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Abstract

Temperature plays a dominant environmental role in determining the efficiency
of protein function. Accurately predicting the thermal stability of proteins is cru-
cial for fundamental biology, drug discovery, and protein engineering. Here, we
introduce ThermoFormer, a transformer-based protein language model that learns
both temperature-aware representation and sequence patterns. Specifically, we first
build a large-scale dataset comprising more than 96 million protein sequences anno-
tated with their optimal growth temperature (OGT). ThermoFormer is pre-trained
with a supervised OGT prediction task and an unsupervised masked language
modeling (MLM) task on the dataset. We evaluated the performance of Thermo-
Former on the pre-training and the performance of transferring ThermoFormer to
other temperature prediction datasets, including two melting temperature (TM)
datasets and an optimal catalytic temperature (OCT) dataset. The results show
that ThermoFormer is able to achieve state-of-the-art performance in both OGT,
TM, and OCT prediction tasks, outperforming previous unsupervised pre-trained
models. In addition, we have also shown that ThermoFormer enables zero-shot
temperature prediction, i.e., even without further fine-tuning, ThermoFormer can
still achieve comparable performance. We believe that ThermoFormer can serve
as a foundational model for encoding protein sequences with temperature-aware
representations, providing better transfer ability for temperature-related down-
stream tasks. The datasets, model weights, and source codes are available at
https://github.com/ginnm/ThermoFormer.

1 Introduction

Temperature is a fundamental environmental factor that affects protein function [1, 2]. Accurately
predicting temperature from protein sequences is essential. There are three main types of temperature
related to protein functionality: optimal growth temperature (OGT) [3], melting temperature (TM) [4],
and optimal catalytic temperature (OCT) [5]. Their detailed definitions are in Table 1. Compared to
OGT data, TM and OCT data are more difficult to obtain [6]. Experiments to determine the TM or
OCT of a protein are relatively complex, and currently, only tens of thousands of data points have
been accumulated [7, 8, 9]. However, obtaining the OGT of proteins is relatively simple, as measuring
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Optimal Growth Temperature = 37℃

Organsim Proteins

Figure 1: Optimal growth temperature refers to the temperature at which an organism exhibits its
highest growth rate. The OGT of proteins is that of the host organism.

Name Definition Abbreviation

Optimal Growth
Temperature

The temperature at which a protein’s host
organism achieves the highest growth rate. OGT

Melting
Temperature

The temperature at which a protein unfolds and
loses its functionality. TM

Optimal Catalytic
Temperature

The temperature at which a protein enzyme
exhibits its highest catalytic activity. OCT

Table 1: Different types of protein temperature involved in this work.

the OGT of a microorganism provides the OGT of all its proteins (See in Figure 1). Moreover, it has
been observed that the OGT of a protein is positively correlated with its TM and OCT [10, 11]. This
is because proteins from an organism are expected to be functional at its optimal growth temperature
(OGT). Thus, an intuitive idea is to pre-train a protein representation model on OGT data and then
transfer the model to the prediction of TM and OCT.

To this end, we first collect a large-scale protein dataset containing more than 96 million protein
sequences. All these proteins are annotated with OGT labels and have a unique ID in the UniProtKB
database. Then, we propose ThermoFormer, a Transformer-based model including 690 million
parameters, and pre-train it on the OGT-labelled dataset. The pre-training process consists of two
tasks: a supervised task involving learning to predict the OGT of a protein and an unsupervised task
focusing on learning to understand protein sequences through masked language modeling (MLM).
Through this hybrid approach of supervised and unsupervised pre-training, ThermoFormer learns
contextual representations of amino acids and temperature-aware protein sequence representations.
The later experiments show that the unsupervised task can improve the performance of the supervised
task. Another interesting finding is that ThermoFormer exhibits zero-shot temperature prediction
capabilities, meaning it can predict TM and OCT directly without further fine-tuning.

In summary, the main contributions of this work are:

1. We collect a large-scale protein dataset containing over 96 million protein sequences with
annotated OGT labels, which is approximately 32 times larger than the previous largest
protein dataset with OGT labels.

2. We present ThermoFormer, a Transformer-based model that is pre-trained on the large-scale
dataset with both supervised OGT prediction and unsupervised MLM tasks, enabling it to
learn temperature-aware representations of proteins.

3. We evaluate ThermoFormer on temperature-related downstream tasks, including two TM
and an OCT datasets, demonstrating its state-of-the-art performance and zero-shot prediction
capability.
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We suggest that ThermoFormer can serve as a foundational model in the field of protein temperature
prediction since it has learned temperature-sensitive representations.

2 Related Work

2.1 Protein Temperature Prediction

Protein temperature prediction is a classic problem in machine learning. Previous methods are based
on statistical inference [12, 13], random forest [14], LightGBM [15], decision tree [16], etc., which
learn artificial protein features related to melting or optimal catalytic temperatures. Many end-to-end
deep learning models, such as CNN [17, 6] and RNN [18], have also been proposed to predict protein
temperatures from one-hot encodings of protein sequences directly. Recently, with the success of
pre-training on the field of natural language processing (NLP), pre-trained protein language models
(PLMs) have emerged. They are often Transformer-based [19] and learn on millions of protein
sequences through BERT-like masked language modeling (MLM) [20, 21, 22, 23], GPT-like causal
language modeling (CLM) [24, 25, 26], or T5-like encoder-decoder model [27, 28, 29]. CLM is
mainly used for protein generation, while MLM excels in protein representation and downstream
task fine-tuning [30] and is more suitable for temperature prediction. And there are also pre-trained
PLMs incorporating protein structure information [31, 32, 33, 34]. We can utilize a PLM to encode
protein sequences or structures into a hidden vector and then utilize an additional regression model
to learn the mapping function between the hidden vector and protein temperatures [35, 36, 37, 38].
Since these models are pre-trained on massive protein sequences or structures, they typically achieve
higher accuracy.

2.2 Optimal Growth Temperature Prediction for Pre-training

The optimal growth temperature refers to the most favorable environmental temperature that supports
the growth and reproduction of a specific organism. Leveraging optimal growth temperature prediction
for pre-training is motivated by the following: Numerous protein sequences are annotated with optimal
growth temperatures, while protein sequences labeled TM and OCT are scarce. Second, there is a
positive correlation between OGT and other temperatures, such as TM and OCT [38, 39, 16]. This
is because proteins can function with the highest efficiency and stability near their optimal growth
temperature. Prior work, DeepET [6], a CNN-based model, has also shown that representations from
learning from OGT prediction tasks can be effectively transferred to other temperature-related tasks.
However, it only used 3 million protein sequences for pre-training, which is only 3% of ours.

3 Method

Figure 2 shows the overall workflow of this work. We collect a protein dataset annotated with optimal
growth temperature (Figure 2A) and pre-train ThermoFormer on the dataset with a supervised OGT
prediction task and unsupervised MLM task (Figure 2B). After pre-training, ThermoFormer can be
utilized to learn the temperature prediction downstream task (Figure 2C).

3.1 Pre-training Dataset Collection

We first collected a dataset containing 21,498 micro-organisms and their corresponding optimal
growth temperatures (OGT) from literature [40]. Then we utilized the taxon IDs of these organisms
to search for the proteins contained within them in the UniProt [41] protein database and annotated
these proteins with the OGT label of the organisms they belong to, resulting in 96.4 million annotated
protein sequences from 14,612 organisms. The protein sequences containing non-standard amino acid
residues and longer than 2,048 are removed to ensure training efficiency. We split the pre-training
dataset into a validation set, a mix-species test set, and a cross-species test set. The validation set
and the cross-test set each contain 100 types of micro-organisms that are different from those in the
training set. The mix-species test set contains 500,000 sequences randomly split from the training set.
The statistical information of our dataset and splits is shown in Table 2.
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A. Dataset collection

Sequence Organism OGT
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C. Fine-tuning on temperature prediction downstream task

B. Pre-training on the dataset
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Figure 2: Overview of this work. (A) We first collect a large-scale dataset comprising 96 million
protein sequences annotated with optimal growth temperature. (B) Then we propose ThermoFormer,
which consists of a Transformer encoder and a sequence decoder for unsupervised MLM pre-
training and a predictor for supervised OGT prediction. The OGT prediction task enables it to learn
temperature-sensitive representation. (C) We can utilize ThermoFormer to perform fine-tuning for
learning TM or OCT.

Splitting # Organsims # Sequences
OGT Seqeunce Lengths

Min.(°C) Max.(°C) Avg.(°C) Std.(°C) Min. Max. Avg. Std.

Training 14,412 95,038,959 3 103 31.25 6.14 32 2048 357 245

Validation 100 502,979 15 70 30.27 5.6 32 2048 354 235

Cross-Test 100 475,199 10 57 29.31 5.2 32 2048 360 257

Mix-Test 9,363 500,000 3 103 31.24 6.13 32 2048 257 245

Total 14,612 96,017,137 3 103 31.23 6.15 32 2048 357 245

Table 2: Statistics of the Pre-training Dataset.

3.2 Model Architecture and Pre-training

ThermoFormer is a pre-trained Transformer model. It contains four components: a transformer-based
encoder for extracting residue-level representations, an attention-based pooling layer for aggregating
the residue-level representation into sequence-level representation, a sequence decoder for MLM
pre-training, and a predictor for OGT prediction. These components are detailed below:

Transformer-based encoder. The Transformer-based encoder encodes the protein sequences into
a sequence of hidden states. Let s = (r1, r2, ..., rL) ∈ RL×V denote a protein sequence, where
ri ∈ RV is the one-hot encoding of the ith residue, L is the length of the protein and V is the residue
vocab size. The transformer encoder learns to map s into a hidden state:

(h1,h2, ...,hL) = Fθ(r1, r2, ..., rL) (1)

where Fθ is the Transformer encoder and θ denotes its parameters, hi ∈ Rd is the contextual
embedding of ri and d is the hidden dimension.

Sequence Decoder. The sequence decoder learns to recover the masked token from the hidden states.
It contains two position-wise dense layers with GELU activation unit and a layer normalization
layer [42]:

∀i ∈ 1, ..., L,yi = W T
2 FLN (σ(W T

1 hi)) + b (2)
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where W 1 ∈ Rd×d, W 2 ∈ Rd×V and b ∈ RV are learnable parameters, FLN is the layer
normalization function and σ is the GELU [43] activation function. yi ∈ RV is the probability
distribution of predicted ith residue. And we utilize cross-entropy as the loss function:

LCE = −E [log yi[y
∗
i ]] (3)

where y∗
i represents the true residue for the i-th token in the sequence, and yi[y

∗
i ] denotes the

predicted probability for the correct residue.

Attention-based Pooling Layer. The attention-based pooling layer learns to aggregate the hidden
states (h1,h2, ...,hL) into a global hidden state for further adaption on sequence-level task. The
weights of hidden states (h1,h2, ...,hL) are computed by a projection-soft-max layer that produces
a weighted vector c:

(ĥ1, ĥ2, ..., ĥN ) = FLN (h1,h2, ...,hN )

si =
eW aĥi+ba∑L

n=1 e
W aĥn+ba

,∀i ∈ 1, ..., L

c =

L∑
n=1

si · hi

(4)

where si is the attention weight of the ith residue and W a and ba are the learnable parameters of the
attention pooling layer. Then, a multi-layer perceptron with two dense layers and GELU activation is
employed to transform the weighted vector c. The first dense layer maps c to the same dimension as
the Feed-Forward Network (FFN) layer of the Transformer encoder, which in our implementation
is four times the size of the hidden layer. The second dense layer maps the output of the first layer
back to the original dimension. Between the first and second dense layers, there is a GELU activation
function. Additionally, there is a residual connection between the output of the second dense layer
and the output of the attention layer:

r = c+W 4(σ(W 3c+ b3)) + b4, (5)

, where W 3,W 4, b3, and b4 are learnable parameters layers, σ is the GELU activation function. The
output hidden state r is the representation of the whole sequence.

Predictor. The predictor learns to predict a temperature value T ∈ R from the sequence representa-
tion r. It has two dense layers and a Tanh activation function:

T̂ = c+W 6(σt(W 5r + b5)) + b6 (6)

, where W 5,W 6, b5, and b6 are learnable parameters, σt is the Thanh activation function, and T̂ is
the predicted temperature. We utilize the mean square error (MSE) criterion as the loss function:

LMSE = E
[
(T̂ − T )2

]
(7)

where E[·] denotes the expectation, T̂ is the predicted temperature, and T is the ground truth
temperature.

Joint Loss Function. The Pre-training loss function is the sum of LCE and LMSE . Since we
have observed that LMSE has a significantly different magnitude compared to LCE , with values
ranging from 0-1000 initially and stabilizing at 0-100 later. We multiplied LMSE by 0.01 to maintain
numerical stability. The final joint loss function is:

L = βLMSE + LCE (8)

3.3 Supervised Fine-tuning Paradigm

As shown in Figure 2C, we can further fine-tune ThermoFormer on other temperature prediction
tasks. For the temperature prediction task, we removed the sequence decoder during the fine-tuning
stage, while the rest of the parts remained. The parameters were inherited from those of the pre-
trained model. The Transformer encoder was kept frozen, and we only fine-tuned the parameters
of the attention-based pooling layer and the predictor to reduce the training cost. The subsequent
experiments demonstrate that this transfer learning approach effectively enhances the convergence
speed and accuracy of the Transformer model during training.
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4 Experiments

4.1 Model Pre-training

We pre-trained ThermoFormer on the OGT training dataset, using the validation set during the
training process to monitor overfitting. After training, we selected the model that performed best on
the validation set and tested it on two test sets. We utilized PyTorch and Hugging-Face Transformers
API2 to implement ThermoFormer. The transformer encoder comprises 33 layers and 20 attention
heads, with 650 million parameters and an embedding size of 1280. The encoder is compatible with
ESM-2 [23], so we load the ESM-2 checkpoint 3 as the initialization of our Transformer encoder,
except we replace the naive attention layer with flash attention layer [44]. The learning rate was set
to 0.0001. We train ThermoFormer on a DGX server equipped with eight NVIDIA A800 GPUs. The
micro-batch size per GPU is 4096 tokens, and the gradient accumulation step is 32. The max training
step is set to 250k, and a cosine schedule with 3000 linear warm-up steps was used.

4.2 Fine-tuning on Temperature-related Tasks

Dataset Source Training Test Total

TM-Cell [8] 2255 251 2506

TM-Atlas [7] 33719 3714 37433

OCT [9] 1756 190 1902
Table 3: Statistics of the temperature-related down-stream datasets.

We evaluated ThermoFormer on three temperature-related datasets.

• TM-Cell. TM-Cell contains 2506 proteins with melting temperatures from three species: E.
coli, S. cerevisiae, and T.thermophilus. The data is measured by Leuenberger et al. [8] and
split by Li et al. [6] The dataset includes 2255 training samples and 251 test sequences.

• OCT. OCT includes the optimal catalytic temperatures of 1902 enzymes from the BRENDA
database [9]. The dataset was randomly split into training (1712 enzymes) and test (190
enzymes) sets based on a 90–10 ratio.

• TM-Atlas. TM-Atlas consists of 48,000 proteins from 13 species. The data is measured by
Mega et al. [7] and split by Li et al. [6] The splitting statistic is shown in Table 3, including
2255 training samples and 251 test sequences.

The statistics of this dataset are shown in Table 3. For the task of temperature prediction, we utilize
root-mean-square-error (RMSE), Coefficient of Determination(R2), Pearson correlation coefficient
(ρp), and Spearman rank correlation coefficient (ρs) as evaluation metrics to measure the differences
between predicted values and gold truth. We use 5-fold cross-validation for the assessment, where in
each iteration, 20% of the training set was selected as the validation set, which was not involved in
training and was only used to choose the best training epoch. The remaining 80% of the sequences
were used for training. The model parameters from the checkpoint of the epoch that performed
best on the validation set were then used to test on the test set. The performance metrics reported
are the averages of the 5-fold cross-validation, and the error is represented by the variance of the
performance.

For the MLM task, we also record the perplexity of the model on the validation and test sets, defined
as the power of the natural logarithm of the cross-entropy loss. The lower the perplexity, the better
the model’s ability to reconstruct the sequence.
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Split Model
OGT Prediction for Proteins MLM

RMSE(◦C)↓ ρp ↑ R2 ↑ ρs ↑ Perplexity

Validation
ThermoFormer 2.88 0.87 0.73 0.61 4.95

ThermoFormer (-MLM) 2.98 0.86 0.72 0.60 -

Cross-Test
ThermoFormer 3.10 0.80 0.64 0.76 5.23

ThermoFormer (-MLM) 3.18 0.79 0.63 0.74 -

Mix-Test
ThermoFormer 3.10 0.86 0.75 0.82 4.73

ThermoFormer (-MLM) 3.20 0.85 0.73 0.81 -
Table 4: Performance of ThermoFormer on the pre-training validation set and test set. ThermoFormer(-
MLM) is solely trained on the OGT prediction task.
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Figure 3: UMAP Projection of Protein Representations of ThermoFormer and ESM-2.

4.3 Results

4.3.1 Impact of OGT Pre-training on ThermoFormer Representations.

Table 4 presents the results of the performance of the pre-training where ThermoFormer is the base
model whose pre-training process includes both OGT Prediction and MLM tasks, while Thermo-
Former (-MLM) does not include the MLM task. The results show that ThermoFormer can predict the
OGT of proteins accurately. For the validation set, the error (RMSE) is only 2.88◦C, and the Pearson
correlation between the predicted and actual OGT reaches 0.87. For the cross-species test set, the error
(RMSE) is 3.10◦C, and the Pearson correlation between the predicted and actual OGT reaches 0.80,
indicating that ThermoFormer is capable of generalizing across different species. For the mix-species
test set, the error (RMSE) is also 3.10◦C, and the Pearson correlation between the predicted and
actual OGT reaches 0.86, which is higher than it on the cross-species test set, demonstrating that
ThermoFormer has better performance within the same species. Figure 3 also demonstrates the
difference in learned representation between ThermoFormer and the unsupervised ESM-2. Compared
to ESM-2, ThermoFormer effectively separates proteins across different temperature ranges.

Another notable point is that incorporating the MLM task can improve the accuracy of OGT prediction
since ThermoFormer outperforms ThermoFormer (-MLM) across all metrics. This indicates that the

2https://huggingface.co/docs/transformers/index
3https://huggingface.co/facebook/esm2_t33_650M_UR50D
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MLM task is beneficial to the OGT prediction task and enhances the generalization capability of the
model.

4.3.2 ThermoFormer Fine-tuning Performance on Temperature-related Tasks

Dataset Model RMSE(◦C)↓ ρp ↑ R2 ↑ ρs ↑

TM-Cell

DeepET 11.13 0.79 0.35 0.72

ProtT5 7.55 (±0.41) 0.86 (±0.003) 0.74 (±0.006) 0.73 (±0.010)

Ankh 9.03 (±0.25) 0.79 (±0.005) 0.62 (±0.008) 0.72 (±0.007)

ThermoFormer (-OGT) 7.51 (±0.48) 0.86 (±0.003) 0.74 (±0.026) 0.73 (±0.005)

ThermoFormer 7.04 (±0.15) 0.88 (±0.006) 0.77 (±0.011) 0.74 (±0.013)

TM-Atlas

DeepET 6.30 0.76 0.58 0.55

ProtT5 5.12 (±0.21) 0.81 (±0.017) 0.66 (±0.020) 0.62 (±0.007)

Ankh 6.65 (±0.16) 0.67 (±0.012) 0.42 (±0.024) 0.44 (±0.011)

ThermoFormer (-OGT) 5.59 (±0.16) 0.77 (±0.008) 0.59 (±0.016) 0.55 (±0.002)

ThermoFormer 4.80 (±0.17) 0.84 (±0.006) 0.70 (±0.012) 0.64 (±0.014)

OCT

DeepET 12.21 0.76 0.57 0.62

ProtT5 12.44 (±0.18) 0.76 (±0.006) 0.55 (±0.023) 0.72 (±0.014)

Ankh 13.50 (±0.35) 0.69 (±0.002) 0.47 (±0.053) 0.63 (±0.002)

ThermoFormer (-OGT) 11.89 (±0.17) 0.78 (±0.010) 0.59 (±0.010) 0.70 (±0.005)

ThermoFormer 11.23 (±0.22) 0.81 (±0.009) 0.63 (±0.014) 0.76 (±0.009)

Table 5: Performance of ThermoFormer and baseline models on temperature-related fine-tuning
tasks.

Table 5 shows the supervised fine-tuning results of ThermoFormer and other baseline models
on temperature-related downstream tasks. ThermoFormer represents the complete model, while
ThermoFormer(-OGT) is the model without the OGT prediction pre-training task, containing only the
unsupervised MLM prediction task. The metric score in the table is the average from five-fold cross-
validation, with the standard deviation in the bracket. It can be seen that ThermoFormer outperforms
the ThermoFormer(-OGT) across all the datasets and metrics. This suggests that the representations
learned by ThermoFormer are better suited for transfer to temperature-related downstream tasks.
Therefore, we can conclude that supervised pre-training on large-scale OGT data enables the model
to learn temperature-related representations, leading to improved learning capability and performance
on temperature-related downstream tasks.

4.3.3 Comparison of ThermoFormer with Other Temperature Prediction Models.

We compare the performance of ThermoFormer to other models, DeepET [6], ProtT5 [28], and
Ankh [29] on the three downstream temperature prediction tasks. DeepET is a CNN-based model
trained on OGT prediction tasks and then transferred to TM and OCT prediction tasks. For DeepET4,
we used the TM prediction checkpoint provided by the authors for testing; therefore, there is no
standard deviation. For the unsupervised models ProtT55 and Ankh6, we used their encoder to
encode the protein sequences into hidden states, followed by the same Attention Pooling module and
Predictor module as ThermoFormer to ensure a fair comparison. The learning hyper-parameters are
the same as those of ThermoFormer. The comparison results are shown in Table 5. The results show
that ThermoFormer performs best across all three temperature prediction datasets and evaluation
metrics.

4https://doi.org/10.5281/zenodo.6351465
5https://huggingface.co/ElnaggarLab/ankh-base
6https://huggingface.co/Rostlab/prot_t5_xl_uniref50
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4.3.4 Zero-shot Temperature Prediction Performance of ThermoFormer

It has been observed that the OGT of protein exhibits a positive correlation with its thermal stability
(TM and OCT). This correlation suggests that the OGT predicted by ThermoFormer may be directly
regarded as TM or OCT, eliminating the need for separate fine-tuning of these temperature datasets.
This approach can be referred to as "zero-shot temperature prediction," as it does not require further
fine-tuning on specific TM or OCT datasets, leveraging the generalizability of the OGT prediction
model. To validate this, we conduct experiments on the TM-Cell and OCT datasets to obtain the zero-
shot temperature prediction performance of ThermoFormer. We also test the zero-shot temperature
prediction performance of DeepET, as it can also predict the OGT of protein. The results are shown
in 6. To validate this, we conducted experiments using the TM-Cell and OCT datasets to evaluate

Dataset Model RMSE(◦C)↓ ρp ↑ ρs ↑

TM-Cell
ThermoFormer 20.54 0.87 0.76

DeepET 23.81 0.75 0.69

OCT
ThermoFormer 19.97 0.73 0.51

DeepET 21.26 0.66 0.40
Table 6: Zero-shot temperature prediction performance of ThermoFormer and DeepET.

the zero-shot temperature prediction performance of ThermoFormer. Additionally, we assessed the
zero-shot temperature prediction capabilities of DeepET, as it can also predict the optimal growth
temperature (OGT) of proteins. The results, presented in Table 6, demonstrate that ThermoFormer
achieves acceptable accuracy in temperature prediction, even without fine-tuning. While DeepET
also performs zero-shot temperature predictions, its accuracy is lower than that of ThermoFormer.

4.3.5 OGT Prediction For Organisms

Given that ThermoFormer is able to predict the OGT of proteins, it is natural to ask whether it can also
be used to predict the OGT of entire organisms. The answer is affirmative. Specifically, for a given

Dataset # Organisms RMSE(◦C)↓ ρp ↑ R2 ↑ ρs ↑
Validation 100 2.51 0.96 0.92 0.87

Cross-Test 100 3.10 0.89 0.79 0.85

Mix-Test 9363 3.67 0.92 0.84 0.82
Table 7: Performance of ThermoFormer in predicting the optimal growth temperature for organisms.

organism, ThermoFormer predicts the OGT of all its proteins, and the average of these predictions
is taken as the organism’s OGT. We evaluated the performance of this approach on the pre-training
datasets, with the results presented in Table 7. The results show that ThermoFormer demonstrates the
capability to predict the OGT of organisms effectively.

5 Discussion and Conclusion

Temperatures are one of the key factors determining their function. The work aims to develop an
end-to-end protein model specifically designed to capture the temperature-aware representations of
proteins. The most commonly used temperatures for proteins are melting temperature and optimal
catalytic temperature. However, due to the complexity of wet lab experiments, data for TM and OCT
are scarce. In contrast, optimal growth temperature data is relatively more accessible, and previous
studies have shown a positive correlation between OGT and both TM and OCT [10, 11]. Therefore,
we propose to first pre-train the protein representation model on OGT data to learn temperature-related
representations of proteins and later transfer these representations to specific prediction tasks for
TM or OCT. To achieve this, we present a pre-training dataset containing over 96 million proteins
labeled with OGT, 32 times larger than the largest OGT-annotated dataset one [6]. Next, we introduce
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ThermoFormer, a Transformer-based model trained on this dataset using unsupervised masked
language modeling and supervised OGT prediction tasks. The hybrid pre-training approach enables
the model to learn protein temperature-aware representations. Compared to other protein language
models, ThermoFormer significantly improves downstream temperature-related tasks, proving the
effectiveness of supervised learning on OGT data. Additionally, ThermoFormer enables zero-shot
temperature prediction capabilities, meaning the OGT predicted by it can be directly regarded
as TM or OCT. Experimental results show acceptable accuracy in these predictions. Moreover,
ThermoFormer can predict the optimal growth temperature of organisms. Precisely, by predicting
the OGT of all proteins within an organism and then averaging them, we can estimate the optimal
growth temperature of the organism. In conclusion, ThermoFormer is a language model capable of
efficiently learning protein temperature-aware representations, and it can serve as a foundation model
for efficiently transferring to various downstream tasks related to protein temperature prediction.
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