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Abstract

This paper presents new projection-free algorithms for Online Convex Optimiza-
tion (OCO) over a convex domain K ⊂ Rd. Classical OCO algorithms (such as
Online Gradient Descent) typically need to perform Euclidean projections onto the
convex set K to ensure feasibility of their iterates. Alternative algorithms, such
as those based on the Frank-Wolfe method, swap potentially-expensive Euclidean
projections onto K for linear optimization over K. However, such algorithms have
a sub-optimal regret in OCO compared to projection-based algorithms. In this
paper, we look at a third type of algorithms that output approximate Newton iterates
using a self-concordant barrier for the set of interest. The use of a self-concordant
barrier automatically ensures feasibility without the need of projections. However,
the computation of the Newton iterates requires a matrix inverse, which can still
be expensive. As our main contribution, we show how the stability of the Newton
iterates can be leveraged to only compute the inverse Hessian a vanishing fractions
of the rounds, leading to a new efficient projection-free OCO algorithm with a
state-of-the-art regret bound.

1 Introduction

We consider the Online Convex Optimization (OCO) problem over a convex set K ⊂ Rd, in which a
learner (algorithm) plays a game against an adaptive adversary for T rounds. At each round t ∈ [T ],
the learner picks wt ∈ K given knowledge of the historyHt−1 ∶= {(ℓs,ws)}s<t. Then, the adversary
picks a convex loss function ℓt ∶ K → R with the knowledge of Ht−1 and the iterate wt, and the
learner suffers loss ℓt(wt) and proceeds to the next round. The goal of the learner is to minimize the
regret after T rounds:

RegT (w) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w),

against any comparator w ∈ K. The aim of this paper is to design computationally-efficient (projection-
free) algorithms for OCO that enjoy the optimal (up to log-factor in T ) Õ(

√
T ) regret.

The OCO framework captures many optimization settings relevant to machine learning applications.
For example, OCO algorithms can be used in offline convex optimization as more computationally-
and memory-efficient alternatives to interior-point and cutting plane methods whenever the dimension
d is large [14, 16]. OCO algorithms are also often used in stochastic convex optimization, where
the standard O(

√
T ) regret (achieved by, e.g. Online Gradient Descent) translates into the optimal

O(1/
√
T ) rate1 via the classical online-to-batch conversion technique [3, 37]. It has been shown that

OCO algorithms can also achieve state-of-the-art accelerated rates in both the offline and stochastic
optimization settings despite being designed for the more general OCO framework [6, 28]. What is

1This is the optimal rate when no further assumptions are made.
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more, it has recently been shown that even non-convex (stochastic) optimization can be reduced to
online linear optimization (a special case of OCO), where it is then possible to recover the best-known
convergence rates for the setting [7].

Given the prevalent use of OCO algorithms in machine learning applications, it is important to
have computationally-efficient algorithms that scale well with the dimension d of the ambient space.
However, most OCO algorithms fall short of being efficient because of the need of performing
(Euclidean) projections onto K (potentially at each iteration) to ensure that the iterates are feasible.
These projections are often inefficient, especially in high-dimensional settings with complex feasible
sets. Existing projection-free OCO algorithms address this computational challenge by swapping
potentially-expensive Euclidean projections for often much cheaper linear optimization or separation
over the feasible set K. However, existing projection-free algorithms have sub-optimal regret
guarantees in terms of their dependence in T , or have potentially unbounded “condition numbers” for
the feasible set multiplying their regret guarantee.

Contributions. In this paper, we address these computational and performance challenges by
revisiting an existing (but somewhat overlooked) type of projection-free OCO algorithms. Unlike
existing algorithms, our proposed method does not require linear optimization or separation over
the feasible set K. Instead, the algorithm, Barrier-Regularized Online Newton Step (BARONS),2 uses
a self-concordant barrier Φ for the set K to always output iterates that are guaranteed to be within
K; much like interior point methods for offline optimization. In particular, our algorithm outputs
Newton iterates with respect to time-varying, translated versions of Φ. The main novelty of our
work is in devising a new efficient way of computing the Newton iterates without having to evaluate
the inverse of the Hessian of the barrier at every iteration, which can be computationally expensive
in high-dimensional settings. Our algorithm only needs to compute a full inverse of the Hessian
a vanishing O(1/

√
T ) fraction of the rounds. For the rest of the rounds, the computational cost

is dominated by that of evaluating the gradient of the barrier Φ, which can be much cheaper than
evaluating the inverse of its Hessian in many cases.

For the special case of a polytope with m constraints, we show that there is a choice of a barrier
(e.g. the Lee-Sidford barrier) that when used within our algorithm, reduces the per-round compu-
tational cost to essentially Õ(1) linear-system-solves of size m × d. We show that this is often
cheaper than performing linear optimization over K, which other projection-free algorithms require.
More importantly, our algorithm achieves a dimension-free Õ(

√
T ) regret bound. This improves

over the existing regret bounds of projection-free algorithms over polytopes. For example, among
projection-free algorithms that achieve a O(

√
T ) regret, the algorithms by [28, 11, 26], which require

a separation/membership Oracle for K, have a multiplicative κ = R/r factor multiplying their regret
bounds, where r,R > 0 are such that B(r) ⊆ K ⊆ B(R). The constant κ, known as the asphercity
[12], can in principle be arbitrarily large. Even after applying a potentially expensive pre-processing
step, which would typically involve putting the set K into (near-) isotropic position [9, 38], κ can still
be as large as d in the worst-case, and so the regret bounds achieved by the algorithms of [28, 11, 26]
can be of order O(d

√
T ); this is worse than ours by a d factor. Other projection-free algorithms based

on the Frank-Wolfe method, e.g. those in [10, 35, 19], also have multiplicative condition numbers
that are even less benign that the asphercity κ. In fact, the condition numbers in the regret bounds for
polytopes appearing in, e.g. [10], can in principle be arbitrarily large regardless of any pre-processing.

Finally, another advantage of our algorithm is that it can guarantee a sublinear regret even for non-
Lipschitz losses (i.e. where the norm of the sub-gradients may be unbounded). In particular, we show
that the general guarantee of BARONS implies a Õ(

√
dT ) regret bound for the portfolio selection

problem [5] and a problem of linear prediction with log-loss [36], all while keeping the per-round
computational cost under Õ(d2), when T ≥ d. The losses in both of these problems are neither
bounded or Lispchitz.

Related works. In the past decade, many projection-free OCO algorithms have been developed to
address the computational shortcoming of their projection-based counter parts [14, 16, 15, 18, 28, 11].
Most projection-free algorithms are based on the Frank-Wolfe method and perform linear optimization
(typically once per round) over K instead of Euclidean projection. Under no additional assumptions

2We credit the name BARONS to [27] who used barrier-regularized Newton steps for the portfolio selection
problem.
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other than convexity and lipschitzness of the losses, the best-known regret bound for such algorithms
scales as O(T 3/4) [15]. While this bound is still sublinear in T and has no dependence in the
dimension d, it is sub-optimal compared to the O(

√
T ) regret bound achievable with projection-

based algorithms. In the recent years, there have been improvements to this bound under additional
assumptions such as when the functions are smooth and/or strongly convex [15, 18], or when the
convex set K is smooth and/or strongly convex [1, 23, 29, 24]. For the case where K is a polytope,
[10] presented a linear-optimization-based algorithm that enjoys a O(µ

√
dT ) regret bound, where µ

is a conditioning number for the set K. Unfortunately, µ can be large for many sets of interests as it
essentially scales inversely with the minimum distance between the vertices of K. In this work, we
achieve a dimension-free Õ(

√
T ) regret bound without the µ factor.

More recently a new type of projection-free algorithms have emerged which use member-
ship/separation oracle calls instead of linear optimization [28, 11, 24, 26]. From a computational
perspective, separation-based and linear optimization-based algorithms are not really comparable,
since there are sets over which separation is cheaper than linear optimization, and vice-versa. On the
regret side, separation-based algorithms have been show to achieve a O(κ

√
T ) regret bound, where

κ is the asphercity of the set K. Separation-based algorithms are simple, often easy to analyze, and
achieve the optimal-in-T regret bound, unlike linear optimization-based algorithms. However, the
multiplicative factor κ in their regret bounds means that a pre-conditioning step may be required to
ensure it is appropriately bounded. This precondition step would involve putting the set into (near-)
isotropic position [9]; an operation, that can cost Õ(d4) arithmetic operations [38]; and even after
such a pre-processing step, κ can still be as large as d in the worst-case. Our algorithm has the benefit
of not requiring any pre-processing step.

A third type of algorithms avoid projections by outputting Newton iterates that are guaranteed to
be feasible thanks to the use of a self-concordant barrier. The first such algorithm in the context of
online learning was introduced by [2]. They presented a general recipe for using self-concordant
barriers with Newton steps in online linear optimization. However, their approach falls short of
being computationally-efficient as their algorithm needs to compute the inverse of the Hessian of
the barrier at every iteration. Inspired by the work of [2], [31] used damped Newton steps with
quadratic terms added to the barrier to design an efficient algorithm for the classical portfolio selection
problem. Closer to our work is that of [30] who used a similar barrier for designing an algorithm for
exp-concave optimization that can be viewed as a computationally-efficient version of the Online
Newton Step [13]. Similar to our work, [30] also leverage the stability of the Newton iterates to
avoid computing the inverse of the Hessian of the barrier at every step. However, their approach and
analysis, which are tailored to the exp-concave setting do not necessarily lead to improved regret
bounds in the general OCO setting we consider. In particular, their algorithm does not lead to a
O(
√
T ) regret bound over polytopes.

Finally, for our application to polytopes, we make use of recent tools and techniques developed for
solving linear programs efficiently. In particular, we make use of the Lee-Sidford barrier [20, 21, 22],
which can be computed efficiently and, when used to compute Newton iterates, leads to the state-of-
the-art Õ(

√
d) iteration upper-bound for solving a linear program. For the OCO setting, we show

that using the Lee-Sidford barrier within our algorithm leads to a Õ(
√
T ) regret bound. We also

note that ideas similar to the ones we use to avoid computing the inverse of the Hessian of the barrier
at every round were used to amortize computations in the context of solving linear programs (see
e.g. [4, 39, 40]).

Outline. In section 2, we present our notation and relevant definitions. In Section 3, we present our
algorithm and guarantees. In Section 4, we apply our results to the case of a polytope. All the proof
are differed to the appendix.

2 Preliminaries

Throughout the paper, we let K be a closed convex subset of Rd. We denote by ∥ ⋅ ∥ the Euclidean
norm and by B(R) ⊂ Rd the Euclidean ball of radius R > 0. We let intK denote the interior of K.
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Our main algorithm, which can be viewed as an “online” counter-part to the Newton iterations [33],
uses a self-concordant barrier over the set of interest to avoid the need of performing Euclidean
projections onto K. Next, we present the definition of a self-concordant barrier.

Self-concordant barriers. For the rest of this section, we let K be a convex compact set with non-
empty interior intK. For a twice [resp. thrice] differentiable function, we let ∇2f(u) [resp. ∇3f(u)]
be the Hessian [resp. third derivative tensor] of f at u.
Definition 1 (Self-concordant function). A convex function f ∶ intK → R is called self-concordant
with constant Mf ≥ 0, if f is C3 and satisfies

• f(xk) → +∞ for xk → x ∈ ∂K; and

• For all x ∈ intK and u ∈ Rd, ∣∇3f(x)[u,u, u]∣ ≤ 2Mf∥u∥3∇2f(x).

Definition 2 (Self-concordant barrier). For Mf , ν ≥ 0, we say that f ∶ intK → R is a (Mf , ν)-self-
concordant barrier for K if f is a self-concordant function over K with constant Mf and

∀w ∈ intK, ∇f(w)⊺∇−2f(w)∇f(w) ≤ ν.

Computational Oracles. We will assume that our algorithm has access to a self-concordant
function over the set K through the following gradient and Hessian Oracles.
Definition 3 (Gradient Oracle). Given a point w ∈ intK and a tolerance ε > 0, the gradient Oracle
Ograd

ε (Φ) returns an ε-approximate vector ∇̂w of the gradient ∇Φ(w) in the dual local norm of the
Hessian:

∥∇̂w −∇Φ(w)∥∇−2Φ(w) ≤ ε.

We denote by Cgradε (Φ) the computational cost of one call to Ograd
ε (Φ).

When clear from the context, we will simply write Cgradε and Ograd
ε for Cgradε (Φ) and Ograd

ε (Φ),
respectively.
Definition 4 (Hessian Oracle). Given a point w ∈ intK and a tolerance ε > 0, the Hessian Oracle
Ohess

ε (Φ) returns a matrix H and its inverse H−1 which are 1 ± ε spectral approximations of the
Hessian and inverse Hessian of Φ at w:

(1 − ε)∇2Φ(w) ≼H ≼ (1 + ε)∇2Φ(w) and (1 − ε)∇−2Φ(w) ≼H−1 ≼ (1 + ε)∇−2Φ(w).
We denote by Chessε (Φ) the computational cost of one call to Ohess

ε (Φ).

When clear from the context, we will simply write Chessε and Ohess
ε for Chessε (Φ) and Ohess

ε (Φ),
respectively.

Additional notation. We use the notation f ≲ g to mean f ≤ Cg for some universal constant C > 0.
We also write f ≤ Õg to mean f ≤ polylog(T, d) ⋅ g. We let ∇−2 ∶= (∇2)−1 and ∇−1/2 refer to the
inverse of the Hessian and the inverse of the square root of the Hessian, respectively.

3 Algorithm and Regret Guarantees

In this section, we construct a projection-free algorithm for Online Convex Optimization. The
algorithm in question (Alg. 1) outputs approximate Newton iterates with respect to “potential
functions” (Φt) that take the following form:

Φt(w) ∶= Φ(w) +w⊺
t−1
∑
s=1

gs,

where (gs ∈ ∂ℓs(ws)) are the sub-gradients of the losses (ℓs) at the iterates (ws) of Algorithm 1, and
Φ is a self-concordant function over K. Algorithm 1 uses the the approximate gradient and Hessian
Oracles of Φ (see 2) to output iterates (wt) approximate Newton iterates in the following sense:

∀t ∈ [T ], wt+1 ≈ wt −∇−2Φt+1(wt)∇Φt+1(wt). (1)

As is by now somewhat standard in the analyses of online Newton iterates of the form in (1), we will
bound the regret of Algorithm 1 by showing that:
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• The iterates (wt) are close (in the norm induced by the Hessian ∇2Φ(wt)) to the FTRL iterates,
which are given by

w⋆t ∈ argmin
w∈K

Φt(w). (2)

• The regret of FTRL is bounded by O(
√
T ).

Our main contribution is an algorithm that outputs iterates (wt) that satisfy the first bullet point
(i.e. iterates that satisfy (1)) while only calling a Hessian Oracle (which is potentially computationally
expensive) a O(1/

√
T ) fraction of the rounds after T rounds. As we show in Section 4, for the case

where K is a polytope with m ∈ N constraints, the algorithm achieves a Õ(
√
T ) regret bound, where

the per-iteration computational cost essentially reduces to a linear-system-solve involving a d ×m
matrix. Among existing OCO algorithms that achieve a Õ(

√
T ) regret bound, none can achieve this

computational complexity for general polytopes with m constraints (see Section 4 for more details).

3.1 Efficient Computation of the Newton Iterates with BARONS

The key feature of BARONS (Algorithm 1) is that is uses an amortized computation of the Hessians.
Namely, BARONS computes the inverse of the Hessian of the barrier Φ only for a small fractions of
the iterates (wt). Henceforth, we refer to the iterates where the algorithm computes the full inverse
of the Hessian as landmark iterates; these are the iterates (ut) in Lines 13 and 16 of Algorithm 1.
The idea behind this is that for a sufficiently curved3 barrier Φ, the Newton iterates with respect to Φ
are stable enough that it suffices to compute the inverse of the Hessian of Φ at the closest landmark
iterate. For example, this is what was done in [30] to design an efficient algorithm for exp-concave
optimization.

Unlike the setting of [30], where it is possible to add quadratic terms to the barrier for additional
stability, in our setting we cannot do that without sacrificing performance in terms of regret. Without
the quadratic terms, the Newton iterates are not stable enough for our desired guarantee. Instead
of adding regularization terms, BARONS takes Õ(1) Newton steps per round to get “closer” to the
Newton iterate with the true Hessian matrix. This simple approach is key to the success of our
approach.

In the next subsection, we give a generic guarantee for BARONS.

3.2 Generic Regret Guarantee of BARONS

In this subsection, we present a general regret and computational guarantee for BARONS under minimal
assumptions on the sequence of losses and without turning the “step size” η. In the next subsection,
we will instantiate the regret guarantee when additional assumptions on the sequence of losses are
available. We now state the main guarantee of BARONS (the proof in Appendix C.1).
Theorem 5 (Master theorem). Let Φ be a self-concordant function over K with constant MΦ > 0,
and let b, η, ε, α > 0 and mNewton ∈ N be such that η ≤ 1

1000bMΦ
, ε ≤ 1

20000MΦ
, α = 0.001, and

mNewton ∶= Θ(log 1
εMΦ
). Further, let (wt) be the iterates of Algorithm 1 with input (η, ε, α, mNewton)

and suppose that the corresponding sub-gradients (gt) satisfy ∥gt∥∇−2Φ(wt) ≤ b, for all t ≥ 1. Then,
the regret of Algorithm 1 is bounded as:

T

∑
t=1
(ℓt(wt) − ℓt(w)) ≲

1

η
Φ(w) + η

T

∑
t=1
∥gt∥2∇−2Φ(wt) + ε

T

∑
t=1
∥gt∥∇−2Φ(wt), ∀w ∈ intK. (3)

Furthermore, the computational cost of the algorithm is bounded by

O ((Cgradε + d2) ⋅ T ⋅ log 1

εMΦ
+ Chessα ⋅ (MΦTε +MΦ

T

∑
t=1

η∥gt∥∇−2Φ(wt))) .

Theorem 5 essentially shows that it is possible to achieve the same regret as FTRL, while only
computing the inverse of the Hessian of Φ at most Õ(MΦTη) number of times.

3Informally, the “curvature” of a convex function is high when the rate of change of its gradients is high.
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Algorithm 1 BARONS: Barrier-Regularized Online Newton Step
Require:

• Parameters η, ε,α > 0, and mNewton ≥ 1.
• Gradient/Hessian Oracles Ograd

ε /Ohess
α for self-concordant function Φ with constant MΦ > 0.

• w⋆ ∈ argminw∈KΦ(w).
1: Set u1 = w1 = w⋆, H1 = Ohess

α (w⋆), and s0 = 0.
2: for t = 1, . . . , T do
3: Play wt and observe gt ∈ ∂ℓt(wt).
4: Set st = st−1 + ηgt.
5: Set w1

t+1 = wt.
// Perform intermediate Newton steps to decrease the Newton decrement

6: for m = 1, . . . ,mNewton − 1 do
7: Set ∇̂m

t+1 = O
grad
ε (wm

t+1).
8: Set ∇̃m

t+1 = ∇̂m
t+1 + st. // ∇̃m

t+1 ≈ ∇Φt+1(wm
t+1)

9: Set wm+1
t+1 = wm

t+1 −H−1t ∇̃m
t+1.

10: end for
11: Set wt+1 = wm+1

t+1 .
// Check if the landmark needs updating

12: if ∥wt+1 − ut∥Ht ≤ 1/(41MΦ) then
13: Set ut+1 = ut. // Update landmark

14: Ht+1 =Ht and H−1t+1 =H−1t .
15: else
16: Set ut+1 = wt+1. // No landmark update

17: Set Ht+1 = Ohess
α (ut+1) and compute H−1t+1.

18: end if
19: end for

3.3 Regret Guarantee Under Local and Euclidean Norm Bounds on the Sub-Gradients

We now instantiate the guarantee in Theorem 5 with a (MΦ, ν)-self-concordant barrier Φ for the
set K, with respect to which the local norms of the sub-gradients are bounded; that is, when
∥gt∥∇−2Φ(wt) ≤ b. We note that the regret bound in (36) has an additive Φ(w) which may be
unbounded near the boundary of K. However, it is still possible to compete against comparators in
intK by making additional assumptions on the range of the losses [27, 32]. We discuss some of these
assumptions in the sequel. For the next theorem, we will state the regret bound of BARONS relative to
comparators in the restricted set:

Kc ∶= (1 − c)K ⊕ {cw⋆}, (4)

where ⊕ denotes the Minkowski sum, w⋆ ∈ argminw∈KΦ(w), and c ∈ (0,1) is a parameter.

With this, we now state a regret bound for BARONS when the sub-gradients of the losses have bounded
local norms. The proof of the next theorem is in Appendix C.2.

Theorem 6 (Local norm bound). Let Φ be an (MΦ, ν)-self-concordant barrier for K and let
c ∈ (0,1), b > 0. Further, suppose that for all t ∈ [T ], ∥gt∥∇−2Φ(wt) ≤ b, where (wt) are the iterates
of BARONS with input parameters (η, ε,α,mNewton) such that

η ∶=
√

ν log c

b2T
, ε ∶=

√
ν

T
, α ∶= 0.001, and mNewton ∶= Θ(log

1

εMΦ
) . (5)

For T ≥ 1 large enough such that η ≤ 1
1000bMΦ

, ε ≤ 1
20000MΦ

, the regret of BARONS is bounded as

RegBARONST (w) ≲ b
√
νT log c, ∀w ∈ Kc, (6)

where Kc ⊂ K is as in (4). Further, the computational complexity of BARONS in this case is bounded
by

O ((Cgradε + d2) ⋅ T ⋅ log T

νMΦ
+ Chessα ⋅MΦ

√
Tν log c) .
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Remark 1. The regret bound in Theorem 6 is stated with respect to comparators in the restricted
set Kc defined in (4). It is possible to extend this guarantee to all comparators in intK under an
additional assumption on the range of the losses. For example, if for w⋆ ∈ argminw∈KΦ(w), we
have

sup
w∈intK,t∈[T ]

ℓt ((1 −
1

T
) ⋅w + 1

T
⋅w⋆) − ℓ(w) ≤ O ( 1√

T
) , (7)

then the regret guarantee in (6) can be extended to all comparators in intK up to an additive O(
√
T )

term (see Lemma 7 in the appendix). In this case, the log c term in the computational complexity
need be replaced by logT . We note that the condition in (7) does not require a uniform bound on the
losses. Instead, it only restrict the rate of growth of the losses (ℓt(w)) as w approaches the boundary
of K. As we show in the sequel (§4.2), (7) is satisfied for some popular losses which are not Lipschitz.

We now instantiate the guarantee in Theorem 5 when the sub-gradients are bounded in Euclidean
norm (instead of local norm); that is, we assume that for all t ∈ [T ], ∥gt∥ ≤ G for some G > 0. We
note that this assumption implies (7), and we will be able to bound the regret against all comparators
in intK as alluded to in Remark 1. The proof of the next theorem is in Appendix C.3).

Theorem 7 (Euclidean norm bound). Let Ψ be an (MΨ, ν) self-concordant barrier for K and let
Φ(⋅) ∶= Ψ(⋅)+ ν

2R2 ∥⋅∥2. Further, let G,R > 0 and suppose thatK ⊆ B(R) and for all t ∈ [T ], ∥gt∥ ≤ G,
where gt ∈ ∂ℓt(wt) and (wt) are the iterates of BARONS with input parameters (η, ε,α,mNewton)
such that

η ∶= ν

RG

√
logT + 1

T
, ε ∶=

√
ν

T
, α ∶= 0.001, and mNewton ∶= Θ(log

1

εMΨ
) . (8)

For T ≥ 1 large enough such that η ≤ 1
1000GMΨ

, ε ≤ 1
20000MΨ

, the regret of BARONS is bounded as

RegBARONST (w) ≲ RG
√
T logT , ∀w ∈ intK. (9)

Further, the computational complexity of BARONS in this case is bounded by

O ((Cgradε (Ψ) + d2) ⋅ T ⋅ log T

νMΨ
+ Chessα (Ψ) ⋅MΨ

√
Tν logT) .

4 Application to Polytopes Using the Lee-Sidford Barrier

In this section, we assume that the set K is a polytope in Rd specified by m linear constraints:

K = {w ∈ Rd ∣ ∀i ∈ [m], a⊺iw ≥ b′i}, (10)

and we construct efficient gradient and Hessian Oracles for a self-concordant barrier for K. This
will then allow us to instantiate the guarantees of BARONS in Section 3 and provide explicit and
state-of-the-art bounds on the regret of BARONS.

We will assume without loss of generality that ∥ai∥ = 1, for all i ∈ [m], and let A ∶= (a1, . . . , am)⊺ ∈
Rm×d denote the constraint matrix of the set K. For the rest of this section, it will be convenient to
define the “slack” variables sw,i = a⊺iw− b′i, for i ∈ [m]. Here, sw,i essentially represents the distance
of w to the ith facet of the polytope K. Further, we let Sw ∶= diag(sw) be the diagonal matrix whose
ith diagonal entry is sw,i.

The LS barrier. To perform Online Convex Optimization over K, we pick the regularizer Φ of
BARONS to be the Lee-Sidford (LS) barrier ΦLS [22] with parameter p > 0, which is defined as

ΦLS(v) = min
v∈Rm

>0

− log det(A⊺SwV SwA) +
1

1 + p−1 tr(V 1+1/p),

where V = diag(v). One way to think of the LS barrier is as a weighted log-barrier. As we will
discuss in the sequel, this choice will confer computational and performance (in terms of regret)
advantages over the standard log-barrier.
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Self-concordance of the LS barrier. According to [8, Theorem 30], the LS barrier with the choice
p = O(log(m)) is a self-concordant function with parameter MΦLS satisfying

MΦLS = O(log(m)2/5) = Õ(1),
The other favorable property of this barrier is that its Newton decrement at any point w ∈ K is of
order Õ(

√
d); that is,

∥∇ΦLS(w)∥∇−2ΦLS(w) = Õ(
√
d). (11)

Therefore, ΦLS is a (Õ(1), Õ(d))-self-concordant barrier. For the log-barrier, the right-hand side of
(11) would be

√
m.

Cost of gradient and Hessian Oracles. We consider the computational complexities of gradient
and Hessian Oracles for ΦLS. By [22], we have that for ε > 0,

Cgradε (ΦLS) ≤ Õ(Csys ⋅ log(1/ε)), and Chessε (ΦLS) ≤ Õ(Csys
√
d ⋅ log(1/ε)),

where Csys is the computational cost of solving a linear system of the form A⊺diag(v)Ax = y, for
vectors v ∈ Rd

≥0 and y ∈ Rd; we recall that A = (a1, . . . , am)⊺ is the constraint matrix for K. In the
worst-case, such a linear system can be solved with cost bounded as

Csys ≤ O(mdω−1), (12)

where ω is the exponent of matrix multiplication, and m is the number of constraints of K. However,
as we show in the sequel, Csys can be much smaller in many practical applications.

With this, we immediately obtain the following corollary for the regret and run-time of BARONS under
local norm and Euclidean norm bounds on the sub-gradients.
Corollary 1 (OCO over a polytope with LS barrier). Let c ∈ (0,1),G,R, b > 0, and suppose K
is given by (10) and that ΦLS is the corresponding LS barrier. Further, let (wt) be the iterates of
BARONS, and let Kc be the restricted version of K defined in (4). Then, the following holds:

• Local norm bound: If ∥gt∥∇−2Φ(wt) ≤ b, for all t ≥ 1, and the parameters (η, ε,α,mNewton)
of BARONS are set as in Theorem 6 with Φ = ΦLS and (MΦ, ν) = (Õ(1), Õ(d)), then for T
large enough (as specified in Theorem 6), the regret of BARONS is bounded by

RegBARONST (w) ≲ b
√
dT log c, ∀w ∈ Kc. (13)

• Euclidean norm bound: If K ⊆ B(R) and ∥gt∥ ≤ G, for all t ≥ 1, and the parameters
(η, ε,α,mNewton) of BARONS are set as in Theorem 7 with Φ(⋅) = ΦLS(⋅) + ν

2R2 ∥ ⋅ ∥2 and
(MΨ, ν) = (Õ(1), Õ(d)), then for T large enough (as in Theorem 7) BARONS has regret
bounded as

RegBARONST (w) ≲ RG
√
T logT , ∀w ∈ intK. (14)

In either case, the computational complexity is bounded by

Õ((Csys + d2) ⋅ T + Csys ⋅ d
√
T), (15)

where Csys is the computational cost of solving a linear system of the form A⊺diag(v)Ax = y, for
vectors v ∈ Rd

≥0 and y ∈ Rd (recall that A is the constraint matrix for the polytope K).

Using the log-barrier. We note that since K is a polytope, we could have used the standard
log-barrier

Φlog(w) ∶=
m

∑
i=1

log(b′i − a⊺iw). (16)

This barrier is (1,m)-self-concordant, and so instantiating Theorem 5 with it would imply a
Õ(b
√
mdT ) regret bound in the case of local sub-gradient norms bounded by b > 0. Using the

LS barrier replaces the
√
m term in this bound by

√
d regardless of the number of constraints—see
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(13). However, this comes at a Csys computational cost, which can be as high as mdω−1 in the
worst-case (see (12)). In the case of the log-barrier, this cost would be replaced by md (essentially
because Cgradε (Φlog) ≤ O(md)). Thus, when m is of the order of d, using the log-barrier may be
more computational-efficient compared to using the LS barrier. In the next corollary, we bound the
regret of BARONS when Φ = Φlog; this result is an immediate consequence of Theorem 7.
Corollary 2 (OCO over a polytope with the log barrier). Let G, b > 0, and suppose K is given by
(10) and that Φlog is the corresponding log-barrier. Further, let (wt) be the iterates of BARONS. If
K ⊆ B(R) and ∥gt∥ ≤ G, for all t ≥ 1, and the parameters (η, ε,α,mNewton) of BARONS are set as
in Theorem 7 with Φ(⋅) = Φlog(⋅) + ν

2R2 ∥ ⋅ ∥2 and (MΨ, ν) = (1,m), then for T large enough (as in
Theorem 7) BARONS has regret bounded as

RegBARONST (w) ≲ RG
√
T logT , ∀w ∈ intK. (17)

The computational complexity is bounded by

Õ((md + d2) ⋅ T +mdω−1
√
mT). (18)

4.1 Implications for Lipschitz Losses

We now discuss implications of Corollary 1, and compare the bound of BARONS to those of existing
algorithms for Lipschitz losses.

Dimension-free regret bound. We note when the Euclidean norms of the sub-gradients are
bounded, BARONS achieves a dimension-free O(

√
T ) regret bound. In contrast, the best dimension-

free regret bound4 achieved by existing projection-free algorithms is of order O(T 3/4) (see
e.g. [14, 11]). We also note that existing separation/membership-based algorithms that achieve
a
√
T regret; for examples those presented in [28, 11, 26], are not dimension-free. Their regret

bounds are of order O(κ
√
T ), where κ = R/r with r,R > 0 such that B(r) ⊆ K ⊆ B(R). The as-

phercity parameter can depend on the dimension d [28], and even after a pre-conditioning step (which
would involve putting the set K into near-isotropic position and can cost up to Ω(d4) [25]), κ can be
as large as d in the worst-case. Of course, to make a fair comparison with existing projection-free
algorithms, we also need to take computational complexity into account. This is what we do next.

Computational cost. The computational cost in (15) should be compared with that of existing
projection-free algorithms. For linear optimization-based projection-free algorithms, the computa-
tional cost after T rounds is typically of order Clin ⋅T , where Clin is the cost of performing linear op-
timization over K which, for a polytope K, reduces to solving a linear program. Using state-of-the-art
interior point methods for solving such a linear program would cost Clin ≤ Õ(

√
d ⋅Csys); see e.g. [22].

Thus, linear optimization-based projection-free algorithms5 can have a cost that is a factor
√
d worse

than that of BARONS in the setting of Corollary 1. On the other hand, separation/membership-based
algorithms, the computational cost scales with O(Csep ⋅ T ) after T rounds, where Csep is the cost
of performing separation for the set K. For a general polytope in Rd with m constraints, we have
Csep ≤ O(md), which may be smaller than Csys (the latter can be as large as mdω−1 in the worse
case;see (12)). Here, it may be more appropriate to compare against the computational guarantee
of BARONS given in Corollary 2; by (18), we have that for T ≥ dω−2√m, the computational cost of
BARONS in the setting of the corollary is dominated by (md + d2) ⋅ T , which is comparable to that of
existing separation-based algorithms.

4.2 Implications for Non-Lipschitz Losses

Another advantage BARONS has over projection-free, and even projection-based, algorithms is that it
has a regret bound that scales with a bound on the local norms of the gradients—see (13). We now
showcase two online learning settings where this leads to non-trivial performance and computational
improvements over existing OCO algorithms.

4The dependence in T can be improved under additional structure such as smoothness or strong-convexity of
the losses.

5This only concerns algorithms that use an interior point method to implement linear optimization over K.
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Online Portfolio Selection [5]. The portfolio selection problem is a classical online learning
problem where the gradients of the losses can be unbounded. In this paragraph, we demonstrate how
the guarantee of BARONS in Corollary 1 leads to a non-trivial guarantee for this setting both in terms
of regret and computational complexity. In the online portfolio setting, at each round t, a learner
(algorithm) chooses a distribution wt ∈ ∆d over a fixed set of d portfolios. Then, the environment
reveals a return vector rt ∈ Rd

≥0, and the learner suffers a loss

ℓt(wt) ∶= − logw⊺t rt.

The goal of the learner is to minimize the regret RegT (w) ∶= ∑T
t=1(ℓt(wt) − ℓt(w)) after T ≥ 1

rounds. For this problem, it is known that a logarithmic regret is achievable, but the specialized
algorithms that achieve this have a computational complexity that scales with min(d3T, d2T 2)
[5, 27, 32, 41, 17]. On the other hand, applying the generic Online Gradient Descent or the Online
Newton Step to this problem leads to regret bounds that scale with the maximum norm of the gradient
(which can be unbounded). Instantiating the guarantees of BARONS in Corollary 1 with Φ set to the
standard log-barrier for the simplex6, in particular the bound in (13), to the online portfolio selection
problem leads to an Õ(

√
dT ) regret bound, which does not depend on the norm of the observed

gradients. Furthermore, we have Csys ≤ O(d), and so by (15) the computational complexity is
essentially O(d2T ) after T rounds. Technically, the bound in (13) is only against comparators in the
restricted set Kc. However, by setting c = 1/T , it possible to extend this guarantee to all comparators
in intK as explained in Remark 1, since the losses in this case satisfy (6) [27, Lemma 10].

Linear prediction with the log-loss. Another classical online learning problem with unbounded
gradients is that of linear prediction with the log-loss [36]. For this problem, at each round t,
the learner receives a feature vector xt ∈ X ⊆ Rd, outputs wt ∈ W ⊆ Rd, then observes label
yt ∈ Y ∶= {−1,1} and suffers loss

ℓt(wt) ∶= −I{yt = 1} ⋅ log(1 −w⊺t xt) − I{yt = 0} ⋅ log(1 −w⊺t xt).
In the settings, where (X ,W) = (∆d,B∞(1)) and (X ,W) = (B∞(1),∆d), we have that
∥∇ℓt(w)∥∇−2Φ(w) ≤ O(1) for all w ∈ intW , where Φ is set to the corresponding log-barrier forW .
Thus, instantiating Corollary 1 (in particular (13)) in this setting implies that BARONS achieves a
regret bound of the form:

Õ(
√
dT ), (19)

and has computational complexity bounded by Õ(d2T ), as long as T ≥ d. Again, we emphasize that
the bound in (19) does not depend on the norm of the gradients, which may be unbounded.

Finally, we note that there exist a few specialized algorithms that provide sublinear regret bounds
for non-lipschitz losses. This includes, for example, the Soft-Bayes algorithm [34]. However, this
algorithm is specialized to the log-loss with a particular dependence on the predictions, and it is not
clear, for example, what regret bound it would have in the linear prediction setting and other similar
settings with non-Lipschitz losses.

6Technically, we need to use a barrier for the set {w̃ ∈ Rd
≥0 ∣ ∑i∈[d−1] w̃i ≤ 1}; see e.g. [32].
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A Self-concordance properties

Throughout, for a twice-differentiable function f ∶ intK → R, we let λ(x, f) ∶= ∥∇f(x)∥∇−2f(x)
denote the Newton decrement of f at x ∈ intK.
Lemma 1. Let f ∶ intK → R be a self-concordant function with constant Mf ≥ 1. Further, let
x ∈ intK and xf ∈ argminx∈K f(x). Then, I) whenever λ(x, f) < 1/Mf , we have

∥x − xf∥∇2f(xf ) ∨ ∥x − xf∥∇2f(x) ≤ λ(x, f)/(1 −Mfλ(x, f));

and II) for any M ≥ Mf , the Newton step x+ ∶= x − ∇−2f(x)∇f(x) satisfies x+ ∈ intK and
λ(x+, f) ≤Mλ(x, f)2/(1 −Mλ(x, f))2.
Lemma 2. Let f ∶ intK → R be a self-concordant function with constant Mf and x ∈ intK. Then,
for any w such that r ∶= ∥w − x∥∇2f(x) < 1/Mf , we have

(1 −Mfr)2∇2f(w) ⪯ ∇2f(x) ⪯ (1 −Mfr)−2∇2f(x).

The following result from [33, Theorem 5.1.5] will be useful to show that the iterates of algorithms
are always in the feasible set.
Lemma 3. Let f ∶ intK → R be a self-concordant function with constant Mf ≥ 1 and x ∈ intK. Then,
Ex ∶= {w ∈ Rd∶ ∥w − x∥x < 1/Mf} ⊆ intK. Furthermore, for all w ∈ Ex, we have

∥w − x∥w ≤
∥w − x∥x

1 −Mf∥w − x∥x
.

Finally, we will also make use of the following result due to [31]:
Lemma 4. Let f ∶ intK → R be a self-concordant function with constant Mf > 0. Then, for any
x,w ∈ intK such that r ∶= ∥x −w∥∇2f(x) < 1/Mf , we have

∥∇f(x) − ∇f(w)∥2∇−2f(x) ≤
1

(1 −Mfr)2
∥w − x∥2∇2f(x).

B Technical Lemmas

Our analysis relies on the crucial fact that the Newton decrement can be sufficiently decreased by
taking a Newton step using only approximate gradients and Hessians. We state this fact next; the
proof is in §D.1.
Lemma 5 (Decrease in the Newton decrement). Let Φ be a self-concordant function over intK with
constant MΦ > 0, and let y ∈ Rd be such that λ(y,Φ) ≤ 1/(40MΦ). Further, let H ∈ Rd×d and
∇̂y ∈ Rd be such that

∥∇̂y −∇Φ(y)∥∇−2Φ(y) ≤ ε <
1

40MΦ
, (20)

(1 − α)∇2Φ(y) ≼H ≼ (1 + α)∇2Φ(y), (21)

for α < 1/5. Then, for ỹ+ ∶= y −H−1∇Φ(y) and y+ ∶= y −H−1∇̂y , we have

λ(ỹ+,Φ) ≤ 9MΦλ(y,Φ)2 + 2.5αλ(y,Φ),
λ(y+,Φ) ≤ 20(1 + α)ε + (1 + 20(1 + α)ε) ⋅ λ(ỹ+,Φ).

Next, we show that as long as the Newton decrement is small enough at the current iterate wt−1, the
“intermediate” Newton iterates (wm

t ) remain close to the landmark point ut−1; this will be important
for the proof of Theorem 5. The proof is in §D.2.
Lemma 6 (Invariance under Newton iterations). Let Φ be a self-concordant function over intK
with constant MΦ > 0. Let b > 0, mNewton ∶= Θ(log 1

εMΦ
), α ≤ 1/(1000MΦ), ε < 1/(20000MΦ),

α = 0.001, and η ≤ 1/(1000MΦb). Further, let (wt,w
m
t , ut, gt,Ht) be as in Algorithm 1 with input

(η, ε,α,mNewton). Suppose that at round t − 1 of Algorithm 1, we have

λ(wt−1,Φt−1) ≤ α and ∥ut−1 −wt−1∥∇2Φ(ut−1) ≤
1

40MΦ
. (22)
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For t > 1, if the sub-gradient gt−1 at round t − 1 satisfies ∥gt−1∥∇−2Φ(wt−1) ≤ b, then

λ(wm
t ,Φt) ≤ (

15

16
)
m−1

λ(w1
t ,Φt) + 500ε ≤

1

40MΦ
. (23)

Furthermore, we have for all m ∈ [mNewton]:
1

2
∇2Φ(wm

t ) ≼ ∇2Φ(w⋆t ) ≼ 2∇2Φ(wm
t ), (24)

∥wm
t − ut−1∥Ht−1 ≤

1

10MΦ
, (25)

∥wm
t −w⋆t ∥∇2Φ(w⋆t ) ≤

1

49MΦ
(15
16
)
m−1
+ 240ε, (26)

∣∥wm
t − ut−1∥Ht−1 − ∥wt−1 − ut−1∥Ht−1 ∣ ≤ 2η∥gt−1∥∇2Φ(wt−1) +

1

40MΦ
(15
16
)
m−1
+ 500ε + 2α, (27)

where w⋆t ∈ argminw∈KΦt(w) is the optimum solution of Φt.

We note that we have not made an attempt to optimize over the constants in Lemma 6.
Lemma 7. Let Φ be a (MΦ, ν)-self-concordant barrier for K, and let w⋆ ∈ argminw∈KΦ(w).
Further, suppose that the losses satisfy:

sup
w∈intK,t∈[T ]

ℓt ((1 −
1

T
) ⋅w + 1

T
⋅w⋆) − ℓ(w) ≤ O ( 1√

T
) , (28)

Then, for any w ∈ K, there exists w̃ ∈ K1/T (where Kc is as in (4)) such that

T

∑
t=1
(ℓt(wt) − ℓt(w)) ≤

T

∑
t=1
(ℓt(wt) − ℓt(w̃) +O(

√
T ). (29)

Proof. Fix w ∈ K and define w̃ = 1
T
w⋆ + (1 − 1

T
)w ∈ K1/T . Then, by (28), we have, for all t ∈ [T ],

ℓt(wt) − ℓt(w) ≤ ℓt(w̃t) − ℓt(w̃) +O(T −1/2). (30)

Summing this over t = 1, . . . , T leads to the desired result.

C Proofs of the Main Results

Next, we present the proof of Theorem 5.

C.1 Proof of Theorem 5

Proof. The proof consists of three parts: I) First, we show that BARONS keeps the Newton decrements
λ(wt,Φt), t ≥ 1, small—this is the main invariant of BARONS; II) Then, we bound the regret of
BARONS using this invariant and the results of Lemma 6; III) Finally, we bound the runtime of
BARONS.

Bounding the Newton decrements. We will show that the Newton decrements satisfy

λ(ws,Φs) ≤ α ∶=min{ 1

1000MΦ
,1000ε} , (31)

for all s ≥ 1. We will show (31) by induction over t ≥ 1.

Base case. The base case follows by the facts that w1 ∈ argminw∈KΦ(w), Φ1 ≡ Φ and that the
Newton decrement is zero at the minimizer.

Induction step. Suppose that (31) holds with s = t − 1 for some t ≥ 1. We will show that it holds for
s = t. First, note that by the update rule of landmark (see Lines 12 and 17 of Alg. 1), we have that

∥wt−1 − ut−1∥Ht−1 ≤
1

41MΦ
,
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where Ht−1 = Ohess
α (ut−1). Thus, by the choice of α in the theorem’s statement, we have

∥ut−1 −wt−1∥∇2Φ(ut−1) ≤
1

40MΦ
. (32)

This, combined with the fact that (31) holds with s = t − 1 (the induction hypothesis) implies that the
conditions of Lemma 6 are satisfied. This in turn implies

λ(wt,Φt)
(a)= λ(wmNewton

t ,Φt) ≤ (
15

16
)
mNewton

λ(w1
t ,Φt) + 500ε ≤

50

MΦ
(15
16
)
mNewton

+ 500ε
(b)
≤ α,

where (a) follows by the fact that wt = wmNewton

t (by definition; see Algorithm 1) and (b) follows by
the choice of mNewton in the theorem’s statement. This shows that (31) holds for s = t and concludes
the induction.

Bounding the regret. To bound the regret of BARONS, we make use of the FTRL iterates {w⋆t },
which are given by w⋆t ∈ argminw∈KΦt(w): By Lemma 6, we have that for all t ∈ [T ],

∥wt −w⋆t ∥∇2Φ(w⋆t ) = ∥w
mNewton

t −w⋆t ∥∇2Φ(w⋆t ) ≤
1

49MΦ
(15
16
)
mNewton

+ 240ε = O(ε), (33)

where the last inequality follows by the choice of mNewton = Θ(log(1/(εMΦ))) in the theorem’s
statement. Using this and Hölder’s inequality, we now bound the sum of linearized losses of the
algorithm in terms of the sum of linearized losses with respect to {w⋆t }:

T

∑
t=1
⟨wt, gt⟩ ≤

T

∑
t=1
⟨w⋆t , gt⟩ +

T

∑
t=1
∥w⋆t −wt∥∇2Φ(w⋆t ) ⋅ ∥gt∥∇2Φ(w⋆t )

−1 . (34)

Now, by (24) in Lemma 6 (which holds due to (32) and (31) with s = t − 1 as we showed in
the prequel), we have 1

2
∇2Φ(wt) ≼ ∇2Φ(w⋆t ), which implies that ∥gt∥∇−2Φ(w⋆t ) ≤ 2∥gt∥∇−2Φ(wt).

Combining this with (33) and (34), we get that

T

∑
t=1
⟨wt, gt⟩ ≤

T

∑
t=1
⟨w⋆t , gt⟩ +O(ε)

T

∑
t=1
∥gt∥∇−2Φ(wt). (35)

Now fix w ∈ K. Subtracting ∑T
t=1⟨w, gt⟩ from both sides of (35) implies the following bound the

regret of BARONS:

RegBARONST (w) ≤
T

∑
t=1
⟨w⋆t , gt⟩ −

T

∑
t=1
⟨w, gt⟩ +O(ε)

T

∑
t=1
∥gt∥∇−2Φ(wt),

≤ 1

η
Φ(w) + η

T

∑
t=1
∥gt∥2∇−2Φ(wt) +O(ε)

T

∑
t=1
∥gt∥∇−2Φ(wt),

where the last inequality follows by the regret bound of FTRL (see e.g. [30]).

Bounding the run-time. Note that BARONS updates the landmark points on the rounds where
∥ut −wt∥Ht > 1/(41MΦ). Now, by (27) in Lemma 6 (which holds due to (32) and (31) with s = t− 1
as we showed in the prequel), we have

∣∥ut −wt∥Ht − ∥ut −wt−1∥Ht ∣ = ∣∥ut −wmNewton

t ∥Ht − ∥ut −wt−1∥Ht ∣,

≤ 2η∥gt−1∥∇−2Φ(wt−1) +
1

40MΦ
(15
16
)
mNewton

+ 500ε + 2α

≤ 2η∥gt−1∥∇−2Φ(wt−1) +O(ε),
where the last inequality follows by the choice of mNewton in the theorem’s statement. Hence, the
quantity ∥ut − wt∥Ht increases each time by at most 2η∥gt−1∥∇−2Φ(wt−1) + O(ε). Therefore, the
number of times that the landmark ut changes is bounded by

O
⎛
⎝
∑T

t=1(2η∥gt∥∇−2Φ(wt) +O(ε))
1/(41MΦ)

⎞
⎠
= O (MΦTε +MΦ

T

∑
t=1

η∥gt∥∇−2Φ(wt)) .
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Thus, the overall computational cost of recalculating the Hessians and their inverses at the landmark
iterates is bounded by

Chessα ⋅ (MΦTε +MΦ

T

∑
t=1

η∥gt∥∇−2Φ(wt)) .

where the multiplicative cost Chessα reflects the fact that the instance of BARONS in the theorem’s
statement needs 1 ± α accurate approximations of the Hessians and their inverses (in the sense of
Definition 4) at the landmark iterates. Moreover, BARONS needs to compute an ε-approximate gradient
of Φ at every point wm

t for all t ∈ [T ] and m ∈ [mNewton]. Thus, the cost of computing the gradients
is Cgradε ⋅ T log 1

εMΦ
. Finally, the matrix-vector product H−1t ∇Φt(w) in BARONS costs O(d2) work,

and so overall the computational cost is

O ((Cgradε + d2) ⋅ T log
1

εMΦ
+ Chessα ⋅ (MΦTε +MΦ

T

∑
t=1

η∥gt∥∇−2Φ(wt))) .

C.2 Proof of Theorem 6

Proof. Note that without having any effect on the algorithm, we can add an arbitrary constant to the
barrier Φ. Thus, without loss of generality, we assume Φ(w⋆) = 0, which implies Φ(w) ≥ 0, for all
w ∈ K. We define the restricted comparator class

K̃ ∶= {w ∈ K ∶ Φ(w) ≤ Φ(w⋆) + ν log c}.
By [33, Corollary 5.3.3] and the fact that Φ is an (MΦ, ν)-self-concordant barrier for K, we have that

Kc ⊆ K̃, (36)

and so it suffices to bound the regret against comparators in K̃. Fix w̃ ∈ K̃. Under the assumptions of
the theorem, the preconditions of Theorem 5 are satisfied and so we have,

T

∑
t=1
(ℓt(wt) − ℓt(w̃)) ≲

1

η
Φ(w̃) + η

T

∑
t=1
∥gt∥2∇−2Φ(wt) + ε

T

∑
t=1
∥gt∥∇−2Φ(wt),

= 1

η
ν log c + ηb2T + εTb, (since w̃ ∈ K̃ and ∥gt∥∇−2Φ(wt) ≤ b)

= 2b
√
νT log c + b

√
νT ,

where in the last step we used the choices of η and ε in (5). Combining this with (36) implies
the desired regret bound. The bound on the computational complexity follows immediately from
Theorem 5, the fact that ∥gt∥∇−2Φ(wt) ≤ b, and the choices of η and ε in (5).

C.3 Proof of Theorem 7

Proof. Similar to the proof of Theorem 6, and without loss of generality, we assume that Ψ is zero at
its minimum, i.e. Ψ(w⋆) = 0. We define the restricted comparator class

K̃ ∶= {w ∈ K ∶ Ψ(w) ≤ Ψ(w⋆) + ν logT}. (37)

By [33, Corollary 5.3.3] and the fact that Ψ is an (MΨ, ν)-self-concordant barrier for K, we have that

K1/T ⊆ K̃. (38)

On the other hand, by Lemma 7 we have that

sup
w∈intK

T

∑
t=1
(ℓt(wt) − ℓt(w)) ≤ sup

w̃∈intK

T

∑
t=1
(ℓt(wt) − ℓt(w̃) +O(

√
T ).

Combining this with (38) implies that it suffices to bound the regret against comparators in K̃. Fix
w̃ ∈ K̃. Note that since Φ is equal to Ψ plus a quadratic, Φ is also a self-concordant function with
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constant MΦ =MΨ [33]. Thus, under the assumptions of the theorem the preconditions of Theorem 5
are satisfied and so we have,

T

∑
t=1
(ℓt(wt) − ℓt(w̃)) ≲

1

η
Φ(w̃) + η

T

∑
t=1
∥gt∥2∇−2Φ(wt) + ε

T

∑
t=1
∥gt∥∇−2Φ(wt). (39)

Now, by the choice of Φ, we have that

∥gt∥∇−2Φ(wt) ≤ R∥gt∥/
√
ν ≤ RG/

√
ν.

Moreover, from the condition that K ⊆ B(R), (37) and the fact that Ψ(w⋆) = 0, we have for all
w ∈ K̃:

Φ(w) ≤ ν logT + ν

2
.

Plugging this into (39) and using that w̃ ∈ K, we get

T

∑
t=1
(ℓt(wt) − ℓt(w̃)) =

1

η
ν logT + 1

2η
+ ηR

2G2

ν
T + εTRG√

ν
,

= 2RG
√
T logT + 5

2
RG
√
T ,

where in the last step we used the choices of η and ε in (8). Combining this with (38) implies the
desired regret bound. The bound on the computational complexity follows from the computational
complexity in Theorem 5 and the fact a gradient Oracle Ograd

ε (Φ) [resp. Hessian Oracle Ograd
α (Ψ)]

for Φ(⋅) = Ψ(⋅) + ν
2R2 ∥ ⋅ ∥2 can be implemented with one call to Ograd

ε (Ψ) [resp. Ohess
α (Ψ)] plus d

arithmetic operations.

D Proofs of the Technical Lemmas

D.1 Proof of Lemma 5

Proof. Throughout, we let h is the Newton step based on the exact gradient ∇Φ(y):

h = −H−1∇Φ(y).

Recall that ỹ+ and y+ from the lemma’s statement satisfy

ỹ+ = y + h and y+ = y −H−1∇̂y.

Bounding the Newton decrement at ỹ+. First, we bound the Newton decrement at ỹ+. By definition,
the square of the Newton decrement at ỹ+ = y + h is

λ(ỹ+,Φ) = ∇Φ(y + h)⊺∇−2Φ(y + h)∇Φ(y + h).

Now for the vector z defined below, we define the function F as

z ≜ ∇−2Φ(y + h)∇Φ(y + h) and F (y) ∶= ∇Φ(y)⊺z. (40)

The partial derivative of F in direction h is given by

DF (y)[h] = −h⊺∇2Φ(y)z,
= −∇Φ(y)⊺H−1∇2Φ(y)z,
= −∇Φ(y)⊺H−1/2H−1/2∇2Φ(y)H−1/2H1/2z,

= −∇Φ(y)⊺H−1/2(H−1/2∇2Φ(y)H−1/2 − I)H1/2z −∇Φ(y)⊺z. (41)

Now, by (21), we have

∥H−1/2∇2Φ(y)H−1/2 − I∥ ≤ α

1 − α.
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Thus, the first term on the right-hand side of (41) can be bounded as

∇Φ(y)⊺H−1/2(H−1/2∇2Φ(y)H−1/2 − I)H1/2z

≤ α

1 − α∥∇Φ(y)
⊺H−1/2∥∥H1/2z∥,

= α

1 − α∥∇Φ(y)∥H
−1∥z∥H ,

≤ α(1 + α)
(1 − α)2 ∥∇Φ(y)∥∇

−2Φ(y)∥z∥∇2Φ(y),

= α(1 + α)
(1 − α)2 λ(y,Φ) ⋅ ∥z∥∇

2Φ(y).

Plugging this into (41) and using the definition z in (40), we obtain

∣DF (y)[h] + F (y)∣ ≤ α(1 + α)
(1 − α)2 λ(y,Φ) ⋅ ∥z∥∇

2Φ(y). (42)

Now, let y(s) ∶= y + sh and F ○ y(s) ∶= F (y(s)). With this, we have

(F ○ y)′(s) − (F ○ y)′(0) = h⊺(∇2Φ(y(s)) − ∇2Φ(y(0)))z. (43)

On the other hand, by Lemma 8 and our assumption on λ(y,Φ), we have

∥y(s) − y∥∇2Φ(y) = s∥h∥∇2Φ(y) ≤
s

1 − α∥∇Φ(y)∥∇
−2Φ(y) ≤

1

1 − αλ(y,Φ), (44)

< 1

30MΦ
. (45)

Thus, by Lemma 1, we have

(1 −MΦ∥y(s) − y∥2∇2Φ(y))2∇2Φ(y) ≼ ∇2Φ(y(s)) ≼ 1

(1 −MΦ∥y(s) − y∥∇2Φ(y))2
∇2Φ(y).

This, together with (45) also implies that

(1 − 3MΦ∥y(s) − y∥∇2Φ(y))∇2Φ(y) ≼ ∇2Φ(y(s)) ≼ (1 + 3MΦ∥y(s) − y∥∇2Φ(y))∇2Φ(y).
After rearranging, this becomes

−3MΦ∥y(s) − y∥∇2Φ(y)∇2Φ(y) ≼ ∇2Φ(y(s)) − ∇2Φ(y) ≼ 3MΦ∥y(s) − y∥∇2Φ(y)∇2Φ(y).

Combining this with (44) and the fact that c ≤ 1
4

gives

−4MΦλ(y,Φ)∇2Φ(y) ≼ ∇2Φ(y(s)) − ∇2Φ(y) ≼ 4MΦλ(y,Φ)∇2Φ(y). (46)

Finally, by Lemma 9 and (46), we obtain the following bound on the right-hand side of (43):

(F ○ y)′(s) − (F ○ y)′(0) ≤ 6MΦλ(y,Φ)∥h∥∇2Φ(y)∥z∥∇2Φ(y).

Integrating this over s gives

∇Φ(y + h)⊺z = (F ○ y)(1)

= (F ○ y)(0) + (F ○ y)′(0) + ∫
1

0
((F ○ y)′(s) − (F ○ y)′(0))ds

≤ ∇Φ(y)⊺z +DF (y)[z] + 6MΦλ(y,Φ)∥h∥∇2Φ(y)∥z∥∇2Φ(y),

≤ ∇Φ(y)⊺z +DF (y)[z] + 6MΦ

1 − αλ(y,Φ)2∥z∥∇2Φ(y), (47)

where the last inequality follows by (44). Now, note that from (46) (with s = 1) and the assumption
that λ(w,Φ) ≤ 1/(40MΦ), we have

∇2Φ(y) ≼ 10

9
∇2Φ(y + h).
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This implies

∥z∥∇2Φ(y) ≤
10

9
∥z∥∇2Φ(y+h) =

10

9
λ(y + h,Φ).

Plugging this into (47) and using (42), we get

∇Φ(y + h)⊺z ≤ ∣∇Φ(y)⊺z +DF (y)[h]∣ + 20MΦ

3(1 − α)λ(y,Φ)
2λ(y + h,Φ)

≤ α(1 + α)
(1 − α)2 λ(y,Φ)∥z∥∇

2Φ(y) +
20MΦ

3(1 − α)λ(y,Φ)
2λ(y + h,Φ),

≤ 10α(1 + α)
9(1 − α)2 λ(y,Φ)λ(y + h,Φ) + 20MΦ

3(1 − α)λ(y,Φ)
2λ(y + h,Φ).

Now, from the definition of z, we have

∇Φ(y + h)⊺z = λ(y + h,Φ)2.

Thus, since α < 1/4, we finally get

λ(y + h,Φ) ≤ 9MΦλ(y,Φ)2 + 2.5αλ(y,Φ).

This proves the first part of the claim, i.e. (43).

Bounding the Newton decrement at y+. We now bound the Newton decrement at y+ = y−H−1∇̂y

in terms of that of ỹ+ = y + h. Note that

ỹ+ − y+ =H−1(∇Φ(y) − ∇̂y).

On the other hand, from (64) and (45), we have

∇2Φ(ỹ+) ≼ (1 + 3MΦ∥h∥)∇2Φ(y) ≼ 7

4
∇2Φ(y) ≼ 7

4
(1 + α)H, (48)

which implies that

∥∇2Φ(ỹ+)1/2H−1∇2Φ(ỹ+)1/2∥ ≤ 7

4
(1 + α).

Therefore,

∥ỹ+ − y+∥2∇2Φ(ỹ+)

= (∇Φ(y) − ∇̂y)⊺H−1∇2Φ(ỹ+)H−1(∇Φ(y) − ∇̂y),

= (∇Φ(ỹ+) − ∇̂y)⊺∇−1/2Φ(ỹ+)(∇2Φ(ỹ+)1/2H−1∇2Φ(ỹ+)1/2)
2

∇−1/2Φ(ỹ+)(∇Φ(y) − ∇̂y),

≤ 49

16
(1 + α)2(∇Φ(y) − ∇̂y)⊺∇−2Φ(ỹ+)(∇Φ(y) − ∇̂y),

= 49

16
(1 + α)2∥∇Φ(y) − ∇̂y∥∇−2Φ(ỹ+).

Combining this with (48) and our assumption on ∇̂y from (20) implies

∥ỹ+ − y+∥∇2Φ(ỹ+) ≤
7

2
(1 + α)∥∇Φ(y) − ∇̂y∥∇−2Φ(y) ≤ 5(1 + α)ε. (49)

Thus, by Lemma 1, we have

((1 − 5(1 + α)εMΦ)2 − 1)∇2Φ(y+) ≼ ∇2Φ(ỹ+) − ∇2Φ(y+) ≤ ( 1

(1 − 5(1 + α)εMΦ)2
− 1)∇2Φ(y+).

Since ε < 1/(40MΦ), we get

−20(1 + α)ε∇2Φ(y+) ≼ ∇2Φ(ỹ+) − ∇2Φ(y+) ≼ 20(1 + α)ε∇2Φ(y+). (50)
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Now, by Lemma 4 instantiated with x = ỹ+ and w = y+, we have

√
(∇Φ(ỹ+) − ∇Φ(y+))⊺∇−2Φ(ỹ+)(∇Φ(ỹ+) − ∇Φ(y+)) ≤

∥y+ − ỹ+∥∇2Φ(ỹ+)

(1 −MΦ∥y+ − ỹ+∥∇2Φ(ỹ+))
,

≤ 10(1 + α)ε, (51)

where in the last inequality we used (49) and the fact that ε ≤ 1/(40MΦ).
Using the triangle inequality, we can bound the Newton decrement at y+ as

λ(y+,Φ) ≤
√
(∇Φ(ỹ+) − ∇Φ(y+))⊺∇−2Φ(y+)(∇Φ(ỹ+) − ∇Φ(y+))
+
√
∇Φ(ỹ+)⊺∇−2Φ(y+)∇Φ(ỹ+),

≤ 2
√
(∇Φ(ỹ+) − ∇Φ(y+))⊺∇−2Φ(ỹ+)(∇Φ(ỹ+) − ∇Φ(y+))

+
√
∇Φ(ỹ+)⊺∇−2Φ(y+)∇Φ(ỹ+), (by (50) and ε ≤ 1/(40MΦ))

≤ 20(1 + α)ε + (1 + 20(1 + α)ε) ⋅ λ(ỹ+,Φ),
where the last inequality follows by (50) and (51). This completes the proof.

D.2 Proof of Lemma 6

Proof. By definition of (wm
t ) in Algorithm 1, we have w1

t = wt−1 and wt = wmNewton

t . We show
properties (23), (25), (26), and 27 using induction over m = 1, . . . ,mNewton.

Base case. We start with the base case; m = 1. Note that from the assumption in (22) and definition
of w1

t , we have

∥w1
t − ut−1∥∇2Φ(ut−1) ≤ 1/(40Mϕ). (52)

Now, by definition of the Oracle Ohess
α and the fact that Ht−1 = Ohess

α (ut−1) (see Algorithm 1) with
α = 0.001, we have

(1 − 0.001)∇2Φ(ut−1) ≼Ht−1 ≼ (1 + 0.001)∇2Φ(ut−1). (53)

Combining this with (52) implies property (25) for the base case. Furthermore, since w1
t = wt−1 (by

definition), (27) follows trivially for the base case.

Now, using that Φt(w) = Φt−1(w) + ηg⊺t−1w, we have

λ(w1
t ,Φt)2 = λ(wt−1,Φt)2

= (∇Φt−1(wt−1) + ηgt−1)⊺∇−2Φ(wt−1)(∇Φt−1(wt−1) + ηgt−1)
≤ 2∇Φt−1(wt−1)⊺∇−2Φ(wt−1)∇Φt−1(wt−1) + 2η2gt−1⊺∇−2Φ(wt−1)gt−1
= 2λ(wt−1,Φt−1)2 + 2η2gt−1⊺∇−2Φ(wt−1)gt−1 (54)

≤ 2α2 + 2η2b2 ≤ 1/(2500M2
Φ), (55)

where the last inequality follows by (22) and the fact that ∥gt−1∥∇−2Φ(wt−1) ≤ b. This shows prop-
erty (23) for the base case. Thus, by Lemma 1, we have, for w⋆t ∈ argminw∈KΦt(w),

∥w1
t −w⋆t ∥∇2Φ(w1

t ) = ∥w
1
t −w⋆t ∥∇2Φt(w1

t ) ≤ λ(w
1
t ,Φt)/(1 −MΦλ(w1

t ,Φt)) ≤
1

49MΦ
. (56)

Now, combining (53) with the fact that ∥ut−1 −w1
t ∥∇2Φ(ut−1) = ∥ut−1 −wt−1∥∇2Φ(ut−1) ≤ 1/(40MΦ)

(see (22)) and Lemma 2, we obtain

(31
32
)
2

Ht−1 ≼ ∇2Φ(w1
t ) ≼ (

32

31
)
2

Ht−1, (57)

Plugging (57) into (56), we get

∥w1
t −w⋆t ∥Ht−1 ≤ 1/(40MΦ). (58)
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Now, by the triangle inequality

∥ut−1 −w⋆t ∥Ht−1 ≤ ∥ut−1 −w1
t ∥Ht−1 + ∥w1

t −w⋆t ∥Ht−1

≤ 1/(20ΦM), (59)

where in the last inequality we used (22) and (58). Combining (59) with (53) and Lemma 1, we get

(4/5)∇2Φ(w⋆t ) ≼Ht−1 ≼ (5/4)∇2Φ(w⋆t ). (60)

Combining Equations (60) and (57) implies property (24) for the base of Induction. Furthermore,
note that from Lemma 1:

∥w1
t −w⋆t ∥∇2Φ(w⋆t ) ≤

50

49
λ(w1

t ,Φt) ≤
1

49MΦ
,

which shows property (26) for the base case.

Induction step. Now, assume that properties (23), (25), (26), and (27) hold for m ≥ 1. We will
show that these properties holds for m + 1. From the hypothesis of induction, we have

∥wm
t − ut−1∥Ht−1 ≤

1

12MΦ
,

which combined with (53) and Lemma 1 implies

0.84∇2Φ(wm
t ) ≼Ht−1 ≼ 1.2∇2Φ(wm

t ). (61)

Thus, by Lemma 5 (instantiated with c = 1/5) and the fact that λ(wm
t ,Φt) ≤ 1/(40MΦ) (by the

induction hypothesis), we get that for w̃m+1
t ∶= wm

t −H−1t−1∇Φt(wm
t ):

λ(w̃m+1
t ,Φt) ≤ 9MΦλ(wm

t ,Φt)2 + 2.5cλ(wm
t ,Φt) ≤ (7/8)λ(wm

t ,Φt).
Again, by Lemma 5 with c = 1/5, we have

λ(wm+1
t ,Φt) ≤ 20(1 + c)ε + (1 + 20(1 + c)ε)λ(w̃m+1

t ,Φ)

≤ 25ε + (15
16
)λ(wm

t ,Φt) ≤ 1/(50MΦ). (62)

By the induction hypothesis, we also have that λ(wm
t ,Φt) ≤ ( 1516)

m−1
λ(w1

t ,Φt) + 500ε. Combining
this with (62), we get

λ(wm+1
t ,Φt) ≤ (

15

16
)
m

λ(w1
t ,Φt) + 500ε. (63)

This shows that (23) holds with m replaced by m + 1.

Next, we show that (25) holds with m replaced by m + 1. Combining (62) with Lemma 1 implies

∥wm+1
t −w⋆t ∥∇2Φ(w⋆t ) ≤ λ(w

m+1
t ,Φt)/(1 −MΦλ(wm+1

t ,Φt)) ≤ 1/(49MΦ).
This, together with (60) gives

∥wm+1
t −w⋆t ∥Ht−1 ≤ 1/(32MΦ). (64)

Combining (59) with (64) gives:

∥wm+1
t − ut−1∥Ht−1 ≤

1

12MΦ
,

which proves that (25) holds with m replaced by m + 1.

Next, we show that (26) holds with m replaced by m + 1. By (63) and Lemma 1, we have

∥wm+1
t −w⋆t ∥∇2Φ(w⋆t ) ≤

50

49
(15
16
)
m

λ(w1
t ,Φt) + 240ε,

≤ 1

49MΦ
(15
16
)
m

+ 240ε ≤ 1

20MΦ
, (65)
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where in the last inequality we used (55) and the bound on ε in the lemma’s statement. This shows
that (26) holds with m replaced by m + 1.

Next, we show that (27) holds with m replaced by m + 1. By plugging (60) into (65), we get

∥wm+1
t −w⋆t ∥Ht−1 ≤

1

40MΦ
(15
16
)
m

+ 300ε. (66)

On the other hand, by (54), we have

λ(w1
t ,Φt) ≤

√
∇Φt−1(wt−1)⊺(∇2Φ(wt−1))−1∇Φt−1(wt−1) +

√
η2gt−1⊺(∇2Φ(wt−1))−1gt−1

= λ(wt−1,Φt−1) + η∥gt−1∥∇−2Φ(wt−1).

Plugging this into (56) and using (55), we get

∥w1
t −w⋆t ∥∇2Φ(w1

t ) ≤
50

49
(λ(wt−1,Φt−1) + η∥gt−1∥∇−2Φ(wt−1)),

≤ 50

49
(α + η∥gt−1∥∇−2Φ(wt−1)), (67)

where the last inequality follows by (22). Combining (67) with (61) (instantiated with m = 1),
∥w1

t −w⋆t ∥Ht−1 ≤ 2(α + η∥gt−1∥∇−2Φ(wt−1)). (68)
Now, by (66), (68), and the triangle inequality, we have

∥w1
t −wm+1

t ∥Ht−1 ≤ 2η∥gt−1∥∇−2Φ(wt−1) +
1

40MΦ
(15
16
)
m

+ 500ε + 2α.

Via another triangle inequality, we get

∣∥ut−1 −wm+1
t ∥Ht−1 − ∥ut−1 −wt−1∥Ht−1 ∣ ≤ 2η∥gt−1∥∇−2Φ(wt−1) +

1

40MΦ
(15
16
)
m

+ 500ε + 2α.
This shows that (27) holds with m replaced by m + 1. Finally, combining (60) with (61) implies

1

2
∇2Φ(wm

t ) ≼ ∇2Φ(w⋆t ) ≼ 2∇2Φ(wm
t ),

which completes the proof.

E Helper Lemmas

Lemma 8 (Bounding norm of the Newton step). Let y ∈ K and H ∈ Rd×d be such that (1 −
c)∇2Φ(y) ≼H ≼ (1 + c)∇2Φ(y). Then, for h ∶= −H−1∇Φ(y), we have

∥h∥∇2Φ(y) ≤
1

1 − c∥∇Φ(y)∥∇
−2Φ(y).

Proof. We can write
∥h∥∇2Φ(y) = ∥H−1∇Φ(y)∥∇2Φ(y)

=
√
∇Φ(y)⊺H−1∇2Φ(y)H−1∇Φ(y)

=
√
∇Φ(y)⊺∇2Φ(y)−1/2(∇2Φ(y)1/2H−1∇2Φ(y)1/2)

2

∇2Φ(y)−1/2∇Φ(y). (69)

For the middle matrix ∇2Φ(y)1/2H−1∇2Φ(y)1/2 we have that
1

1 + cI ≼ ∇
2Φ(y)1/2H−1∇2Φ(y)1/2 ≼ 1

1 − cI,

since (1 − c)∇2Φ(y) ≼H ≼ (1 + c)∇2Φ(y) by assumption. Plugging this back into (69), we get

∥h∥∇2Φ(y) ≤
1

1 − c∥∇Φ(y)∥∇2Φ(y)−1 .

Lemma 9 (Cauchy-Schwarz). If −B ≼ A ≼ B are symmetric matrices and B is PSD, then
x⊺Ay ≤ ∥x∥B∥y∥B .
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