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Abstract

The remarkable empirical performance of distributional reinforcement learn-
ing (RL) has garnered increasing attention to understanding its theoretical ad-
vantages over classical RL. By decomposing the categorical distributional loss
commonly employed in distributional RL, we find that the potential superiority
of distributional RL can be attributed to a derived distribution-matching entropy
regularization. This less-studied entropy regularization aims to capture additional
knowledge of return distribution beyond only its expectation, contributing to an
augmented reward signal in policy optimization. In contrast to the vanilla en-
tropy regularization in MaxEnt RL, which explicitly encourages exploration by
promoting diverse actions, the novel entropy regularization derived from categori-
cal distributional loss implicitly updates policies to align the learned policy with
(estimated) environmental uncertainty. Finally, extensive experiments verify the
significance of this uncertainty-aware regularization from distributional RL on the
empirical benefits over classical RL. Our study offers an innovative exploration
perspective to explain the intrinsic benefits of distributional learning in RL.

1 Introduction

The fundamental characteristics of classical reinforcement learning (RL) [S7]], such as Q-learning [62]],
rely on estimating the expectation of discounted cumulative rewards that an agent observes while in-
teracting with the environment. In contrast to the expectation-based RL, a novel branch of algorithms,
termed distributional RL, seeks to estimate the entire distribution of total returns and has achieved
state-of-the-art performance across a diverse array of environments [5} [11} 10} 168} 71} 143} 63l 156, [52].
Meanwhile, discussions of distributional RL have increasingly extended into a broader range of fields,
such as risk-sensitive control [[10}31}[8]], offline learning [35.167], policy exploration [36}/49}9,25], ro-
bustness 55,153} 51], optimization [511 28} 154], statistical inference [69], multivariate rewards [[70}66],
and continuous-time setting [[63]].

Motivation: Understanding the Benefits of Employing (Categorical) Distributional Loss in RL.
Despite the impressive empirical success of distributional RL algorithms, our comprehension of their
advantages over classical RL remains incomplete, especially for the general function approximation
setting and practical implementations. Early work [33] demonstrated that in many realizations of
tabular and linear approximation settings, distributional RL behaves similarly to classic RL, suggesting
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that its benefits are mainly realized in the non-linear approximation setting. Although their findings
offer profound insights, their analysis, based on a coupled update method, overlooks several factors,
such as the optimization effect under various losses. The statistical benefits of quantile temporal
difference (QTD), employed in quantile distributional RL, e.g., QR-DQN [11], were highlighted
in [51} I50]], which posited that the robust estimation of QTD fosters the benefits in stochastic
environments. The foundational theoretical aspects of Categorical Distributional RL (CDRL), e.g.,
C51 [3l], were discussed in [48} 27]]; however, explaining the advantages of categorical distributional
learning remains under-explored. Recent studies [[60,59] elucidate the benefits of distributional RL by
introducing the small-loss and second-order PAC bounds, revealing the enhanced sample efficiency,
particularly in specific cases with small achievable costs. Yet, their findings are not directly based on
practical distributional RL algorithms, such as C51 or QR-DQN. Therefore, it is imperative to close
this gap between understanding their theoretical advantages and practical deployment in complex
environments for distributional RL algorithms.

Contributions. In this study, we interpret the potential superiority of distributional learning in RL
over classical RL, specifically focusing on Categorical Distributional RL (CDRL), the pioneering
family within distributional RL. We examine the benefits through the lens of a regularized exploration
effect, offering a distinct perspective relative to existing literature. Our investigation begins by
decomposing the categorical distributional loss into a mean-related term and a distribution-matching
regularization term, facilitated by our proposed return density decomposition technique. The resulting
regularization acts as an augmented reward in the actor critic framework, encouraging policies to
explore states whose current return distribution estimates lag far behind the (estimated) environmental
uncertainty in the target return. This derived regularization from the categorical distributional loss
in CDRL promotes an uncertainty-aware exploration effect, which diverges from the exploration
for diverse actions commonly used in MaxEnt RL [64} [17, [18]]. We also provide the convergence
foundations when leveraging the decomposed uncertain-aware regularization in the actor critic.
Empirical evidence underscores the pivotal role of the uncertainty-aware entropy regularization in the
empirical success of adopting categorical distributional loss in RL over classical RL on both Atari
games and MuJoCo tasks. We further elucidate the distinct roles that the uncertainty-aware entropy
in distributional RL and the vanilla entropy in MaxEnt RL play by exploring their mutual impacts
on learning performance, providing consitent evidence for []. This opens new avenues for future
research in this domain. Our contributions are summarized as follows:

1. By applying a return density decomposition on the categorical distributional loss, we derive a
distribution-matching regularization. This regularization promotes uncertainty-aware exploration,
interpreting the benefits of categorical distributional learning in RL.

2. We extend the benefit interpretation of the categorical distributional loss to policy gradient methods.
We compare the different exploration effects of our decomposed uncertainty-aware regularization
from distributional RL and the vanilla entropy regularization in MaxEnt RL.

3. Empirically, we verify the uncertainty-aware regularization effect on the performance improvement
of distributional RL and investigate the mutual impacts of regularizations in the learning.

Outline. We provide the related work and background knowledge in Sections[2]and[3] respectively.
We begin by interpreting the benefits of categorical distributional learning as uncertainty-aware
regularized exploration in value-based RL in Section[d] We further probe this exploration benefit in
the policy-based RL, especially the actor critic framework, in Section[5] where we directly compare it
with the vanilla entropy regularization in MaxEnt RL. Extensive experiments demonstrate the benefits
of regularized exploration in distributional RL and its mutual impact with entropy regularization in
MaxEnt RL in Section

2 Related Work

Distributional Learning via Categorical Representation. Categorical learning has been widely
employed, with advantages in representation [46, 26|] and optimization [24} [54]. Recently, the
empirical superiority of categorical distribution learning has been further investigated in various RL
tasks [[14]. A pressing need exists to examine the theoretical foundations of categorical distributional
learning, particularly in RL. The perspective of uncertainty-aware regularized exploration that our
study introduces provides significant insights into understanding the benefits of employing categorical
distribution loss in the RL context.



Uncertainty-oriented Exploration. Uncertainty-oriented exploration plays an integral part in exist-
ing exploration methods [20]], which leverages uncertainty either in the (posterior) estimation of the
value function, as seen in Bayesian framework [45] 4], Bootstrap [44], and Ensemble methods [30]],
or in the entire distribution of returns [58} 36l 9]. For example, Decaying Left Truncated Vari-
ance (DLTV) [36] and Perturbed Quantile Regression (PQR) [9] exploit the variability of the learned
return distribution to promote an optimistic exploration in distributional RL. In contrast, the primary
aim of this study is to demonstrate that distributional learning in RL entails an intrinsic exploration
effect against environmental uncertainty, contributing to the outperformance of distributional RL
over classical RL. Our study goal is independent of designing advanced exploration strategies on top
of distributional RL. Similarly, MaxEnt RL [64], which includes soft Q-learning [[16], Soft Actor
Critic (SAC) [17] and their variants [[19]], also promotes uncertainty-oriented exploration by relying
on the stochasticity of the learned policy. A more detailed discussion of related work is provided in

Appendix

3 Preliminaries

Markov Decision Process (MDP) and Classical RL. An environment is modeled via an Markov
Decision Process (S, A, R, P, v), with a set of states S and actions A, the bounded reward function
R :S x A — P([Rmin, Rmax]), the transition kernel P : S x A — P(S), and a discounted factor
v € [0, 1]. We denote the reward the agent receives at time ¢ as r; ~ R(s¢, a;). Given a policy , the
key quantity of interest is the return Z™, which is the total cumulative rewards over the course of a
trajectory defined by Z7(s,a) = > 1oy ¥'7t|s0 = s, ap = a. Classical RL focuses on estimating the

expectation of the return, i.e., Q" (s,a) = E. | 32,5 vri|so = s,a0 = a}. We also define Bellman
evaluation operator 7"Q(s,a) = E[R(s,a)] + YEgywpa~r [Q (s',a’)], and Bellman optimality
operator 7°"'Q(s,a) = E[R(s,a)] + ymaxy Eyop [Q (s, a')].

Distributional RL and CDRL. Instead of only learning the expectation in classical RL, distributional

RL models the full distribution of the return Z™. The return distribution ™ : S x A — P(R)
is defined as 7™ (s,a) = D(Z™(s,a)), where D extracts the distribution of a random variable.
1™ (s, a) is updated via the distributional Bellman operator T, defined by T"Z (s, a) i R(s,a)+
~Z (', a’), where 2 implies that random variables of both sides are equal in distribution. Categorical
Distributional RL (CDRL) is the first successful distributional RL family that approximates the return
distribution by a discrete categorical distribution ™ = Zf\; pid,,, where {2}, is a set of fixed
supports and {p; } Y ; are learnable probabilities. The leverage of a heuristic projection operator Il¢
(see Appendix [B|for more details) and the Kullback-Leibler (KL) divergence guarantee the theoretical
convergence of CDRL under Cramér distance or Wasserstein distance in the tabular setting [48]].

4 Regularization Benefits in Value-based Distribution RL

In this section, we simplify value-based distributional RL to a Neural Fitted Z-Iteration (Neural FZI)
process in Sectiond.1] within which the distributional loss used in distributional RL can be further
rewritten as an entropy-regularized form as shown in Section[d.2} Finally, we characterize the role of
the derived entropy-based regularization as uncertain-aware regularized exploration in Section .3

4.1 Distributional RL: Neural FZI

Classical RL: Neural Fitted Q-Iteration (Neural FQI). Neural FQI [13| 47 offers a statistical
explanation of DQN [39], capturing its key features, including experience replay and the target
network Qg~. In Neural FQI, we update a parameterized )y in each iteration k of an iterative
regression framework:

n

1
K1 = argming, - > = Qo (si, a)]”, (1

=1

where the target y¥ = 7(s;, a;) + v maxqe4 Q4. (s, a) is fixed within every Tiye Steps to update
target network @y~ by letting Q’g* = Q’g. The experience buffer induces independent samples



{(sisai,rissi)}iep- 1 {Qo ¢ 6 € O} is sufficiently large such that it contains ToPQE., i.e., the

realizable assumption in learning theory [40], Neural FQI has the solution Q’g“ = TOP'Qk., which
is exactly the updating rule under Bellman optimality operator [13]].

Distributional RL: Neural Fitted Z-Iteration (Neural FZI). Analogous to Neural FQI, we simplify
value-based distributional RL algorithms with the parameterized Zy as Neural FZI:

1 n
Z§+1 = armeinﬁ Z dp(Y;k, Zg (84, 04)), @
0 i=1

where we denote the target return as Y;* = R(s;, a;)+vZk. (s}, mz(s})) with the policy 7z following
the greedy rule 7z (s;) = argmax,, E [Z}. (s, a’)]. The target Y}* is fixed within every Tiargec Steps
to update target network Zy-. d,, is a distribution divergence between two distributions. While our
analysis is not intended to involve properties of deep neural networks, we interpret distributional RL
as Neural FZI, as it is by far the closest to the practical algorithms. More details about the motivation
of Neural FZI are provided in Appendix [C]

4.2 Distributional RL: Entropy-regularized Neural FQI

As mentioned previously in preliminary knowledge in Section 3] CDRL employs neural networks to
learn the probabilities {p; } ¥ ; in a discrete categorical distribution to represent Zy, and choose KL

divergence as d,, in Eq. |Z|of Neural FZI. We next decompose the KL-based distributional loss d,, in
CDRL by utilizing an equivalent histogram density estimator p in representing Zy.

Return Density Decomposition. To . .
characterize the impact of additional ps'a I(x € Ag)/A Hs,a
knowledge from the return distribu- 1
tion beyond its expectation, we use A
a variant of gross error model from »
robust statistics [23]], which was also

similarly applied to analyze Label

Smoothing [42] and Knowledge Dis- t t t
tillation [21]]. Akin to the categorical Ag Ag Ag
parameterization in CDRL, we utilize
a histogram function estimator p**(x)
with N bins to approximate an arbitrary continuous density p**(z) of Z™ (s, a), given a state s and
action a. In contrast to categorical parameterization defined on a set of fixed supports, the histogram
estimator operates over a continuous interval, enabling more nuanced analysis within continuous
functions. Given a fixed set of supports Iy < [y < ... < [ with the equal bin size as A, each bin
is thus denoted as A; = [l;_1,0;), i =1,..., N — 1 with Ay = [Iy_1,In]. As such, the histogram
density estimator is formulated by p*°(x) = Zf\;r pil(z € A;)/A with p; as the coefficient in
the i-th bin A;. Denote Ag as the interval that E [Z7 (s, a)| falls into, i.e., E[Z™(s,a)] € Apg.
Putting all together, we apply an action-state return density decomposition over the histogram density
estimator p*%:

Figure 1: Return Density Decomposition on Histograms.

p(x) = (1= e)l(x € Ap)/A + en™*(x), (©)

where p* is decomposed into a single-bin histogram 1(x € Ag)/A with all mass on Ag and an
induced histogram density function 7/ evaluated by 7i*%(z) = I pll(z € A;)/A with p*
as the coefficient of the i-th bin A;. € is a hyper-parameter pre-specified before the decomposition,
controlling the proportion between 1(x € Ag)/A and i*®(z). See Figure|l|for the illustration of
the decomposition. More specifically, the induced histogram density function °** in the second term
of Eq. represents the difference between the full histogram function p*® and a single-bin histogram
1(z € Ag)/A, where 1(x € Ag)/A only captures the mean. This difference indicates that i**
captures the additional distribution information of Z7 (s, a) beyond its expectation E[Z7 (s, a)],
incorporating higher-moments information. This reflects the influence of using a full distribution on
the performance of distributional RL. The additional leverage of /1% in the distributional loss explains
the behavior differences between classical and distribution RL algorithms. We next demonstrate that
115> is a valid probability density under certain € in Proposition



Proposition 1. (Decomposition Validity) Denote p>*(x € Ag) = pg W, where pg is the

coefficient on the bin Ag. p*%(x) = Zf\il pi'l(z € A;)/A is a valid density if and only if
e>1— PE-

The proof can be found in Appendix [D} Proposition [I|demonstrates that the return density decompo-
sition is valid when the hyper-parameter € is well specified as € > 1 — pg. Under this condition, our
analysis maintains the standard categorical distributional learning in distributional RL.

Equivalence between Histogram Parameterization and Categorical Representation. The his-
togram function is a continuous estimator in contrast to the discrete nature of categorical parameteri-
zation. Although the underlying connection is relatively straightforward, we still demonstrate their
equivalence in representing a density function in Appendix [E]for completeness. As a supplementary
analysis, with attribution to [61]], we also discuss the necessary theoretical underpinnings of the
histogram density estimator in the context of distributional RL in Appendix [F

Distributional RL: Entropy-regularized Neural FQI. We apply the decomposition in Eq.
on the histogram density function, denoted as ;b\si’”(sé), of the target return Y* = R(s;,a;) +
vZE. (s}, m7(s})) in Eq. of Neural FZI. Consequently, we have p% ™2 (z) = (1 — €)1 (z €
AL /A + fisim2(59) (z), where Al represents the interval that the expectation of the target return
Y falls into, i.e., E [Y}] € A%, and 715972(59) is the induced histogram density function, similar
to the role of 1i*® in Eq. 3] Let H (U, V') be the cross-entropy between two probability measures

Uand V,ie, H{U,V) = — [, U(z)log V(z) dz. Immediately, we can derive the following
entropy-regularized loss function form of Neural FZI for distributional RL in Proposition 2] The

proof is provided in Appendix

Proposition 2. (Decomposed Neural FZI) Denote q,’* as the histogram density estimator of Zg (s,a)
in Neural FZI. Based on the decomposition in Eq. and the KL divergence as d,, the Neural FZI
process in Eq.[2is simplified as

1 " Si @i [ A ~s" w7 (s) Si,a;
Zg+! = argmin=~y [—loggy"" (Af) + oA (@), g5 "), @)

96

i=1
Mean-Related Term Regularization Term

where o = €/(1 — €) > 0 and the mean-related term is negative log-likelihood centered on A%,

Connection between Neural FQI and FZI. A crucial bridge between classical RL and distributional
RL is established in Proposition [3| where we demonstrate that minimizing the mean-related term
in Eq. 29] of Neural FZI is asymptotically equivalent to minimizing Neural FQI in terms of the
minimizers as A — 0. As such, with this equivalence in the objective function, the remaining
regularization term o/H (72577 (%) ¢5“') in Eq. thus interprets the potential benefits of CDRL
over classical RL. For the uniformity of notation, we still use s, a in the following analysis instead of
Si, Q4.

Proposition 3. (Equivalence between the Mean-Related term in Decomposed Neural FZI and Neural
FQI) In Eq. assume the function class {Zy : 0 € ©} is sufficiently large such that it contains the
target {Ylk o for all k, when A — 0, minimizing the mean-related term in Eq. implies

P(Zg+ (s,a) = T"Qf. (s,0)) = 1, )
where T"'Qk. (s, a) is the scalar-valued target in the k-th phase of Neural FQI.

Proposition |3| demonstrates that as A — 0, the random variable Z 5“ (s,a) with the limiting
distribution in Neural FZI (distributional RL) will degrade to a constant T°"'Q%. (s, a), the minimizer
(scalar-valued target) in Neural FQI (classical RL). That being said, minimizing the mean-related term
in Neural FZI is asymptotically equivalent to minimizing Neural FQI with the same limiting minimizer.
A formal proof for convergence in distribution with the convergence rate o(A) is given in Appendix
The realizable assumption that {Zy : § € O} is sufficiently large such that it contains {Y;*}1_,
implies good in-distribution generalization performance in each phase of Neural FZI, which is also
adopted in [67]. This connection is also consistent with the mean-preserving property of distributional
RL in the tabular setting [48]], but we extend this conclusion to the arbitrary function approximation
with a histogram density estimator. Proposition [3|especially focuses on the asymptotic property of the



mean-related term, which is different from existing convergence results based on the entire categorical
distribution [48 6]. Given the connection between optimizing the mean-related term of Neural FZI
with Neural FQI in Proposition [3| we can leverage the regularization term oM (752 (1) gy ") to
explain the behavior difference between CDRL and classical RL, as analyzed later.

4.3 Uncertainty-aware Regularized Exploration

Regularization Effect. It turns out that minimizing the regularization term oA (7i%i77 (5% q"")
in Neural FZI pushes g, for the current return density estimator to catch up with the target return
density function of ﬁsi”rz (s9), Importantly, ﬁsi”rz (s7) encompasses the uncertainty of the entire return
distribution in the learning course beyond only its expectation, given that ﬁS;’”Z(sii) is the induced
histogram density after applying the return density decomposition in Eq.[3] Since it is a prevalent
notion that distributional RL can significantly reduce intrinsic uncertainty of the environment [36, 10],
the derived distribution-matching regularization term a?—[(/’jsév’fz (s9), ¢y""") helps to capture more
uncertainty of the environment by modeling higher moments of the whole return distribution beyond
the expectation. In Section[5} we further demonstrate that this derived regularization contributes to an
uncertainty-aware regularized exploration effect in the policy optimization or actor critic.

Remark: Approximation of ﬁsl’”Z(Sl). In practical distributional RL algorithms, we typically use
temporal-difference (TD) learning to attain the target probability density estimate ﬁsl”rz (+) based
on Eq.[3] provided E [Z(s, a)] exists and € > 1 — pg in Proposition [I] The approximation error of
ﬁsl“z (+7) is fundamentally determined by the TD learning nature. A desirable approximation of

-~

us/’”(“",) intuitively leads to performance improvement in distributional RL. As KL divergence is
used in CDRL, we also discuss the usage of KL divergence in distributional RL in Appendix [G|

S Regularization Benefits in Actor Critic

Notations. In this section, we use boldface notations to represent random variables, such as (s;, a;),
at time ¢ for clarity in the learning process of the actor critic.

5.1 Connection with MaxEnt RL

Motivation for the Connection. The maximum entropy regularization is commonly used in RL,
which has various conceptual and practical advantages. Firstly, the learned policy is encouraged to
visit states with high entropy in the future, promoting the exploration of diverse actions [[19, 17, 64].
It also considerably improves the learning speed [37] and therefore is widely employed in state-of-
the-art algorithms, e.g., Soft Actor-Critic (SAC) [[17]. Similar empirical benefits of both distributional
RL and MaxEnt RL motivate us to probe their underlying connection, especially by comparing their
exploration effects.

Explicit Entropy Regularization in MaxEnt RL. MaxEnt RL explicitly encourages exploration by
optimizing for policies to reach states with higher entropy in the future:

T
T(m) =3 B, a)mpn 7 (st:20) + BH(T([s1))], 6)

t=0
where H (7q (-|s¢)) = — >, 7o (a|s¢) log mg (a|s¢) and p is the generated distribution following

m. The temperature parameter 3 determines the relative importance of the entropy term against the
cumulative rewards and thus controls the action diversity of the optimal policy learned via Eq.[6]

Implicit Entropy Regularization in Distributional RL. For a direct comparison with MaxEnt RL,
it is required to specifically analyze the impact of the regularization term in Eq.[29] Therefore, we
directly incorporate the distribution-matching regularization of distributional RL in Eq.[29)into the
Actor Critic (AC) framework, enabling us to consider a new soft Q-value. The new Q function can be
computed iteratively by applying a modified Bellman operator denoted as 7, called Distribution-
Entropy-Regularized Bellman Operator. Given a fixed gg, 7 is defined as

T3Q (s, ar) 21 (se,a) +VEs,, op([se,a0) [V (St41)] @)
where a new soft value function V (s;) is defined by
V (St) = anwﬂ' [Q (St: at) + f(H (:u’Shat ) q;t)at))] 9 (8)



where f is a continuous increasing func-
tion over the cross-entropy H. pSt%t is
the induced true target return histogram
density function via the decomposition in
Eq.[3] which excludes its expectation. Note
that ¢1°®* can be approximated via boot-
strap TD estimate fi5¢+1™#(St+1) similar to
Eq.[29 In this specific tabular setting re-
garding s;, a;, we particularly use g;*"** to
approximate the true density function of
Z(st,a;). The f transformation over the
cross-entropy H between 52t and ¢;""** (x) serves as the uncertainty-aware entropy regularization
that we implicitly derive from value-based distributional RL in Section[4.2] By optimizing g that is
involved in the value-based critic component in actor critic, this regularization reduces the mismatch
between the target return distribution and current estimate, aligning with the regularization effect
analyzed in Section As illustrated in Figure[2| ¢;'* is optimized to catch up with the uncertainty
involved in the target return distribution of ©*'¢, iteratively expanding the agent’s knowledge about
the environment uncertainty to contribute to more informative decisions. Next, we elaborate on its
additional impact on policy learning in the actor critic compared to MaxEnt RL.

Figure 2: g, is optimized to disperse (left) or concen-
trate (right) to align with the uncertainty of target return
distributions.

Reward Augmentation for Policy Learning. As opposed to the vanilla entropy regularization in
MaxEnt RL that explicitly encourages the policy to explore, our derived regularization term in the
distributional loss of RL plays the role of reward augmentation for policy learning. Compared with
classical RL, the augmented reward from the distributional loss incorporates additional knowledge
of the return distribution in the learning process. As we will show later, the augmented reward
encourages policies to reach states s, with actions a; ~ w(-|s;), whose current action-state return
distribution q;"®* lags far behind the (estimated) environmental uncertainty from the target returns.
For a detailed comparison with MaxEnt RL, we now focus on the properties of our decomposed
distribution-matching regularization in the actor critic. In Lemma[I] we demonstrate that Distribution-
Entropy-Regularized Bellman operator 7] inherits the convergence property in the policy evaluation
phase with a cumulative augmented reward function as the new objective function J' (7).

Lemma 1. (Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-entropy-
regularized Bellman operator T in Eq. [7]and assume H(pSt2, ¢3""™") is bounded for all (s, a) €
S x A. We define Q! = 7:1”62’“. Given qp, Q"+ will converge to a corrected Q-value of T as
k — oo with the new objective function J' (1) defined as

T
J/(ﬂ') = ZE(Smat%pw [ (se,a) +vf(H (3™, qzt’a‘))] . ©)
t=0

The updating rule is ey = arg maxy/cm Ea,~r [Q™ (¢, ;) 4+ f(H (p52, ¢p*"*"))] in phase of
policy optimization. Next, we derive a new policy iteration algorithm, called Distribution-Entropy-
Regularized Policy Iteration (DERPI), alternating between policy evaluation and policy improvement.
It provably converges to a policy regularized by the distribution-matching term.

Theorem 1. (Distribution-Entropy-Regularized Policy Iteration) Repeatedly applying distribution-
entropy-regularized policy evaluation in Eq.[/|and the policy improvement, the policy converges to
an optimal policy T* such that Q™ (s, a;) > Q™ (s¢,a,) for all = € 1L

Please refer to Appendix [J] for the proof of Lemma|[I]and Theorem [I] Theorem [I]demonstrates that if
we incorporate the decomposed regularization into the actor critic in Eq.[9] we can design a variant of
“soft policy iteration” [[17] that can guarantee the convergence to an optimal policy given any fixed gy.
In summary, our theoretical investigation is a variant of the standard analytical framework in MaxEnt
RL that allows a comparable analysis. Importantly, we next recognize a fundamental difference
between our decomposed entropy regularization and the vanilla entropy regularization in MaxEnt RL.

Uncertainty-aware Regularized Exploration in CDRL Compared with MaxEnt RL. For the
objective function J() in Eq. [6| of MaxEnt RL, the state-wise entropy H(m(+|s;)) is maximized
explicitly w.rt. m for policies with a higher entropy in terms of diverse actions to encourage an
explicit exploration. For the objective function J'(7) in Eq. E]of distributional RL, the policy 7 is
implicitly optimized through the action selection process a; ~ 7 (:|s;) guided by an augmented
reward signal from the distribution-matching regularization f(# (u52¢, gp*"*")). Concretely, the



learned policy is encouraged to visit state s; along with the policy-determined action via a; ~ 7(-|s;),
whose current action-state return distributions g;"** lag far behind the target return distributions with
a large discrepancy. This discrepancy is measured by the magnitude of the cross entropy between
two return distributions of gp*"** and p®*t. A large discrepancy indicates that the uncertainty of
the current return distribution is considerably misestimated for the considered states, enabling an
uncertainty-aware exploration against these states in the policy optimization phase. This also indicates
that the policy learning in CDRL is additionally driven by the uncertainty difference between the
current and the target estimates, leading to a distinct exploration strategy of distributional RL relative

to MaxEnt RL.

Interplay of Uncertainty-aware Regularization in Distributional Actor Critic. Putting the critic
and actor learning together in distributional RL, we reveal their interplay impact pertinent to the
uncertainty-aware regularized exploration. For the actor component, the policy learning seeks states
and actions whose current return distribution estimate lags far behind the environmental uncertainty
of the target returns. For the critic component, the critic learning reduces the return distribution
mismatch on the states and actions explored by the policy, with two situations illustrated in Figure 2]
This uncertainty-aware exploration effect arises from the decomposed regularization via the return
density decomposition, interpreting the benefits of CDRL over classical RL.

6 Experiments

We comprehensively demonstrate our theoretical analysis using both Atari games and MuJoCo tasks.
In Section[6.T] we validate that the uncertainty-aware regularization is crucial to the outperformance
of CDRL over classical RL by varying e in the return density decomposition. We also investigate the
mutual impacts between the vanilla entropy regularization in MaxEnt RL and the uncertainty-aware
entropy regularization from CDRL in Section More implementation details, including the
description of baselines, are provided in Appendix

6.1 Regularization Effect in Performance by Varying ¢

Baseline Algorithm: #(u,gg)(e = 0.8/0.5/0.1). For the categorical distributional loss in C51
or the distributional critic loss in the actor critic, we employ 1% instead of p*® as the target
return distribution, leading to the decomposed algorithms, denoted by (1, gg). This decomposed
algorithm enables us to assess the uncertainty-aware regularization effect of distributional RL by
directly comparing its performance with the classical RL. and CDRL.

Experimental Details. We substantiate that the decomposed uncertainty-aware entropy regularization,
derived in Eq. [29) through the return density function decomposition, plays a crucial role in the
empirical superiority of CDRL over classical RL. We compare CDRL with the decomposed baseline
algorithm H (1, go) under different e based on Eq. [3| To ensure a pre-specified e that guarantees a
valid decomposition analyzed in Proposition[T} we employ a new notation ¢, which is proportional to
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Figure 3: Learning curves of value-based CDRL (C51) and the decomposed algorithm H(u, go)(e =
0.8/0.5/0.1) after applying the return distribution decomposition with different ¢ on eight Atari
games. Results are averaged over three seeds, and the shade represents the standard deviation.



e but is more convenient in the implementation. See Appendix [K.2]for more explanation, including
the transformation equation between € and ¢, and the details of the baseline algorithm H(u, gg).

Results. Figure [3] showcases that as ¢ gradually decreases from 0.8 to 0.1, learning curves of
decomposed C51, i.e., H(u, gg)(e = 0.8/0.5/0.1), tend to degrade from C51 to DQN across most
Atari games. The sensitivity of the decomposed algorithm (1, o) regarding ¢ depends on the
environment. Similar results in MuJoCo environments can be found in Appendix [C.I} Overall, our
empirical result corroborates that the decomposed uncertainty-aware entropy regularization from the
categorical distributional loss is pivotal to the empirical advantage of CDRL over classical RL.

6.2 Mutual Impacts of the Two Entropy Regularization

Baseline Algorithms. For a detailed comparison of the mutual impacts between Vanilla Entropy (VE)
in MaxEnt RL and Uncertainty-aware Entropy (UE) in CDRL, we conduct an ablation study across
several related baseline algorithms. We denote SAC with/without vanilla entropy as AC+VE and
AC. We denote Distributional SAC (DSAC) [34]] with/without vanilla entropy as and
AC+UE. AC+UE is also denoted as DAC. The implementation details can be found in Appendix [K]

Experimental Details. We demonstrate that the two types of regularized exploration in MaxEnt RL
and CDRL play distinct roles in policy learning when employed simultaneously, including mutual
improvement or potential interference. We perform our experiments for both DSAC (C51) in Figure[d]
and DSAC (IQN) in Figure[7)of Appendix[L.2] where the latter is used to examine the mutual impacts
in quantile-based distributional RL heuristically.
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Figure 4: Learning curves of AC, AC+VE (SAC), AC+UE (DAC) and (DSAC) over five

seeds across seven MuJoCo environments where the distributional RL part is based on C51. (First
Row): Mutual Improvement. (Second Row): Potential Interference.

Results. In the first row of Figure[d simultaneously employing uncertainty-aware and vanilla entropy
regularization renders a mutual improvement. Conversely, the two kinds of regularizations, when
adopted together, can also lead to performance degradation, as exhibited in the second row in Figure 4]
For instance, outperforms both AC+VE (SAC) and AC+UE (DAC) on humanoidstandup,
while suffering from performance degradation on Ant and Swimmer. We posit that the potential
interference may result from distinct exploration directions in the policy learning for the two types
of regularizations. SAC optimizes the policy to visit states with high entropy, while distributional
RL updates the policy to explore states and the associated actions whose current return distribution
estimate lags far behind the environment uncertainty in target returns.

7 Extension to Quantile Distributional Loss

As an extension, we consider decomposing the quantile distributional loss, which is also commonly
used in distributional RL, such as QR-DQN and IQN. Due to space limitations, a more detailed
description is deferred to Appendix [M] The quantile distributional loss can be viewed as a variant of
composite quantile loss [72]. We commit to decomposing it into a mean-related term and a residual



term, where the mean-related term is related to the expected quantile values. We demonstrate that
minimizing the decomposed mean-related term is asymptotically mean-preserving [49] as the number
of quantiles approaches infinity. The induced residual term, therefore, captures the information from
the return distribution that excludes its expectation, serving as the benefit to explain the superiority of
quantile-based distributional RL.

8 Conclusion and Discussion

In this study, we interpret the benefits of CDRL over classical RL as uncertainty-aware regularization
via return density decomposition. In contrast to the exploration to encourage diverse actions in
MaxEnt RL, the uncertainty-aware regularization in CDRL promotes exploring states where the
environmental uncertainty is largely underestimated. Our study offers a novel exploration perspective
to analyze the benefits of (categorical) distributional learning in RL.

Limitation and Future Work. The uncertainty-aware regularized exploration from distributional
loss is mainly founded on CDRL. Although briefly examined in Section |/} it remains interesting yet
challenging to extend our conclusion to general distributional RL, given that the analytical techniques,
such as those in QR-DQN, are largely different from CDRL. We leave this extension for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This study focuses on revealing the intrinsic benefits of adopting distributional
learning in RL, particually under categorical distributional loss, from a novel perspective of
exploration.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the potential limitation of our work in Section [§]and it is
valuable to extend the conclusion we find to other types of distributional learning in RL.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have made rigorous assumptions toward a complete proof. The full proof
is detailed in Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the implementation details in our proof, such as in Ap-
pendix [K]

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We are going to release our code once the paper is accepted to facilitate
reproductivity.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided sufficient experimental details in Appendix [[]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All learning curves are reported across a certain number of random seeds and
the shade represents the standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experiments are conducted by using multiple RTX 3090 GPUs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:We fully adhere to NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As this paper focuses on understanding existing RL algorithms, we believe
there is no negative societal impacts involved.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:|[NA|
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[NA |
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:|[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We are not using LLM to propose our methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work: More Discussions about Uncertainty-oriented Exploration
in RL

Uncertainty in RL. Uncertainty is ubiquitous in RL and sequential decision-making, and therefore
harnessing uncertainty is always crucial in designing efficient algorithms [32]. In the literature of
uncertainty quantification, uncertainty is often decomposed into two sources: aleatoric uncertainty
and epistemic uncertainty.

* Aleatoric uncertainty, also called intrinsic or environmental uncertainty, originates from the stochas-
tic or probabilistic nature of the environment, encompassing three main sources: stochastic transi-
tion dynamics, stochastic policy, and stochastic reward function. Aleatoric uncertainty is determined
by the environment, which is thus irreducible. However, we can design more efficient algorithms
by capturing more environmental uncertainty in the learning process, e.g., via distributional RL.

* Epistemic uncertainty, also called parametric uncertainty, often originates from the stochasticity
in statistical estimation in the presence of limited data or incomplete knowledge. As opposed to
aleatoric uncertainty, epistemic uncertainty is reducible and should decrease over more data, which
contributes to a more reliable statistical estimation.

Uncertainty-oriented Exploration. There are a few survey papers that comprehensively summarize
existing exploration approaches [29,20]. Following [20], we classify the exploration strategies into
two main categories: uncertainty-oriented exploration and intrinsic motivation-oriented exploration.
The latter is inspired by psychology, which is not the focus of our study. Importantly, according to the
two categories of uncertainty in RL, uncertainty-oriented exploration, which often applies Optimism
in the Face of Uncertainty (OFU) principle, involves aleatoric and epistemic uncertainty.

 Epistemic uncertainty-oriented exploration takes advantage of the uncertainty in the (posterior)
estimation of value functions. The typical exploration methods include Bayesian framework [45] 4]
38, Bootstrap [44], and Ensemble methods [30]]. For instance, Bootstrapped DQN [44]] maintains
several independent Q-estimators and randomly samples one of them, enabling the agent to perform
temporally extended exploration.

* Aleatoric uncertainty-oriented exploration aims to capture more environmental uncertainty from
three sources of stochastic transition dynamics, stochastic policies, and stochastic reward function,
all of which can be comprehensively integrated into return distribution. [9] employs Perturbed
Quantile Regression (PQR) to promote the optimistic exploration within the distributional RL
framework, while Decaying Left Truncated Variance (DLTV) [36]] utilizes the variance from the
learned return distributions. [S8] investigates the approximate posterior sampling in distributional
RL to encourage the exploration. By contrast, our primal goal in this study is to attribute the
benefits of distributional RL to its intrinsic uncertainty-aware exploration we derived via return
density decomposition instead of harnessing the learned return distribution to develop subsequent
aleatoric uncertainty-oriented exploration strategies in [58, 36]. On the other hand, MaxEnt
RL [16} 17, [18] utilizes the stochasticity of learned policy, one of the three sources in environmental
uncertainty, to encourage diverse actions. Therefore, MaxEnt RL can also be categorized into the
aleatoric uncertainty-oriented exploration, and it is thus intuitive and interesting to make a detailed
comparison of the exploration effects between distributional RL and MaxEnt RL, conducted in
Section [5.1] of our study.

B More Details about Categorical Distributional RL and Algorithm
Description of C51

Distributional Loss and Projection in CDRL. Categorical Distributional RL [5]] uses the heuristic
projection operator Iz, which was defined as

0z, y<=z
Zit1— Y—zi

Me (0y) = 5=+ 255500 s <y <z, (10)
02y Yy > 2N

After applying the distributional Bellman operator ™ on the current return distribution 17 (s, a) in
each update, the resulting new distribution, which we denote as 7)™ (s, a), typically no longer lies
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in the same (discrete) support with the original one on {2;} ;. To maintain the same support, the
underpinning of the KL divergence, CDRL additionally applies the projection operator I on the new
distribution 77 (s, a). This projection rule distributes the weight of d,, across the original support points
{2}, based on the linear interpolation. For example, if y lies in between two support points z; and
Zi+1, the probability mass on y is split between z; and z; 1 with the weight inversely proportional
to its distance ratio to z; and z;11. Therefore, the projection extends affinely to finite mixtures

of Dirac measures, such that for a mixture of Diracs Z?Ll pidy,, we have Il¢ (Zzl\il pi§yi> =

ZZ 1 pille (8y,). The Cramér distance was recently studied as an alternative to the Wasserstein
distances in the context of generative models [[7]]. Recall the definition of Cramér distance in the
following.

Definition 1. (Definition 3 [48]) The Cramér distance {5 between two distributions vy,v, € P(R),
with cumulative distribution functions F,,, , F,,, respectively, is defined by:

by (11,19) = (/R (F, (z) — F,,(z))? dx) 1/2.

Further, the supremum-Cramér metric {5 is defined between two distribution functions 1, €
gg(R)X XA by

Llp) = sup (), ue).
(z,a)EX XA

Thus, the contraction of categorical distributional RL can be guaranteed under Cramér distance:

Proposition 4. (Proposition 2 [48]) The operator T T™ is a \/v-contraction in 0.

An insight behind this conclusion is that Cramér distance endows a particular subset with a notion of
orthogonal projection, and the orthogonal projection onto the subset is exactly the heuristic projection
II¢ (Proposition 1 in [48])). [48] also states that the operator IT-7 ™ is contractive under Wasserstein
distance.

Description of CDRL Algorithm: C51. With N = 51, C51 instantiates the CDRL algorithm. To
elaborate the algorithm, we first introduce the pushforward measure fxv € P(R) from Definition 1
in [48]. This pushforward measure shifts the support of the probability measure i according to the
map f, which is commonly used in distributional RL literature. In particular, we consider an affine
shift map f, , : R — R, defined by f, ,(z) = r + ~yz. As Algorlthmldlsplays we first apply the
pushforward measure on the target return distribution 7j(s’, a*) by affinely shifting its support points,
leading to a new distribution 7j(s, a). Next, we project the support points of 77(s, a) by employing
II¢ onto the original support, allowing us to compute the KL divergence in the end. Notably, we
decompose the distributional objective function on the KL loss KL (Tareet (5, @)||7(s, @)).

Algorithm 1 CDRL Update (Adapted from Algorithm 1 in [48])
Require: Number of atoms N, e.g., N = 51 in C51, the categorical distribution 7)(s,a) =
ZZ‘I\; p;’“é,, for the current return distribution.
Input: Sample transition (s, a,r, s")
1: if Policy evaluation: then
a* ~ m(|s)
else if Control: then
a* + argmaxae A Epessr,ay [F]
end if -
7(s,a) < (fr)#7(s’, a*) # Distributional Bellmen update by applying T"
¢ Tharget (8, @) < Ien(s, a) # P10|eu target support points and then distribute the probabilities
Output: Compute the distributional loss KL (7jreet (s, @)||7(s, a)) # Choose KL divergence as d,,

\.'9\.“{‘.4?.‘*3!\?

C Explanation about the Efficacy of Neural FZI Framework

The main reason for adopting the Neural FZI framework in Section . T]to interpret the behavior of
distributional RL is that it is by far the closest framework to the practical algorithms, to the best of
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our knowledge. Neural FZI or FQI was initially proposed in the context of offline RL with a fixed
dataset of transitions (s, a, s’, ), the leverage of the Neural FZI framework does not assume a static
dataset and accommodates an evolving dataset when using an exploration mechanism. Specifically,
our theoretical analysis focuses on the decomposition of the categorical distributional loss, but not
on a formal convergence proof of Neural FZI under an evolving dataset. The related convergence
proof might be complicated beyond classical assumptions on Neural FQI or FZI in an offline setting.
This distinction is important: the goal of our analysis is to reveal how the categorical loss can be
interpreted as a form of distributional entropy regularization in Proposition [2] regardless of whether
the underlying data distribution changes over time. During each phase of Neural FZI, the return
distribution can be updated based on newly collected transitions, allowing the exploration of new
samples based on the decomposed distribution-matching regularization term

D Proof of Proposition [I]

Proposition (Decomposition Validity) Denote p*%(x € Ag) = pg/A, where pg is the coefficient
on the bin Ag. i*%(z) = 2N, pil(x € A;)/A is a valid density if and only if € > 1 — pp.

Proof. Recap a valid probability density function requires non-negative and one-bounded probability
in each bin and all probabilities should sum to 1. We start to prove all probabilities should sum to 1,
which is straightforward by taking the integral of both sides of Eq[3}

[ =0 [HESBE g0 [Geuyas

(1D
1=(1-¢)+ e/,ﬁs’a(ac)alm7

which directly implies f %% (x)dx = 1. Next, we show necessity and sufficiency of non-negative
and one-bounded probablllty 1r1 each bin.

Necessity. (1) When © € Apg, Eq. 3| can simplified as pg/A = (1 — €)/A + eply/A, where
Py = [i(z € Ag). Thus, ph, = 22 — 2= > 0 if ¢ > 1 — pp. Obviously,
_pg l—e 1 1-—c¢

Sf_
€ € € €

=1, 12)

~S,a

which is guaranteed by the validity of p3”. (2) When = ¢ A g, we have p; /A = ep!' /A, i.e.,When
x ¢ Ap, We immediately have p}' = 2= < 1= —PE < ]1whene>1—pg. Also, pi = £ > 0.

Sufficiency. (1) When € Ag, let ply, = B2 — 1=¢ > 0, wehave e > 1 — pp. phy, = 22 — 1= <1

€

in nature. (2) When z ¢ Apg, pi' = 22 > 0in nature Letp!' = Pi <1, we have p; < e. We need to
take the intersection set of (1) and (2) and we find that

e>1—pg=>e>1—-pg>p, (13)

which satisfies the condition in (2). Thus, the intersection set of (1) and (2) wouldbe € > 1 — pg.

In summary, as € > 1 — pg is both the necessary and sufficient condition, we have the conclusion
that zi(x) is a valid probability density function <= € > 1 — pg.

O

E Equivalence between Categorical Parameterization and Histogram Density
Estimation in Distributional RL

Proposition 5. Suppose the target categorical distribution ¢ = Eivzl D0, and the target histogram

function h(x) = Zfil pil(z € A;)/A, updating the parameterized categorical distribution cg
under KL divergence is equivalent to updating the parameterized histogram function hy.
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Proof. For the histogram density estimator hy and the true target density function p(z), we can
simplify the KL divergence as follows.

pi(x)

N 1;
i\ L
DKL(h,hg):Z/ l%log%dx
=1 li—1 Ke
Y N ,
Copile) i) / pi(z) o

) A AT A 08X 14

i:zl/li—l A o8 A d.I’ ; Loy A OgAd.T ( )

@ <= [ pile) ) T g, © 3 log 1o ) 3 log A
“*; L. A N x—*Zpi OgKO(*;pi 0g g,

i=1

where hj, is determined by i and 6, which is independent of z. (a) is true because the target
distribution with all p; is fixed. (b) follows because p;(x) remains constant for = € [I;,1;11]. Finally,
(¢) holds as the remaining term involving p;, and A is also constant.

On the other hand, we consider the KL-based objective function in learning categorical distribution

estimator. Given the target categorical distribution ¢ = Zfil p;6,, where the probability p; is fixed
for each atom z;, we aim at updating the current categorical estimator cg. Then, we have:

N N N N
Dy (¢, co) = Zpi log % = sz logpi — Zpi log ¢ o — sz' log cj, 15)
i=1 0 =1 i=1 i=1

where cg = Zf\il c)d, is the current categorical estimator and ¢} is the learnable probability. By
comparing the final loss function forms in Eq.[T4]and Eq.[T3] it turns out that they are equivalent as
both ¢ and hj, are the learnable probabilities, which are parameterized by the same neural network.

O

Remark. In CDRL, we use a discrete categorical distribution with probabilities centered on the fixed
atoms {z; }_,. In contrast, the histogram density estimator in our analysis is a continuous function
defined on [z, zx], enabling more nuanced analysis within continuous functions. Proposition
indicates that minimizing the KL divergence with the categorical distribution in Eq.[T5]amounts to
the cross-entropy loss with the parameterized histogram function in Eq. [I4]

F Convergence Guarantee of Histogram Density Estimator in Distributional
RL

Histogram Function Parameterization Error: Uniform Convergence in Probability. The previous
discrete categorical parameterization error bound in [48]] (Proposition 3) is derived between the true
return distribution and the limiting return distribution denoted as 7 iteratively updated via the
Bellman operator IIcE™ in expectation, without considering an asymptotic analysis when the number
of sampled {s;,a;}_; pairs goes to infinity. As a complementary result, we provide a uniform
convergence rate for the histogram density estimator in the context of distributional RL. In this
particular analysis within this subsection, we denote p“ as the density function estimator for the
true limiting return distribution ¢ via II¢T™ with its true density pé’“. In Theorem we show that
the sample-based histogram estimator p;’* can approximate any arbitrary continuous limiting density
function p7* under a mild condition. This ensures the use of a histogram density estimator in the
implementation of our subsequent algorithm adapted from CDRL.

Theorem 2. (Uniform Convergence Rate in Probability) Suppose py®(x) is Lipschitz continuous,
and the support of a random variable is partitioned by N bins with bin size A. Then

log N
sup [z () = " ()] = O (&) + Op (Vf&) . (16)

Proof. Our proof is mainly based on the non-parametric statistics analysis [61]. In particular, the
difference of pg“(x) — pZ“(x) can be written as

P (z) —pg(z) = E(pc" (%)) — pc“ () + P () — E (0" () -

bias stochastic variation

(a7
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(1) The first bias term. Without loss of generality, we consider x € Ay, we have

E(55"(a) = X2

lo+kA
_ Dy -na PW)dy
A (18)
_ Fllo+(k—1)A) = F(lo + (k —1)A)
lo+ kA —(lp+ (E—1)A)
=pg" (@),
where the last equality is based on the mean value theorem. According to the L-Lipschitz continuity
property, we have

[E (5 (x)) — pg“ ()| = Ipg“ (2") — pg”(2)] < L|2" — 2| < LA (19)

(2) The second stochastic variation term. If we let 2 € Ay, then py* = p, = % S (X € Ay),
we thus have
> e)

> Ae) (20)

> Ae)

< N -exp (727LA262) (by Hoeffding’s inequality),

P (sup 727 (0) - E 7" (2)] > ¢

xT

1

where in the last inequality we know that the indicator function is bounded in [0, 1]. We then let the
last term be a constant independent of N, n, A and simplify the order of e. Then, we have:

log N
sup [P (z) — E (9" (#))| = Op <\/7(?§2> @1

In summary, as the above inequality holds for each x, we thus have the uniform convergence rate of a
histogram density estimator

sup [pe” (z) — pg” (2)] < sup [E (Pc” (2)) — pe” ()] + sup |pg” (=) — E (5" (2))|
x T

log N (22)
:0(A)+op< ZgAQ )

G Discussion about KL Divergence in Distributional RL

G.1 Properties of KL divergence in Distributional RL

Remark on KL Divergence. As stated in Section |3|of CDRL [5]], when the categorical parameter-
ization is applied after the projection operator Il¢, the distributional Bellman operator ™ has the
contraction guarantee under Cramér distance or Wasserstein distance [48]], albeit the direct use of
a non-expansive KL divergence [41]]. Similarly, our histogram density parameterization with the
projection Il and KL divergence also enjoys a contraction property due to the equivalence between
optimizing histogram function and categorical distribution analyzed in Appendix [E] We summarize
some properties of KL divergence in distributional RL in Proposition [6]
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Proposition 6. Given two probability measures | and v, we define the supreme Dg; as a functional
P(X)S*A X P(X)S*A S R, ie., D (1, 1) = SUP (5 a)eS x A Dgr(p(s,a),v(s,a)). we have:

(1) €™ is a non-expansive distributional Bellman operator under Dg5, i.e.,
D (R 21,37 Zs) < DR (21, Za), (23)

(2) D5 (Zn, Z) — O implies the Wasserstein distance W, (Z,,, Z) — 0.

Proof. We first assume Zy is absolutely continuous and the supports of two distributions in KL
divergence have a negligible intersection [2], under which the KL divergence is well-defined.

(1) The contraction analysis of distributional Bellman operator T™ under a distribution divergence
d, depends on its scale sensitive (S) and sum invariant (I) properties [7, I5]. We say d,, is scale
sensitive (of order 7) if there exists a 7 > 0, such that for all random variables X,Y and a real
value a > 0, dp(aX,aY’) < |a|"d,(X,Y). d, has the sum invariant property if whenever a random
variable A is independent from X,Y, we have d,,(A + X, A+7Y) < d,(X,Y"). We first prove that
the Dy, is sum-invariant, which is based on the dual form of KL divergence via the variational
representation [12, [1]]:

DxL(X,Y) = fsgg){EX [f(z)] — log (]EY [ef(y)} ) 1, 24)

where £ is the space of bounded measurable functions. Consequently, we have
Di(A+ X, A+Y) = sup{Ez,—asx[f(2)] ~ log (Ezamasy [/ )}
feL

@ félfb{]E"‘ [Ex [f(z + a)]] - log (IEA [Ey [eﬂ“‘”ﬂ)}

< sup {BAEx[f(z + a)] ~ Ealog (Ey [/0+)]))
fece

= sup (Ea[Ex[f(z + )] - log (By [er0+] )1} 25)

(2 E4 fsélfb{EX[f<x +a)] —log (IEY [ef(y-x-a)D}

@ EA sup{Ex[g(x)] — log (Ey {eg(y)D}
geLe
:-DKLCXaY)
where (a) results from the independence between A and X (Y). (b) and (c) rely on the Jensen
inequality for the function — log and the operator sup. (d) is because the translation is still within the

same bounded functional space. Next, we show that D, is not scale-sensitive, where we denote the
probability density function of X and Y as p and q.

Dy (aX,aY) = /Z %p (g) log ‘}ﬁ%dx = /C: p(y) log Zgz;dy = Dkr(X,Y) (26)

Putting the two properties together and given two return distributions Z1 (s, a) and Zs(s, a), we have
the non-expansive contraction property of the supremal form of Dy as follows.

D (3724, %7 Z3) = sup Dx.(T"Z1(s,a), T Z2(s,a))
= sup Dxr(R(s,a) +vZ1(s',a’), R(s,a) + vZ2(s",a’))

s,a

(e)
< DxL(YZ1 (s, a"),vZa(s',a")) 27

@ Dx1(Z1(s',a'), Zy(s',a"))
< sup DxL(Z1(s',d"), Za(s',a"))

= Dy1.(Z1, Z),
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where (e) relies on the sum invariant property of Dk and (f) holds due to the non-scale sensitive
property of Dxp . By applying the well-known Banach fixed point theorem, we have a unique return
distribution when convergence of distributional dynamic programming under Dgj .

(2) By the definition of Dgy , we have sup, , Dx1.(Zn (s, a), Z(s,a)) — 0 implies Dxy.(Zn, Z) — 0.
Dx1(Z,, Z) — 0 implies the total variation distance 6(Z,,, Z) — 0 according to a straightforward
application of Pinsker’s inequality
1 1
§(Zp, Z) < 5DKL (Zn, Z) =0, 6(2,7Z,) < 5DKL (Z,Z,) =0 (28)
Based on Theorem 2 in WGAN [3]], §(Z,,, Z) — 0 implies W,(Z,,, Z) — 0. This is trivial by
recalling the fact that 6 and W give the strong and weak topologies on the dual of (C(X), || - ||oo)

when restricted to Prob(X).
O

G.2 Equivalence between Cross-Entropy Loss and KL Divergence in Neural FZI

If the target density function in evaluating the KL divergence is not fixed, using cross-entropy loss
instead of the KL divergence may underestimate the uncertainty of return since this simplification may
fail to capture the exact shape or uncertainty spread of the true target return distribution. However,
this underestimation issue does occur in our analysis. Particularly, the leverage of the target network
in Neural FZI, which is fixed in the updating of each phase, guarantees that the KL. divergence
is exactly proportional to the cross-entropy loss. Figure [5] suggests that C51 with cross-entropy
loss (DSAC_CE) behaves similarly to the vanilla C51 equipped with KL divergence (DSAC) in both
three Atari games and MuJoCo environments with continuous action space.
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Figure 5: (First row) Learning curves of C51 under cross-entropy loss on Atari games over 3 seeds.
(Second row) Learning curves of DSAC with C51 under cross-entropy loss on MuJoCo environments
over five seeds.

H Proof of Proposition 2]

Proposition [2| (Decomposed Neural FZI) Denote g, as the histogram density estimator of Zk(s,a)
in Neural FZI. Based on the decomposition in Eq. [3|and the KL divergence as d),, the Neural FZI
process in Eq. [2]is simplified as
1 = Si,a; i ~s' w7 (s) 55,04
2 = argmin 37 [~log g5 () + oM@, gj )]
0

(29)

—
! Mean-Related Term Regularization Term

where o = /(1 — €) > 0 and the mean-related term is negative log-likelihood centered on A%,.
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Proof. Firstly, given a fixed p(x) we know that minimizing Dky (p, q¢) is equivalent to minimizing
H(p, q) by following

N L .
©opi(x (z)/A
Dxw.(p, q0) = Z/I pé ) logpq(i/)g da
i=1 Y li—1 %

.y / Ple) oy 0 g, (S / p(), p@ ko)
- i=1"li-1 A% i=1 A

=H(p,q0) — H(p)
o8 H(pa QG)

where p = Zf\il pi(z)1(z € AY)/Aand gy = Zf\il qi/A. Based on H(p, ), we use p*i ™7 (5 ()
to denote the target probability density function of the random variable R (s, a;) +vZ5. (s, m7(s%)).
Then, we can derive the objective function within each Neural FZI as

n
1=1
" N L ] Si,Qi si,a
1 /J ]l(x S A%) q67 i / pj qeu Z(Aj)
D0 D D) Z <
1 - Siy@q % ~s' 77 (s8] Si,a;
= gz ((1 —&)(—log g™ (AR)) + eH (™), g5" ‘)) +(1-6eA

€
1—¢

1« a,
- 1 Si,a;i Az shmz(sh) | sisai ) h — >0
o E ( 0g gy (A%) + aH (i ,qp" ")), where a

(€29)

where recall that 7577 (57) = Zi\; pi(x)L(z € Ay) /A = ZZ 1 p /A for conciseness and denote
g = Z] L% (A;)/A. The cross-entropy H(fi%™2(%:), ¢5*) is based on the discrete
d]StrlbuthIl when ¢ = 1,..., N. Af; represent the interval that E [R(si,a;) +vZ5. (s}, w2 (s}))]
falls into, i.e., E [R(s;, a;) + vZ5. (s}, mz(s}))] € A%. O

I Proof of Proposition 3|

Proposition|3|(Equivalence between the Mean-Related term in Decomposed Neural FZI and Neural
FQI) In Eq. 29} assume the function class {Zy : § € O} is sufficiently large such that it contains the
target {Y;*}"_,, when A — 0, for all k, minimizing the mean-related term in Eq. implies
+oo
dz = o(A),
(32)
where TP'Q%. (s, a) is the scalar-valued target in the k-th phase of Neural FQI, and 57@‘%* (s,a) 1S
the Dirac delta function defined on the scalar 7°P'Q%. (s, a).

P(Z§t(s,a) = T"'Q}.(s,a)) =1, and /

—0o0

Fos (@) = Py .., @)]

Proof. Limiting Case. Firstly, we define the distributional Bellman optimality operator T°P* as
follows:

TP Z(s,a) 2 R(s,a) + 72 (5, a"), (33)
where S’ ~ P(- | s,a) and a* = argmaXE[ (8',d")]. If {Zy : 6 € O} is sufficiently large

enough such that it contains T°'Zy- ({Y’“ }7_1), then optimizing Neural FZI in Eq. [2] leads to
Zlc-‘rl TOptZ.g* .

Secondly, we apply the return density decomposition on the target histogram function p**(z).
Consider the parameterized histogram density function hg and denote heE /A as the bin height in the
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bin Ag, under the KL divergence between the first histogram function 1(x € Ag) with hg(z), the
objective function is simplified as

hE
1 20

Dic(1(z € Ag)/A, ho(x)) = —/ Llog Bdr =~ loghf (34)
TEAR A

Since {Zy : 6 € O} is sufficiently large enough that can represent the pdf of {Y*}™ ., it also
implies that {Zp : 0 € O} can represent the mean-related term part in its pdf via the return
density decomposition. The KL minimizer would be hy = 1(x € Ag)/A in expectation. Then,
lima 0 arg ming,, Dxr(1(z € Ag)/A, hg(1)) = dg[zume(s,q)], Where 0| zure (s q)] is @ Dirac Delta
function centered at E [Z“"*!(s, )] and can be viewed as a generalized probability density function.
That being said, the limiting probability density function (pdf) converges to a Dirac delta function
at E [Z'*€% (s, a)]. The limit behavior from a histogram function p to a continuous one for Z'"¢ is
guaranteed by Theorem [2| and this also applies from hy to Zy. In Neural FZI, we have Z%& =

IP Zy.. Here, we use Z(9+1(S, a) as the random variable whose cdf is the limiting distribution.
According to the definition of the Dirac function, in the limiting case where A — 0, we attain that

P(Z; ! (s,a) = E[TPZ}. (s,a)]) = 1. (35)

This is because the pdf of the limiting return random variable Z(f“ (s, a) is a Dirac delta function,
which implies that the random variable takes this constant value with probability one. Due to the
linearity of expectation in Lemma 4 of [5]], we have

E [T%'Z}.(s,a)] = TPE [Z}.(s,a)] = T®Qj. (s, a) (36)
Finally, we obtain the convergence in probability one in the limiting case:
P(Z T (s,a) = T"'Qk.(s,a)) =1 as A —0 (37)

Convergence in Distribution. The connection established above is in the limiting case. Alternatively,
we can provide more formal proof by using the language of convergence in distribution. Here, we
use Z, 5,21 to replace Z 5“ to explicitly consider its asymptotic behavior. According to the fact that
oo{z € Ag}/A is the optimizer when minimizing the mean-related term in Eq.[29| given a fixed A,
the convergence in distribution is:

: k1Y _ 1; : —
ilglO'D(Zo,A ) = AII_I}OD(]I{LL € Ap}/A) =D(broniqk, (s.a)): (38)

where d;opi k(5,4 is the Dirac Delta function centered at TOPtQE, (s,a). D(‘sTOPtQ’;* (s,a)) 18 the
corresponding step function, where D(J7opi gk, (5,0))(2) = 1if 2 > TP Qk. (s,a), and equals 0
otherwise. Note that the convergence in distribution in terms of the Dirac delta function implies that
P(Z§*(s,a) = T®Q.(s,a)) = Las A — 0in Eq[37]

Convergence Rate. In order to characterize how the difference varies when A — 0, we further
define Ag = [lc,l.+1) and we have:
e 1 opt Nk 2 opt Wk 2
3 ’Fqg (z) — F(STOP[QS*(SYQ) (90)‘ dz = o+ ((T Qg-(s,a) —le)” + (ley1 — T™Qg- (s, a)) )
1
= ﬁ(GQ +(A-a)?)
<A/2
=o(a),

(39)
where TP'Qp. (s,a) = E [T Z}. (s,a)] € Ap and we denote a = TP'QF. (s, a) — .. The first
equality holds as gg(x), the KL minimizer while minimizing the mean-related term, will follow a
uniform distribution on A g, i.e., gy = 1(z € Ag)/A. Thus, the integral of LHS would be the area
of two centralized triangles accordingly. The inequality holds as the maximizer is obtained when
a = A or 0. The result implies that the convergence rate in distribution difference is o(A).

O
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J Convergence Proof of DERPI in Theorem (]

J.1  Proof of Distribution-Entropy-Regularized Policy Evaluation in LemmalI]

Lemma [I{Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-entropy-
regularized Bellman operator 7.7 in Eq.[7|and assume H (u5t2t, gp*"*") is bounded for all (s, a;) €

S x A. Define Q%! = T Q*, then Q" will converge to a corrected Q-value of 7 as k — oo with
the new objective function J’(r) defined as

T
T (1) =Y s, anmp, [ (56,80) + 7 (H (1502, g50™))].
t=0

Proof. Firstly, we plug in V(s;41) into RHS of the iteration in Eq. |7} then we obtain

T4 Q (st,a)

=r(se,a¢) +VEs, i ~P(isp,a0 [V (St41)]

7 (st,a) + VBs, o P([ssa0)arsamn [ (HESH02 @3N L By p(sian),ansior (@ (St41,ap41)]

7 (St,at) + 7E51+1~P(-|st,at),at+1~7r (Q (St+1,a:11)],

1>

(40)
where 77 (s¢,a¢) £ 7 (s, a5) + VEs,,, ~P(|si.an) a0 ~n [f(F(pS2e0 ggtt 2 )] s the en-
tropy augmented reward. Applying the standard convergence results for policy evaluation [57], we
can attain that this Bellman updating under 7 is convergent under the assumption of |.A4| < co and
bounded entropy augmented rewards 7.

J.2 Policy Improvement with Proof

Lemma 2. (Distribution-Entropy-Regularized Policy Improvement) Let m € Il and a new pol-
icy Tuew be updated via the policy improvement step in the policy optimization: T, =
g et B, r [Q7(1, ) + F(H (5505, g5*))). Then Q™ (s,,a,) > Q4 (s,,ay) for
all (st,a:) € S x Awith |A] < 0.

Proof. The policy improvement in Lemma [2]implies that
Eay o (@7 (st524) + f(H (%%, "™ )] = Bay gy [Q7 (st,a1) + f(H (172, ¢5"™))] -
We consider the Bellman equation via the distribution-entropy-regularized Bellman operator 7_7:

sd*
Qﬂ'om (Stv at)

£ (st ar) +VEspyyop [V (S441)]

(st, )
=7 (st 1) +VEs, P [Bay yomgq [fRL(EH0250 g 020 4 QT (5441, a41)] ]
<r(spar) +vEs,,  ~p [EaHle,ew [f(H(MS"+1’at+l7qzwhat“)) + Q™ (S41, at+1)“
=7 (st,81) + VBs, ~Papsy ~ome [f(H(ESH02 @) Ly By Pag e (@™ (St41,8041))]
= Ten (St a¢) + VEs, o Pay g~ (@ (St41, a111)]

< Q™ (st41,a141),

(41)
where Q™" (s¢41,a¢+1) indicates that the future actions are taking following 74, given s, and
a;+1. We have repeated expanded Q™ on the RHS by applying the distribution-entropy-regularized
distributional Bellman operator. Each following step will then incorporate the actions following the
new policy. Convergence to Q™ follows from Lemmal[I] O

J.3 Proof of DERPI in Theorem[I]

Theorem [T] (Distribution-Entropy-Regularized Policy Iteration) Repeatedly applying distribution-
entropy-regularized policy evaluation in Eq.[/|and the policy improvement, the policy converges to
an optimal policy * such that Q™ (s;,a;) > Q7 (s, a,) forall 7 € II.
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Proof. The proof is similar to soft policy iteration [[17]. For completeness, we provide the proof here.
By Lemma[2] as the number of iteration increases, the sequence Q™ at i-th iteration is monotonically
increasing. Since we assume the uncertainty-aware entropy is bounded, the Q™ is thus bounded as
the rewards are bounded. Hence, the sequence will converge to some 7*. Further, we prove that 7* is
in fact optimal. At the convergence point, for all = € II, it must be case that:

Eatwﬂ'* [Qm‘]d (Sta at)] Z Eatwﬂ' [Qﬂ-bld (St7 at)} .

According to the proof in Lemma we can attain Q™ (st,ar) > Q™ (s, at) for (s¢,a;). That is
to say, the “corrected” value function of any other policy in II is lower than the converged policy,
indicating that 7* is optimal.

J.4 Discussion about DERPI with Varying ¢

In the tabular setting, we have shown that the convergence of DERPI holds given a fixed gg. The
primary goal for us to derive this convergence result is to demonstrate the uncertainty-aware regular-
ized exploration promoted by the decomposed regularization from (categorical) distributional loss. If
we hope to develop a further algorithm in the function approximation, we need to consider how to
interplay a parameterized Q function, policy, and ¢. For example, we may leverage separate neural
network works for each component. Alternatively, we can use one single neural network to represent
the whole return distribution (gg) and then take the expectation to evaluate the Q function.

K Implementation Details

K.1 More Descriptions of Baselines Algorithms
Algorithms in Section [6.1}

* DOQN [39] and C51 [5]

* H(p,qo)(e = X): a variant of C51 algorithm, where we replace the original target histogram
function p** with the induced i@ for each (s, a) pair in the update. By varying e = X, H(u, gp)
relies on the distributional loss to different extents in the RL learning. For examples, when € = 1,
H(u,qo)(e = X) degenerates to the vanilla C51 algorithm. On the contrary, decreasing € in
H(u, qo) will reduce the leverage of knowledge from the distributional loss, leading to performance
degradation in a distributional learning context.

Algorithms in Section[6.2}

» AC: This implementation is the same as AC.
* AC+VE: This is exactly the standard SAC algorithm.

* AC+UE: This implementation is also the same as DAC (C51), where we use a distributional critic
loss in the AC algorithm.

* AC+UE+VE: Based on the SAC algorithm, i.e., AC+VE, we additionally use the distribution
objective in C51 as the critic loss.

K.2 Replacing ¢ with the ratio < for Visualization

¢ shares the same utility as €, but it is more convenient in implementation. ¢ is defined as the mass
proportion centered at the bin that contains the expectation when transporting the mass to other
bins. A large proportion probability €, which transports less mass to other bins, corresponds to a
large € in Eq. 3] Increasing ¢ indicates that the decomposed algorithm performs more similarly to
a pure CDRL algorithm. As Proposition [I] elucidates, the return density decomposition requires
that € exceed certain thresholds to ensure the resultant decomposed °>* qualifies as a valid density
function. In practice, pinpointing this lower boundary for ¢ in each iteration to regulate its range
could be prohibitively time-intensive. A more pragmatic approach involves redistributing the mass
from the bin that contains the expectation to other bins in specified ratios, thereby introducing the
corresponding ratio term €. By varying ¢ from O to 1, it invariably meets the validity condition
outlined in Proposition[I] thereby streamlining the process for conducting ablation studies concerning
11%* as demonstrated in Figure
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To delineate the relationship between the ratio £ and the coefficient € in constructing 1%, after some
calculations we establish their equivalence as follows:
—(1—e
e — M’ 42)
bEe€
where pp; represents the weighting assigned to the bin A g as specified in Proposition[I] The resulting
e € [0, 1] has a monotonically increasing relationship with e. In addition, e = 1 implies € = 1. These
properties facilitate the visualization without undermining our conclusion.

Decomposition Details. By varying ¢, we can evaluate ¢ via the transformation equation in Eq.
which guarantees the validity of return density decomposition. Next, under different €, we compute
the induced histogram density *“ via the return density decomposition in Eq.

p*(x) =p>(x & Ap)/e+p(x € Ap)e, (43)
where combines Eq. [3|and Eq. Importantly, by summing all the probabilities of p!’ in y, we have:
n
1-— —(1-
Zpg: 6PE Iy i €) _ 1 (44
i=1

This substantiates the validity of our decomposition by using ¢ instead of € for visualization. Next,
we replace p*® with 1°® in C51 or the critic loss in Distributional AC (C51) as the decomposed
algorithm (1, ¢p) and compare the performance of all considered algorithms. Please refer to the
code in the implementation for more details.

K.3 Hyper-parameters and Network structure

Our implementation is adapted from the popular RLKit platform. For Distributional SAC with C51,
we use 51 atoms similar to the C51 [3]]. For distributional SAC with quantile regression, instead of
using fixed quantiles in QR-DQN, we leverage the quantile fraction generation based on IQN [10] that
uniformly samples quantile fractions in order to approximate the full quantile function. In particular,
we fix the number of quantile fractions as N and keep them in ascending order. Besides, we adapt

Table 1: Hyper-parameters Sheet.

Hyperparameter Value
Shared
Policy network learning rate 3e-4
(Quantile) Value network learning rate ~ 3e-4
Optimization Adam
Discount factor 0.99
Target smoothing Se-3
Batch size 256
Replay buffer size le6
Minimum steps before training led
DSAC with C51
Number of Atoms (V) 51
DSAC with ION
Number of quantile fractions (V) 32
Quantile fraction embedding size 64
Huber regression threshold 1
Hyperparameter Temperature Parameter 5 Max episode lenght
Walker2d-v2 0.2 1000
Swimmer-v2 0.2 1000
Reacher-v2 0.2 1000
Ant-v2 0.2 1000
HalfCheetah-v2 0.2 1000
Humanoid-v2 0.05 1000
HumanoidStandup-v2 0.05 1000
BipedalWalkerHardcore-v2 0.002 2000
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the sampling as 70 = 0,7; = ¢;/ Zij\!ol e;, where ¢; € U[0,1],7 = 1, ..., N. We adopt the same
hyper-parameters, which are listed in Table [T]and network structure as in the original distributional
SAC paper [34].

L. Experiments Results
L.1 Uncertainty-aware Regularization Effect by Varying ¢ in Actor Critic

humanoidstandup reacher swimmer walker2d

5000

160000

20 5

140000 4000
S 40 100
©
315 3000
& 20000 0
g 50
o 80 s 2000
© 100000 [N — sac — SAC 2 — SAC
z — DsAC — DsAC — DsAc
< 100 300
MW, Ge)(e = 0.1) H(p, Qo€ =0.1) M, Go)(e =0.1) 1000 H(u, qe)(e =0.1)
<0000 — M, qe)(e=0.5) 1o | — M aee=05) s — (4, qo)(E=0.5) — (. qo)le = 0.5)
—— MK, Ge)(e=0.9) | — Muge)e=0.9) — H(H, Ge)e =0.9) — H(u, Ge)(e = 0.9)

02 04 06 08 10 2 04 06 0.8 10 0.2 04 06 08 10 0.2 04

Time Steps (1e6) Time Steps (1e6) Time Steps (1e6)

0.6 08 10

Time Steps (1e6)

Figure 6: Learning curves of DSAC (C51) with the return distribution decomposition (1, gg) under
different ¢.

We study the uncertainty-aware regularization effect from being categorical distributional in the actor-
critic framework, where we decompose the C51 critic loss in Distributional SAC (DSAC) according
to Eq.|3] We denote the decomposed DSAC (C51) with different € as H(p, g9)(e = 0.9/0.5/0.1)..
As suggested in Figure |§|, the performance of H (i, gp) tends to vary from the vanilla DSAC (C51) to
SAC with the decreasing of € on four MuJoCo environments. In some environments, the difference of
H(u, qo) across various € may not be pronounced between DSAC (C51) and SAC. We hypothesize
that the algorithm performance is not sufficiently sensitive when € changes within this restricted range.
Although ¢ € (0, 1) is designed to guarantee a valid density decomposition, it does not guarantee
that ¢ in Eq. [3|can flexibly vary from O to 1. It is worth noting that our return density decomposition
is valid only when € > 1 — pp as shown in Proposition [T} and therefore e can not strictly go to 0,
where H(u, go) would degenerate to SAC ideally. Therefore, compared with the ablation study in
Figure[3] the trend varying from DSAC to SAC in Figure[f| by decreasing ¢ may not be as pronounced
as that in value-based RL evaluated on Atari games. One crucial reason behind is that the actor-critic
architecture is generally perceived to be more prone to instability compared to value-based learning
in RL. As outlined in [15]], this instability stems from the policy updates, which likely introduces
additional bias or variance from the critic learning process.
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Figure 7: Learning curves of AC, AC+VE (SAC), AC+UE (DAC) and (DSAC) over five

seeds across eight MuJoCo environments where DAC and DSAC are based on IQN. (First Row):
Mutual improvement. (Second Row): Potential interference.
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L.2 Mutual Impacts on DSAC (IQN)

To extend the mutual impact of the two types of regularization to broader distributional RL algorithm,
we investigate the learning behavior of distributional RL based on IQN. The conclusion when using
IQN is similar to that when using categorical distributional learning in Figure[d In particular, in the
first row of Figure[7} simultaneously employing uncertainty-aware and vanilla entropy regularization
renders a mutual improvement. Conversely, the two kinds of regularizations, when adopted together,
can also lead to performance degradation, as exhibited in the second row in Figure[7} For instance,
on Swimmer and Reacher, is significantly inferior to AC+UE or AC+VE. These results
about potential interference also serve as the emprical evidence to reveal distinct exploration directions
in the policy learning for the two types of regularizations.

L.3 Ablation Study across Different Bin Sizes (Number of Atoms)

To further demonstrate our regularization effect based on the return density decomposition, we
conducted an additional ablation study by varying the number of bins/atoms (equivalent to adjusting
the bin sizes) of both C51 and our decompose algorithm (1, gg). Consistent with the tendency
shown in Figure |3|in Section Figure 8| also suggests that decreasing ¢ implies that H(u, gg)
degrades from C51 with the same bin size to DQN. Another interesting observation is that, as shown
in Breakout (the first row in Figure[§), increasing the number of atoms (reducing the bin size) restricts
the range of ¢ for a valid return density decomposition in Proposition[I] Consequently, a small number
of atoms or a large bin size can allow a broader variation of H(u, gg) from C51 to DQN, facilitating
the demonstration of our regularization effect empirically.
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Figure 8: Learning curves of value-based CDRL, i.e., C51 algorithm, and the decomposed algorithm
H(u, qo) across different numbers of atoms (various bin sizes) on two Atari games. Results are
averaged over three seeds, and the shade represents the standard deviation.

M Discussion on Decomposing Quantile-based Distributional Loss

In order to extend our analysis and conclusion to broader distributional RL algorithm classes, we need
to discuss another commonly-used algorithm based on quantile regression loss [L1,[10]. Although
it may be possible to discuss both categorical and quantile representation based on the particle
representation (Definition 5.13 in [6]), committing either fixed atoms in categorical representation
or fixed quantiles in quantile representation can simplify the algorithm analysis. In this section, we
discuss how to decompose the quantile-based distributional loss in quantile regression distributional
RL.
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Quantile-based Distributional Loss. In each phase of Neural FZI, we know that the return distribu-
tion, parameterized by quantiles, is fixed. This, therefore, leads to a composite quantile loss [[12],
which is initially developed to capture the full conditional distribution of the response variable by
predicting or estimating its multiple quantiles:

N
1 .
equamile = N Z]EyNPy [Pn (y - Zel)] ) (45)
=1

where p., is the quantile (pinball) loss defined by p., (u) = u (Ti — ]l{u<0}) ,Vu € R. We use Py to
denote the fixed target return distribution. In quantile-based distributional RL, we can directly sample
y from the quantile function Fy, L of the fixed target return given that both the current and target
return distributions are parameterized by the quantiles. Z,' represents the estimated 7;-quantile value
of the current return distribution. Alternatively, p,, can be the quantile Huber loss [22], a smooth
version of vanilla quantile loss at zero, by additionally introducing a hyper-parameter . We thus
denote the quantile Huber loss as pZ., which is defined as:

i () = |7 — £elt), 0
K
where 2 if [y
AP if lu| <k
L.(u)= { (|u\ _ %;{) , otherwise ° @7

As k — 0, it is easy to show that the quantile Huber loss reverts to the vanilla quantile loss. To
simplify the notation, we consider the inner-level loss for a fixed y:

quanule - Z pn ZTZ (48)

Quantile Representation and Asymptotic Mean-Preserving Property. The normal representation
and categorical representation with the categorical projection Il¢ in Eq.[I0|could satisfy the mean-
preserving property (Section 4.3 in [49])), as seen in (5.18) in Section 5.4 for normal representation [6]
and in Lemma 4.8 for categorical representation in [49]. By contrast, quantile distributional dynamic
programming is generally not mean-preserving (Lemma 4.8 in [49])), as the quantiles are non-linear
functionals of distribution. However, we show that the quantile representation has an asymptotic
mean-preserving property as the mean of quantiles is asymptotically equivalent to the expectation of
the considered distribution when the number of quantiles tends to infinity. Particularly, assume that
we have N evenly spaced quantiles { ﬁ}f\il, we approximate the expectation by the mean of all
quantiles values defined by

NZ il “9)

Consequently, given a random variable X with its quantile function F~!, we have the following
property of quantile function:

N

. 1 “+o00

where the first equation results from the relationship between the limit of Riemann Sum and its integral,
and the second equation holds by changing the variable 7 = F'(x). Note that this asymptotic regime
is similar to that in our histogram function analysis for CDRL, where A — 0 <— N — +oo.
According to this equivalence regarding the mean quantiles and the expectation of a random variable,
we consider the two decomposition ways as follows.

Decomposition Method 1. We denote Z = + ZZI\LI Z,'" as the mean of the quantiles for the current
return. Consequently, we have a straightforward composition as follows:

P (y—25) =05 ((y—2)+ (2 - 2)) = o5, (y — Z) + b7, (51)

where

o =py ((y=2)+(Z - 23)) = 05, (y — 2). (52)
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Therefore, we have the decomposed composite quantile loss as

1 & 1
Lquantile = N Z pfl. (y — Z) + N Z 57’ . (53)
1=1 i=1
Mean-Related Term Residual Term

The first term is a mean-related one, which we will elaborate on later, while the induced 6, in
the residual term is aimed at capturing the distribution information beyond only the expectation.
Particularly, minimizing p% ((y — Z) + (Z — Z;')) in 6, will push the deviations Z — Z;' from
the current return estimator to capture the deviations from the target return distribution of y — Z.
This regularization term contributes to preserving the richness of the quantile representation for
distributional information, especially the dispersion, from the return.

In terms of the mean-related term, let us consider the approximation. As the quantile Huber loss is
typically used in quantile-based distributional RL, when « is large, the mean-related term can be
simplified as

1 Y 1 X 1 1
K 7\ ~ L _ Sl N2 o (0 72
N;p“(y_Z)NN;‘” Ly-z<op 54— 2 = (= 2)%, (54)
where the first approximation holds because L, (u) = %UZ with high probability. The second

approximation holds because |T1' —1y_z <0}| %(y — Z)? is just the quantile value scaled version

of least squared loss. Since Z is the expectation of all estimated quantiles, it can be approximately
symmetric to E [Y]. Suppose P(y — Z < 0) = P(y — Z > 0) = 3, we have

1 1
Eln—1y-zepl] = 5 (Im =1l +7) = 5. (55)

Therefore, this approximation in the mean-related term holds, as shown in Eq.[54} This implies that

2
the mean quantile estimator Z; = arg minz E, . p, [y - % Zf;l Zy L} captures the expectation of
the target return distribution from y ~ Py-. Recap the asymptotic equivalence between the expected
quantiles and the true expectation of a random variable in Eq. @], the limiting estimator of Z; by
minimizing the mean-related term in {guanile satisfies:

1 N

E[Y] =« Y 77 > E[Z;] as N — 400, (56)
i=1

This implies that the learned expected return £ [Z é] is asymptotically mean-preserving when mini-

mizing the mean-related term in the quantile-based distributional loss.

In summary, the first decomposition method decomposes the quantile-base distributional loss into the
mean-related and residual terms. After a mild approximation, the mean-related term can be simplified
as a least-squared loss equipped with an expected quantiles estimator. Combining the equivalence
regarding the limiting behavior of the expected quantiles, the mean-related term is thus approximately
equivalent to the standard least-squared loss used in classical RL, thus asymptotically satisfying
the mean-preserving property. Moreover, the residual term is able to capture the return distribution
information beyond its expectation. In the context of uncertain-aware regularized exploration in
our paper, the residual term plays a similar role to the cross-entropy-based regularization derived in
Proposition 2] of CDRL.

Decomposition Method 2. Another decomposition method can directly follow the return density
decomposition proposed in Eq.[3| but we apply the decomposition on the quantile function F~1(7) for
7 € [0, 1]. We expect that this decomposition also leads to two parts, where the first part can involve
the quantile defined on the bin A; that contains the expected quantiles F'~1 = Zil F~1(r;), and
the second term relates to the distribution part. However, this detailed decomposition is largely
beyond the scope of this paper, and it takes more effort to think about it carefully. We leave this
decomposition regarding the quantile-based distributional loss as future work.
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