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ABSTRACT

Over the past years, deep generative models have achieved a new level of perfor-
mance. Generated data has become difficult, if not impossible, to be distinguished
from real data. While there are plenty of use cases that benefit from this technology,
there are also strong concerns on how this new technology can be misused to
generate deep fakes and enable misinformation at scale. Unfortunately, current
deep fake detection methods are not sustainable, as the gap between real and fake
continues to close. In contrast, our work enables a responsible disclosure of such
state-of-the-art generative models, that allows model inventors to fingerprint their
models, so that the generated samples containing a fingerprint can be accurately
detected and attributed to a source. Our technique achieves this by an efficient and
scalable ad-hoc generation of a large population of models with distinct fingerprints.
Our recommended operation point uses a 128-bit fingerprint which in principle
results in more than 1038 identifiable models. Experiments show that our method
fulfills key properties of a fingerprinting mechanism and achieves effectiveness in
deep fake detection and attribution. Code and models are available at GitHub.

1 INTRODUCTION

Over the recent seven years, deep generative models have demonstrated stunning performance in
generating photorealistic images, considerably boosted by the revolutionary technique of generative
adversarial networks (GANs) (Goodfellow et al., 2014; Radford et al., 2016; Gulrajani et al., 2017;
Miyato et al., 2018; Brock et al., 2018; Karras et al., 2018; 2019; 2020).

However, with the closing margins between real and fake, a flood of strong concerns arise (Harris,
2018; Chesney & Citron, 2019; Brundage et al., 2018): how if these models are misused to spoof
sensors, generate deep fakes, and enable misinformation at scale? Not only human beings have
difficulties in distinguishing deep fakes, but dedicated research efforts on deep fake detection (Durall
et al., 2019; Zhang et al., 2019; Frank et al., 2020; Zhang et al., 2020) and attribution (Marra et al.,
2019; Yu et al., 2019; Wang et al., 2020) are also unable to sustain longer against the evolution of
generative models. For example, researchers delve into details on how deep fake detection works,
and learn to improve generation that better fits the detection criteria (Zhang et al., 2020; Durall et al.,
2020). In principle, any successful detector can play an auxiliary role in augmenting the discriminator
in the next iteration of GAN techniques, and consequently results in an even stronger generator.

The dark side of deep generative models delays its industrialization process. For example, when
commercializing the GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020) models, OpenAI
leans conservative to open-source their models but rather only release the black-box APIs1. They
involve expensive human labor in the loop to review user downloads and monitor the usage of their
APIs. Yet still, it is a challenging and industry-wide task on how to trace the responsibility of the
downstream use cases in an open end.

To pioneer in this task, we propose a model fingerprinting mechanism that enables responsible
release and regulation of generative models. In particular, we allow responsible model inventors to
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�ngerprint their generators and disclose their responsibilities. As a result, the generated samples
contain �ngerprints that can be accurately detected and attributed to their sources. This is achieved by
an ef�cient and scalable ad-hoc generation of a large population of generator instances with distinct
�ngerprints. See Figure 1 Middle.

Figure 1: The diagram of our �ngerprinting mechanism for
generators. See main text for descriptions.

Similar in the spirit of the dynamic
�lter networks (Jia et al., 2016)
and style-based generator architec-
tures (Karras et al., 2019; 2020) where
their network �lters are not freely
learned but conditioned on an input,
we learn to parameterize a unique �n-
gerprint into the �lters of each genera-
tor instance. The core gist is to incor-
porate a �ngerprint auto-encoder into
a GAN framework while preserving
the original generation performance.
See Figure 1 Left. In particular, given
a GAN backbone, we use the �ngerprint embedding from the encoder to modulate each convolutional
�lter of the generator (Figure 2(b)), and try to decode this �ngerprint from the generated images. We
jointly train the �ngerprint auto-encoder and GAN with our �ngerprint related losses and the original
adversarial loss. See Figure 2(a) for the diagram, and 3 for details.

After training, the responsible model inventor is capable of ef�ciently �ngerprinting and releasing
different generator instances to different user downloads, which are equipped with the same generation
performance but with different �ngerprints. Each user download corresponds to a unique �ngerprint,
which is maintained by the inventor's database. As a result, when misuse of a model happens, the
model inventor can use the decoder to detect the �ngerprint from the generated images, match it in
the database, and then trace the responsibility of the user. See Figure 1 Right. Based on this form of
responsible disclosure, responsible model inventors, like OpenAI, have a way to mitigate adverse
side effects on society when releasing their powerful models, while at the same time should have an
automatic way to attribute misuses.

There are several key properties of our mechanism. Theef�ciency to instantiate a generator is
inherently satis�ed because, after training, the �ngerprint encoding and �lter modulation run with little
overhead. We evaluate theeffectivenessof our �ngerprinting and obtain almost perfect �ngerprint
detection accuracy. We also justify the�delity with a negligible side effect on the original generation
quality. See Section 4.1. Our recommended operation point uses a 128-bit �ngerprint (Section 4.2)
which in principle results in acapacity of more than1038 identi�able generator instances. The
scalability bene�ts from the fact that �ngerprints are randomly sampled on the �y during training
so that �ngerprint detection generalizes well for the entire �ngerprint space. See Section 4.3 for
validation. In addition, we validate in Section 4.4 thesecrecyof presence and value of our �ngerprints
against shadow model attacks. We validate in Section 4.5 therobustnessandimmunizability against
perturbation on generated images.

To target the initial motivation, we move the deep fake detection and attribution solutions frompassive
detectors toproactive�ngerprinting. We show in Section 4.6 saturated performance and advantages
over two state-of-the-art discriminative methods (Yu et al., 2019; Wang et al., 2020) especially in the
open world. This is because, conditioned on user-speci�c �ngerprint inputs, the presence of such
�ngerprints in generated images guarantees the margin between real and fake, and facilitates the
attribution and responsibility tracing of deep fakes to their sources.

Ourcontributions are in four thrusts: (1) We enhance the concept of �ngerprinting for generative
models that enables a responsible disclosure of state-of-the-art GAN models. (2) We pioneer in
the novel direction for ef�cient and scalable GAN �ngerprinting mechanism, i.e., only one generic
GAN model is trained while more than1038 �ngerprinted generator instances can be obtained with
little overhead during deployment. (3) We also justify several key properties of our �ngerprinting,
including effectiveness, �delity, large capacity, scalability, secrecy, robustness, and immunizability.
(4) Finally, for the deep fake detection and attribution tasks, we move the solution frompassive
classi�ers toproactive�ngerprinting, and validate its saturated performance and advantages. It makes
our responsible disclosure independent of the evolution of GAN techniques.
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