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ABSTRACT

Explainable Artificial Intelligence (XAI) is crucial in unravelling decision-making
processes in complex machine-learning models. LIME (Local Interpretable
Model-agnostic Explanations) is a well-known XAI framework for image anal-
ysis. It utilizes image segmentation to create features to identify relevant areas
for classification. Consequently, poor segmentation can compromise the con-
sistency of the explanation and undermine the importance of the segments, af-
fecting the overall interpretability. To address these challenges, we introduce
DSEG-LIME (Data-Driven Segmentation LIME), featuring: i) a data-driven seg-
mentation for human-recognized feature generation by foundation model integra-
tion, and ii) a user steered granularity in the hierarchical segmentation procedure
through composition. We evaluate DSEG-LIME on pre-trained models using Im-
ageNet classes, explicitly targeting scenarios without domain-specific knowledge.
Our findings demonstrate that DSEG outperforms most of the XAI metrics and
enhances the alignment of explanations with human-recognized concepts, signifi-
cantly improving interpretability.

1 INTRODUCTION

Why should we trust you? The integration of AI-powered services into everyday scenarios, with or
without the need for specific domain knowledge, is becoming increasingly common. For instance,
consider AI-driven systems that assist in diagnosing diseases based on medical imaging. In such
high-stakes scenarios, accuracy and alignment with expert knowledge are paramount. To ensure
reliability, stakeholders, including medical professionals and regulators, frequently seek to evaluate
the AI’s performance post-deployment. For example, one might assess whether the AI correctly
identifies anomalies in medical scans that could indicate early-stage cancer. The derived question
- ”Why should we trust the model?” - directly ties into the utility of Local Interpretable Model-
agnostic Explanations (LIME) (Ribeiro et al., 2016). LIME seeks to demystify AI decision-making
by identifying key features that influence the output of a model, underlying the importance of the
Explainable AI (XAI) research domain, particularly when deploying opaque models in real-world
scenarios (Barredo Arrieta et al., 2020; Linardatos et al., 2021; Garreau & Mardaoui, 2021).

Segmentation is key. LIME uses segmentation techniques to identify and generate features to de-
termine the key areas of an image that are critical for classification. However, a challenge emerges
when these segmentation methods highlight features that fail to align with identifiable, clear con-
cepts or arbitrarily represent them. This issue is particularly prevalent with conventional segmen-
tation techniques. These methods, often grounded in graph- or clustering-based approaches (Wang
et al., 2017), were not initially designed for distinguishing between different objects within images.
However, they are the default in LIME’s implementation (Ribeiro et al., 2016).

Ambiguous explanations. The composition of the segmentation has a significant influence on the
explanation’s quality (Schallner et al., 2020). Images with a large number of segments frequently
experience significant stability issues in LIME, primarily due to the increased number of sampled
instances (Section 2). This instability can lead to the generation of two entirely contradictory ex-
planations for the same instance, undermining trust not only in LIME’s explanations but also in
the reliability of the model being analyzed (Garreau & Mardaoui, 2021; Alvarez-Melis & Jaakkola,
2018; Zhou et al., 2021; Zhao et al., 2020; Tan et al., 2024). Moreover, humans often struggle to
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DSEG 
(Ours)

(a) Acoustic  
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      Retriever

(c) Electric    
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Original 
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WatershedFelzenszwalbSLIC Quickshift 
(Vanilla LIME)

Figure 1: Segmentation techniques within LIME. We illustrate LIME-generated explanations
(Ribeiro et al., 2016) for EfficientNetB4 (Tan & Le, 2019), utilizing various segmentation meth-
ods: DSEG (ours) combined with SAM (Segment Anything) (Kirillov et al., 2023), Quickshift
(Hoyer et al., 2019), SLIC (Simple Linear Iterative Clustering) (Achanta et al., 2012), Felzenszwalb
(Felzenszwalb & Huttenlocher, 2004), and the Watershed algorithm (Neubert & Protzel, 2014). The
top predictions are ’Acoustic Guitar’ (p = 0.31), ’Golden Retriever’ (p = 0.24), and ’Electric Guitar’
(p = 0.07). Among these, our method (DSEG) provides the clearest and most interpretable concept
representations.

interpret the explanations, as the highlighted areas do not align with our intuitive understanding
(Molnar et al., 2022; Kim et al., 2022).

This work. In this paper, we address the challenges above by introducing DSEG-LIME (Data-
driven Segmentation LIME), an adaptation of the LIME framework for image analysis across do-
mains where specialized knowledge is not required. We replace the conventional segmentation al-
gorithm with foundation models, such as SAM (Kirillov et al., 2023), and often refer to these mod-
els as data-driven to emphasize their capability to generate features that more effectively capture
human-recognizable concepts, leveraging insights derived from extensive image datasets. Given the
great segmentation ability of such models, we implement a compositional object structure, adapting
LIME’s feature generation with a novel hierarchical segmentation. This adaptation provides flex-
ibility in the granularity of concepts, allowing users to specify the detail of LIME’s explanation,
viewing a car as a whole or in parts like doors and windshields. This approach breaks down broad
categorizations, enabling independent evaluation of each sub-concept. Figure 1 demonstrates the
motivation mentioned above by employing LIME, which generates explanations using various seg-
mentation techniques, specifically focusing on an image of a dog playing the guitar. In this context,
DSEG excels by more clearly highlighting features that align with human-recognizable concepts,
distinguishing it from other methods.

Contribution. The key contributions of our paper are summarized as follows: (i) We present DSEG-
LIME, an enhanced version of the LIME framework for image analysis, leveraging foundation mod-
els to improve image segmentation. (ii) DSEG extends LIME by incorporating compositional object
structures, enabling hierarchical segmentation that offers users adjustable feature granularity. (iii)
We rigorously evaluate our approach with other segmentation methods and LIME enhancements
across multiple pre-trained image classification models. Our evaluation includes a user study for
qualitative insights and distinguishes between explaining (quantitative) and interpreting (qualita-
tive) aspects. We acknowledge that explanations considered intuitive by users may not always re-
flect the AI model’s operational logic, which can diverge from human perception (Molnar et al.,
2022; Freiesleben & König, 2023). To address this, we complement our evaluation with several
quantitative performance metrics widely used in XAI research (Nauta et al., 2023).
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2 RELATED WORK

Region-based perturbation XAI techniques. LIME is among several techniques designed to ex-
plain black box models through image perturbation. Fong & Vedaldi (2017) introduced a meta-
predictor framework that identifies critical regions via saliency maps. Subsequently, Fong et al.
(2019) developed the concept of extremal perturbations to address previous methods’ limitations.
Additionally, Kapishnikov et al. (2019) advanced an integrated-gradient, region-based attribution
approach for more precise model explanations. More recently, Escudero-Viñolo et al. (2023) have
highlighted the constraints of perturbation-based explanations, advocating for the integration of se-
mantic segmentation to enhance image interpretation.

Instability of LIME. The XAI community widely recognizes the instability in LIME’s explana-
tions, which stems from LIME’s design (Alvarez-Melis & Jaakkola, 2018; Zhou et al., 2021; Zhao
et al., 2020; Tan et al., 2024). Alvarez-Melis & Jaakkola (2018) handled this issue by showing the
instability of various XAI techniques when slightly modifying the instance to be explained. A di-
rect improvement is Stabilized-LIME (SLIME) proposed by Zhou et al. (2021) based on the central
limit theorem to approximate the number of perturbations needed in the data sampling approach to
guarantee improved explanation stability. Zhao et al. (2020) improved stability by exploiting prior
knowledge and using Bayesian reasoning - BayLIME. GLIME (Tan et al., 2024) addressed this is-
sue by employing an improved local and unbiased data sampling strategy, resulting in explanations
with higher fidelity - similar to the work by Rashid et al. (2024). Recent advancements include
Stabilized LIME for Consistent Explanations (SLICE) Bora et al. (2024), which improves LIME
through a novel feature selection mechanism that removes spurious superpixels and introduces an
adaptive perturbation approach for generating neighbourhood samples. Another hierarchical-based
variation, DLIME Zafar & Khan (2021), utilizes agglomerative hierarchical clustering to organize
training data, focusing primarily on tabular datasets. In contrast, DSEG-LIME extends this concept
to images by leveraging the hierarchical structure of image segments.

Segmentation influence on explanation. The segmentation algorithm utilized to sample data
around the instance x strongly influences its explanation. It directly affects the stability of LIME
itself, as suggested by Ng et al. (2022). This behaviour is in line with the investigation by Schall-
ner et al. (2020) that examined the influence of different segmentation techniques in the medical
domain, showing that the quality of the explanation depends on the underlying feature generation
process. Blücher et al. (2024) explored how occlusion and sampling strategies affect model explana-
tions when integrated with segmentation techniques for XAI, including LRP (Layer-Wise Relevance
Propagation) (Montavon et al., 2019) and SHAP (Lundberg & Lee, 2017). Their study highlights
how different strategies provide unique explanations while evaluating the SAM technique in image
segmentation. Sun et al. (2023) used SAM within the SHAP framework to provide conceptually
driven explanations, which we discuss in Appendix B.4.

Segmentation hierarchy. The work of Li et al. (2022) aimed to simulate the way humans structure
segments hierarchically and introduced a framework called Hierarchical Semantic Segmentation
Networks (HSSN), which approaches segmentation through a pixel-wise multi-label classification
task. HIPPIE (HIerarchical oPen-vocabulary, and unIvErsal segmentation), proposed by Wang et al.
(2023), extended hierarchical segmentation by merging text and image data multimodally. It pro-
cesses inputs through decoders to extract and then fuse visual and text features into enhanced repre-
sentations.

3 FOUNDATIONS OF LIME

In this section, we introduce the LIME framework (Ribeiro et al., 2016), providing its theoretical
foundation and functionality to establish the context for our approach.

Notation. We consider the scenario where we deal with imagery data. Let x ∈ X represent an
image within a set of images, and let y ∈ Y denote its corresponding label in the output space
with logits Y ⊆ R indicating the labels in Y . We denote the neural network we want to explain by
f : X → Y . This network functions by accepting an input x and producing an output in Y , which
signifies the probability p of the instance being classified into a specific class.
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3.1 LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS

LIME is a prominent XAI framework designed to explain the decisions of a neural network f in
a model-agnostic and instance-specific (local) manner. It applies to various modalities, including
images, text, and tabular data (Ribeiro et al., 2016). In the following, we will briefly review LIME’s
algorithm for treating images.

Feature generation. The technique involves training a local, interpretable surrogate model g ∈ G,
where G is a class of interpretable models, such as linear models or decision trees, which approxi-
mates f ’s behavior around an instance x (Ribeiro et al., 2016). This instance needs to be transformed
into a set of features that can be used by g to compute the importance score of its features. In the
domain of imagery data, segmentation algorithms segment x into a set of superpixels s0...sd ∈ SD,
done by conventional techniques (Hoyer et al., 2019; Achanta et al., 2012; Felzenszwalb & Hut-
tenlocher, 2004; Neubert & Protzel, 2014). We use these superpixels as the features for which we
calculate their importance score. This step reflects the problematic process mentioned in Section 1,
which forms the basis for the quality of the features that influence the explanatory quality of LIME.

Sample generation. For sample generation, the algorithm manipulates superpixels by toggling
them randomly. Specifically, each superpixel si is assigned a binary state, indicating this feature’s
visibility in a perturbed sample z. The presence (1) or absence (0) of these features is represented in
a binary vector z′i, where the i-th element corresponds to the state of the i-th superpixel in z. When
a feature si is absent (i.e., si = 0), its pixel values in z are altered. This alteration typically involves
replacing the original pixel values with a non-information holding value, such as the mean pixel
value of the image or a predefined value (e.g., black pixels) (Ribeiro et al., 2016; Tan et al., 2024).
Consequently, the modified instance z, while retaining the overall structure of the original image x,
exhibits variations in its feature representation due to these alterations.

Feature attribution. LIME employs a proximity measure, denoted as πx, to assess the closeness
between the predicted outputs f(z) and f(x), which is fundamental in assigning weights to the
samples. In the standard implementation of LIME, the kernel πx(z) is defined as follows:

πx(z
′) = exp

(
−D(x′, z′)2

σ2

)
, (1)

where x′ is a binary vector, all states are set to 1, representing the original image x. D represents
the L2 distance, given by D(x′, z′) =

√∑n
i=1(x

′
i − z′i)2 and σ being the width of the kernel.

Subsequently, LIME trains a linear model, minimizing the loss function L, which is defined as:

L(f, g, πx) =
∑

z,z′∈Z
πx(z) · (f(z)− g(z′))2 (2)

In this equation, z, and z′ are sampled instances from the perturbed dataset Z , and g is the inter-
pretable model being learned (Ribeiro et al., 2016; Tan et al., 2024). The interpretability of the
model is derived primarily from the coefficients of g. These coefficients quantify the influence of
each feature on the model’s prediction, with each coefficient’s magnitude and direction (positive or
negative) indicating the feature’s relative importance and effect.

4 DSEG-LIME

In this section, we will present DSEG-LIME’s two contributions: first, the substitution of traditional
feature generation with a data-driven segmentation approach (Section 4.1), and second, the estab-
lishment of a hierarchical structure that organizes segments in a compositional manner (Section 4.2).

4.1 DATA-DRIVEN SEGMENTATION INTEGRATION

DSEG-LIME improves the LIME feature generation phase by incorporating data-driven segmenta-
tion models, outperforming conventional graph- or cluster-based segmentation techniques in creat-
ing recognizable image segments across various domains. Specifically, our approach mainly uses
SAM (Segment Anything) (Kirillov et al., 2023) due to its remarkable capability to segment im-
ages in diverse areas. However, as the appendix shows, it can also be applied to other segmentation
models. Figure 2 illustrates the integration of DSEG into the LIME framework, as outlined in
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Section 3. Specifically, DSEG impacts the feature generation phase, influencing the creation of su-
perpixels/features SD, and subsequently affecting the binary vector z′ and the feature vector z. This
modification directly impacts the loss function in Equation (2) and the proximity metric for per-
turbed instances in Equation (1), leading to an improved approximation of the interpretable model
g, which is used to explain the behaviour of the original model f for a given instance x. How-
ever, the effect of DSEG aligns with that of other segmentation methods like SLIC, as the surrogate
model primarily leverages the resulting segments without incorporating additional elements from
the segmentation foundation models underlying DSEG. This argument is further substantiated in the
discussion of our experimental results.

4.2 HIERARCHICAL SEGMENTATION

LIME

DSEG

Image

Automatic Mask 
Generation

Feature 
Generation

Sample 
Generation

Feature 
Attribution

Explanation

Small Cluster 
Removal

Empty Space 
Removal

Hierarchical 
Ordering

Figure 2: Pipeline of DSEG in LIME.
Illustrating the LIME pipeline for im-
age analysis with DSEG’s specific steps -
dashed lines represent the choice between
applying DSEG or not, and is part of the
feature generation process.

The segmentation capabilities of foundation models
like SAM, influenced by its design and hyperparam-
eters, allow fine and coarse segmentation of an image
(Kirillov et al., 2023). These models have the ability
to segment a human-recognized concept at various lev-
els, from the entirety of a car to its components, such
as doors or windshields. This multitude of segments
enables the composition of a concept into its sub-
concepts, creating a hierarchical segmentation. We en-
hance the LIME framework by introducing hierarchi-
cal segmentation, allowing users to specify the gran-
ularity of the segment for more personalized expla-
nations. The architecture allows the surrogate model
to learn about features driven by human-recognizable
concepts iteratively. DSEG starts by calculating the
importance scores of the coarse segments in the first
stage. The segments identified as highly important are
subsequently refined into their finer components, fol-
lowed by another importance score calculation. Next,
we detail the steps involved in DSEG (as illustrated in
Figure 2) to explain an image within the LIME frame-
work, and Figure 3 shows the outputs of its intermedi-
ate steps. Additionally, the pseudocode for the proposed framework is presented in appendix A for
clarity and reference.

Automatic mask generation. Masks, also called segments or superpixels, represent distinct regions
of an image. In the following, we denote the segmentation foundation model, such as SAM, by ζ.
Depending on the foundation model employed, ζ can be prompted using various methods, including
points, area markings, text inputs, or automatically segmenting all visible elements in an image. For
the main experiments of DSEG, we utilize the last prompt, automated mask generation, since we
want to segment the whole image for feature generation without human intervention. We express
the process as follows:

Mauto = ζ(x, Gprompt), with SD = Mauto, (3)
where x denotes the input image, and Gprompt specifies a general prompt configuration designed to
enable automated segmentation. The output, Mauto, represents the automatically generated mask,
as shown in Figure 3 (2). For this work, we used SAM with a grid overlay, parameterized by the
number of points per side, to facilitate the automated segmentation process.

Small cluster removal. The underlying foundation model generates segments of varying sizes. We
define a threshold θ such that segments with pixel-size below θ are excluded:

S ′ = {si ∈ SD | size(si) ≥ θ}. (4)

In this study, we set θ = 500 to reduce the feature set. The remaining superpixels in S ′ are consid-
ered for feature attribution. We incorporate this feature into DSEG to enable user-driven segment
exclusion during post-processing, giving users control over the granularity within the segmenta-
tion hierarchy. This ensures that users can tailor the segmentation to their specific needs, thereby
enhancing the method’s flexibility and adaptability.
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(1) Image (2) Automatic 
Mask Generation

(3b) Hierarchical 
Ordering

(4) Empty Space 
Removal

Root

2541 9

1185 10 16
12 0

24
13

(3a) Hierarchical 
Ordering

20

7

2 17
3 614 15

1918 21 52 68 9622 23

(5) DSEG-LIME 
Explanation

Figure 3: Visualized DSEG pipeline. Image (1) serves as the initial input, leading to its automatic
segmentation depicted in (2). The hierarchical tree generated from this segmentation is illustrated in
(3b), and (3a) showcasing the mask composed of first-order nodes. Image (4) displays the finalized
mask created after eliminating empty spaces, which is fed back into the sample generation of LIME.
Image (5) represents the resultant explanation within the DSEG-LIME framework. The image shows
an instance from the COCO dataset (Lin et al., 2014), classified as an ’Airliner’ (p = 0.86) by
EfficientNetB4. Node 23 (blue node) indicates the segment that represents the superpixel of the
airliner.

Hierarchical ordering. To handle overlapping segments, we impose a tree hierarchical structure
T = (V, E). In this structure, the overlap signifies that the foundation model has detected a sub-
segment within a larger segment, representing the relationship between fine and coarse segments.
The final output of DSEG, utilized for feature calculation, excludes overlapping segments. The
nodes v ∈ V denote segments in S ′, and the edges (u, v) ∈ E encode the hierarchical relationship
between segments. This hierarchical ordering process H(S ′) is a composition of the relative overlap
of the segments, defined as:

H(S ′) = BuildHierarchy(S ′,OverlapMetric), (5)

where OverlapMetric quantifies the extent of overlap between two segments s1, s2 ∈ S ′ defined by

OverlapMetric(s1, s2) =
|s1 ∩ s2|
|s2|

. (6)

The hierarchy prioritizes parent segments (e.g., person) over child segments (e.g., clothing), as de-
picted (3a) in Figure 3. Each node represents one superpixel with its unique identifier. The depth d
of the hierarchy determines the granularity of the explanation, as defined by the user. A new set S ′d,
with d = 1, includes all nodes below the root. For d > 1, DSEG does not start from the beginning.
Instead, it uses the segmentation hierarchy and segments S ′ from the first iteration. It then adds
the nodes of the children of the top k (a user-defined hyperparameter) most significant parent nodes
in S ′d at depth d − 1, identified during the feature attribution phase. We visualize this selection in
the tree shown in Figure 3 (3b), where all nodes with depth one, including the children of node 23,
are considered in the second iteration. For the scope of this paper, we concentrate on the first-order
hierarchy (d = 1) but provide additional explanations with d = 2 in the Appendix B.3.

Empty space removal. In hierarchical segmentation, some regions occasionally remain unseg-
mented. We refer to these areas as Runseg. To address this, we employ the nearest neighbor algorithm,
which assigns each unsegmented region in Runseg to the closest segment within the set S ′d:

Sd = NearestNeighbor(Runseg,S ′d). (7)

Although this modifies the distinctiveness of concepts, it enhances DSEG-LIME’s explanatory
power. DSEG then utilizes the features s0, . . . , sd ∈ Sd for feature attribution within LIME. Fig-
ure 3 (4) shows the corresponding mask along with the explanation of d = 1 in step (5) for the
’airliner’ class. An ablation study of these steps is in Appendix C.1 and in Appendix C.5 we show
exemplary feature attribution maps.
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5 EVALUATION

In the following section, we will outline our experimental setup (Section 5.1) and introduce the
XAI evaluation framework designed to assess DSEG-LIME both quantitatively (Section 5.2) and
qualitatively (Section 5.3), compared to other LIME methodologies utilizing various segmentation
algorithms. Subsequently, we discuss the limitations of DSEG (Section 5.4).

5.1 EXPERIMENTAL SETUP

Segmentation algorithms. Our experiment encompasses, along with SAM (vit h), four conven-
tional segmentation techniques: Simple Linear Iterative Clustering (SLIC) (Achanta et al., 2012),
Quickshift (QS) (Hoyer et al., 2019), Felzenszwalb (FS) (Felzenszwalb & Huttenlocher, 2004) and
Watershed (WS) (Neubert & Protzel, 2014). We carefully calibrate the hyperparameters of these
techniques to produce segment counts similar to those generated by SAM. This calibration ensures
that no technique is unfairly advantaged due to a specific segment count – for instance, scenarios
where fewer but larger segments might yield better explanations than many smaller ones. In the
Appendix, we demonstrate the universal property of integrating other segmentation methods within
DSEG by presenting additional experiments with DETR (Carion et al., 2020) and SAM 2 (Ravi
et al., 2024) in Appendix B.5, Appendix B.6.

Models to explain. The models investigated in this paper rely on pre-trained models, as our primary
emphasis is on explainability. We chose EfficientNetB4 and EfficientNetB3 (Tan & Le, 2019) as the
ones treated in this paper, where we explain EfficientNetB4 and use EfficientNetB3 for a contrastiv-
ity check (Nauta et al., 2023) (Section 5.2.1). To verify that our approach works on arbitrary pre-
trained models, we also evaluated it using ResNet-101 (He et al., 2015; maintainers & contributors,
2016) (Appendix B.1) and VisionTransformer (ViT-384) (Dosovitskiy et al., 2020) (Appendix B.2).
Furthermore, we demonstrate the applicability of our approach on a zero-shot learning example of
CLIP (Radford et al., 2021) using a new dataset with other classes (Appendix B.7).

Dataset. We use images from the ImageNet classes (Deng et al., 2009), on which the covered models
were trained (Tan & Le, 2019; He et al., 2015; Dosovitskiy et al., 2020). Our final dataset consists of
50 carefully selected instances (Appendix D.1), specifically chosen to comprehensively evaluate the
techniques quantitatively. However, we want to emphasize that the selection of images is not biased
toward any model. We also test the approach for another dataset in Appendix B.7. Additionally, our
code (including documentation) is available in the supplementary material, allowing us to verify our
claims. We will also make the code publicly available upon acceptance.

Hyperparameters and hardware setup. The experiments were conducted on an Nvidia RTX
A6000 GPU. We compare standard LIME, SLIME (Zhou et al., 2021), GLIME (Tan et al., 2024),
and BayLIME (Zhao et al., 2020), all integrated with DSEG, using 256 samples per instance, a batch
size of ten and mean superpixel value for perturbation. For each explanation, up to three features are
selected based on their significance, identified by values that exceed the average by more than 1.5
times the standard deviation. In BayLIME, we use the ’non-info-prior’ setting. For SAM, we con-
figure it to use 32 points per side, and conventional segmentation techniques are adjusted to achieve
a similar segment count, as previously mentioned. In SLIC, we modify the number of segments
and compactness; in Quickshift, the kernel size and maximum distance; in Felzenszwalb, the scale
of the minimum size parameter; and in Watershed, the number of markers and compactness. Other
hyperparameters remain at default settings to ensure a balanced evaluation across methods.

5.2 QUANTITATIVE EVALUATION

We adapt the framework by Nauta et al. (2023) to quantitatively assess XAI outcomes in this study,
covering three domains: content, presentation, and user experience. In the content domain, we eval-
uate correctness, output completeness, consistency, and contrastivity. Presentation domain metrics
like compactness and confidence are assessed under content for simplicity. We will briefly describe
each metric individually to interpret the results correctly. The user domain, detailed in Section 5.3,
includes a user study that compares our approach with other segmentation techniques in LIME.
We use quantitative and qualitative assessments to avoid over-emphasizing technical precision or
intuitive clarity (Molnar et al., 2022).
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5.2.1 QUANTITATIVE METRICS DEFINITION

Correctness involves two randomization checks. The model randomization parameter check (Ran-
dom Model) (Adebayo et al., 2020) tests if changing the random model parameters leads to different
explanations. The explanation randomization check (Random Expl.) (Luo et al., 2020) examines
if random output variations in the predictive model yield various explanations. For both metrics, in
Table 1 we count the instances where explanations result in different predictions when reintroduced
into the model under analysis. The domain also utilizes two deletion techniques: single deletion
(Albini et al., 2020) and incremental deletion (Hoyer et al., 2019; Goyal et al., 2019). Single dele-
tion serves as an alternative metric to assess the completeness of the explanation, replacing less
relevant superpixels with a specific background to evaluate their impact on the model predictions
(Ramamurthy et al., 2020). After these adjustments, we note instances where the model maintains
the correct image classification. Incremental deletion (Incr. Deletion) entails progressively elimi-
nating features from most to least significant based on their explanatory importance. We observe the
model’s output variations, quantifying the impact by measuring the area under the curve (AUC) of
the model’s confidence, as parts of the explanation are excluded. This continues until a classification
change is observed (not ground truth class), and the mean AUC score for this metric is documented
in Table 2.

Output completeness measures whether an explanation covers the crucial area for accurate classi-
fication. It includes a preservation check (Preservation) (Goyal et al., 2019) to assess whether the
explanation alone upholds the original decision, and a deletion check (Deletion) (Zhang et al., 2023)
to evaluate the effect of excluding the explanation on the prediction outcome (Ramamurthy et al.,
2020). This approach assesses both the completeness of the explanation and its impact on the clas-
sification. The results are checked to ensure that the consistency of the classification is maintained.
Compactness is also considered, highlighting that the explanation should be concise and cover all
the areas necessary for prediction (Chang et al., 2019), reported by the mean value.

Consistency assesses explanation robustness to minor input alterations, like Gaussian noise addi-
tion, by comparing pre-and post-perturbation explanations for stability against slight changes (Noise
Stability) (Zhang et al., 2021; Bhatt et al., 2021), using both preservation and deletion checks. For
consistency of the feature importance score, we generate explanations for the same instance eight
times (Rep. Stability), calculate the standard deviation σi for each coefficient i, and then average all
σi values. This yields σ̄, the average standard deviation of coefficients, and is reported as the mean
score.

Contrastivity integrates several previously discussed metrics, aiming for target-discriminative ex-
planations. This means that an explanation ex for an instance x from a primary model f1 (Ef-
ficientNetB4) should allow a secondary model f2 (EfficientNetB3) to mimic the output of f1 as
f1(x) ≈ f2(ex) (Schwab & Karlen, 2019). The approach checks the explanation’s utility and trans-
ferability across models, using EfficientNetB3 for preservation and deletion tests to assess consis-
tency.

5.2.2 QUANTITATIVE EVALUATION RESULTS

Table 1 presents the outcomes of all metrics associated with class-discriminative outputs. The num-
bers in bold signify the top results, with an optimal score of 20. We compare LIME (L) (Ribeiro
et al., 2016) with the LIME techniques discussed in Section 2, SLIME (S) (Zhou et al., 2021),
GLIME (G) (Tan et al., 2024), and BayLIME (B) (Zhao et al., 2020) in combination with DSEG
and the segmentation techniques from Section 5.1. The randomization checks in the correctness
category confirm that the segmentation algorithm bias does not inherently affect any model. This
is supported by the observation that most methods correctly misclassify when noise is introduced
or the model’s weights or predictions are shuffled. In contrast, DSEG excels in other metrics, sur-
passing alternative methods regardless of the LIME technique applied. In the output completeness
domain, DSEG’s explanations more effectively capture the critical areas necessary for the model
to accurately classify an instance, whether by isolating or excluding the explanation. This effi-
cacy is supported by the single deletion metric, akin to the preservation check but with a perturbed
background. Moreover, noise does not compromise the consistency of DSEG’s explanations. The
contrastivity metric demonstrates DSEG’s effectiveness in creating explanations that allow another
AI model to produce similar outputs in over half of the cases and outperform alternative segmen-
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tation approaches. Overall, the influence of the LIME feature attribution calculation does not vary
much, because we only have an average of 15.56 segments in the covered dataset for the evaluation.

Table 1: Quantitative summary - classes. The table presents four quantitative areas and their
metrics, comparing five segmentation techniques applied to EfficientNetB4: DSEG with SAM and
comparative methods SLIC, Quickshift (QS), Felzenszwalb’s (FS), and Watershed (WS). We test
each with four LIME framework variations: LIME (L), SLIME (S), GLIME (G), and BayLIME
(B). The experimental setup and metrics are detailed in Section 5.1 and Section 5.2.1. The table
includes class-based metrics, with a maximum score of 50 for each; higher scores indicate better
performance, and the highest scores for each metric are highlighted in bold.

Domain Metric DSEG SLIC QS FS WS

L S G B L S G B L S G B L S G B L S G B

Correctness
Random Model ↑ 38 38 38 38 30 30 30 30 35 35 34 34 36 36 36 36 33 33 33 33
Random Expl. ↑ 40 41 46 44 38 45 39 38 39 34 42 38 42 39 40 38 36 39 39 36
Single Deletion ↑ 28 29 29 29 18 17 21 21 13 13 11 11 18 17 18 19 13 13 14 13

Output
Completeness

Preservation ↑ 36 38 41 40 37 35 35 35 33 32 32 33 37 38 39 38 38 36 37 37
Deletion ↑ 31 33 33 33 21 21 21 21 17 17 17 17 21 20 21 23 22 22 21 22

Consistency Noise Stability ↑ 36 36 36 36 35 36 36 36 28 28 29 27 38 36 39 37 39 38 38 37

Contrastivity Preservation ↑ 31 29 30 31 28 28 27 28 19 20 18 19 27 27 28 28 26 27 27 27
Deletion ↑ 33 32 33 32 23 24 24 24 22 22 22 22 23 22 24 23 22 22 22 22

Table 2 further illustrates DSEG’s effectiveness in identifying key regions for model output, espe-
cially in scenarios of incremental deletion where SLIME outperforms. Bolded values represent the
lowest numbers, signifying the best performance. Although compactness metrics show nearly uni-
form segment sizes across the techniques, Watershed’s and Quickshift’s smaller segments do not
translate to better performance in other areas. Repeated experimentation suggests that stability is
less influenced by the LIME variant and more by the segmentation approach, with SLIC and DSEG
outperforming others. Further experiments show that DSEG outperforms SLIC regarding stability
as the number of features increases. This advantage arises from the tendency of data-driven ap-
proaches to represent known objects uniformly as a single superpixel (Appendix C.3). Thus, if a
superpixel accurately reflects the instance that the model in question predicts, it can be accurately
and effortlessly matched with one or a few superpixels - such accurate matching leads to a more
precise and more reliable explanation. Conventional segmentation algorithms often divide the same
area into multiple superpixels, creating unclear boundaries and confusing differentiation between
objects. The segmentation phase is the main differentiator regarding computation time; DSEG has
longer processing times than the others (except Quickshift).

Table 2: Quantitative summary - numbers. The table summarizes metrics from Section 5.2.1,
focusing on those quantified by rational numbers like incremental deletion, compactness, represen-
tational stability, and average computation time across the examples, detailed in Section 5.1. In
contrast to Table 1, lower values indicate better performance and the lowest values are printed in
bold.

Metric DSEG SLIC QS FS WS
L S G B L S G B L S G B L S G B L S G B

Incr. Deletion ↓ 1.25 0.38 0.40 0.37 0.68 0.70 0.75 0.69 1.46 1.44 1.40 1.38 1.45 1.42 1.45 1.41 0.76 0.74 0.76 0.76
Compactness ↓ 0.14 0.14 0.14 0.14 0.15 0.14 0.15 0.15 0.13 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.13 0.12 0.13
Rep. Stability ↓ .010 .010 .011 .010 .010 .010 .011 .010 .011 .011 .012 .010 .010 .011 .012 .011 .011 .011 .012 .011
Time ↓ 32.4 29.8 36.7 32.0 22.9 24.5 27.6 25.6 45.1 49.6 50.1 46.4 19.9 20.2 22.7 22.1 16.9 16.1 17.5 17.7

5.3 QUALITATIVE EVALUATION

User study. Following the methodology by Chromik & Schuessler (2020), we conducted a user
study (approved by the institute’s ethics council) to assess the interpretability of the explanations.
This study involved 87 participants recruited via Amazon Mechanical Turk (MTurk) and included
20 randomly of the 50 images in our dataset (Appendix D.1). These images were accompanied
by explanations using DSEG and other segmentation techniques within the LIME framework (Sec-
tion 5.1).
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Table 3: User study results. This table summarizes each segmentation approach’s average scores
and top-rated counts of the user study results.

Metric DSEG SLIC QS FS WS

Avg. Score ↑ 4.16 3.01 1.99 3.25 2.59
Best Rated ↑ 1042 150 90 253 205

Participants rated the explanations on a scale from 1 (least effective) to 5 (most effective) based
on their intuitive understanding and the predicted class. Table 3 summarizes the average scores,
the cumulative number of top-rated explanations per instance, and the statistical significance of
user study results for each segmentation approach. DSEG is most frequently rated as the best and
consistently ranks high even when it is not the leading explanation. Paired t-tests indicate that DSEG
is statistically significantly superior (additional results in Appendix D.2).

5.4 LIMITATIONS AND FUTURE WORK

DSEG-LIME performs the feature generation directly on images before inputting them into the
model for explanation. For models like ResNet with smaller input sizes (He et al., 2015), the quan-
titative advantages of DSEG are less evident (Appendix B.1). Experiments have shown that better
results can be achieved with a lower stability score threshold of SAM. Furthermore, substituting
superpixels with a specific value in preservation and deletion evaluations can introduce an inductive
bias (Garreau & Mardaoui, 2021). To reduce this bias, using a generative model to synthesize re-
placement areas could offer a more neutral alteration. Additionally, future work should thoroughly
evaluate feature attribution maps to ensure that methods assign significant attributions to the correct
regions, like in appendix C.5. This comprehensive assessment is essential for verifying the inter-
pretability and reliability of such methods. Lastly, our approach, like any other LIME-based method
(Ribeiro et al., 2016; Zhou et al., 2021; Zhao et al., 2020; Tan et al., 2024), does not assume a per-
fect match between the explanation domains and the model’s actual domains since it simplifies the
model by a local surrogate. Nonetheless, our quantitative analysis confirms that the approximations
closely reflect the model’s behaviour. Future work could focus on integrating the foundation model
directly into the system through a model-intrinsic approach, similar to (Sun et al., 2023).

No free lunch. Although DSEG provides promising results in many domains, it is not always univer-
sally applicable. When domain-specific knowledge is crucial to identify meaningful features or the
feature generation task is inherently complex, DSEG might not perform as effectively as traditional
segmentation methods within LIME (Khani et al., 2024) (Appendix C.4). However, future explo-
ration could involve testing alternative segmentation techniques, such as integrating HSSN (Wang
et al., 2023) or HIPPIE (Li et al., 2022) instead of SAM (or DETR) to overcome this limitation.

6 CONCLUSION

In this study, we introduced DSEG-LIME, an extension to the LIME framework, incorporating a
data-driven foundation model (SAM) for feature generation. This approach ensures that the gen-
erated features more accurately reflect human-recognizable concepts, enhancing the interpretability
of explanations. Furthermore, we refined the process of feature attribution within LIME through
an iterative method, establishing a segmentation hierarchy that contains the relationships between
components and their subcomponents. In Appendix C.2, we show that our idea also helps explain a
model’s wrong classifications. Through a comprehensive two-part evaluation, split into quantitative
and qualitative analysis, DSEG emerged as the superior method, outperforming other LIME-based
approaches in most evaluated metrics. The adoption of foundational models marks a significant step
towards enhancing the post-hoc and model-agnostic interpretability of deep learning models.
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A DSEG-LIME ALGORITHM

Algorithm 1 DSEG-LIME framework pseudocode

Require: f (black-box model), ζ (segmentation function), x (input instance), g (interpretable
model), d (maximum depth), hp (segmentation hyperparameters), θ (minimum segment size),
k (top segments to select)

Ensure: g approximates f locally around x
1. Initial segmentation:
S ← ζ(x, hp) ▷ Segment the input instance
2. Small cluster removal:
S ′ ← {si ∈ S | size(si) ≥ θ} ▷ Remove small clusters
3. Hierarchical ordering:
H ← BuildHierarchy(S ′) ▷ Build hierarchical segmentation
for l← 1 to d do

4. Empty space removal:
H[l]← NearestNeighbor(H[l]) ▷ Fill unsegmented space
if l = 1 then
Sl ← H[l] ▷ Segments at depth 1

else
Sl ← {si ∈ H[l] | parent(si) ∈ top ids} ▷ Select child segments of top parents

end if
Z ← Perturb(x,Sl) ▷ Create neighborhood perturbations
w ← Proximity(Z, x) ▷ Compute sample weights based on proximity
preds← f(z) for all z ∈ Z ▷ Get predictions from f
g ← InitializeModel(g) ▷ Initialize a new interpretable model for depth l
g ← Fit(g, Z, preds, w) ▷ Train interpretable model
top ids← {id(si) | si ∈ Sl, si is among top k features in g} ▷ Update top segment IDs

end for
return g ▷ Return the local surrogate model

We present the pseudocode of our DSEG-LIME framework in Algorithm 1. To construct the hierar-
chical segmentation within our framework, we start by calculating the overlaps between all segments
in S . We build a hierarchical graph using this overlap information through the following process.

First, we identify the top-level segments, which do not occur as subparts of any other segments.
These segments serve as the highest-level nodes in the hierarchical graph. Starting from these top-
level segments, we apply a top-down approach to identify child segments recursively. For each
parent segment, we check for segments that are contained within it; these fully contained segments
are designated as child nodes of the parent in the graph.

This recursive process continues for each subsequent level, ensuring that every parent node encom-
passes its child nodes. The hierarchical graph thus formed represents the structural relationships
between segments, where parent-child relationships indicate that child segments are complete parts
of their respective parent segments. By constructing the hierarchy in this manner, we capture the
nested structure of segments, which supports multi-level interpretability within the DSEG-LIME
framework.
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B SUPPLEMENTARY MODEL EVALUATIONS

B.1 RESNET

In Table 4, we detail the quantitative results for the ResNet-101 model, comparing our evaluation
with the criteria used for EfficientNetB4 under consistent hyperparameter settings. The review ex-
tends to a comparative analysis with EfficientNetB3, focusing on performance under contrastive
conditions. The results confirm the EfficientNet results and show that the LIME techniques behave
unpredictably in the presence of model noise or prediction shuffle despite different segmentation
strategies. This indicates an inherent randomness in the model explanations. The single deletion
metric showed that all XAI approaches performed below EfficientNetB4, with DSEG performing
slightly better than its counterparts. However, DSEG performed best on other metrics, especially
when combined with the SLIME framework, where it showed superior resilience to noise, distin-
guishing it from alternative methods.

Table 4: Quantitative summary - classes ResNet-101. The table presents the metrics consistently
with those discussed for EfficientNet.

Domain Metric DSEG SLIC QS FS WS
L S G B L S G B L S G B L S G B L S G B

Correctness
Random Model ↑ 45 45 43 45 42 42 41 44 44 44 45 44 40 47 45 44 46 44 44 49
Random Expl. ↑ 49 48 49 47 45 47 46 46 45 46 50 47 46 48 48 43 44 45 47 46
Single Deletion ↑ 10 10 6 12 7 9 6 7 4 5 5 5 7 7 5 7 8 6 8 7

Output
Completeness

Preservation ↑ 20 22 18 20 21 21 16 17 12 12 13 10 15 14 17 14 19 17 18 13
Deletion ↑ 27 30 27 31 18 16 15 16 20 17 17 19 18 20 21 18 18 19 17 15

Consistency Noise Stability ↑ 20 20 15 14 17 13 15 18 13 14 15 9 12 16 14 14 18 17 19 15

Contrastivity Preservation ↑ 17 22 18 18 13 14 13 14 19 17 10 19 19 22 21 20 21 18 20 15
Deletion ↑ 25 28 28 30 23 23 24 22 24 21 21 23 22 22 21 22 18 19 19 18

Table 5 presents further findings of ResNet. SLIME with DSEG yields the lowest AUC for incre-
mental deletion, whereas Quickshift and Felzenszwalb show the highest. WS produces the smallest
superpixels for compactness, contrasting with DSEG’s larger ones. The stability analysis shows
that all segmentations are almost at the same level, with SLIC being the best and GLIME the best-
performing overall. Echoing EfficientNet’s review, segmentation defines runtime, with DSEG being
the most time-consuming. The runtime disparities between the ResNet and EfficientNet models are
negligible.

Table 5: Quantitative summary - numbers ResNet-101. The table presents the metrics consis-
tently with those discussed for EfficientNet.

Metric DSEG SLIC QS FS WS
L S G B L S G B L S G B L S G B L S G B

Incr. Deletion ↓ 0.54 0.28 0.27 0.26 0.55 0.54 0.56 0.55 0.90 0.84 0.92 0.86 0.85 0.81 0.89 0.88 0.50 0.50 0.49 0.49
Compactness ↓ 0.25 0.20 0.24 0.24 0.16 0.16 0.16 0.16 0.14 0.16 0.14 0.15 0.16 0.16 0.15 0.16 0.13 0.13 0.13 0.14
Rep. Stability ↓ .021 .021 .018 .022 .019 .018 .016 .019 .018 .018 .015 .018 .018 .018 .016 .018 .017 .018 .016 .018
Time ↓ 8.0 8.2 8.1 8.4 2.8 3.0 2.7 2.5 12.6 13.3 13.5 12.9 2.9 2.7 2.8 3.0 3.5 2.9 2.9 3.2

B.2 VISIONTRANSFORMER

Table 6 provides the quantitative results for the VisionTransformer (ViT-384) model, employing
settings identical to those used for EfficientNet and ResNet, with ViT processing input sizes of
(384x384). The class-specific results within this table align closely with the performances recorded
for the other models, further underscoring the effectiveness of DSEG. This consistency in DSEG
performance is also evident in the data presented in Table 7. However, the ’Noise Stability’ metric
shows poorer performance for both models than for EfficientNetB4, indicating that ViT and ResNet
have greater difficulty when noise enters the input.

We performed all experiments for ResNet and ViT with the same hyperparameters defined for Effi-
cientNetB4. We would like to explicitly point out that the quantitative results could be improved by
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defining more appropriate hyperparameters for both DSEG and conventional segmentation methods,
as no hyperparameter search was performed for a fair comparison.

Table 6: Quantitative summary - classes ViT-384. The table presents the metrics consistently with
those discussed for EfficientNet.

Domain Metric DSEG SLIC QS FS WS
L S G B L S G B L S G B L S G B L S G B

Correctness
Random Model ↑ 44 44 44 44 44 44 43 44 46 46 46 46 44 44 44 43 42 42 42 42
Random Expl. ↑ 46 48 50 49 46 46 46 46 50 48 49 49 48 49 46 48 45 45 47 44
Single Deletion ↑ 19 20 20 20 14 12 13 12 11 10 10 12 11 12 13 13 13 12 14 14

Output
Completeness

Preservation ↑ 15 15 15 15 17 17 16 16 11 9 11 12 14 14 13 13 16 15 16 16
Deletion ↑ 39 36 36 37 34 33 34 33 30 29 31 31 32 31 32 31 31 31 32 32

Consistency Noise Stability ↑ 16 12 12 12 20 18 18 16 9 11 11 9 11 10 11 11 14 16 17 16

Contrastivity Preservation ↑ 28 27 30 27 22 22 23 22 23 21 25 21 30 29 28 30 24 23 23 24
Deletion ↑ 32 33 32 32 25 25 25 26 27 27 27 27 24 25 24 24 25 26 26 26

Table 7: Quantitative summary - numbers ViT-384. The table presents the metrics consistently
with those discussed for EfficientNet.

Metric DSEG SLIC QS FS WS
L S G B L S G B L S G B L S G B L S G B

Incr. Deletion ↓ 1.01 0.53 0.49 0.35 0.78 0.85 0.80 0.82 1.63 1.63 1.66 1.60 1.62 1.69 1.69 1.73 1.00 0.99 1.01 1.03
Compactness ↓ 0.19 0.18 0.18 0.18 0.16 0.15 0.15 0.15 0.12 0.12 0.12 0.12 0.14 0.14 0.14 0.14 0.11 0.11 0.11 0.11
Rep. Stability ↓ .014 .014 .014 .014 .014 .014 .015 .014 .017 .017 .018 .017 .015 .015 .015 .015 .016 .016 .017 .016
Time ↓ 8.2 7.4 8.1 7.6 2.4 2.2 2.5 2.5 13.6 13.1 13.7 13.0 4.9 4.7 5.6 4.5 2.7 2.2 2.5 2.6

B.3 EFFICIENTNETB4 WITH DEPTH OF TWO

In Table 8 and Table 9, we present the quantitative comparison between DSEG-LIME (d = 2)
using EfficientNetB4 and SLIC, as reported in the main paper. The hyperparameter settings were
consistent across the evaluations, except for compactness. We established a minimum threshold
of 0.05 for values to mitigate the impact of poor segmentation performance, which often resulted
in too small segments. Additional segments were utilized to meet this criterion for scenarios with
suboptimal segmentation. However, this compactness constraint was not applied to DSEG with
depth two since its hierarchical approach naturally yields smaller and more detailed explanations,
evident in Table 9. The hierarchical segmentation of d = 2 slightly impacts stability, yet the method
continues to generate meaningful explanations, as indicated by other metrics. Although our method
demonstrated robust performance, it required additional time because the feature attribution process
was conducted twice.

Table 8: Quantitative summary - classes depth two. The table showcases metrics for Efficient-
NetB4, specifically at a finer concept granularity; the hierarchical segmentation tree has d = 2.
Results reported pertain solely to integrating DSEG and SLIC within the scope of the LIME frame-
works examined.

Domain Metric DSEG SLIC

L S G B L S G B

Correctness
Random Model ↑ 36 36 36 35 30 30 30 30
Random Expl. ↑ 41 42 39 42 38 45 39 38
Single Deletion ↑ 20 22 21 21 18 17 21 21

Output
Completeness

Preservation ↑ 36 34 36 35 37 35 35 35
Deletion ↑ 21 27 26 27 21 21 21 21

Consistency Noise Stability ↑ 31 36 40 37 35 36 36 36

Contrastivity Preservation ↑ 31 29 31 29 28 28 27 28
Deletion ↑ 21 22 21 22 23 24 24 24
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Table 9: Quantitative summary - numbers depth two. The table showcases the numeric values in
the same manner as in Table 8 but for numeric values.

Metric DSEG SLIC

L S G B L S G B

Incr. Deletion ↓ 1.19 0.79 0.54 1.11 0.68 0.70 0.75 0.69
Compactness ↓ 0.16 0.18 0.15 0.18 0.15 0.14 0.15 0.15
Rep. Stability ↓ .012 .012 .013 .012 .010 .010 .011 .010
Time ↓ 47.6 52.5 53.4 52.8 22.9 24.5 27.6 25.6

Exemplary explanations. DSEG-LIME introduces a hierarchical feature generation approach, al-
lowing users to specify segmentation granularity via tree depth. Figure 4 displays five examples
from our evaluation, with the top images showing DSEG’s explanations at a hierarchy depth of one
and the bottom row at a depth of two. These explanations demonstrate that deeper hierarchies focus
on smaller regions. However, the banana example illustrates a scenario where no further segmenta-
tion occurs if the concept, like a banana, lacks sub-components for feature generation, resulting in
identical explanations at both depths.

Dishwasher Park Bench Basketball Violin Banana

DSEG
Depth: 1

DSEG
Depth: 2

Figure 4: DSEG depth two. The figure displays exemplary images from the evaluation dataset,
illustrating DSEG explanations at d = 2 of hierarchical segmentation. These images serve as com-
plementary examples to the paper’s discussion on the projectile, enhancing the illustration of the
concept.

In Figure 5, another instance is explained with DSEG and d = 2, showing a black-and-white image
of a projectile. Here, we see the corresponding explanation for each stage, starting with the first
iteration with the corresponding segmentation map. In the second iteration, we see the segment
representing the projectile split into its finer segments - the children nodes of the parent node - with
the corresponding explanation below.

Original 
Image

1. Iteration 2. Iteration

Segments

DSEG-
Explanation

Figure 5: 2nd iteration of DSEG-LIME. Visualizing DSEG’s explanations of a projectile. It in-
cludes the first iteration’s explanation along with its corresponding segmentation map. Additionally,
similar details are provided for the second iteration procedure, highlighting the upper part of a pro-
jectile as an explanation.
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Case study. We examine the case presented in Figure 3, where DSEG initially segments the image
into various layers with overlapping features, establishing a segmentation hierarchy through com-
position. In the first iteration, LIME focuses solely on the segments just beneath the root node - the
parent segments that cannot be merged into broader concepts. From this segmentation map, LIME
determines the feature importance scores, identifying the airplane as the most crucial element in
the image. In the subsequent iteration, illustrated in Figure 6, DSEG generates an additional seg-
mentation map that further divides the airplane into finer components for detailed analysis. The
explanation in this phase emphasizes the airplane’s body, suggesting that this concept of the ’Air-
liner’ is most significant.

SegmentsImage Explanation

Figure 6: Airliner explanation with depth two. The same example as in Figure 3 but with segmen-
tation hierarchy of two for the explanation. This example includes the children nodes of the most
significant parent node in the segmentation map for feature importance calculation.

B.4 DSEG COMPARED TO EAC

We conducted additional experiments with Explain any Concept (EAC) (Sun et al., 2023), perform-
ing the same quantitative experiments as for DSEG. We began our evaluation by noting that EAC,
unlike DSEG-LIME, cannot be applied to arbitrary models, which is a significant drawback of their
method and prevents comprehensive comparisons. Thus, we compared our approach against LIME
and EAC, in explaining ResNet. The results are listed in Table 10 and Table 11.

Table 10: Quantitative summary - classes EAC.This table presents the metrics in line with the
previous evaluations, focusing on ResNet performance for DSEG and other segmentation techniques
in comparison to EAC.

Domain Metric LIME-DSEG LIME-SLIC LIME-QS LIME-FS LIME-WS EAC

Correctness
Random Model ↑ 45 42 44 40 46 45
Random Expl. ↑ 49 45 45 46 44 48
Single Deletion ↑ 10 7 4 7 8 1

Output
Completeness

Preservation ↑ 20 21 12 15 19 35
Deletion ↑ 27 18 20 18 18 38

Consistency Noise Stability ↑ 20 17 13 12 18 34

Contrastivity Preservation ↑ 17 13 19 19 21 31
Deletion ↑ 25 23 24 22 18 35

We observe that EAC quantitatively outperforms DSEG in certain cases. However, the results indi-
cate that DSEG shows marked improvement as the number of samples increases, ultimately achiev-
ing comparable computation times. Moreover, it is expected that EAC performs better with ResNet,
as it is specifically designed to leverage the model’s internal representations. The main drawback of
EAC, however, is its lack of general applicability, as it cannot be used across all model architectures.
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Table 11: Quantitative summary - numbers EAC. This table presents the metrics in line with the
previous evaluations, focusing on ResNet performance for DSEG and other segmentation techniques
in comparison to EAC.

Metric LIME-DSEG LIME-SLIC LIME-QS LIME-FS LIME-WS EAC

Incr. Deletion ↓ 0.54 0.55 0.90 0.85 0.50 0.01
Compactness ↓ 0.25 0.16 0.14 0.16 0.13 0.11
Rep. Stability ↓ .021 .019 .018 .018 .017 .002
Time ↓ 8.0 2.8 12.6 2.9 3.5 326.7

B.5 DETR WITHIN DSEG

In Table 12 and Table 13, we conducted the DETR experiments within LIME. Based on previous
results, we evaluate its performance by comparing it to SLIC within LIME. Both experiments were
configured with identical parameters, and DETR was implemented for basic panoptic segmentation.

Table 12: Quantitative summary - classes DETR. The table showcases metrics for EfficientNetB4,
specifically at a finer concept granularity; the hierarchical segmentation tree has a depth of two.
Results reported pertain solely to integrating DSEG and SLIC within the scope of the LIME frame-
works examined.

Domain Metric DSEG SLIC

L S G B L S G B

Correctness
Random Model ↑ 32 32 32 32 30 30 30 30
Random Expl. ↑ 29 37 38 40 38 45 39 38
Single Deletion ↑ 36 36 35 36 18 17 21 21

Output
Completeness

Preservation ↑ 43 42 42 42 37 35 35 35
Deletion ↑ 34 34 35 34 21 21 21 21

Consistency Noise Stability ↑ 40 40 39 39 35 36 36 36

Contrastivity Preservation ↑ 39 37 36 36 28 28 27 28
Deletion ↑ 35 34 33 32 23 24 24 24

Table 13: Quantitative summary - numbers DETR. The table showcases the numeric values in
the same manner as in Table 12 but for numeric values.

Metric DSEG SLIC

L S G B L S G B

Incr. Deletion ↓ 0.64 0.34 0.37 0.25 0.68 0.70 0.75 0.69
Compactness ↓ 0.34 0.34 0.34 0.34 0.15 0.14 0.15 0.15
Rep. Stability ↓ .008 .008 .008 .007 .010 .010 .011 .010
Time ↓ 23.6 22.0 24.4 23.5 22.9 24.5 27.6 25.6

DETR demonstrates superior performance on the dataset compared to the LIME variants utilizing
SLIC. Despite its efficacy, the segmentation quality of DETR was generally inferior to that of SAM,
as evidenced by less compact explanations. This observation is further supported by the examples
in Figure 7. The visualizations reveal that DETR often segments images in ways that do not align
with typical human-recognizable concepts, highlighting a potential limitation in its practical utility
for generating explanatory segments. Moreover, DETR does not support the construction of a seg-
mentation hierarchy, lacking the ability to produce finer and coarser segments, which diminishes its
flexibility compared to methods such as SAM.
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Segments

Image

Explanation

Airliner Gorilla Projectile Dishwasher Husky

Figure 7: DETR within DSEG. The visualization displays five instances with classes from the
ImageNet dataset. Each image includes the prediction by EfficientNetB4 as its headline, the seg-
mentation map of DETR, and the corresponding explanation by DETR within LIME.

B.6 DSEG-LIME WITH SAM 2

In the main paper, we conducted experiments using SAM 1. In this part, we integrate SAM 2 (Ravi
et al., 2024) with the ’hiera l’ backbone into the DSEG framework, applying a 0.8 stability score
threshold. The results for EfficientNetB4 are presented in Table 14 and Table 15.

Table 14: Quantitative summary - classes SAM 2. This table presents the metrics in line with
those discussed for EfficientNet in the main paper, but displays only the results for SLIC for the
sake of simplicity.

Domain Metric DSEG SLIC

L S G B L S G B

Correctness
Random Model ↑ 38 38 38 38 30 30 30 30
Random Expl. ↑ 40 44 43 44 38 45 39 38
Single Deletion ↑ 27 27 28 28 18 17 21 21

Output
Completeness

Preservation ↑ 39 34 35 34 37 35 35 35
Deletion ↑ 34 30 30 30 21 21 21 21

Consistency Noise Stability ↑ 38 38 38 37 35 36 36 36

Contrastivity Preservation ↑ 31 28 29 30 28 28 27 28
Deletion ↑ 35 30 31 31 23 24 24 24

As both tables demonstrate, DSEG-LIME consistently outperforms other methods and surpasses
DSEG with SAM 1 across most metrics, delivering superior results. It effectively segments images
into more meaningful regions, particularly in cases where SAM 1 faced challenges, reinforcing the
conclusions of the SAM 2 technical report.

However, since the experiments were conducted on different hardware, the computation times vary.
Here, we report the time for the SLIC variant of LIME, but similar to previous experiments, the
times for other LIME variants with SLIC are expected to be comparable to those of standard LIME.
As a result, DSEG with SAM 2 is slightly slower due to the additional segmentation process.
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Table 15: Quantitative summary - numbers SAM 2. This table presents the metrics in line with
those discussed for EfficientNet in the main paper, but displays only the results for SLIC for the sake
of simplicity.

Metric DSEG SLIC

L S G B L S G B

Incr. Deletion ↓ 0.98 0.36 0.36 0.39 0.68 0.70 0.75 0.69
Compactness ↓ 0.16 0.16 0.17 0.17 0.15 0.14 0.15 0.15
Rep. Stability ↓ .011 .010 .011 .010 .010 .010 .011 .010
Time ↓ 19.1 18.9 18.7 19.3 14.7 - - -

Exemplary explanations. Figure 8 presents explanations generated by DSEG using both SAM 1
and SAM 2, highlighting cases where the newer version of SAM enables DSEG to produce more
meaningful and interpretable explanations. Each image includes explanations for the predicted class
from EfficientNetB4. While SAM 2 shows improved segmentation in these examples, similar results
can be obtained with SAM 1 by appropriately adjusting the hyperparameters for automatic mask
generation.

Figure 8: Comparison DSEG with SAM 1 and SAM 2. Exemplary images with explanations
generated by SAM 1 and SAM 2 within DSEG, illustrating how the updated SAM improves segment
utilization for DSEG.

B.7 ZERO-SHOT CLASSIFICATION EXPLANATION

In this section, we demonstrate the versatility of DSEG-LIME by applying it to a different dataset
and classification task. Specifically, we replicate the zero-shot classification approach described in
(Prasse et al., 2023) using CLIP (Radford et al., 2021) for the animal super-category. Since DSEG-
LIME maintains model-agnostic properties, it remains applicable to zero- and few-shot classification
models without modification.

Figure 9 presents an illustrative example from the dataset, where the task is to classify an image
into the animal category. The predicted and ground-truth class for the image is ’Land mammal’.
As shown by DSEG-LIME’s explanation, the model’s decision is primarily influenced by the pres-
ence of a deer in the foreground and a mountain in the background, which contribute to the overall
classification.
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Figure 9: DSEG-LIME explanation for CLIP. This figure illustrates an image processed by CLIP
for zero-shot classification into animal categories. The model correctly predicted the class as ”Land
mammal.” DSEG-LIME highlights the two most important features influencing the classification,
with the presence of the deer being the most significant.

C FURTHER EXPERIMENTS WITH DSEG-LIME

C.1 ABLATION STUDY

For the ablation study, we examine how the number of segments evolves across different stages of
the segmentation process as we vary the threshold for removing segments smaller than the hyper-
parameter θ (with values [100, 300, 500, 1000, 2000]). Additionally, we assess the behavior of
empty spaces within the segmented regions across all images in the dataset. The analysis focuses on
three key points: the number of segments immediately after the initial automated segmentation, after
hierarchical sorting, and after the removal of undersized segments, following the complete DSEG
approach. The empty space is evaluated before it is filled with adjacent segments. A comprehensive
overview of the metrics for these steps is presented in Figure 10.

Figure 10: Ablation study. Here we present the interquartile range (IQR) of segmentation counts at
different stages of the DSEG process (before hierarchy, after hierarchy, and final segmentation) and
the proportion of empty space across various threshold values for segment size removal (denoted by
θ).

Higher thresholds lead to fewer segments being retained. This trend is visible in the segmentation
counts before the hierarchy, after the hierarchy, and in the final segmentation. For instance, at
θ = 100, a higher number of segments is preserved, whereas at θ = 2000, the segmentation count
drops significantly due to the removal of smaller segments. Additionally, the proportion of empty
space consistently increases with larger θ values. This occurs because as more small segments are
removed, more unassigned or empty regions appear before being filled by adjacent segments. The
increase in empty space proportion is most pronounced at higher thresholds, such as θ = 1000
and θ = 2000. In summary, the analysis highlights the expected trade-off between preserving
smaller segments and controlling the amount of empty space. Lower thresholds result in more
granular segmentation, while higher thresholds reduce the segmentation complexity at the expense
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of increased empty regions. Based on this trade-off, a threshold of θ = 500 was selected for the
experiments in this paper, as it strikes a balance between retaining meaningful segmentation detail
and minimizing empty space.

C.2 EXPLAINING WRONG CLASSIFICATION

Here, we explore how DSEG can aid in explaining a model’s misclassification. Unlike the previous
analysis in Section 5.2.1, where metrics were assessed under simulations involving a model with
randomized weights (Random Model) or random predictions (Random Expl.), this case focuses on
a real misclassification by EfficientNetB4, free from external manipulation. This allows for a more
genuine examination of DSEG’s ability to explain incorrect classifications under normal operating
conditions.

Figure 11: Misclassification example. The image depicts a hybrid of a horse and zebra that Ef-
ficientNetB4 classifies as a zebra with p = 0.17. DSEG-LIME, with a depth of one, highlights
the entire animal, offering a broad explanation. Meanwhile, DSEG at depth two pinpoints specific
zebra-like patterns that influence the model’s prediction. This suggests that the model is fixating on
particular visual features associated with zebras, explaining its erroneous classification.

Figure 11 shows an image of a hybrid between a horse (sorrel) and a zebra, where EfficientNetB4
can recognize both animals but does not contain the hybrid class. We explore why EfficientNetB4
assigns the highest probability to the zebra class rather than the sorrel. Although this is not strictly a
misclassification, it simulates a similar situation and provides insight into why the model favors the
zebra label over the sorrel. This analysis helps us understand the model’s decision-making process
in cases where it prioritizes specific features associated with one class over another.

C.3 STABILITY OF EXPLANATIONS

QuickshiftSLICDSEG

Explanation

Coefficient 
Distribution

WatershedFelzenszwalb

Original 
Image

Segmentation

Figure 12: Segmentation stability. Illustrating a comparison between DSEG and other segmen-
tation techniques applied in LIME, all utilizing an identical number of samples. DSEG exhibits
greater stability compared to other segmentation techniques. Notably, the DSEG explanation dis-
tinctly highlights the segment representing a gorilla as the most definitive.

The stability of imagery explanations using LIME can be linked to the quality of feature segments, as
illustrated in Figure 12. This figure presents the segmentation maps generated by various techniques
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alongside their explanations and coefficient distributions, displayed through an IQR plot over eight
runs. Notably, the DSEG technique divides the image into meaningful segments; the gorilla segment,
as predicted by the EfficientNetB4 model, is distinctly visible and sharply defined. In contrast,
other techniques also identify the gorilla, but less distinctly, showing significant variance in their
coefficient distributions. Watershed, while more stable than others, achieves this through overly
broad segmentation, creating many large and a few small segments. These findings align with our
quantitative evaluation and the described experimental setup.

C.4 EXEMPLARY LIMITATION OF DSEG

The example in Figure 13 shows a complex case of a hermit crab in front of sand, which is hardly
detectable. Here, SAM fails to segment the image into meaningful segments, a known issue in the
community (Khani et al., 2024). In contrast, SLIC can generate segments; thus, LIME can produce
an explanation that does not show a complete image.

Original Image

DSEG SLIC

Segments

Explanation

Figure 13: DSEG fails. Demonstrating a scenario where DSEG fails to generate meaningful features
for explanations (the the whole image is one segment, in contrast to SLIC. The image shows a crab,
which the model classifies as a ’hermit crab’ (p = 0.17), highlighting the effectiveness of SLIC in
this context compared to the limitations of DSEG.

C.5 FEATURE ATTRIBUTION MAPS

In addition to visualizing the n most essential segments for an explanation, feature attribution maps
also help the explainee (the person receiving the explanation (Miller, 2019)) to get an idea of which
other segments are important for interpreting the result. In these maps, the segments represent the
corresponding coefficient of the surrogate model learned within LIME for the specific case. Blue
segments are positively associated with the class to be explained, and red segments are negatively
associated. The object representing the class is the most unique feature in all three images. We can
see this particularly clearly in the image with the airplane, as the other segments have hardly any
weight.

GorillaDishwasher Airplane

Figure 14: DSEG attribution maps. Representation of the feature weights of three different classi-
fied images in a feature map, with blue segments indicating positively important and red segments
negatively important features in relation to the classified label. The unique blue feature indicates
that the class to be explained can be recognized in all three images.
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D DATASET AND USER STUDY

D.1 DATASET

Image selection. As mentioned in Section 5.1, we selected various classes of images from the Im-
ageNet (Deng et al., 2009) and COCO (Lin et al., 2014) dataset. Additionally, we created artificial
images using the text-to-image model DALL-E (Ramesh et al., 2021) to challenge the XAI tech-
niques when facing multiple objects. The dataset for the evaluation comprised 47 real images and
three synthetic images. For the synthetic instances, the prompts ’realistic airplane at the airport’,
’realistic person running in the park’, and ’realistic person in the kitchen in front of a dishwasher’
were used.

The object types listed in Table 16 represent the primary labels of the images used in the dataset.
Each image is unique, ensuring no duplication and maximizing the diversity of animals and ob-
jects covered. The bolded types denote those that were randomly selected for qualitative evaluation.
These types provide a balanced representation of the dataset and were chosen to ensure broad cov-
erage across different categories. This selection strategy helps to avoid bias and supports a compre-
hensive evaluation.

Table 16: Object families and types. This table categorizes the images in the dataset according
to their object families. The bold types indicate the classes selected for the user study, which were
randomly chosen to ensure variety.

Object Family Type

Animals
Ice bear, Gorilla, Chihuahua, Husky, Horse, Irish terrier, Macaw,
American lobster, Kerryblue terrier, Zebra, House finch, American egret,
Little blue heron, Tabby, Black bear, Egyptian cat, Tusker

Objects

Street sign, Park bench, CD player, Banana, Projectile, Ski,
Catamaran, Paper towel, Violin, Miniskirt, Basketball, Tennis racket,
Airplane, Dishwasher, Scuba diver, Pier, Mountain tent, Totem pole,
Bullet train, Lakeside, Desk, Castle, Running shoes, Snorkel, Digital Watch,
Church, Refrigerator, Meat loaf, Dome, Forklift, Teddy, Mosque, Shower curtain

D.2 USER STUDY

We conducted our research and user study using MTurk, intentionally selecting participants without
specialized knowledge to ensure the classes represented everyday situations. Each participant re-
ceived compensation of $4.50 per survey, plus an additional $2.08 handling fee charged by MTurk
and $1.24 tax. The survey, designed to assess a series of pictures, takes approximately 10 to 15
minutes to complete. The sequence in which the explanations are presented to the participants was
randomized to minimize bias. In our study conducted via MTurk, 59 individuals participated, along
with an additional 28 people located near our research group who participated at no cost.

Explanations. In Figures 15a and 15b we show all 20 images from the dataset used for the qualita-
tive evaluation. Each image is accompanied by the prediction of EfficientNetB4 and the explanations
within the vanilla LIME framework with all four segmentation approaches and the DSEG variant.
The segments shown in the image indicate the positive features of the explanation.
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(b) Images 11–20.

Figure 15: User study data. Examples from the evaluation datasets showing the LIME explanations
alongside the original images and their corresponding predictions.

Figure 16: Exemplary question. The ’air-
plane’ example is shown in the original im-
age with its five explanations. Below the
images, participants can rate the quality of
the explanations accordingly.

Instruction. Participants were tasked with the follow-
ing question for each instance: ’Please arrange the pro-
vided images that best explain the concept [model’s
prediction], ranking them from 1 (least effective) to 5
(most effective).’ Each instance was accompanied by
DSEG, SLIC, Watershed, Quickshift, Felzenszwalb,
and Watershed within the vanilla LIME framework
and the hyperparameters discussed in the experimental
setup. These are also the resulting explanations used
in the quantitative evaluation of EfficientNetB4. Fig-
ure 16 shows an exemplary question of an instance of
the user study.

Results. We show the cumulative maximum ratings in
Figure 17a and in Figure 17b the median (in black), the
interquartile range (1.5), and the mean (in red) for each
segmentation technique. DSEG stands out in the abso-
lute ratings, significantly exceeding the others. Simi-
larly, in Figure 17b, DSEG achieves the highest rating,
indicating its superior performance relative to other ex-
planations. Therefore, while DSEG is most frequently
rated as the best, it consistently ranks high even when
it is not the leading explanation, as the IQR of DSEG
shows. Aligned with the quantitative results in Sec-
tion 5.2, the Quickshift algorithm performs the worst.

Table 17 presents the statistical significance of the user
study. Specifically, it lists the t-statistics and p-values for comparisons between DSEG (the baseline
method) and other segmentation methods, namely SLIC, QS, FS, and WS. The t-statistics indicate
the magnitude of difference between DSEG and each other method, with higher values representing
greater differences. The corresponding p-values demonstrate the probability that these observed
differences are due to random chance, with lower values indicating stronger statistical significance.
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(a) Best rated explanation. Accumulated number
of best-selected explanations within the user study.
DSEG was selected as the favorite, followed by
Felzenszwalb and Watershed.

(b) IQR of explanation’s ratings. The IQR plot of
the user study ratings is detailed, with the black line
indicating the median and the red line representing
the mean. This plot shows that DSEG received the
highest ratings, while Watershed exhibited the broad-
est ratings distribution.

Figure 17: User study results. The user study ratings are visualized in two distinct figures, each
employing a different form of data representation. In both visualizations, DSEG consistently out-
performs the other techniques.

Table 17: User study statistical results. This table summarizes the statistical significance of user
study results for each segmentation approach. The t-statistics and p-values indicate the comparison
between DSEG and other methods. Extremely low p-values suggest strong statistical significance.

Metric DSEG SLIC QS FS WS

t-statistics ↑ – 20.01 49.39 20.89 33.15
p-values ↓ – 8.0e-143 < 2.2e-308 1.2e-86 3.3e-187

In this context, the null hypothesis (H0) posits that there is no significant difference between the
performance of DSEG and other segmentation methods within the LIME framework in terms of
participant preferences. The alternative hypothesis (HA) asserts that DSEG performs significantly
better than the other segmentation methods on the dataset when evaluated based on the selection
of five explanations. Given the extremely low p-values (e.g., 8.0e-143 for SLIC and ¡ 2.2e-308 for
QS), we can reject the null hypothesis (H0) with high confidence. The significance level of 99.9%
(α = 0.001) further supports this conclusion, as all p-values fall well below this threshold. These
results indicate that the observed differences are highly unlikely to have occurred by chance and are
statistically significant.
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