filters at layer l with the same fingerprint embedding. And we investigate in Appendix
Section A.2 at which layer to modulate we can achieve the optimal performance. A desirable trade-off
is to modulate all convolutional layers.

Note that, during training, latent code z and fingerprint c are jointly sampled. Yet for deployment,
the model inventor first samples a fingerprint c0, then modulates the generator G with c0, and then
deploys only the modulated generator G(·, c0) to a user. For that user there allows only one input, i.e.
the latent code, to the modulated generator. Once a misuse happens, the inventor uses the decoder to
decode the fingerprint and attribute it to the user, so as to achieve responsible disclosure.

4 EXPERIMENTS

Datasets. We conduct experiments on CelebA face dataset (Liu et al., 2015), LSUN Bedroom and
Cat datasets (Yu et al., 2015). LSUN Cat is the most challenging one reported in StyleGAN2 (Karras
et al., 2020). We train/evaluate on 30k/30k CelebA, 30k/30k LSUN Bedroom at the size of 128×128,
and 50k/50k LSUN Cat at the size of 256×256.

GAN backbone. We build upon the most recent state-of-the-art StyleGAN2 (Karras et al., 2020)
config E. This aligns to the settings in (Yu et al., 2021) and facilitates our direct comparisons. See
Appendix for the implementation details.

4.1 EFFECTIVENESS AND FIDELITY

Evaluation. The effectiveness indicates that the input fingerprints consistently appear in the generated
images and can be accurately detected by the decoder. This is measured by fingerprint detection
bitwise accuracy over 30k random samples (with random latent codes and random fingerprint codes).
We use 128 bits to represent a fingerprint. This is a non-trivial setting as analyzed in Section 4.2.

In addition, bit matching may happen by chance. Following (Yu et al., 2021), we perform a null
hypothesis test to evaluate the chance, the lower the more desirable. Given the number of matching
bits k between the decoded fingerprint and its encoded ground truth, the null hypothesis H0 is getting
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CelebA LSUN Bedroom LSUN Cat
Method Bit acc ⇑ p-value ⇓ FID ⇓ Bit acc ⇑ p-value ⇓ FID ⇓ Bit acc ⇑ p-value ⇓ FID ⇓
StyleGAN2 - - 9.37 - - 19.24 - - 31.01
outguess 0.533 0.268 10.02 0.526 0.329 20.15 0.523 0.329 32.30
steghide 0.535 0.268 9.48 0.530 0.268 19.77 0.541 0.213 31.67
(Yu et al., 2021) 0.989 < 10−36 14.13 0.983 < 10−34 21.31 0.990 < 10−36 32.60

Ours 0.991 < 10−36 11.50 0.993 < 10−36 20.50 0.996 < 10−36 33.94
Ours Variant I 0.999 < 10−38 12.98 0.999 < 10−38 20.68 0.500 0.535 34.23
Ours Variant II 0.987 < 10−36 13.86 0.927 < 10−25 21.70 0.869 < 10−17 34.33
Ours Variant III 0.990 < 10−36 22.59 0.896 < 10−21 64.91 0.901 < 10−23 51.74

Table 1: Fingerprint detection in bitwise accuracy with p-value to accept the null hypothesis test, and
generation fidelity in FID. ⇑/⇓ indicates a higher/lower value is more desirable. The baseline results
are directly copied from (Yu et al., 2021).

this number of matching bits by chance. It is calculated as Pr(X > k|H0) =
∑dc

i=k

(
dc

i

)
0.5dc ,

according to the binomial probability distribution with dc trials, where dc is the fingerprint bit length.
p-value should be lower than 0.05 to reject the null hypothesis.

The fidelity reflects how imperceptibly the original generation is affected by fingerprinting. It also
helps avoid one’s suspect of the presence of fingerprints which may attract adversarial fingerprint
removal. We report Fréchet Inception Distance (FID) (Heusel et al., 2017) between 30k generated
images and 30k real testing images. A lower value indicates the generated images are more realistic.

Baselines. We compare seven baseline methods. The first baseline is the StyleGAN2 (Karras et al.,
2020) backbone. It provides the upper bound of fidelity while has no fingerprinting functionality.

The second baseline is (Yu et al., 2021) which is the other proactive but indirect fingerprinting method
for GANs. Another two baselines, outguess4 and steghide5, are similar to (Yu et al., 2021). They
just replace the deep image fingerprinting auto-encoder in (Yu et al., 2021) with traditional JPEG-
compression-based image watermarking techniques, and still suffer from low efficiency/scalability.

We also compare our mechanism to three architectural variants. The motivation of these variants is to
incorporate fingerprints in different manners. Variant I: modulating convolutional filters with only
latent code embedding, while instead feeding the fingerprint code through the input of the generator.
This is to test the necessity of fingerprint modulation. Variant II: modulating filters twice, with latent
code embedding and fingerprint code embedding separately. Variant III: modulating filters with the
embedding from the concatenation of latent code and fingerprint code.

Results. From Table 1, we find that:

(1) The two traditional image watermarking methods, outguess and steghide, fail to deliver fingerprints
in generated images, indicated by the random guess (∼ 0.5) detection accuracy. We attribute this to
the representation gap between deep generative models and shallow watermarking techniques.

(2) On CelebA, all the other methods achieve almost perfect fingerprint detection accuracy with
p-value close to zero. This is because CelebA is a landmark-aligned dataset with limited diversity.
Fingerprinting synergizes well with generation regardless of model configuration.

(3) On LSUN Bedroom and Cat, only (Yu et al., 2021) and our optimal model obtain saturated
fingerprint detection accuracy. Ours Variant I, II, and III do not always achieve saturated performance.
Especially Ours Variant I fails on LSUN Cat. We reason that filter modulation is a strong formulation
for reconstruction. Modulating fingerprints is necessary for their detection while modulating latent
code along with fingerprint code distracts fingerprint reconstruction.

(4) Our method has comparable performance to (Yu et al., 2021), plus substantial advantages in
practice: during deployment, we can fingerprint a generator instance in 5 seconds, in contrast to (Yu
et al., 2021) that has to retrain a generator instance in 3-5 days. This is a 50000× gain of efficiency.

(5) Our method results in negligible ≤2.93 FID degradation. This is a worthy trade-off to introduce
the fingerprinting function.

4http://www.outguess.org/
5http://steghide.sourceforge.net
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Figure 3: Fidelity and dis-
entangled control on CelebA:
generated samples from five
generator instances. For each
row, we use a unique finger-
print to instantiate a generator.
For each column, we feed in
the same latent code to the gen-
erator instances. More sam-
ples are in Appendix Figure 6.

(6) We show in Figure 3 and Appendix Figure 6 uncurated generated
samples from several generator instances. Image qualities are high.
Fingerprints are imperceptible. Thanks to the consistency loss Lconst
in Eq. 4, different generator instances can generate identical images
given the same latent code. Their fingerprints are clued only in the
non-salient background and distinguishable by our decoder.

4.2 CAPACITY

The capacity indicates the number of unique fingerprints our mech-
anism can accommodate without crosstalk between two fingerprints.
This is determined by dc, fingerprint bit length, and by our detection
accuracy (according to Section 4.1). The choice of fingerprint bit
length is however non-trivial. A longer length can accommodate
more fingerprints but is more challenging to reconstruct/detect.

To figure out the optimal fingerprint bit length, we conduct the
following experiments. On one hand, given one length, we evaluate
our detection accuracy. On the other hand, we estimate the bottom-
line requirement for detection accuracy. This is simulated as the
maximal percentage of bit overlap among a large bag (1 million) of
fingerprint samples. The gap between the detection accuracy and
bottom-line requirement should be the larger the better.

Figure 4: Capacity: finger-
print detection bitwise accu-
racy and its bottom line re-
quirement w.r.t. fingerprint bit
length on CelebA.

In Figure 4, we vary the fingerprint bit length in the options of
{32, 64, 128, 256, 512}, and plot the bitwise detection accuracy in
red and the bottom line requirement in blue. We find:

(1) The bottom line requirement is monotonically decreasing w.r.t.
the bit length of fingerprint because a larger bit length leads to less
heavy fingerprint overlaps.

(2) The testing accuracy is also monotonically decreasing w.r.t. the
bit length of fingerprints. This is due to the challenge of fingerprint
reconstruction/detection.

(3) The testing accuracy is empirically decreasing more slowly at
the beginning and then faster than its bottom-line requirement. We,
therefore, pick the bit length 128 as the optimal choice for the
maximal gap. We stick to this for all our experiments.

(4) Considering our detection bitwise accuracy ≥0.991 and our fingerprint bit length as 128, we derive
in principle our mechanism can hold a large capacity of 2128×0.991 ≈ 1038 identifiable fingerprints.

4.3 SCALABILITY

Fingerprint set size Training acc ⇑ Testing acc ⇑
10 1.000 0.512
100 1.000 0.537
1k 1.000 0.752
10k 0.990 0.988
100k 0.983 0.981
Sampling on the fly 0.991 0.991

Table 2: Scalability: fingerprint detection in
bitwise accuracy w.r.t. set size on CelebA. ⇑
indicates a higher value is more desirable.

Scalability is one of the advantageous properties of
our mechanism: during training, we can efficiently
instantiate a large capacity of generators with arbi-
trary fingerprints on the fly, so that fingerprint detec-
tion generalizes well during testing. To validate this,
we compare to the baselines where we intentionally
downgrade our method with access to only a finite
set of fingerprints. These baselines stand for the cate-
gory of non-scalable fingerprinting methods that have
to re-train a generator instance for each fingerprint,
e.g. (Yu et al., 2021). We cannot directly compare
to (Yu et al., 2021) because it is impractical (time-consuming) to instantiate a large number of their
generators for analysis. As a workaround, we trained our detector using ≤1k real samples to simulate
the non-scalable nature of the baseline.

From Table 2 we show that fingerprint detection fails to generalize unless we can instantiate generators
with 10k or more fingerprint samples. This indicates the necessity to equip GANs with an efficient
and scalable fingerprinting mechanism, preferably the one on the fly.
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4.4 SECRECY

The presence and value of a fingerprint should not be easily spotted by a third party, otherwise it
would be potentially removed. In fact, secrecy of our fingerprints is another advantageous property,
because our fingerprint encoder, different from image steganography or watermarking, does not
directly retouch generated images. As a result, traditional secrecy attack protocols, e.g. Artificial
Training Sets (ATS) attack used in (Lerch-Hostalot & Megı́as, 2016; Yu et al., 2021), is not applicable.

Instead, we employ the shadow-model-based attack (Salem et al., 2020) to try detecting the presence
and value of a fingerprint from generated images. We assume the attacker can access the model
inventor’s training data, fingerprint space, and training mechanism. He re-trains his own shadow
fingerprint auto-encoder. For the fingerprint presence attack, on CelebA dataset, the attacker trains
a ResNet-18-based (He et al., 2016) binary classifier to distinguish 10k non-fingerprinted images
(5k real plus 5k generated) against 10k generated images from his fingerprinted generators. We
find near-saturated 0.981 training accuracy. Then he applies the classifier to 1k inventor’s generated
images. As a result, we find only 0.505 testing accuracy on the presence of fingerprints, close to
random guess. For the fingerprint value attack, on CelebA dataset, the attacker applies his shadow
decoder (0.991 training bitwise accuracy) to 1k inventor’s generated images. As a result, we find only
0.513 testing bitwise accuracy, also close to random guess. We conclude that the mismatch between
different versions of fingerprinting systems disables the attacks, which guarantees its secrecy.

4.5 ROBUSTNESS AND IMMUNIZABILITY

Deep fakes in the open end may undergo post-processing environments and result in quality deteri-
oration. Therefore, robustness against image perturbations is equally important to our mechanism.
When it does not hold for some perturbations, our immunizability property compensates for it.

Following the protocol in (Yu et al., 2019), we evaluate the robustness against five types of image
perturbation: cropping and resizing, blurring with Gaussian kernel, JPEG compression, additive
Gaussian noise, and random combination of them. We consider two versions of our model: the
original version and the immunized version. An immunized model indicates that during training we
augment generated images with the corresponding perturbation in random strengths before feeding
them to the fingerprint decoder.

It is worth noting that none of the encoder, decoder, and training data are accessible to the public.
Therefore, the robustness against perturbation has to be experimented with the black-box assumption,
as protocoled in (Yu et al., 2019). In other words, white-box perturbations such as adversarial image
modifications (Goodfellow et al., 2015) and fingerprint overwriting, which requires access to the
encoder, decoder, and/or training data, are not applicable in our scenario.

We plot in Figure 5 the comparisons of fingerprint detection accuracy among our original/immunized
models and the models of (Yu et al., 2021) w.r.t. the strength of each perturbation. We find:

(1) For all the perturbations, fingerprint detection accuracy drops monotonically as we increase the
strength of perturbation. For some perturbations in red plots, i.e., blurring and JPEG compression,
accuracy drops slowly in a reasonably large range. We consider accepting accuracy ≥75%. As a
result, the robust working range under blurring is: Gaussian blur kernel size ∼ [0, 7]; under JPEG
compression is: JPEG quality ∼ [80, 100]. Usually, the images turn not functional with perturbations
heavier than this range. We, therefore, validate the robustness against blurring and JPEG compression.

(2) For the other perturbations, although our original model is not robust enough, perturbed augmen-
tation compensates significantly in blue dots. We consider accepting accuracy ≥75%. As a result,
the immunized working range under cropping is: cropping size ∼ [60, 128]; under Gaussian noise

(a) (b) (c) (d) (e)

Figure 5: Robustness and immunizability: red/blue plots show, on CelebA, the fingerprint detection
of our original/immunized model in bitwise accuracy w.r.t. the strength of perturbations. Green plots
show those of (Yu et al., 2021) as references. The data points are directly copied from their paper.
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is: noise standard deviation ∼ [0.0, 0.4]; under combined perturbation is: the combination of the
original or immunized working ranges aforementioned. We, therefore, validate the immunizability of
our model against cropping, Gaussian noise, and the combined perturbation.

(3) Comparing between (Yu et al., 2021) and our models, for blurring, their model in green plot is less
robust than our original/immunized models. For the other perturbations, theirs are more robust than
our original models but are outperformed by our immunized models. This indicates the importance
of immunizability of a fingerprinting solution, which is however lacking in (Yu et al., 2021).

4.6 DEEP FAKE DETECTION AND ATTRIBUTION

The effectiveness, robustness, and immunizability in turn benefit our initial motivation: deep fake
detection and attribution. The former task is a binary classification problem to distinguish between
real and fake. The latter task is to further finely label the source of a generated image.

We move the solution from passive classifiers to proactive fingerprinting, and merge the two tasks into
one with 1+N classes: 1 real-world source and N GAN sources, where N can be extremely large, as
large as our capacity 1038 in Section 4.2. Then the tasks are converted to verifying if one decoded
fingerprint is in our database or not. This is achieved by comparing the decoded fingerprint to each
fingerprint in the database given a threshold of bit overlap. According to our ≥0.991 fingerprint
detection accuracy, it should be reliable to set the threshold at 128× 0.95 ≈ 121. Then the attribution
is trivial because we can directly look up the generator instance according to the fingerprint. If the
fingerprint is not in the database, it should be a random fingerprint decoded from a real image. We
use our immunized model against the combined perturbations in Section 4.5.

Baselines. We compare to two state-of-the-art deep fake classifiers (Yu et al., 2019; Wang et al., 2020)
as learning-based baselines passively relying on inherent visual clues. Because a learning-based
method can only enumerate a finite set of training labels, we consider two scenarios for it: closed
world and open world. The difference is whether the testing GAN sources are seen during training or
not. This does not matter to our method because ours can work with any N ≤ 1038. For the closed
world, we train/evaluate a baseline classifier on 10k/1k images from each of the N + 1 sources. For
the open world, we train N + 1 1-vs-the-other binary classifiers, and predict as ”the other” label if
and only if all the classifiers predict negative results. We test on 1k images from each of the real
sources or N unseen GAN sources. We in addition refer to (Yu et al., 2021) in comparisons as the
other proactive but indirect model fingerprinting baseline.

Closed world #GANs Open world #GANs
Method 1 10 100 1 10 100

(Yu et al., 2019) 0.997 0.998 0.955 0.893 0.102 N/A
(Wang et al., 2020) 0.890 N/A N/A 0.883 N/A N/A
(Yu et al., 2021) 1.000 1.000 N/A 1.000 1.000 N/A
Ours 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Deep fake detection and attribution accuracy on
CelebA. A higher value is more desirable. The baseline
results are directly copied from (Yu et al., 2021).

Results. From Table 3 we find:

(1) Deep fake detection and attribu-
tion based on our fingerprints per-
form equally perfectly (∼ 100% ac-
curacy) to most of the baselines in
the closed world when the number of
GAN sources is not too large. How-
ever, when N = 100, (Yu et al., 2021)
is not applicable due to its limited ef-
ficiency and scalability. Neither is (Wang et al., 2020) due to its binary classification nature.

(2) Open world is also a trivial scenario to our method but challenges the baseline classifiers (Yu et al.,
2019; Wang et al., 2020). When the number of unseen GAN sources increases to 10, (Yu et al., 2019)
even degenerates close to random guess. This is a common generalization issue of the learning-based
method. (Yu et al., 2021) is still impractical when N is large.

(3) Since deep fake detection and attribution is a trivial task to our method, it makes our advantages
independent of the evolution of GAN techniques. It benefits model tracking and pushes forward the
emerging direction of model inventors’ responsible disclosure.

5 CONCLUSION

We achieve responsible disclosure of generative models by a novel fingerprinting mechanism. It
allows scalable ad-hoc generation of a large population of models with distinct fingerprints. We
further validate its saturated performance in the deep fake detection and attribution tasks. We appeal
to the initiatives of our community to maintain responsible release and regulation of generative
models. We hope responsible disclosure would serve as one major foundation for AI security.
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CelebA LSUN Bedroom
Layer Bit acc ⇑ FID ⇓ Bit acc ⇑ FID ⇓
4×4 0.953 12.06 0.693 21.44
8×8 0.981 12.06 0.950 21.15
16×16 0.993 11.90 0.935 20.98
32×32 0.991 11.07 0.894 20.24
64×64 0.972 10.77 0.816 19.85
128×128 0.946 10.67 0.805 19.67
Ours (all layers) 0.991 11.50 0.993 20.50

Table 4: Fingerprint detection in bitwise accuracy and generation fidelity in FID w.r.t. the layer to
modulate fingerprints. ⇑/⇓ indicates a higher/lower value is more desirable.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We set the length of latent code dz = 512. We non-trivially select the number of bits for fingerprint
dc = 128 according to the analysis study on the capacity in Section 4.2. Our encoder E is composed
of 8 fully-connected neural layers followed by LeakyReLU nonlinearity, the same as the Z 7→ W
mapping network in StyleGAN2 (Karras et al., 2020). The generator G is almost the same as that in
StyleGAN2 except we input the latent code z through the input end (replacing the learnable constant
tensor) rather than through the modulation. The discriminator D is the same as that in StyleGAN2.
The decoder F is almost the same as the discriminator except the output size is adapted to the latent
code size plus the fingerprint size dz + dc.

We train our model using Adam optimizer (Kingma & Ba, 2015) for 400 epochs. We use no
exponential decay rate (β1 = 0.0) for the first-moment estimates, and use the exponential decay
rate β2 = 0.99 for the second-moment estimates. The learning rate η = 0.002, the same as that in
StyleGAN2. We train on 2 NVIDIA V100 GPUs with 16GB of memory each. Based on the memory
available and the training performance, we set the batch size at 32. The training lasts for about 6 days.

Our code is modified from the GitHub repository of StyleGAN2 (Karras et al., 2020) official
TensorFlow implementation (config E)7. All the environment requirements, dependencies, data
preparation, and command-line calling conventions are exactly inherited.

A.2 ABLATION STUDY ON MODULATION

In an ablation study, we investigate the effectiveness of fingerprint detection and fidelity of generation
when modulating fingerprint embeddings to different generator layers (resolutions).

From Table 4 we find:

(1) For effectiveness, the optimal single layer to modulate fingerprints appears in one of the middle
layers, specific to datasets: 16×16 for CelebA and 8×8 for LSUN Bedroom. But our all-layer
modulation can achieve comparable or better performance. This should be consistent with different
datasets because fingerprint detection turns more effective when we encode fingerprints to more parts
of the generator.

(2) For fidelity, the side effect of fingerprinting is less significant if modulation happens in the
shallower layer. This is because fingerprinting and generation are distinct tasks, and a shallower
modulation leads to less crosstalk. However, considering the FID variance is not significant in general,
we regard all-layer modulation as a desirable trade-off between effectiveness and fidelity.

A.3 ABLATION STUDY ON LOSS TERMS

In another ablation study, on CelebA we investigate the contribution of each loss term in Equation 5
towards fingerprint detection and generation fidelity.

From Table 5 we find:
7https://github.com/NVlabs/stylegan2
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Loss configuration Bit acc ⇑ FID ⇓
λ1Ladv - 9.37
λ1Ladv + λ3Lc 0.999 12.84
λ1Ladv + λ3Lc + λ4Lconst 0.988 12.24
λ1Ladv + λ3Lc + λ4Lconst + λ2Lz 0.991 11.50

Table 5: Fingerprint detection in bitwise accuracy and generation fidelity in FID w.r.t. loss configura-
tion on CelebA. ⇑/⇓ indicates a higher/lower value is more desirable.

(1) For effectiveness, comparing between the first and second rows, solely the fingerprint reconstruc-
tion loss term Lc itself is effective enough to enable saturated fingerprint detection performance.

(2) Comparing between the second and third rows, the consistency loss term Lconst improves FID due
to the explicit disentanglement learning between latent code and fingerprint representations.

(3) Comparing between the third and fourth rows, the latent code reconstruction term Lz implicitly
improves FID due to its benefit to avoid mode collapse (Srivastava et al., 2017). The collaboration
between fingerprint reconstruction and latent code reconstruction through the same decoder further
facilitates the disentanglement learning.

A.4 MORE GENERATED SAMPLES WITH FINGERPRINTS

We show in Figure 6 more samples of LSUN Bedroom and LSUN Cat with high fidelity and
disentangled controls of latent code and fingerprint code.

A.5 FINGERPRINT VISUALIZATION

In order to visualize the imperceptibility and effectiveness of our fingerprinting, in Figure 7 Top we
generate images given the same latent code and gradually-varying fingerprint codes. The differences
among these images are imperceptible, which supports the fidelity of our generation, and the disen-
tangled control between latent code and fingerprint code. In Figure 7 Bottom we demonstrate the
residual images w.r.t. the lest-most image. Because the original differences are so imperceptible, we
have to magnify the difference values ×5 to visualize the fingerprint patterns. Our detector effectively
learns to attribute different generator sources based on such faint but distinguishable patterns.

(a) LSUN Bedroom 128×128. (b) LSUN Cat 256×256.

Figure 6: Fidelity and disentangled control: generated samples from five generator instances. For
each row, we use a unique fingerprint to instantiate a generator. For each column, we feed in the same
latent code to the generator instances.
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Figure 7: Visualization for the imperceptible patterns of fingerprints. Top: generated images given
the same latent code and gradually-varying fingerprint codes from ”fingerprint 1” to ”fingerprint 2”.
Bottom: residual images w.r.t. the lest-most image. Because the differences are too faint, we magnify
the pixel values ×5 for clear visualization of the fingerprint patterns.

CelebA LSUN Bedroom
Method Bit acc ⇑ p-value ⇓ FID ⇓ Bit acc ⇑ p-value ⇓ FID ⇓
SNGAN - - 15.88 - - 26.76
Ours 0.991 < 10−36 15.88 0.986 < 10−34 28.76

WGAN-GP - - 12.16 - - 21.13
Ours 0.989 < 10−36 13.07 0.964 < 10−31 22.89

Table 6: Fingerprint detection in bitwise accuracy with p-value to accept the null hypothesis test, and
generation fidelity in FID. ⇑/⇓ indicates a higher/lower value is more desirable.

A.6 DIFFERENT GENERIC GAN MODELS

Our fingerprinting design is agnostic to generic GAN models. We replace the StyleGAN2 backbone
with SNGAN (Miyato et al., 2018) or WGAN-GP (Gulrajani et al., 2017) backbone, and report our
fingerprint bitwise detection accuracy and fidelity on CelebA and LSUN Bedroom datasets.

From Table 6 we find:

(1) Our fingerprinting is generalizable to varying GAN models with near-perfect detection accuracy
with p-value close to zero, regardless of the original performance of the models.

(2) Our fingerprinting results in negligible ≤ 2.01 FID degradation. This is a worthy trade-off to
introduce the fingerprinting function. In particular for SNGAN on CelebA, our solution does not hurt
the original generation quality at all.

16


	Introduction
	Related work
	GAN fingerprinting networks
	Pipeline
	Fingerprint modulation

	Experiments
	Effectiveness and fidelity
	Capacity
	Scalability
	Secrecy
	Robustness and immunizability
	Deep fake detection and attribution

	Conclusion
	Appendix
	Implementation details
	Ablation study on modulation
	Ablation study on loss terms
	More generated samples with fingerprints
	Fingerprint visualization
	Different generic GAN models


