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ABSTRACT

Understanding the encoding mechanisms of hippocampal place cells remains a
significant challenge in neuroscience. Although sparse autoencoders have been
shown to exhibit place cell-like activity, the underlying processes are not fully
understood. In this study, we compare spatial representations learned by dense and
sparse autoencoders trained on images of 3D environments and find that only sparse
autoencoders with orthonormal activity regularization in latent space produce place
cells. We then show that this regularization promotes similar images to map
onto the same neurons, acting as a locality-sensitive hash function. Notably, we
demonstrate that these neurons are visually interpretable through activity clamping
and decoding, suggesting the formation of detailed episodic memories at the single-
neuron level. We then introduce a novel metric to quantify how neurons discretize
the image space into disjoint receptive fields, revealing that sparse autoencoders tile
input spaces with minimal overlap. Furthermore, we observe that whereas dense
autoencoders generate population codes resembling visual cortex activity near
criticality, sparse autoencoders produce higher-dimensional codes, thus suggesting
a similar coding strategy in the hippocampus. Extending our approach to the
auditory domain, we also replicate the emergence of ”frequency place cells” by
training sparse autoencoders on audio snippets sampled from a frequency-varying
signal, and show that population representations retain the statistical structure
of the sample distribution. Lastly, we demonstrate that reinforcement learning
agents can leverage these high-dimensional image representations to solve complex
spatial-cognitive tasks, despite their inherent brittleness. Overall, our findings
elucidate how sparse input compression in autoencoders can give rise to discrete,
interpretable memories, establishing an explicit link between episodic memory
formation and spatial representations in the hippocampus.

1 INTRODUCTION

Early physiological experiments with rats revealed that certain neurons in the hippocampus exhibit in-
creased activity when the animal occupies specific regions of the environment O’Keefe & Dostrovsky
(1971). Ever since the discovery of such ”place cells”, decades of animal research have established the
hippocampus as a neural system that learns a cognitive map of the environment and uses it for spatial
navigation (Moser et al., 2008). Subsequent experimental studies also identified the hippocampus
as a key structure in episodic memory formation (Moser et al., 2015). Although several attempts
have been made to unify these observations under a coherent conceptual framework (Redish, 1999;
Eichenbaum, 2017), a clear mechanistically relationship episodic memory and spatial representations
remains elusive. Furthermore, numerous experiments reporting the instability of place cell activity
over time and their modulation by other non-spatial variables (Fenton & Muller, 1998; Jercog et al.,
2019) raise an open question: what are these cells truly encoding?

Efforts to answer this question have demonstrated that place cell-like activity can emerge under various
conditions: when artificial agents optimize a predictive coding objective (Recanatesi et al., 2021;
Uria et al., 2020; Ratzon et al., 2023; Gornet & Thomson, 2023; Levenstein et al., 2024; Chen et al.,
2022), when networks optimize temporal stability and pairwise decorrelation in processing visual
inputs (Wyss et al., 2006), or when building sparse, compressed representations of environmental
states (Santos-Pata et al., 2021a;b; Benna & Fusi, 2021; Ketz et al., 2013). Notably, the approach
where sparse compression of information leads to spatial tuning aligns with the earlier hippocampal
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autoencoder model (Gluck & Myers, 1993), and has been shown to replicate several distinct place
cell phenomena following environmental manipulations (Santos-Pata et al., 2021a;b).

In this work, we further investigate the mechanisms behind episodic memory formation and the
emergence of place cells in the hippocampal autoencoder model. We demonstrate that sparse
autoencoders equipped with orthonormal activity regularization can create discontinuities in the
manifold of the latent space, discretizing arbitrary input spaces into disjoint receptive fields, whereby
subsets of similar inputs converge onto distinct neurons. When applied to visual images, this clustering
process generates place cells operating on a very high-dimensional population code. In turn, these
neurons are shown to encode detailed visual memories. Moreover, we show that similar effects result
from applying the same principle in the auditory domain, recapitulating recently reported ”frequency
place cells”. Lastly, we show that reinforcement learning agents can make use of such sparse and
high-dimensional hippocampal-like representations to solve spatial-cognitive tasks.

2 MODEL AND RESULTS

2.1 HIPPOCAMPAL-LIKE PLACE CELLS EMERGE IN SPARSE AUTOENCODERS

We studied the learning of spatial representations by training autoencoders (Figure 1a) with randomly
sampled images from four different tasks in the Animal-AI environment (Beyret et al., 2019): Double
T-maze, Cylinder, Object Permanence, and Thorndike. We trained two types of autoencoders. ”Dense”
autoencoders aimed solely to reconstruct the input images, thus preserving input information in
their latent space Z. In contrast, ”sparse” autoencoders had an additional objective beyond input
reconstruction: to develop sparse activity patterns in the latent space Z. This was achieved using the
following loss function:

L =
1

m
∥X − X̂∥22 +

λ

mn
∥In − ZTZ∥F, (1)

where m denotes the batch size, n the number of neurons in Z, and the first term is the mean
squared error (MSE) between inputs X and their reconstructions X̂, encouraging Z to preserve input
information. The second term is an orthonormal activity regularization term, whose strength is
controlled by λ, pushing the Gramian ZTZ towards the identity matrix In. Since ZTZ captures
the co-activation strengths between neurons in a training sample batch, the orthonormal activity
regularization promotes pairwise decorrelation while ensuring equal contribution across neurons.
We found this approach yields improved and more reliable results compared to the L1 activity
regularization term typically used in sparse autoencoders, particularly in alleviating the dead ReLU
problem (Lu et al., 2019). For dense autoencoders, λ was set to zero, leaving only the reconstruction
error. We refer the reader to the Detailed methods section in the Appendix for a complete description
of the environments, dataset generation, and parameters used in this study.

Training both types of autoencoders yielded significantly different internal representations of space
in their latent space. Dense autoencoders developed many neurons that fired almost everywhere in
space, with no defined place fields. In contrast, sparse autoencoders developed a majority of neurons
with one or two localized place fields, similar to place cells in the hippocampus (Figure 1b, c). The
spatial specificity of sparse autoencoder neurons was also reflected in significantly higher spatial
information scores compared to dense autoencoder neurons (Figure 1d). These results demonstrate
that single-unit spatial tuning emerges in sparse autoencoders but not in dense autoencoders, despite
both types of networks containing the same amount of positional information at the population level,
as shown by linear decoding analyses (Figure 1e).

2.2 SPARSE AUTOENCODERS DISCRETIZE AND TILE THE IMAGE SPACE WITH INTERPRETABLE
NEURONS

Identifying neurons with spatial selectivity similar to hippocampal place cells allowed us to investigate
what these neurons encode. Given that their spatial selectivity must arise from some form of visual
selectivity, we explored whether they also exhibit localized receptive fields in image space.

We created an image space by extracting semantically-relevant image embeddings of all samples
using CLIP and further reducing the dimensionality to a 2D space with UMAP. We then searched
for clusters in this 2D image space by running the DBSCAN algorithm on the points corresponding
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Figure 1: Hippocampal-like place cells emerge in sparse autoencoders. (a) Autoencoder architecture,
featuring the hidden layer or latent space Z (denoted as Fc1) with 1000 neurons. (b) Representative
examples of the neurons’ spatial ratemaps for sparse and dense autoencoders. (c) Probability
distribution of place field number across environments. (d) Average spatial information per neuron
across environments. (e) Normalized average distance error of linear decoding of position with
the ratemaps’ population vectors, across environments. The grey dots represent the expected linear
decoding errors after performing 1000 random permutations of the ratemaps’ values.

to images that maximally activated a particular neuron (see Figure 2a and Detailed methods in the
Appendix). These clusters formed convex hulls (i.e., patches) that corresponded to the neuron’s
receptive fields in the image space. When pooled together, receptive fields across neurons partitioned
and covered the entire image space (see example in Figure 2b). Furthermore, we computed an overlap
metric to estimate the redundancy across the neurons’ receptive fields. We observed that sparse
autoencoder neurons tiled the image space in a minimally-overlapping manner, in contrast to dense
autoencoder neurons, whose overlap tended to be significantly higher (Figure 2c).
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Additionally, we performed unit clamping experiments, setting neurons to their maximal recorded
value while others were set to zero, and then decoded their activity back to images. The generated im-
ages showed a striking resemblance to the training images, making these neurons highly interpretable
(Figure 2d). These results establish a solid relationship between episodic memory formation and
spatial coding.

Figure 2: Sparse autoencoders discretize and tile the image space with interpretable neurons. (a)
Images taken in one of the environments (’Cylinder’), encoded with CLIP and further reduced to two
dimensions with UMAP. Points of different colors correspond to the images that maximally activate
each example neuron (above the 50% threshold of the maximum neuron’s recorded activity). Clusters
of maximally activated images are extracted with DBSCAN, making up the convex hulls. (b) Convex
hulls for all neurons in a sparse autoencoder trained with images from the ’Cylinder’ environment.
The overlap metric corresponds to the expected overlapping area (in %) of two randomly chosen
hulls (see Detailed methods in the Appendix for further details). (c) Average overlap in 2D image
space of sparse and dense autoencoders, across tasks and for a range of threshold values of maximal
activation. (d) Example interpretable neurons in the sparse autoencoder. The corresponding neuron
in latent space Z is set to its maximum recorded value across the dataset, while all other neurons are
set to zero. Then, the enforced activity vector Z is deconvolved into an image by passing it through
the decoder.

2.3 HIGH-DIMENSIONAL POPULATION STRUCTURE IN SPARSE AUTOENCODERS

Having linked the formation of episodic memories with the discretization of the image space in sparse
autoencoders, we explored the population structure of the latent space representations. Inspired by
Stringer et al. (2019) on the dimensionality of the population code in the mouse visual cortex, we
examined the dimensionality in our autoencoders. Dimensionality was estimated by performing
PCA on Z and computing the linear fit of the resulting eigenspectrum in log-log space, yielding a
power-law exponent, α. High α values indicate low-dimensional codes, while low α values suggest
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high-dimensional codes. An α ≈ 1 indicates a criticality regime with a high-dimensional but smooth
(i.e., no discontinuities) underlying manifold, as seen in neural responses in the visual cortex (Stringer
et al., 2019).

We found that dense autoencoders had dimensionality scores close to 1, similar to visual cortex
(Stringer et al., 2019), whereas sparse autoencoders exhibited higher-dimensional representations
(Figure 3a), aligning more with the efficient coding hypothesis (Barlow et al., 1961). The almost-flat
eigenspectrum suggests that sparse autoencoders’ population activity indeed encodes fine stimulus
features. Moreover, the orthonormal activity regularization also disrupted the input-output similarity
preservation typically seen in dense autoencoders (Figure 3b), further supporting the idea of a sharp
discretization of the image space by sparse autoencoders.

Figure 3: High-dimensional population structure in sparse autoencoders is grounded on mixed
selectivity. (a) Eigenspectrum decay in latent space representations (first two rows) and images from
the environments (third row). Parameter α corresponds to the power law exponent from linear fitting
in log-log space. (b) Input-output similarity for sparse and dense autoencoders, with data pooled
across environments. Correlation scores correspond to Spearman’s rank coefficients, and fitting
curves have been generated with a locally weighted scatter-plot smoother (LOWESS) for improved
visualization. (c) Pairwise Pearson correlation scores between all neurons’ activity in latent space,
pooled across environments (left) and pairwise kernel similarity in the decoder weights (layer Fc2),
representing the similarity density across ”words” in the learned ”dictionary” (right).

Borrowing concepts from sparse dictionary learning (Lewicki & Sejnowski, 2000), we considered the
decoder weights to be the dictionary of kernels, and the sparse neuron activities to be the coefficients
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that use the dictionary to reconstruct the inputs. Dense autoencoders exhibited orthogonal kernels,
while sparse autoencoders showed non-orthogonal kernels despite highly uncorrelated activity patterns
(Figure 3c). This indicates that orthogonal activity does not imply orthogonal kernels, and that sparse
autoencoder neurons learned similar feature combinations, indicative of mixed selectivity in neurons
(Fusi et al., 2016). These findings suggest that mixed feature selectivity and high dimensionality are
closely linked to the formation of detailed episodic memories.

2.4 ZERO-SHOT LEARNING OF PLACE CELLS IN SPARSE AUTOENCODERS

A typical observation in the hippocampus is that place cells can be identified within the first minutes
of an animal being exposed to a new environment (Frank et al., 2004). Given that we have shown
that sparse autoencoders exhibit very high dimensionality (Figure 3a) and single neurons tend to
encode small clusters of samples (Figure 2), we investigated the extent to which neurons that learned
to encode samples in one environment could generalize to encoding unseen environments and exhibit
zero-shot place cells. Therefore, we trained sparse autoencoders in one environment and tested them
across all others. Strikingly, neurons developed place fields with distributions very similar to those in
their training environment (Figure 4a). Furthermore, the average spatial information across neurons
and the mean decoding error of the rate maps were very similar, with no significant degradation
compared to the training environment (Figure 4b). These results suggest that the network’s circuitry
learned to cluster similar samples onto single neurons in a more generic manner, beyond the specific
details of the training data.

Figure 4: Zero-shot place cells in sparse autoencoders. (a) Probability distributions of place field
number when testing a model within its training environment (light blue) or across unseen environ-
ments (dark blue). (b) Average spatial information per neuron, pooled across models and testing
environments. (c) Normalized average distance error of linear decoding of position with the ratemaps’
population vectors, across models and testing environments. The grey dots represent the expected
linear decoding errors after performing 1000 random permutations of the ratemaps’ values.

2.5 SPARSE AUTOENCODERS DISCRETIZE AND TILE THE INPUT FREQUENCY SPACE IN AN
EXPERIENCE-DEPENDENT MANNER

If the hippocampus functions as a generic, modality-independent episodic memory system, our
findings with the sparse autoencoder should generalize to other input modalities, such as sound.
Indeed, ”place cell”-like activity in the hippocampus has been reported for tasks involving ”navigating”
the sound frequency space, with neurons developing localized receptive fields around particular sound
frequencies (Aronov et al., 2017). To investigate whether a similar effect could be observed within
our framework, we trained autoencoders to compress and encode sound waves uniformly sampled
from a linearly-varying frequency signal (Figure 5a).

We observed the emergence of frequency-specific receptive fields in sparse autoencoders, but not
in dense autoencoders (Figure 5b), reproducing the main observations in Aronov et al. (2017).
These receptive fields tiled the entire frequency space in a linear manner. However, when sampling
was biased towards certain frequencies, the neurons’ receptive fields became denser and clustered
around those frequencies, preserving the statistical structure of the sample distribution (Figure 5d).
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Additionally, similar to our previous findings with visually interpretable neurons, we found that
individual neurons encoded particular frequencies so that these representations were readily decodable
via activation clamping (Figure 5c). These results demonstrate that sparse autoencoders can discretize
arbitrary input spaces to support episodic memory formation.

Figure 5: Sparse autoencoders discretize and tile the input frequency space in an experience-dependent
manner. (a) Data samples are generated by applying a uniformly distributed sliding window to a
linearly-varying frequency signal. The samples are fed into a convolutional autoencoder, analogous
to the one used for vision (more details can be found in the Detailed Methods section of the
Appendix). (b) Unsorted and sorted receptive fields by peak activity location for both sparse and
dense autoencoders. Latent space activity Z responding to pure tone test inputs was convolved with a
Gaussian kernel (sigma of 0.5 Hz), and then normalized by the maximum per neuron in the sorted
plots. Lanczos interpolation was applied to all plots for improved visualization. (c) Decoded output
signals after setting the corresponding neuron in latent space to its maximum recorded value across
the dataset, while all other neurons were set to zero. (d) Sorted receptive fields in a sparse autoencoder
trained with an unbalanced dataset. The data samples were generated with a sliding window that was
not uniformly distributed in the frequency space, but whose density followed a Gaussian distribution
centered at 45 Hz. Dashed vertical lines denote one standard deviation σ from the mean.

2.6 REINFORCEMENT LEARNING AGENTS LEARN EFFECTIVELY WITH SPARSE,
HIGH-DIMENSIONAL REPRESENTATIONS

Representations used to build episodic memories are likely also employed for behavioral learning
in the brain. Therefore, we investigated whether hippocampal-like representations emerging in
sparse autoencoders would be suitable for reinforcement learning. To test this, we employed Deep
Q-Networks (DQNs) (Mnih et al., 2015) incorporating either sparse or dense autoencoders to solve a
range of tasks in the Animal-AI environment, which inherently require spatial navigation skills (see
Figure 6a, and Detailed methods in the Appendix for further details on the tasks, model, and training
parameters).

Very high-dimensional representations (such as those based on efficient coding) are known to be
highly sensitive to slight input perturbations and are thought to generalize poorly to new, unseen
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Figure 6: DQN agents learn effectively with sparse, very high-dimensional representations. (a)
Overhead images captured from above the virtual arena of the four tasks (from left to right): Double
T-maze, Cylinder, Object Permanence, and Thorndike. (b) Performance (average reward across
episodes) of DQN agents using sparse and dense autoencoders across tasks.

samples (Nassar et al., 2020). Thus, one might expect that DQNs would struggle with tasks requiring
generalization to unseen samples during training in non-stationary environments. Contrary to this
expectation, we found that DQNs using sparse autoencoders were not systematically worse than those
using dense autoencoders (Figure 6b). Although sparse autoencoders seemed to perform worse than
dense autoencoders in two of the four tasks tested here (Object Permanence and Thorndike), they
were superior in one of them (Cylinder) and had matched performance in the remaining one (Double
T-maze). Therefore, while further testing is definitely needed to obtain a more reliable picture of their
relative performance, these results suggest that, in practice, hippocampal-like representations can be
suitable for reinforcement learning, despite their high dimensionality and inherent brittleness.

3 DISCUSSION

Optimization objectives underlying place cell emergence We have demonstrated the distinct
emergence of place cells in autoencoders with orthonormal activity regularization (Figure 1). Notably,
sparse compression alone was sufficient to develop spatial tuning, without the need for a predictive
objective (Recanatesi et al., 2021; Ratzon et al., 2023; Uria et al., 2020; Gornet & Thomson, 2023;
Levenstein et al., 2024; Chen et al., 2022). While predictive coding may explain other features of
the hippocampus, such as place-cell theta sequences (Dragoi & Buzsáki, 2006), prediction does not
appear to be necessary for the emergence of realistic place cells. We speculate that models optimized
for next-input predictions likely learn compressed representations of the environment implicitly as
part of the predictive objective. Furthermore, by training the autoencoders with randomly sampled
and shuffled images, we have shown that neither temporal contiguity of samples nor any temporal
correlations are required to develop place cells. This finding suggests that while predictive learning
capturing temporal input correlations might correspond to experience-dependent theta sequences
in the hippocampus, the formation of compressed state representations might correspond to time-
independent learning processes at the gamma frequency scale (Lisman, 2005). Additionally, we
have demonstrated that sparse autoencoders can learn localized receptive fields of the input space
while breaking the relationship between input similarity and latent space similarity. This finding
contrasts with previous research that emphasized the preservation of input-output similarity matching
for learning localized receptive fields (Sengupta et al., 2018; Qin et al., 2023). Overall, it appears that
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sparse compression alone is sufficient to learn localized receptive fields, that in turn manifest as place
cells when applied to the visual domain.

Sparse and very high-dimensional codes A slowly-decaying eigenspectrum, where fine details are
over-weighted, represents codes that create discontinuities by disrupting the locality of the manifold
structure supporting the input space distribution (Nassar et al., 2020). We demonstrated that this
discontinuity can be induced by an orthonormal activity regularization objective, facilitating the
creation of event memories by discretizing the image input space (Figure 2). Our results suggest
that very high-dimensional codes underlie the formation of place cells (Figure 3), aligning with the
efficient coding hypothesis (Barlow et al., 1961), which posits that the brain maximizes information
by eliminating correlations in sensory inputs, leading to sparse coding (Olshausen & Field, 1996).
Indeed, it has been shown that hippocampal neurons in rodents become sparser with prolonged
exposure to the environment (Ratzon et al., 2023). Moreover, the storage of social memories in
mice has been linked to high-dimensional representations in the hippocampus (Boyle et al., 2024).
Importantly, sparsity has been shown to control a generalization-discrimination trade-off (Barak
et al., 2013), which could explain why the hippocampus relies on sparse representations, well-suited
for progressive discrimination of similar environments and events. Our study shows that smooth
place cell maps can coexist with and emerge from extremely high-dimensional sparse codes (Chettih
et al., 2023). We therefore predict that the dimensionality of the population code along the sensory
hierarchy should decrease to support the learning of invariant sensory representations (Froudarakis
et al., 2020), and then increase sharply at the apex, in the hippocampus, to enable the formation of
detailed memories based on the specific combination of such invariant representations. This role
of the hippocampus aligns with our observation of mixed selectivity, i.e., neurons learning similar
feature combinations (Figure 5c), which in turn has been proposed to enable high-dimensional
representations important for higher cognition areas (Fusi et al., 2016; Bernardi et al., 2020).

Circuit mechanisms underlying memory formation The surprising observation of zero-shot
learning of place cells (Figure 4) suggests that the sparse autoencoders learned to cluster similar
samples onto single neurons in a generic manner. We hypothesize that the responsible circuits might
correspond to known hippocampal processes, mainly pattern completion and pattern separation (Rolls,
2013). On the one hand, neurons are pushed to collapse across-sample variability by clustering
samples based on similarity, an effect akin to pattern completion. On the other hand, sparsity also
imposes sharp discontinuities between clusters in neuronal space, even when they might be close in
input space, a process akin to pattern separation. The combination of both processes is reminiscent
of the locality-sensitive hashing (LSH) algorithms used in the computer science field for fast image
search (Kulis & Grauman, 2009). Future work will shed light on the learned circuit mechanisms
behind such a LSH in sparse autoencoders, and their potential mapping to pattern separation and
completion.

Place cell over-representation near reward areas We have shown that the development of
localized receptive fields can be generalized to other input modalities, such as sound. Crucially, we
used this simplified framework to demonstrate that receptive field distribution tends to be modulated
by the input sampling distribution (Figure 5d). Importantly, it has been observed that the density of
place fields increases near reward areas (Mamad et al., 2017). This has led researchers to seek external
reward signals in the hippocampus that would modulate the place cell map (Kaufman et al., 2020).
However, based on our results, we propose an alternative explanation based on oversampling: animals
tend to spend more time within rewarded areas due to consummatory behaviors, hence biasing sensory
sampling and learning. Additionally, in line with this hypothesis, place cell trajectories leading to
rewards or goals tend to be replayed more often than unrewarded past trajectories (Ambrose et al.,
2016), which would further reinforce the sampling bias.

Biological plausibility Although it has been claimed that error backpropagation and gradient
descent are mechanisms that could be implemented in the brain (Lillicrap et al., 2020), particularly in
the hippocampus (Santos-Pata et al., 2021b), we believe that such strong assumptions are unnecessary
to map our model and observations to the real hippocampus. The orthonormal activity regularization
term used in our sparse autoencoders could be realized by combining strong lateral inhibition (pro-
moting pairwise decorrelation) and homeostatic plasticity (ensuring that neurons maintain equalized
firing rates over time). Additionally, the orthonormal term can be thought of as sparse whitening
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in ReLU-like neurons (i.e., pairwise decorrelation and variance normalization in the low-firing rate
regime), a mechanism proposed to be realized in the brain by an overcomplete basis of inhibitory
interneuron projections (Duong et al., 2023b;a; Lipshutz et al., 2022). Therefore, we contemplate
several alternative mechanisms whereby the main objective driving our sparse autoencoders could be
realized in brain circuits.

Limitations While our reinforcement learning experiments suggest that DQNs can make use of very
high-dimensional representations to solve complex tasks, the present study is limited in scope (Figure
6). We tested only a few tasks (four tasks within the Animal-AI testbed) and a single model (DQN).
To gain a more comprehensive understanding of the suitability of hippocampal-like representations
for behavioral and policy learning, further testing is required with a broader range of tasks and
models, especially in non-stationary environments where unseen samples are the norm. Additionally,
future research should explore how these sparse autoencoders could enhance reinforcement learning
algorithms that rely on discrete representations, potentially enabling algorithms based on, e.g., the
successor representations (Dayan, 1993), to extend beyond simplified grid worlds.
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A APPENDIX

A.1 DETAILED METHODS

A.1.1 MODEL’S ARCHITECTURE AND TRAINING

Visual autoencoder (Vis-AE) To compress the images from the Animal-AI enviroment, we
employed a convolutional autoencoder (ConvAE) that maps the 3× 84× 84 to a latent space with
1000 neurons, effectively compressing the images by a factor of ∼21. The details on the architecture
can be found in Table 1.

Table 1: Architecture of the Visual Autoencoder (Vis-AE)
Layer Type Act. Func. Filters/Units Kernel Size Stride/Padding
Input Input - 3× 84× 84 - -

Conv1 2D Conv. ReLU 16 4× 4 2/1
Conv2 2D Conv. ReLU 32 4× 4 2/1
Conv3 2D Conv. ReLU 64 4× 4 2/1

Reshape Reshape - 6400 - -
Fc1 (Z) Linear ReLU 1000 - -

Fc2 Linear ReLU 6400 - -
Conv4 Trans. 2D Conv. ReLU 32 4× 4 2/1 (out. pad. 1)
Conv5 Trans. 2D Conv. ReLU 16 4× 4 2/1
Conv6 Trans. 2D Conv. Sigmoid 3 4× 4 2/1
Output Output - 3× 84× 84 - -

Audio autoencoder (Aud-AE) To compress the frequency signals from the synthetic sound dataset,
we employed another ConvAE that maps one-second time series data (with a resolution of 10−3 s) to
a latent space with 100 neurons, effectively compressing the signals by a factor of 10. The details on
the architecture can be found in Table 2.

Table 2: Architecture of the Audio Autoencoder (Aud-AE)
Layer Type Act. Func. Filters/Units Kernel Size Stride/Padding
Input Input - 1× 1000 - -

Conv1 1D Conv. ReLU 16 100 2/1
Conv2 1D Conv. ReLU 32 100 2/1
Conv3 1D Conv. ReLU 64 100 2/1

Reshape Reshape - 2624 - -
Fc1 (Z) Linear ReLU 100 - -

Fc2 Linear ReLU 2624 - -
Conv4 Trans. 1D Conv. ReLU 32 100 2/1
Conv5 Trans. 1D Conv. ReLU 16 100 2/1
Conv6 Trans. 1D Conv. Tanh 1 100 2/1
Output Output - 1× 1000 - -

Loss function The loss function to be minimized in both autoencoders (Vis-AE and Aud-AE)
includes a mean squared error (MSE) term as a reconstruction error to force the latent space to
preserve the input information, and a orthonormal activity regularization term that promotes sparse
representations in the latent space Z:

L =
1

m
∥X − X̂∥22 +

λ

mn
∥In − ZTZ∥F, (2)

where X is the input, X̂ is the output (i.e., the reconstructed input), λ is the regularization coefficient
(103 by default), In is the identity matrix with shape n× n, Z is the middle layer’s activity matrix of
shape m×n, m being the batch size, and n the number of hidden units. Therefore, the Gramian ZTZ
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(with shape n × n) captures the pairwise co-activation strengths between neurons in latent space.
The symbols ∥ · ∥2 and ∥ · ∥F denote the squared L2-norm and the Frobenius norm, respectively. The
orthonormal activity regularization term promotes pairwise neuron decorrelation while achieving
an equalized contribution across neurons, alleviating the dying ReLU problem. For comparisons
with the dense AE, λ was simply set to 0. We have found this orthonormal activity regularization to
give improved and more reliable results than the L1 activity regulation term used in standard sparse
autoencoders, especially in preventing the dead ReLU problem.

Data generation and training of Vis-AE For the visual experiments, datasets were generated
by sampling a total of 10000 images in each of four Animal-AI environments: ”doubleTmaze”,
”permanence”, ”cylinder”, and ”thorndike”, at random locations within the arena (excluding the 10%
of the space closest to each wall) and with random angles, following uniform distributions. Training
was conducted using batches of 256 images for 10000 epochs, with independent training runs per
environment. The Adam optimizer with no weight decay was used to train the network and the
learning rate was set at 10−4. In addition, the regularization strength λ was set to 103 for the sparse
autoencoder, and 0 for the dense autoencoder. All weights were initialized using Xavier initialization
except for Z (i.e., Fc1), whose weights were initialized following a random asymmetric initialization
to minimize the dying ReLU problem (Lu et al., 2019). An early stop of 0.0005 in reconstruction loss
was used to compare sparse and dense autoencoders with similar reconstruction capabilities.

Data generation and training of Aud-AE For the synthetic audio experiments, training consisted
of batches of 256 one-second audio slices of varying frequencies. A sliding window of 1 second (with
1 ms shift) was applied to a linearly-varying frequency signal of total time 100 seconds, moving from
10 to 80 Hz, hence resulting in a total of 99001 samples. The sampling frequency was set at (104 Hz,
so that the kernel size (1000) matched to one full cycle at the lowest input frequency (10 Hz). Training
was conducted for 1000 epochs using the Adam optimizer with a learning rate of 10−4, with no
weight decay. Here, the regularization strength λ was set to 104 for the sparse autoencoder and 0 for
the dense autoencoder. The weights were initialized as with the visual-AE, with Xavier initialization
in all layers except for the the latent space Z that followed a random asymmetric initialization. An
early stop of 0.002 in reconstruction loss was used to have a fair comparison between sparse and
dense autoencoders.

A.1.2 SPATIAL TUNING

Firing ratemaps To generate ratemaps from latent space activity, we first created a grid of 60× 60
bins (or 30× 30 for computing spatial information scores) for each neuron. For each bin in the grid,
we summed the neuron’s activity values for images sampled within that bin, generating an activity
map in space. Then, an occupancy map was generated to account for the variability in the number
of images sampled at each spatial bin (sampling density), which was used to normalize the values
in the activity map. Finally, Gaussian smoothing was applied to each neuron’s normalized activity
map, using a standard deviation of 3 bins. The resulting maps were normalized to their corresponding
maximum values, yielding smooth ratemaps representing spatially-distributed neural activity.

Place field identification To identify and quantify place fields in each neuron’s ratemap, we first
binarized the ratemap by setting pixels with activity below 20% of the maximum activity to zero
(inactive bins) and those above to one (active bins). Clusters were identified by grouping adjacent
active bins, forming a cluster if a group of active bins was completely surrounded by inactive bins.
Clusters not meeting the size criteria for place cells (between 3% and 50% of the total number of
bins, 3600) were discarded. The remaining clusters were considered place fields.

Spatial information Spatial information (SI) scores measure the amount of information a neuron’s
firing rate (ν) conveys about the agent’s position (r). For each neuron, we first normalized its ratemap
(using a 30× 30 bin grid) by the overall mean activity ν̄. Then, we computed an occupancy map that
was normalized by the total number of samples to reflect the proportion of ”time” spent in each bin
of the ratemap, denoted as p(r). Finally, we applied the formula introduced in Skaggs et al. (1992) to
compute the SI scores:

SI =
∑
r∈R

ν(r)
ν̄

log2

(
ν(r)
ν̄

)
p(r). (3)
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The average SI across all neurons in the latent space Z provides an estimate of the degree of spatial
tuning that the model has developed.

Spatial position decoding The spatial decoding error measures the expected error of a linear
decoder using latent space activations Z to predict the spatial position r. We fit a linear regression
model with Z as the independent variables and r as the dependent variables, predicting positions as
R̂ = ZW. Then, we compute the mean squared error (MSE) between the predicted positions R̂ and
the actual ones R:

MSE =
1

nsamples
∥R − R̂∥22. (4)

Finally, the average spatial decoding error (MSE) is re-scaled by dividing it by the maximum distance
in the environment, that is, the diagonal of the arena, computed as d = s

√
2, with s being the side

length.

A.1.3 INTERPRETABILITY

Visualizing and quantifying the network’s tiling of the image space We employed the CLIP
neural network (Radford et al., 2021) to encode images (resized from 3× 84× 84 to 3× 224× 224)
into 512-dimensional vectors. These vectors were subsequently reduced to a two-dimensional
representation using UMAP (McInnes et al., 2018), with 10 neighbors and a minimum distance of
0.1, enabling the visualization of the high-dimensional image space.

Neurons in the hidden layer of the autoencoder that exhibited strong activation in response to specific
images—those triggering activations exceeding a certain % of their maximum activation across the
dataset—were mapped to points in the 2D image space. We then identify clusters of points using
the DBSCAN algorithm (Ester et al., 1996), with radius ϵ of 1 and minimum samples of 4. These
parameters are very dataset-dependent and were thus selected and validated via extensive visual
inspection to ensure reliable cluster identification. Convex hulls were constructed around these
clusters using the Quickhull algorithm (Barber et al., 1996) to delineate their spatial boundaries. This
allowed us to identify the regions of the input space that each neuron encodes in their activations, i.e.,
their receptive fields.

Let {Hi} denote the set of convex hulls corresponding to each neuron’s activated image space. The
average overlap metric, O, was calculated as follows:

O =
1(
k
2

) ∑
i<j

Area(Hi ∩Hj)

Area(Hi ∪Hj)
, (5)

where Area(Hi ∩Hj) represents the area of intersection between hulls Hi and Hj , Area(Hi ∪Hj)
is the area of the union of hulls Hi and Hj , and k is the total number of hulls. The hull calculations
were performed using the Shapely Python library (Gillies, 2013). The metric O thus represents
the average proportion of overlap relative to the union for each pair of hulls and ranges from 0 (no
overlap) to 1 (complete overlap), thereby providing a quantitative measure of the redundancy in the
neurons’ receptive fields across the image space.

Neuron clamping and decoding To test whether neurons in Z were directly interpretable based
on their single-neuron activity (therefore obviating population codes), we conducted clamping
experiments. This involved setting the activation of a specific neuron i in Z to its maximum activation
value observed across the dataset X , while setting the activations of all other neurons to zero. This is
represented as z′i = (0, . . . , 0, xmax, 0, . . . , 0) where xmax = max({zi|z = f(x), x ∈ X}) and f(x)
represents the encoding function mapping X to z. Then, z′i is processed by the decoder g(z′i) (with
g(x) representing the decoding function mapping z to X̂ ) to yield an output signal (image of audio
wave, depending on the AE).

Population code dimensionality The dimensionality of the population code was estimated by
computing the power-law exponent α of the latent space activity Z (Stringer et al., 2019). We
performed PCA on Z and computed the linear fit of the resulting eigenspectrum in log-log space over
the range of the first 10 to 100 principal components. Since the exponent α provides an estimate of
how fast the population activity eigenspectrum decays as new dimensions are added, high α values
are indicative of low-dimensional codes, whereas low α values indicate high-dimensional codes.
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A.1.4 REINFORCEMENT LEARNING EXPERIMENTS

Animal-AI Testbed The Animal-AI testbed is a comprehensive platform designed for evaluating
the cognitive and learning capabilities of AI agents in a variety of tasks that simulate real-world
challenges (Beyret et al., 2019). This testbed provides diverse environments where agents must use
visual cues and navigate complex structures to achieve specific goals. The visual inputs from these
environments are standardized to a resolution of 84 by 84 pixels, and agents can perform actions
defined by a 2-dimensional vector of integers: the first component goes from 0 to 2 and corresponds
to not moving, moving forward, or moving backwards, respectively; and the second component also
goes from 0 to 2 and corresponds to not rotate, rotate left, or rotate right, respectively. To encourage
efficient behavior, a standard frameskip of 4 is applied, and the reward value decreases by 0.001 at
each step. Episodes terminate either when the agent obtains the reward or after 1000 frames.

We evaluate our reinforcement learning agents using four distinct benchmarks within the Animal-AI
testbed: the Double T-maze, Object Permanence, Cylinder, and Thorndike tasks. Each of these tasks
presents unique challenges that require the agent to apply different strategies and cognitive abilities.

• Double T-maze. Each episode starts with the agent positioned randomly at one of the
corners of the maze, and the objective is to navigate to the center to obtain the reward. The
center contains the only positive reward (+3) available in the environment. Due to the high
and opaque maze walls, the agent cannot directly see the reward and must explore the maze
to find it.

• Object Permanence. At the beginning of each episode, the agent observes a large reward
(+3) falling behind a wall until it is completely occluded. The agent must then navigate to
the hidden reward, avoiding a small and visible reward (+1) along the way.

• Cylinder. This task involves an opaque cylinder with a medium-sized reward hidden inside.
The agent begins outside the cylinder and must navigate into the cylinder to obtain the
reward (+2).

• Thorndike. The task tests the agent’s ability to escape from a closed box to reach a reward
located outside the box. The box is semi-transparent, allowing the agent to see the reward
from inside. The only exit is blocked by a movable obstacle that the agent must push to
escape. A medium reward (+2) outside the box is the sole positive reward available.

Model To evaluate the performance of our sparse autoencoders in reinforcement learning scenarios,
we used a standard Deep Q-Network (DQN) architecture (Mnih et al., 2015) with modifications to
the input layer. Instead of feeding raw pixel data from the Animal-AI environments, we used the
compressed representations of 1000 units generated by the Visual Autoencoder (Vis-AE).

The loss function optimized by the Deep Q-Network (DQN) is the Mean Squared Error (MSE)
between the predicted Q-values and the target Q-values, calculated using the Bellman equation:

L(θ) = E(s,a,r,s′,d)∼ReplayBuffer

[(
r + γ · (1− d) ·max

a′
Qtarget(s

′, a′; θ−)−Qmain(s, a; θ)
)2

]
(6)

where Qmain is the main Q-network with parameters θ, Qtarget is the target Q-network with parameters
θ−, s is the current state, a is the action taken, r is the reward received, s′ is the next state, d is a
boolean indicating whether s′ is a terminal state, and γ is the discount factor. This loss function aims
to minimize the difference between the Q-value predicted by the main network and the target Q-value,
which is computed based on the reward and the maximum Q-value of the next state predicted by the
target network. The training of the DQN was performed by using the RMSprop optimizer. The target
network was periodically updated with the weights of the main DQN to stabilize training. The DQN
was trained with the following hyperparameters: a learning rate of 0.00025, a discount factor (γ) of
0.99, an update frequency of 4 steps, and a target network update frequency of 2500 steps. The ϵ for
the epsilon-greedy policy started at 1 and decayed linearly to 0.1 over 25000 steps. The replay buffer
size was set to 25000, with a batch size of 32 for experience replay. The details on the architecture
can be found in Table 3.

Training and performance metrics Each reported experiment tested two DQN agents, Sparse and
Dense, which differ only in their use of different Vis-AE models (sparse and dense autoencoders,
respectively) to obtain compressed representations from the environment observations as input. The
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Table 3: Architecture of the Deep Q-Network (DQN)
Layer Type Act. Func. Units
Input Input - 1000
Fc1 Linear ReLU 100
Fc2 Linear ReLU 50
Fc3 Linear ReLU 25
Fc4 Linear ReLU 9

Output Output - 9

two agents were evaluated across the four Animal-AI tasks described earlier. Each model run lasted
5000 episodes, and to ensure statistical reliability, each model played each task between 20 and
27 times. The reported average performance metric was calculated using a sliding window of 20
episodes.
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